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1. Introduction

In [16], Rees introduced the important concept of an asymptotic sequence over an
ideal I in a Noetherian ring R. Such sequences have been used in [1,15,16] to help proving
results concerning the Rees-good basis, I-independent elements and analytic spread.

In [13], Ratliff proved that all asymptotic sequences in R (that is, asymptotic se-
quences over (0)R) which are maximal with respect to being contained in I have the
same length and are denoted agd([). He showed that asymptotic sequences in R have
many basic properties of regular sequences. Later, in [3], Katz showed that any two max-
imal asymptotic sequences over I in a Noetherian local ring R have the same length and
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are denoted acogd([l), and in [9,14], Ratliff and McAdam gave another results concerning
asymptotic sequences over an ideal and asymptotic cograde.

Let I and J be ideals of a Noetherian ring R. In this paper, we show that all maximal
asymptotic sequences over I coming from J (say, asymptotic I-sequence from J (see
Definition 2.3)) have the same length and are denoted agd;(.J). By this fact, we introduce
the concept of asymptotic I-grade. Using this concept we give more knowledge concerning
asymptotic sequences over an ideal.

Section 2 contains several results showing that asymptotic I-sequences from J in a
Noetherian ring R behave nicely with respect to passing to certain rings related to R. In
Section 3 it is shown that asymptotic I-grade of J is well defined and likewise behaves
nicely when passing to the same type of related rings. Also, it is shown that, if x =
T1,...,T, is a sequence of elements in the Jacobson radical of R, then x is an asymptotic
sequence over I if and only if agd;((x)R) = n, and some consequences of this result are
given. Before proving this result, however, it is first shown that if b be an element in the
Jacobson radical of R, then

agd;(J) < agd;((J, (b)) R) < agd;(J) + 1.

In Section 4 we give four upper bounds and two lower bounds on agd;(J). In Section 5
several useful characterizations are given for agd;(J) to be equal to height J(R/I) and
define strongly quasi-I-unmized rings (see Definition 5.1). Then we give some conse-
quences of these characterizations. For instance, in [9], it was shown that if z1,...,z,
is an asymptotic sequence over I, then z; 4+ I,...,z, + I is an asymptotic sequence
in R/I. A natural question to ask is when the converse holds. In this section we prove
the converse holds if R is locally strongly quasi-/-unmixed. Finally, it is shown that if
p € V(I) and R, is strongly quasi-IR,-unmixed, then R, is strongly quasi-IR -unmixed
for all but finitely many elements of {q € Spec R | p C q, heightq/p = 1}.

All rings in this paper are commutative with a unit 1 # 0. For any R-module M
we shall use mAssg M to denote the set of minimal elements of Assp M. If (R, m) is a
Noetherian local ring, then R* denotes the completion of R with respect to the m-adic
topology. For any ideal I of R, the radical of I, denoted by /I, is defined to be the
set {x € R | =™ € I for some n € N}. Moreover, we use V(I) to denote the set of
prime ideals of R containing I. Further, the integral closure of I is denoted by I, so
I := {x € R | z satisfies an equation of the form x™ + c¢;z" "1 + ...+ ¢, = 0, where ¢; €
I' for i = 1,...,n}. Finally, we denote by Z the graded Rees ring R[u, It] := @,z "t"
of R with respect to I, where ¢ is an indeterminate and u = ¢~!. For any unexplained
notation or terminology we refer the reader to [5,17].

2. Asymptotic I-sequences

In this section we give a number of elementary properties of asymptotic I-sequences.
We begin with definitions.
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Definition 2.1. Let I C p be ideals of a Noetherian ring R such that p is prime.

(2.1.1) p is called a quintessential (resp., quintasymptotic) prime ideal of I precisely
when there exists z € ASSR; Ry (resp., z € mAssR; Ry) such that IR: +2z is pRy-primary.
The set of quintessential (resp., quintasymptotic) primes of I is denoted by Q(I) (resp.,
@ (D).

(2.1.2) Let Z = Z(I, R) be the Rees ring of R with respect to I, then p is asymptotic
prime of I precisely when there exists q € Q*(uZ) such that p = q N R. The set of
asymptotic primes of I is denoted by A*(T).

The following lemma lists the known basic facts concerning A*(I) which will be needed
below.

Lemma 2.2. Let I and J be ideals in a Noetherian ring R. Then the following hold:

(i) A*(I) = U,enAssr(R/I™) = Assg(R/I™) for all large n, and it contains all
minimal prime divisors of I.

(ii) If I Cp € Spec R and S is a multiplicatively closed subset of R which is disjoint
from p, then p € A*(I) if and only if pRs € A*(IRs).

(iii) p € A*(I) if and only if there is z € mAssg R such that z C p and p/z €
A*(I(R/z)). o

(iv) Let the ring T be an integral Noetherian extension of R. If p € A*(I), then there
is a q € A*(IT) such that N R = p. Moreover, if every minimal prime in T lies over a
minimal prime in R, then the converse holds.

(v) Let the ring T be a flat Noetherian extension of R. Let q be a prime ideal in T
such that p = q N R. If ¢ € A*(IT), then p € A*(I). Moreover, if p € A*(I) and q is
minimal over pT, then q € A*(IT).

(vi) A%((I, X)RIX]) = {(s, X)RIX] | p € Z(1)}.

Proof. (i) follows from [6, Lemmas 0.1]. Since localization commutes with integral clo-
sure, then (ii) holds by (i). (iii)—(v) are proved in [7, Propositions 3.18((i) < (iv)) and
3.22] and [12, Theorems 6.5 and 6.8]. To prove (vi), let p € A*(I). Then by (ii), (iii)
and (v), we may assume that R is a complete local domain with maximal ideal p. Then,
in view of [10, Proposition 7], Z(I, R) and Z((I, X)R[X], R[X]) are locally unmixed.
Thus Q*(J) = Q(J) for all ideals J in Z(I, R) and Z((I,X)R[X], R[X]). Therefore
(p, X)R[X] € A*((I, X)R[X]), by [4, Theorem 2.5(v)]. The other inclusion is similar. O

Definition 2.3. Let I and J be ideals of a Noetherian ring R.

(2.3.1) A sequence x = xy,...,2, of elements of J is called an asymptotic
I-sequence from J if, (I,(x))R # R and for all 1 < i < n, we have z; ¢ U{p €
F((I, (xl, e ,{Eifl))R)}.

(2.3.2) An asymptotic I-sequence X = x1, ..., T, from J is mazimal if z1,..., Ty, Tpi1
is not an asymptotic I-sequence from J for any z,4+1 € J.

(2.3.3) The asymptotic I-grade of J, denoted agd;(J) is the length of a maximal
asymptotic I-sequence from J.
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The following proposition shows that the asymptotic I-sequences behave well under
passing to localization.

Proposition 2.4. Let I and J be ideals in a Noetherian ring R and let x = x1,...,%,
be a sequence of elements of J. Let S be a multiplicatively closed subset of R such that
(I + J)Rs # Rs. Then the following statements hold:

(i) If x is an asymptotic I-sequence from J, then the image of x in Rg is
an asymptotic IRg-sequence from JRg. The converse holds if for all p € J{q €
A*((I,(21,...,23))R);i =0,...,n — 1}, we have pRs # Rs.

(ii) If for allp € U{q € A*((I, (21,...,2:))R);i=0,...,n}, we have pRs # Rg, then
x is a maximal asymptotic I-sequence from J if and only if the image of x in Rg is a
maximal asymptotic IRg-sequence from JRg.

Proof. It follows readily from Lemma 2.2(ii). O

The following result shows that the asymptotic I-sequences behave well under passing
to the factor rings modulo minimal primes of R.

Proposition 2.5. Let I and J be ideals in a Noetherian ring R and let x = x1,...,x, be
a sequence of elements of J. Then the following statements hold:

(i) x is an asymptotic IT-sequence from J if and only if the image of x in R/z is an
asymptotic I(R/z)-sequence from J(R/z) for all z € mAssg R.

(ii) x 4s a maximal asymptotic I-sequence from J if and only if the image of x in R/z
is an asymptotic I1(R/z)-sequence from J(R/z) for all z € mAssg R and there exists
w € mAssg R such that the image of x in R/w is a maximal asymptotic I(R/w)-sequence

from J(R/w).
Proof. Tt follows readily from Lemma 2.2(iii). O

Corollary 2.6. Let I and J be ideals of a Noetherian ring R and let x = x1,...,x, be
a sequence of elements of J. Let K be an ideal of R contained Rad R. Then x is a/an
(resp., mazimal) asymptotic I-sequence from J if and only if x is a/an (resp., mazimal)
asymptotic I(R/K)-sequence from J(R/K).

Proof. This follows easily from Proposition 2.5, since there is a one-to-one correspon-
dence between the minimal prime ideals in R and in R/K. O

The next result shows that the asymptotic I-sequences behave well under passing to
finite integral extension rings of R.

Proposition 2.7. Let R C T be an integral extension of Noetherian rings. Let I and J be
ideals of R and let x = x1,...,x, be a sequence of elements of J. Then the following
statements hold:
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(i) If x is an asymptotic IT-sequence from JT, then x is an asymptotic I-sequence
from J.

(ii) If every minimal prime of T lies over a minimal prime in R, then x is a/an
(resp., mazximal) asymptotic I-sequence from J if and only if x is a/an (resp., mazimal)
asymptotic IT-sequence from JT.

Proof. It follows readily from Lemma 2.2(iv). O

The next result shows that the asymptotic I-sequences behave well under passing to
flat Noetherian extension rings of R.

Proposition 2.8. Let R C T be a flat extension of Noetherian rings. Let I and J be
ideals of R and let x = x1,...,z, be a sequence of elements of J. Then x is a/an
(resp., mazximal) asymptotic I-sequence from J if and only if x is a/an (resp., mazimal)
asymptotic IT-sequence from JT.

Proof. Tt follows readily from Lemma 2.2(v). O

The next proposition concerns the asymptotic I-sequences and asymptotic IR[X]-se-
quences, where X is an indeterminate over R.

Proposition 2.9. Let I and J be ideals in a Noetherian ring R and let x = z1,...,x, be
a sequence of elements of J. Then the following statements are equivalent:
(i) The sequence X is a/an (resp., mazximal) asymptotic I-sequence from J.

(ii) The sequence x1,...,%;, X, Tit1,...,Tn S a/an (resp., mazximal) asymptotic
IR[X]-sequence from (J, X)R[X] for somei=0,1,...,n.
(iii) The sequence x1,...,%; X, Tit1,...,%, i a/an (resp., maximal) asymptotic

IR[X]-sequence from (J, X)R[X] for everyi=0,1,...,n.
Proof. In view of Lemma 2.2(v), for j =0,1,...,4, we have
AT, (@1, -, @) RIX]) = {pRIX] | p € A((, (21, ;) R)}

(note that, for an ideal J in R, the prime divisors of JR[X] are pR[X] such that
p is a prime divisor of J). Also, it is clear that X is not in any prime divisor of
(I, (z1,...,2;))R[X]. Moreover, for k =0,1,...,n — i, we have

E(([, ($1, N ,l’hX,’I'H_l, ‘e ,I’H_k))R[X]) =
{(pa X)R[X] | p € *’F((IV (xlv cee 7xi+k))R)},

by Lemma 2.2(vi). Now, the result follows. O

Proposition 2.11 concerns asymptotic I-sequences and projectively equivalent ideals.
Before this we need the following definition.
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Definition 2.10. Let I be an ideal of a Noetherian ring R.

(2.10.1) A sequence x = x1,...,x, of elements of R is called an asymptotic se-
quence over I if, (I,(x))R # R and for all 1 < i < n, we have x; ¢ J{p €
A((I,(21,...,7i_1))R)}.

(2.10.2) An asymptotic sequence over (0)R is simply called an asymptotic sequence
in R.

(2.10.3) An asymptotic sequence x = 1, ..., %, of elements of R over I is mazimal if
Z1,...,%n, T4l 1S DOt an asymptotic sequence over I for any x,1 € R.

Proposition 2.11. Let I, I’ and J be ideals in a Noetherian ring R and let x = x1,...,2n
be a sequence of elements of J. If I and I' are projectively equivalent (i.e., there exist
positive integers v and s with I" = I"”), then x is a/an (resp., mazimal) asymptotic
I-sequence from J if and only if x is a/an (resp., mazimal) asymptotic I'-sequence
from J.

Proof. If x is an asymptotic I-sequence from J, then x is an asymptotic sequence
over I, by Definitions 2.3 and 2.10. Then A*((I, (x))R) = A*((I’,(x))R) by the proof of
[7, Proposition 6.24], so the conclusion follows from this. O

3. On asymptotic I-grade

In this section, we show that any two maximal asymptotic I-sequences from J have
the same length and introduce the concept of asymptotic I-grade of an ideal. We begin
with a remark. We recall that if I be an ideal of a Noetherian local ring (R, m), then
¢(I) denotes the analytic spread of the ideal I, so £(I) := dim Z(I, R)/(m,u)Z (I, R).

Remark 3.1. Let [ be an ideal of a Noetherian ring R.
(3.1.1) It follows from [13, Theorem 3.1], that all maximal asymptotic sequences in R
with elements coming from I have the same length and are denoted agd(I). Moreover,

agd(I) = min{height(IR} + 2)/z | p € V(I) and z € mAssg, Ry}
= min{dim R;/z | p € V(I) and z € mAssg: R;}.
Also, if R is local, then
agd(]) = min{height(IR* + z)/z | z € mAssp- R"},
by [13, Corollary 2.13].
(3.1.2) It is shown in [3] that if R is local, then any two maximal asymptotic sequences

over I have the same length and are denoted acogd(I). Moreover,

acogd(I) = min{dim R*/z — ¢((IR* + 2)/z) | z € mAssg- R*}.
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The next proposition shows that agd;(J) is unambiguously defined, for all ideals I
and J in a Noetherian ring R.

Proposition 3.2. Let I and J be ideals in a Noetherian ring R. Then
agd;(J) = min{acogd(IR,) | p € V(I + J)}.

Proof. Let x = z1,...,z, be a maximal asymptotic I-sequence from J and p € V(I +J),
then the image of x in R, is an asymptotic sequence over IR, by Proposition 2.4(i). So
acogd(IRy) > n. Also, there exists q € A*((I, (x))R) such that J C q. Then q € V(I +.J)
and the image of x in R, is a maximal asymptotic sequence over IR, by Proposition 2.4(i)
and Lemma 2.2(ii). Therefore acogd(IR,) = n and the result follows. O

In the next proposition we collect some basic properties of the asymptotic I-grade.

Proposition 3.3. Let I,1I',J and J' be ideals in a Noetherian ring R. Then the following
hold:

(i) If J C J, then agd;(J) < agd;(J’).

(ii) If J' C I, then agd;(J) = agd;(J' + J).

(iil) If V.J = V.J', then agd;(J) = agd,(J').

(iv) If VJ C V1, then agd;(J) = 0.

(v) If I and I' are projectively equivalent, then agd;(J) = agd;. (J).

(vi) agd;(J) = min{agd;(p) | p is a minimal prime divisor of J}.

(vii) agd;(JJ') = agd;(J N J") = min{agd,(J),agd;(J)}.

(viii) If x = x1,...,xy, is an asymptotic sequence over I, then agd;((x)R) = n.

Proof. (i)—(iv) and (v) follow easily from Propositions 3.2 and 2.11. For (vi), it is enough
to show that there exists a minimal prime divisor p of J such that agd;(J) = agd;(p),
by (i). Let x = x1,...,2, be a maximal asymptotic I-sequence from J. Then there
exists a prime ideal q € A*((I, (x))R) such that J C q. Let p be minimal prime divisor
of J such that p C g, then n = agd;(J) < agd;(p) < agd;(q) = n, by (i). For (vii),
agd;(JJ') < agd;(J NJ') < min{agd;(J),agd;(J)}, by (i), and agd;(JJ') = agd,(p)
for some minimal prime divisor p of JJ', by (vi). Now either J or J’ is contained in p,
say J. Then necessarily agd;(JJ') = agd;(J) = agd;(p), by (i), so it follows that
min{agd;(J),agd;(J)} < agd;(JJ’). For (viii), since x is an asymptotic I-sequence
from (x)R, then n < agd;((x)R). Let p € A*((I, (x))R), then the image of x in R, is a
maximal asymptotic sequence over IR,, by Proposition 2.4(i) and Lemma 2.2(ii). There-
fore agd;((x)R) < acogd(IR,) = n, by Proposition 3.2 and the conclusion follows. O

The next theorem shows that agd;(J) behaves nicely when passing to certain related
ideals.

Theorem 3.4. Let I and J be ideals in a Noetherian ring R. Then the following hold:



S. Jahandoust / Journal of Algebra 441 (2015) 344-362 351

(i) If S is a multiplicatively closed subset of R disjoint from I and J, then agd;(J) <
agdp, (JRs).

(i) agd; (J) = minfagdyg, (JR,) | p € V(I +.J)}.

(iii) agd;(J) = min{agd;z_(JRwm) | m is a mazimal prime ideal in V(I + J)}.

(iv) agd;(J) = min{agd;(g,.)(J(R/2)) | = € mAssg R}.

(v) agd;(J) = agd(r/x)(J(R/K)), for all ideals K contained Rad R.

(vi) If T is an integral Noetherian extension ring of R such that every minimal prime
of T lies over a minimal prime of R, then agd;(J) = agd;p(JT).

vii) If T is a flat Noetherian extension of R, then agd;(J) = agd;(JT).

(vi
(viil) agd;(J) = agd(I,X)R[X (JRIX]) = angR[X]((J»X)R[X]) -1

Proof. (i) and (iv)—(viii) follow from Propositions 2.4(i), 2.5(ii), 2.7(ii), 2.8, 2.9 and
Corollary 2.6.

For (ii), there exists p € V(I +.J) such that agd;(J) = acogd(IR,), by Proposition 3.2.
Then by (i) and Proposition 3.3(i), we have

agd;(J) < agdyg, (JRp) < agdjp, (PRp) = acogd(IRy) = agd;(J).

For (iii), there exists p € V(I + J) such that agd;(J) = agd;p, (JRp), by (ii). Then
agd;(J) < agd;p,, (JRw) < agd;g, (JRy) = agd;(J), for all maximal prime ideals m that
contains p, by (i). O

The following proposition will be useful in Section 5

Proposition 3.5. Let I,J be ideals in a Noetherian ring R, then there exist an integer
m > 0 and a chain of prime ideals J C po C p1 C ... C Py, Such that p,, is a mazimal
prime ideal and agd;(p;) = agd;(J) +i fori=0,...,m

Proof. Let agd;(J) = nand x = x1,..., 2, be a maximal asymptotic I-sequence from .J.
Then there exists a prime ideal qo € A*((I, (x))R) such that J C qo. So agd;(qo) = n.
Let mp be a maximal prime ideal such that qo C my.

We have two cases by Proposition 3.3(i):

Case 1: agd;(q0) = agd;(mg), then we set m = 0 and po = my.

Case 2: agd;(qo) < agd;(mg), then we set py = qo. There exists z,41 € mg such that
Zpt1 IS an asymptotic sequence over (I, (x))R. Let g1 be a minimal prime divisor of
(90, (Tns1))R, then q; € A*((I, (x), (xn11))R), by [7, Lemma 6.13]. So agd;(q1) = n+1.
Now, replace qo with g1 and continue this process. Note that R is Noetherian ring. O

Proposition 3.6. Let I and J be ideals in a Noetherian ring R and let b be an element in
the Jacobson radical of R. Then

agd;(J) < agd;((/; (0))R) < agd;(J) + 1.
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Proof. The first inequality follows from Proposition 3.3(i). Let agd;(J) = n and
X = x1,...,T, be a maximal asymptotic I-sequence from J. If (J,(b))R C U{p | p €
A*((I,(x))R)}, then x is a maximal asymptotic I-sequence from (J, (b)) R and the second
inequality holds. Otherwise, there exists j € J such that j+b ¢ U{p | p € A*((I,(x))R)},
by [2, Theorem 124]. Let by = j + b, then (J, (b))R = (J, (b1))R. There exists a prime
ideal q € A*((I, (x))R) such that J C q. Let q; be a minimal prime divisor of (q, (b1))R.
Since b; is an asymptotic sequence over (I,(x))R, then q; € A*((I,(x),(b1))R),
by [7, Lemma 6.13]. We know (J,(b))R = (J,(b1))R C (q,(b1))R C gq;. Therefore
Z1,...,Tn, b1 is a maximal asymptotic I-sequence from (J, (b))R and agd;((J, (b))R) =
n+1. O

Corollary 3.7. Let I,J and K be ideals in a Noetherian ring R such that J C K and
K is contained in the Jacobson radical of R. If agd;(K) — agd;(J) =n > 0, then there
exists a chain of ideals J = Jo C J; C ... C J, C K such that agd,;(J;) = agd;(J) + 1
fori=0,...,n.

Proof. If n = 0, the result is clear. Let n > 0 and z1,...,z,;, be a maximal asymptotic
I-sequence from J. Since agd;(K) —agd;(J) = n > 0, then there exists Zym+1, - - -, Tmtn
in K such that zi1,..., 24y is a maximal asymptotic I-sequence from K. We set J; =

(J, (Tmt1y .-y Tmyi))R for ¢ = 0,...,n, then agd;(J;) > m + 1. So agd;(J;) = m + i for
i=0,...,n, by Proposition 3.6. 0O

The following proposition gives a nice characterization for asymptotic sequences over
an ideal.

Proposition 3.8. Let I be an ideal of a Noetherian ring R andx = x1,...,x, be a sequence
of elements in the Jacobson radical of R, then x is an asymptotic sequence over I if and
only if agd; ((x)R) = n.

Proof. Let agd;((x)R) = n, we prove that x is an asymptotic sequence over I by
induction on n. If n = 1, the result is clear. Let agd;((x)R) = n > 1, then
agd;((x1,...,2p—1)R) = n—1, by Proposition 3.6 and so x1,...,T,_1 is an asymptotic
sequence over I. If x, € U{p | p € A*((I,(x1,...,2,_1))R)}, then (x)R C U{p | p €
A*((I,(z1,...,2p—1))R)}. Hence agd; ((x)R) = n—1 which is a contradiction. Therefore,
x is an asymptotic sequence over I. The converse follows from Proposition 3.3(viii). O

The next two corollaries were proved by Ratliff in [14, Corollary 6.3 and Theorem 6.4],
we reprove them without using the Rees rings.

Corollary 3.9. Let I be an ideal of a Noetherian ring R and x = x1,...,x, be an asymp-
totic sequence over I that is contained in Jacobson radical of R, then each permutation
of x is an asymptotic sequence over I.
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Proof. It follows immediately from Proposition 3.8. 0O
Corollary 3.10. Let I be an ideal of a Noetherian ring R and x = x1,...,x, be an
asymptotic sequence over I that is contained in Jacobson radical of R, then x is an

asymptotic sequence in R.

Proof. It follows immediately from Proposition 3.8, Theorem 4.6 and Generalized Prin-
cipal Ideal Theorem. O

Corollary 3.11. Let I, J = (z1,...,xn)R and J' = (y1,...,yn) R be ideals of a Noetherian
ring R. If J and J' are contained in the Jacobson radical of R and \/J = \/J', then
T1,...,T, 18 an asymptotic sequence over I if and only if y1,. ..,y are.

Proof. It follows from Propositions 3.8 and 3.3(iii). O

Corollary 3.12. Let I,J = (21,...,%i—1,%Ti, Tit1,-..,Zn)R and J = (x1,... 2,1,

Yis Tit1,---,Tn)R be ideals in a Noetherian ring R such that J and J' are contained
in the Jacobson radical of R. Then x1,...,2i—1,Ti¥i, Tit1,--.,Tn IS an asymptotic se-
quence over I if and only if T1,. .., X4 1, T, Tig1, -y Ty ANA T, .y Ti—1,Yiy Tig1y -, Tn
are.
Proof. Let x =21, ...,2;-1, %Y, Tit1,- - -, Tpn. Let X be an asymptotic sequence over I,
then

n =agd;((x)R) < agd;(J) < height J(R/I) < n,

by Propositions 3.8 and 3.3(i), Theorem 4.4 and Generalized Principal Ideal Theorem.
So agd;(J) =n and x1,...,Ti—1,%;, Tit1,- .., T, Is an asymptotic sequence over I, by
Proposition 3.8. Also, x1,...,2Zi—1, Y, Tit1,- - -, Tp, 1S an asymptotic sequence over I simi-
larly. For the converse, there exists p € V/((I, (x))R) such that agd;((x)R) = acogd(IRy),
by Proposition 3.2. Now either I + J or I + J' is contained in p, say I + J. Then
acogd(IRy) > agd;(J) > agd;((x)R), by Propositions 3.2 and 3.3(i). Therefore x is an
asymptotic sequence over I, by Proposition 3.8. O

Corollary 3.13. Let I be an ideal in a Noetherian Ting R and let x = x1,...,x, be
a sequence of elements of Jacobson radical of R. Then the following statements are
equivalent:

(i) x1,...,x, is an asymptotic sequence over I.

(i) 1™, ..., 2, is an asymptotic sequence over I, for some positive integers m;.

(iii) 1™, ..., 2, ™ is an asymplotic sequence over I, for all positive integers m;.

Proof. It follows from Corollary 3.12. O
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In [13, Corollary 3.7], Ratliff proved that if I is an ideal in a Noetherian ring R that
can be generated by an asymptotic sequence in R, then agd(p) = agd(I) for all prime
divisors p of I™. Proposition 3.14 gives a generalization of this result for asymptotic
sequences over an ideal.

Proposition 3.14. Let I and J be ideals in a Noetherian ring R such that J can be
generated by an asymptotic sequence over I, then for all h > 1: agd;(p) = agd;(J) for

all prime divisors p of (I + J)".

Proof. Let x = z1,...,2, be an asymptotic sequence over I such that J = (x)R, then
agd;(J) = n, by Proposition 3.3(viii). Let p be a prime divisor of (I + J)", for some
h > 1, then p € A*(I + J), by Lemma 2.2(i). Therefore x is a maximal asymptotic
I-sequence from p and so agd;(p) =n. O

In Proposition 3.16, we give a stronger result than Proposition 3.14. We need a defi-
nition.

Definition 3.15. Let I be an ideal in a Noetherian ring R, let A*(I) = {py,...,px} and
S = R\ UL, pi- Then (I"), = I"Rs N R is the asymptotic component of I, for all
integers h > 0.

Proposition 3.16. Let I and J be ideals in a Noetherian ring R such that J can be
generated by an asymptotic sequence over I, then for all h > 1: agd;(p) = agd;(J) for
all prime divisors p of (I + J)")a.

Proof. Let x = x1,...,2, be an asymptotic sequence over I such that J = (x)R. Let p
be a prime divisor of ((I + J)"),, then there exists q € A*(I + J) such that p C q. It is
clear that x is a maximal asymptotic I-sequence from q. Therefore

n = agd;(J) < agd;(p) < agd;(q) =n
by Proposition 3.3((i) and (viii)) and so agd;(p) = agd;(J). O
4. Some bounds for asymptotic I-grade

In this section, we give several bounds on asymptotic I-grade. We begin with an upper
bound.

Theorem 4.1. Let I and J be ideals in a Noetherian ring R and x = x1,...,x, be an
asymptotic sequence in I. Then there exists a maximal asymptotic I-sequence from I+ J,
sayy = yi,--.,Yn such that X,y is an asymptotic sequence in I + J. In particular

agd;(J) <agd(I +J) —agd(I).
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Proof. Let agd;(I+J) = n.If n = 0, we are done. If n > 0, then I+J € U{p | p € A*(I)},
and so I +J € U{p | p € A*((x)R)}, by [7, Lemma 5.7]. Pick y; € I +.J with

y1 ¢ U{p|pe A*(I)} and y1 ¢ U{p | p € A*((x)R)}.

Now, y; is an asymptotic I-sequence from I + J and agd; (,,)r({ +J) =n — 1. Since
the choice of y; assure that x1,...,xp,y1 is an asymptotic sequence in (I, (y1))R, we
now may use induction. The inequality follows from this and Proposition 3.3(ii). O

The next result determines when the inequality in Theorem 4.1 becomes equality.

Theorem 4.2. Let [ and J be ideals in a Noetherian ring R. Then the following statements
are equivalent:

(i) agd;(J) + agd(I) = agd( + J).

(ii) There exists p € V(I + J) such that agd;(J) = acogd(IRy), agd(l) = agd(IR,)
and acogd(IRy) + agd(IR,) = agd(pR,).

(ili) The equalities in (ii) hold for everyp € V(I+J) such that agd(I+J) = agd(pRy).

(iv) There existp € V(I +J) and z € mAssg: Ry such that

agd;(J) = acogd(IRy) = dim R, /(IR + 2)
and
agd(I) = agd(IRy) = L((IR, + z)/2) = height(IR, + z)/2.

(v) There exists p € V(I + J) such that the equalities in (iv) hold for every z €
mAssg: Ry with agd(pRy) = dim Ry /z.

(vi) For every p € V(I +J) with agd(I + J) = agd(pRy), there exists = € mAssg: R}
such that the equalities in (iv) hold.

(vil) The equalities in (iv) hold for every p € V(I + J) and for every z € mAssg; Ry
such that agd(l + J) = agd(pRy) = dim R} /2.

Proof. For (i) = (iii), let p € V(I + J) such that agd(I + J) = agd(pR,), then

agd(l + J) = agd(pR;)
> agd(IR,) + acogd(/Ry)
> agd(I) + agd; (J) = agd(I +J),

by [7, Proposition 6.9], Proposition 3.2 and Theorem 3.4(i). So the equalities in (ii) hold.
The implication (iii) = (ii) is obvious, since there exists p € V(I + J) such that
agd(I + J) = agd(pR,), by Proposition 3.2.
For (ii) = (i), since agd(I 4+ J) < agd(pR,) for all p € V(I 4 J), by Proposition 3.2,
so the result follows from Theorem 4.1.
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Finally, (ii) < (iv) < (v) and (iii) < (vi) < (vii) follow from [7, Proposition 6.11]. O
Theorem 4.3. Let I and J be ideals in a Noetherian ring R, then
agd;(J) < agd(J(R/I)).

Proof. There exists a prime ideal p € V(I +J) such that agd(J(R/I)) = agd(pR,/IR,),
by Proposition 3.2. Therefore the conclusion follows from Proposition 3.2 and [7, Propo-
sition 6.6]. O

The next theorem follows from Theorem 4.3 and [7, Lemma 5.13], but we give another
proof.

Theorem 4.4. Let I and J be ideals in a Noetherian ring R, then
agd;(J) < height J(R/I).

Proof. There exists a prime ideal p € V(I + J) such that height J(R/I) = heightp/I,
then agd;(J) < acogd(IR,) < dim R;/z — (((IR, + z)/z), by Proposition 3.2 and Re-
mark 3.1(ii). Since height does not exceed analytic spread and Rj/z is catenary, then
agd;(J) < dim Ry /(IR; + 2). Now agd;(J) < heightp/I. O

Corollary 4.5. Let I and J be ideals in a Noetherian ring R such that J is generated by
agd;(J) elements, then agd;(J) = height J(R/I).

Proof. It follows from Theorem 4.4 and Generalized Principal Ideal Theorem. O
Theorem 4.6. Let I and J be ideals in a Noetherian ring R, then

agd;(J) < agd(J) < height J.
Proof. There exists a prime ideal p € V(J) such that agd(J) = agd(pR,), by Propo-
sition 3.2. We have agd;(J) < agd;(p) < agdjp, (pRy), by Proposition 3.3(i) and
Theorem 3.4(1). Since agd 5, (PRy) < agd(pRy), by Theorem 4.1, then agd (/) < agd(J).

The second inequality follows from Theorem 4.4. O

Corollary 4.7. Let I and J be ideals in a Noetherian ring R such that J is generated by
agd;(J) elements, then agd;(J) = height J.

Proof. It follows from Theorem 4.6 and Generalized Principal Ideal Theorem. 0O
Now we give two lower bounds on agd;(J).

Theorem 4.8. Let I and J be ideals of a locally quasi-unmized ring R, then agd;(J) >
grade(J(R/I™)) for all large n.
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Proof. There exists a prime ideal p € V(I + J) such that agd;(J) = acogd(IR,), by
Proposition 3.2. Also, for all large n, acogd(IR,) > grade(pR,/I"R,), by [9, Theo-
rem 7.4]. So the conclusion follows from the standard facts on classical grade. O

Theorem 4.9. Let I and J be ideals in a Noetherian local ring R. Then,
agd;(J) > agd(I + J) — £(I).

Proof. There exists a prime ideal p € V(I 4+ J) such that agd;(J) = acogd(IR,), by
Proposition 3.2, and acogd(IR,) > agd(pRy)—£(IR,), by [9, Theorem 7.6]. Also, £(IR,) <
¢I), by [9, Lemma 2.5, and agd(pR,) > agd(p) > agd(I + J), by Proposition 3.3(i) and
Theorem 3.4(i). Now the desired result follows. O

5. Some characterizations for agd;(J) = height J(R/I)

It was shown in Theorem 4.4 that agd;(J) < height J(R/I) always holds. The main
result in this section, Theorem 5.2 gives several characterizations of when the equality
holds. We begin with a definition.

Definition 5.1. Let I be an ideal of a Noetherian local ring R. We say R is strongly
quasi-I-unmized ring, if dim R*/(IR" +z) = dim R/I and ¢((IR* + z)/z) = height(IR* +
z)/z for all z € mAssg+ R*. More generally, if R is not necessarily local, R is locally
strongly quasi-I-unmized ring if for every p € V(I), R, is strongly quasi-IR,-unmixed.

Theorem 5.2. Let I be an ideal of a Noetherian ring R. The following are equivalent:

() agd(r,x)r(J) = height J(R/(I,(x))R) for all ideals J and all asymptotic
I-sequences x = x1,...,2y, from J.

(ii) agd;(J) = height J(R/I) for all ideals J.

(iii) agd;(p) = heightp/I for all prime ideals p € V(I).

(iv) agd;(m) = height m/I for all mazimal prime ideals m € V(I).

(v) R is locally strongly quasi-I-unmized ring.

(vi) If x = x1,...,m, is an asymptotic sequence over I and p € A*((I,(x))R), then
heightp/I = n.

(vii) If (I, (z1,...,2n))R # R and if height(z1,...,2;)(R/I) =i for 1 <i <mn, then
T1,...,Tn 1S an asymptotic sequence over I.

Proof. It is clear that (i) = (ii) = (iii) = (iv). Let (iii) hold and let p € V(I), then
height p/I = agd;(p) < agd;p, (PRp) < height pRy, /IR, = heightp/I,

by Theorems 4.4 and 3.4(i). So agd;g, (pRy) = heightpR,/IR,. Let 2 € mAsspy Ry,
then
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dim R, /IR, = height pR, /IR,

= agdp, (PRy)
<dim Ry /z — (((IR, + 2)/z)

< dim R} /z — height(IR} + 2)/z
= dim R, /(IR + 2)

<dim Ry /IR, = dim Ry, /IRy,
by Remark 3.1(ii). Therefore dim R;/(IRy, + 2) = dim Ry /IR, and (((IR, + 2)/z) =
height(IR, + 2)/z and so (v) holds.

Let (v) hold. Assume x = z1,...,%, is an asymptotic sequence over I and p €
A*((I,(x))R), then pR, € A*((I,(x))Ry), by Lemma 2.2(ii) and the image of x in R, is
a maximal asymptotic sequence over IR,, by Proposition 2.4(i). Therefore, there exists
z € mAssg; R such that dim R;/2 — (((IR; + 2)/2) = n, by Remark 3.1(ii). Now
height p/I = n, by supposition and catenariness of R} /z and so (vi) holds.

Assume that (vi) holds and assume inductively that z1,...,z;—; have already been
shown to be an asymptotic sequence over I (the case i = 1 works equally well). If p €
A*((I,(z1,...,7,-1))R), then heightp/I =i — 1, and since height(x1,...,2;)(R/I) =i
we have x; ¢ p for all p € A*((I,(x1,...,2;—1))R). Thus w1,...,x; is an asymptotic
sequence over I, so by induction (vii) holds.

Let (vii) hold. Let x = x1,...,z, be an asymptotic I-sequence from J such
that height J(R/(I,(x))R) = m. Then there exists Zn+1,...,Zn+m in J such that
height(@p 41, ..., Tnti)(R/(I, (x))R) = 4, for 1 < i < m, by [11, Theorem 8, p. 61]. If
1 <i < n, then height(x1,...,2;)(R/I) = i, by Corollary 4.5 and Proposition 3.3(viii).
If n+1<i<n+m, we have

height(xv Tn41,--- 7$1)(R/I) =
height(z41,...,2;)(R/(I, (x))R) + height(x)(R/I) = 1,

and so height(x, Zp41,...,2;)(R/I) = i by the Generalized Principal Ideal Theorem.
Therefore height(zy,...,2;)(R/I) = ¢ for 1 < i < n+ m. Thus z1,...,Zy4m is an
asymptotic sequence over I. Since X1, ..., Tntm 1S an asymptotic (I, (x))R-sequence
from J, then agd; x))r(J) = m. Therefore agd s x))r(J) = m, by Theorem 4.4 and so
(i) holds.

For (iv) = (ii), there exist an integer m > 0 and a chain of prime ideals I +J C py C
p1 C ... C Py such that p,, is a maximal prime ideal and agd;(p;) = agd;(J) + i for

«

1=0,...,m, by Propositions 3.5 and 3.3(ii). Since p,, is a maximal prime ideal, then

agd](pm—l) = agd](pm) —-1= height pm/I -1 > height pm—l/I > agd](pm—l)7
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by Theorem 4.4 and so height p,,,—1/I = agd;(p;m—1). By continuation of this process we
have height po/I = agd;(po). Therefore

agd;(J) = agd;(po) = height po/I > height J(R/I) > agd;(J]),
by Theorem 4.4 and so agd;(J) = height J(R/I). O

Corollary 5.3. Let I be an ideal of a Noetherian local ring (R, m) such that R is a strongly
quasi-1-unmized, then R is locally strongly quasi-I-unmized.

Proof. If R is a strongly quasi-I-unmixed, then agd;(m) = dim R/I, by Definition 5.1
and Remark 3.1(ii). Now R is locally strongly quasi-I-unmixed, by Theorem 5.2. O

Corollary 5.4. Let I be an ideal of a Noetherian local ring (R, m), then the following are
equivalent:

(i) R is strongly quasi-I-unmized ring.

(ii) There exists a system of parameters in R/I, x1+1,... , x,+1, such that x1,...,x,
is an asymptotic sequence over I.

(i) If x1 + I,...,2; + I is a subset of a system of parameters in R/I, then xq, ..., x;
is an asymptotic sequence over I.

Proof. For (i) = (iii), let 1 + I,...,2; + I be a subset of a system of parameters
in R/I, then dimR/(I,(z1,...,2;))R = dimR/I — j for j = 1,...,i. Since R is
strongly quasi-/-unmixed, then agd(J(R/I)) = height J(R/I) for all ideals J of R, by
Theorems 4.3 and 4.4, and Corollary 5.3. Therefore R/I is quasi-unmixed by [7, Corol-
lary 5.8] and so is catenary. Therefore height(z1,...,z;)(R/I) = j for j =1,...,7 and
SO x1,...,x; is an asymptotic sequence over I, by Theorem 5.2 and Corollary 5.3.

It is clear that (iii) = (ii).

For (ii) = (i), let @1 + I,...,x, + I be a system of parameters in R/I, such that
T1,...,T, iSs an asymptotic sequence over I. Then

dim R/I =n = agd;((I,(x1,...,z,))R) = agd;(m)

by Proposition 3.3((ii), (iii) and (viii)). Therefore by Theorem 5.2 and Corollary 5.3 it
follows that R is strongly quasi-/-unmixed ring. O

Corollary 5.5. Let I and J be ideals of a Noetherian ring R such that agd;(J) =
height J(R/I), then Ry is strongly quasi-IR,-unmized ring for all minimal prime di-
visors p of I + J such that heightp/I = height J(R/I).

Proof. Let p be a minimal prime divisor of I + J such that height p/I = height J(R/I).
Then
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height J(R/I) = agd;(J) < agd;g, (JRy)
< agd;p, (pRy) < height p/I = height J(R/I),

by Proposition 3.3(i) and Theorems 3.4(i) and 4.4. So agd;p, (pRp) = height p/I and so
R, is strongly quasi-IRp-unmixed ring by Theorem 5.2 and Corollary 5.3. O

Corollary 5.6. Let I be an ideal of a Noetherian ring R and x = x1,...,x, be an asymp-
totic sequence over I. Then R, is strongly quasi-IR,-unmized ring for all minimal prime
divisors p of (I, (x))R.

Proof. We have agd;((I,(x))R) = height(x)(R/I) = heightp/I, for all minimal prime
divisors p of (I, (x))R, by Proposition 3.3((ii) and (viii)), Corollary 4.5 and Generalized
Principal Ideal Theorem, and so the result follows from Corollary 5.5. O

Corollary 5.7. Let I be an ideal of a Noetherian ring R such that R is locally strongly
quasi-I-unmized ring. Let x1,...,x, be elements of R. Then x1 + I,...,x, + I is an
asymptotic sequence in R/I if and only if x1,...,x, is an asymptotic sequence over I.

Proof. Let ©1 + I,...,x, + I be an asymptotic sequence in R/I, then z1,...,2, is an
asymptotic sequence over I by [13, Remark 3.3(iii)] and Theorem 5.2. The converse
follows from [9, Proposition 4.1]. O

In [13, Proposition 4.6], Ratliff proved that if I is an ideal of the principal class in
a locally quasi-unmixed ring R and p is a prime divisor of I, for some n > 1, then
height p = height I. We give a generalization of this result for asymptotic sequences over
an ideal. Before this we need a lemma.

Lemma 5.8. Let I and J be ideals of a Noetherian ring R and x1,...,x, be elements
of J such that J = (z1,...,xy,). If agd;(J) = n, then there exists an asymptotic sequence
over I, y1,...,Yyn, such that J = (y1,...,yn).

Proof. If n = 0 the result is clear. Let n > 0, then J ¢ U{p | p € A*(I)}. There ex-
ists b1 € (v2,...,7,)R such that 1 + b ¢ U{p | p € A*(I)} by [2, Theorem 125].
We set y1 = x1 + by. It is clear that J = (y1,22,...,2,)R and (22,...,2,)R ¢
U{p | p € A*((I,(y1))R)}. There exists by € (z3,...,2,)R such that zo + by ¢
Ulp | p € A*((I,(y1))R)} by [2, Theorem 125]. We set ya = x5 + bo. It is clear that
J = (y1, Y2, 3, - .., Tn)R. We continue this process and replace x; with y; fori =1,... n.
Therefore J = (y1,...,yn)R such that y1,...,y, is an asymptotic sequence over I. O

Proposition 5.9. Let I and J be ideals of a Noetherian ring R such that R is locally
strongly quasi-I-unmized. If J(R/I) is an ideal of principal class, then heightp/I =

height J(R/I), for all prime divisors p of (I + J)* and h > 1.
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Proof. There exists a sequence of elements of R, x = x1,...,2,, such that [ + J =
(I, (x))R, then agd;((x)R) = n, by Proposition 3.3(ii) and Theorem 5.2. Then there
exists an asymptotic sequence over I, yq,...,y,, such that (x)R = (y1,...,yn)R, by
Lemma 5.8. So the result follows from Proposition 3.14 and Theorem 5.2. O

In Proposition 5.10, we give a stronger result than Proposition 5.9.

Proposition 5.10. Let I and J be ideals of a Noetherian ring R such that R is locally
strongly quasi-I-unmized. If J(R/I) is an ideal of principal class, then heightp/I =
height J(R/I), for all prime divisors p of (I + J)")a and h > 1.

Proof. The proof is the same as that given to prove Proposition 5.9, but use Proposi-
tion 3.16 in place of Proposition 3.14. O

Theorem 5.11. Let I C p be ideals of a Noetherian ring R such that p is a prime ideal
and Ry is strongly quasi-IR,-unmized ring. Let & = {q € Spec R | p C q, heightq/p =1
and R, is not strongly quasi-IRq-unmixed ring}, then & is finite.

Proof. Let & be infinite. Let
P ={q € P | height q/I = heightp/I + 1},

then & is infinite by [8, Theorem 1]. Let heightp/I = n, then agd;z (pRy) = n by
Theorem 5.2 and Corollary 5.3, and so there exists a sequence, x = x1, ..., Zy, in R such

that its image in R, is a maximal asymptotic sequence over IR,. Let 2 = |JI_,{P €
A*((I,(z1,...,2;—1))R) | z; € P} and

P"={qe P |PEq foral Pec 2}

Since 2 is finite and each P € 2 can be contained in at most finitely many q € &’ it
follows 22 is infinite. Also, the image of x in R, is an asymptotic sequence over IR, for
all g e 22", Let

" ={qe P"|qa¢ A((I,(x))R)},

then & is infinite. It is clear that the image of x in Ry is not a maximal asymp-
totic sequence over IRq for all ¢ € &" and so agd;p, (q/2g) > n. On the other hand
agd;p, (qRq) < heightqRq/IRq = heightq/I = n + 1, by Theorem 4.4. Therefore

agd;p, (qRq) = height qRq/IRq and so Rq is strongly quasi-IRq-unmixed ring for all
g€ 2" by Theorem 5.2 and Corollary 5.3. This is a contradiction. 0O
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