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Let I be an ideal of a Noetherian ring R. Ratliff has shown 
that very many known results concerning R-sequences and 
classical grade have a valid analogue for asymptotic sequences 
and asymptotic grade. As a generalization of the concepts of 
asymptotic sequences and asymptotic grade, we introduce the 
concepts of asymptotic I-sequences and asymptotic I-grade. 
It is shown that they play a role analogous to asymptotic 
sequences and asymptotic grade.
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1. Introduction

In [16], Rees introduced the important concept of an asymptotic sequence over an 
ideal I in a Noetherian ring R. Such sequences have been used in [1,15,16] to help proving
results concerning the Rees-good basis, I-independent elements and analytic spread.

In [13], Ratliff proved that all asymptotic sequences in R (that is, asymptotic se-
quences over (0)R) which are maximal with respect to being contained in I have the 
same length and are denoted agd(I). He showed that asymptotic sequences in R have 
many basic properties of regular sequences. Later, in [3], Katz showed that any two max-
imal asymptotic sequences over I in a Noetherian local ring R have the same length and 
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are denoted acogd(I), and in [9,14], Ratliff and McAdam gave another results concerning 
asymptotic sequences over an ideal and asymptotic cograde.

Let I and J be ideals of a Noetherian ring R. In this paper, we show that all maximal 
asymptotic sequences over I coming from J (say, asymptotic I-sequence from J (see 
Definition 2.3)) have the same length and are denoted agdI(J). By this fact, we introduce 
the concept of asymptotic I-grade. Using this concept we give more knowledge concerning 
asymptotic sequences over an ideal.

Section 2 contains several results showing that asymptotic I-sequences from J in a 
Noetherian ring R behave nicely with respect to passing to certain rings related to R. In 
Section 3 it is shown that asymptotic I-grade of J is well defined and likewise behaves 
nicely when passing to the same type of related rings. Also, it is shown that, if x =
x1, . . . , xn is a sequence of elements in the Jacobson radical of R, then x is an asymptotic 
sequence over I if and only if agdI((x)R) = n, and some consequences of this result are 
given. Before proving this result, however, it is first shown that if b be an element in the 
Jacobson radical of R, then

agdI(J) ≤ agdI((J, (b))R) ≤ agdI(J) + 1.

In Section 4 we give four upper bounds and two lower bounds on agdI(J). In Section 5
several useful characterizations are given for agdI(J) to be equal to heightJ(R/I) and 
define strongly quasi-I-unmixed rings (see Definition 5.1). Then we give some conse-
quences of these characterizations. For instance, in [9], it was shown that if x1, . . . , xn

is an asymptotic sequence over I, then x1 + I, . . . , xn + I is an asymptotic sequence 
in R/I. A natural question to ask is when the converse holds. In this section we prove 
the converse holds if R is locally strongly quasi-I-unmixed. Finally, it is shown that if 
p ∈ V (I) and Rp is strongly quasi-IRp-unmixed, then Rq is strongly quasi-IRq-unmixed
for all but finitely many elements of {q ∈ SpecR | p ⊂ q, height q/p = 1}.

All rings in this paper are commutative with a unit 1 �= 0. For any R-module M
we shall use mAssR M to denote the set of minimal elements of AssR M . If (R, m) is a 
Noetherian local ring, then R∗ denotes the completion of R with respect to the m-adic 
topology. For any ideal I of R, the radical of I, denoted by 

√
I, is defined to be the 

set {x ∈ R | xn ∈ I for some n ∈ N}. Moreover, we use V (I) to denote the set of 
prime ideals of R containing I. Further, the integral closure of I is denoted by I, so 
I := {x ∈ R | x satisfies an equation of the form xn + c1x

n−1 + . . .+ cn = 0, where ci ∈
Ii for i = 1, . . . , n}. Finally, we denote by R the graded Rees ring R[u, It] := ⊕n∈ZI

ntn

of R with respect to I, where t is an indeterminate and u = t−1. For any unexplained 
notation or terminology we refer the reader to [5,17].

2. Asymptotic I-sequences

In this section we give a number of elementary properties of asymptotic I-sequences. 
We begin with definitions.
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Definition 2.1. Let I ⊆ p be ideals of a Noetherian ring R such that p is prime.
(2.1.1) p is called a quintessential (resp., quintasymptotic) prime ideal of I precisely 

when there exists z ∈ AssR∗
p
R∗

p (resp., z ∈ mAssR∗
p
R∗

p) such that IR∗
p+z is pR∗

p-primary. 
The set of quintessential (resp., quintasymptotic) primes of I is denoted by Q(I) (resp., 
Q∗(I)).

(2.1.2) Let R = R(I, R) be the Rees ring of R with respect to I, then p is asymptotic
prime of I precisely when there exists q ∈ Q∗(uR) such that p = q ∩ R. The set of 
asymptotic primes of I is denoted by A∗(I).

The following lemma lists the known basic facts concerning A∗(I) which will be needed 
below.

Lemma 2.2. Let I and J be ideals in a Noetherian ring R. Then the following hold:
(i) A∗(I) =

⋃
n∈N

AssR(R/In) = AssR(R/In) for all large n, and it contains all 
minimal prime divisors of I.

(ii) If I ⊆ p ∈ Spec R and S is a multiplicatively closed subset of R which is disjoint 
from p, then p ∈ A∗(I) if and only if pRS ∈ A∗(IRS).

(iii) p ∈ A∗(I) if and only if there is z ∈ mAssR R such that z ⊆ p and p/z ∈
A∗(I(R/z)).

(iv) Let the ring T be an integral Noetherian extension of R. If p ∈ A∗(I), then there 
is a q ∈ A∗(IT) such that q ∩R = p. Moreover, if every minimal prime in T lies over a 
minimal prime in R, then the converse holds.

(v) Let the ring T be a flat Noetherian extension of R. Let q be a prime ideal in T
such that p = q ∩ R. If q ∈ A∗(IT ), then p ∈ A∗(I). Moreover, if p ∈ A∗(I) and q is 
minimal over pT , then q ∈ A∗(IT).

(vi) A∗((I, X)R[X]) = {(p, X)R[X] | p ∈ A∗(I)}.

Proof. (i) follows from [6, Lemmas 0.1]. Since localization commutes with integral clo-
sure, then (ii) holds by (i). (iii)–(v) are proved in [7, Propositions 3.18((i) ⇔ (iv)) and 
3.22] and [12, Theorems 6.5 and 6.8]. To prove (vi), let p ∈ A∗(I). Then by (ii), (iii) 
and (v), we may assume that R is a complete local domain with maximal ideal p. Then, 
in view of [10, Proposition 7], R(I, R) and R((I, X)R[X], R[X]) are locally unmixed. 
Thus Q∗(J) = Q(J) for all ideals J in R(I, R) and R((I, X)R[X], R[X]). Therefore 
(p, X)R[X] ∈ A∗((I, X)R[X]), by [4, Theorem 2.5(v)]. The other inclusion is similar. �
Definition 2.3. Let I and J be ideals of a Noetherian ring R.

(2.3.1) A sequence x = x1, . . . , xn of elements of J is called an asymptotic 
I-sequence from J if, (I, (x))R �= R and for all 1 ≤ i ≤ n, we have xi /∈

⋃
{p ∈

A∗((I, (x1, . . . , xi−1))R)}.
(2.3.2) An asymptotic I-sequence x = x1, . . . , xn from J is maximal if x1, . . . , xn, xn+1

is not an asymptotic I-sequence from J for any xn+1 ∈ J .
(2.3.3) The asymptotic I-grade of J , denoted agdI(J) is the length of a maximal 

asymptotic I-sequence from J .
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The following proposition shows that the asymptotic I-sequences behave well under 
passing to localization.

Proposition 2.4. Let I and J be ideals in a Noetherian ring R and let x = x1, . . . , xn

be a sequence of elements of J . Let S be a multiplicatively closed subset of R such that 
(I + J)RS �= RS. Then the following statements hold:

(i) If x is an asymptotic I-sequence from J , then the image of x in RS is 
an asymptotic IRS-sequence from JRS. The converse holds if for all p ∈

⋃
{q ∈

A∗((I, (x1, . . . , xi))R); i = 0, . . . , n − 1}, we have pRS �= RS.
(ii) If for all p ∈

⋃
{q ∈ A∗((I, (x1, . . . , xi))R); i = 0, . . . , n}, we have pRS �= RS, then 

x is a maximal asymptotic I-sequence from J if and only if the image of x in RS is a 
maximal asymptotic IRS-sequence from JRS.

Proof. It follows readily from Lemma 2.2(ii). �
The following result shows that the asymptotic I-sequences behave well under passing 

to the factor rings modulo minimal primes of R.

Proposition 2.5. Let I and J be ideals in a Noetherian ring R and let x = x1, . . . , xn be 
a sequence of elements of J . Then the following statements hold:

(i) x is an asymptotic I-sequence from J if and only if the image of x in R/z is an 
asymptotic I(R/z)-sequence from J(R/z) for all z ∈ mAssR R.

(ii) x is a maximal asymptotic I-sequence from J if and only if the image of x in R/z

is an asymptotic I(R/z)-sequence from J(R/z) for all z ∈ mAssR R and there exists 
w ∈ mAssR R such that the image of x in R/w is a maximal asymptotic I(R/w)-sequence 
from J(R/w).

Proof. It follows readily from Lemma 2.2(iii). �
Corollary 2.6. Let I and J be ideals of a Noetherian ring R and let x = x1, . . . , xn be 
a sequence of elements of J . Let K be an ideal of R contained RadR. Then x is a/an 
(resp., maximal) asymptotic I-sequence from J if and only if x is a/an (resp., maximal) 
asymptotic I(R/K)-sequence from J(R/K).

Proof. This follows easily from Proposition 2.5, since there is a one-to-one correspon-
dence between the minimal prime ideals in R and in R/K. �

The next result shows that the asymptotic I-sequences behave well under passing to 
finite integral extension rings of R.

Proposition 2.7. Let R ⊆ T be an integral extension of Noetherian rings. Let I and J be 
ideals of R and let x = x1, . . . , xn be a sequence of elements of J . Then the following 
statements hold:
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(i) If x is an asymptotic IT-sequence from JT, then x is an asymptotic I-sequence 
from J .

(ii) If every minimal prime of T lies over a minimal prime in R, then x is a/an 
(resp., maximal) asymptotic I-sequence from J if and only if x is a/an (resp., maximal) 
asymptotic IT-sequence from JT.

Proof. It follows readily from Lemma 2.2(iv). �
The next result shows that the asymptotic I-sequences behave well under passing to 

flat Noetherian extension rings of R.

Proposition 2.8. Let R ⊆ T be a flat extension of Noetherian rings. Let I and J be 
ideals of R and let x = x1, . . . , xn be a sequence of elements of J . Then x is a/an 
(resp., maximal) asymptotic I-sequence from J if and only if x is a/an (resp., maximal) 
asymptotic IT-sequence from JT.

Proof. It follows readily from Lemma 2.2(v). �
The next proposition concerns the asymptotic I-sequences and asymptotic IR[X]-se-

quences, where X is an indeterminate over R.

Proposition 2.9. Let I and J be ideals in a Noetherian ring R and let x = x1, . . . , xn be 
a sequence of elements of J . Then the following statements are equivalent:

(i) The sequence x is a/an (resp., maximal) asymptotic I-sequence from J .
(ii) The sequence x1, . . . , xi, X, xi+1, . . . , xn is a/an (resp., maximal) asymptotic 

IR[X]-sequence from (J, X)R[X] for some i = 0, 1, . . . , n.
(iii) The sequence x1, . . . , xi, X, xi+1, . . . , xn is a/an (resp., maximal) asymptotic 

IR[X]-sequence from (J, X)R[X] for every i = 0, 1, . . . , n.

Proof. In view of Lemma 2.2(v), for j = 0, 1, . . . , i, we have

A∗((I, (x1, . . . , xj))R[X]) = {pR[X] | p ∈ A∗((I, (x1, . . . , xj))R)}

(note that, for an ideal J in R, the prime divisors of JR[X] are pR[X] such that 
p is a prime divisor of J). Also, it is clear that X is not in any prime divisor of 
(I, (x1, . . . , xi))R[X]. Moreover, for k = 0, 1, . . . , n − i, we have

A∗((I, (x1, . . . , xi, X, xi+1, . . . , xi+k))R[X]) =

{(p, X)R[X] | p ∈ A∗((I, (x1, . . . , xi+k))R)},

by Lemma 2.2(vi). Now, the result follows. �
Proposition 2.11 concerns asymptotic I-sequences and projectively equivalent ideals. 

Before this we need the following definition.
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Definition 2.10. Let I be an ideal of a Noetherian ring R.
(2.10.1) A sequence x = x1, . . . , xn of elements of R is called an asymptotic se-

quence over I if, (I, (x))R �= R and for all 1 ≤ i ≤ n, we have xi /∈
⋃
{p ∈

A∗((I, (x1, . . . , xi−1))R)}.
(2.10.2) An asymptotic sequence over (0)R is simply called an asymptotic sequence 

in R.
(2.10.3) An asymptotic sequence x = x1, . . . , xn of elements of R over I is maximal if 

x1, . . . , xn, xn+1 is not an asymptotic sequence over I for any xn+1 ∈ R.

Proposition 2.11. Let I, I ′ and J be ideals in a Noetherian ring R and let x = x1, . . . , xn

be a sequence of elements of J . If I and I ′ are projectively equivalent (i.e., there exist 
positive integers r and s with Ir = I ′s), then x is a/an (resp., maximal) asymptotic 
I-sequence from J if and only if x is a/an (resp., maximal) asymptotic I ′-sequence 
from J .

Proof. If x is an asymptotic I-sequence from J , then x is an asymptotic sequence 
over I, by Definitions 2.3 and 2.10. Then A∗((I, (x))R) = A∗((I ′, (x))R) by the proof of 
[7, Proposition 6.24], so the conclusion follows from this. �
3. On asymptotic I-grade

In this section, we show that any two maximal asymptotic I-sequences from J have 
the same length and introduce the concept of asymptotic I-grade of an ideal. We begin 
with a remark. We recall that if I be an ideal of a Noetherian local ring (R, m), then 
�(I) denotes the analytic spread of the ideal I, so �(I) := dim R(I, R)/(m, u)R(I, R).

Remark 3.1. Let I be an ideal of a Noetherian ring R.
(3.1.1) It follows from [13, Theorem 3.1], that all maximal asymptotic sequences in R

with elements coming from I have the same length and are denoted agd(I). Moreover,

agd(I) = min{height(IR∗
p + z)/z | p ∈ V (I) and z ∈ mAssR∗

p
R∗

p}
= min{dimR∗

p/z | p ∈ V (I) and z ∈ mAssR∗
p
R∗

p}.

Also, if R is local, then

agd(I) = min{height(IR∗ + z)/z | z ∈ mAssR∗ R∗},

by [13, Corollary 2.13].
(3.1.2) It is shown in [3] that if R is local, then any two maximal asymptotic sequences 

over I have the same length and are denoted acogd(I). Moreover,

acogd(I) = min{dimR∗/z − �((IR∗ + z)/z) | z ∈ mAssR∗ R∗}.
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The next proposition shows that agdI(J) is unambiguously defined, for all ideals I
and J in a Noetherian ring R.

Proposition 3.2. Let I and J be ideals in a Noetherian ring R. Then

agdI(J) = min{acogd(IRp) | p ∈ V (I + J)}.

Proof. Let x = x1, . . . , xn be a maximal asymptotic I-sequence from J and p ∈ V (I+J), 
then the image of x in Rp is an asymptotic sequence over IRp, by Proposition 2.4(i). So 
acogd(IRp) ≥ n. Also, there exists q ∈ A∗((I, (x))R) such that J ⊆ q. Then q ∈ V (I+J)
and the image of x in Rq is a maximal asymptotic sequence over IRq, by Proposition 2.4(i) 
and Lemma 2.2(ii). Therefore acogd(IRq) = n and the result follows. �

In the next proposition we collect some basic properties of the asymptotic I-grade.

Proposition 3.3. Let I, I ′, J and J ′ be ideals in a Noetherian ring R. Then the following 
hold:

(i) If J ⊆ J ′, then agdI(J) ≤ agdI(J ′).
(ii) If J ′ ⊆ I, then agdI(J) = agdI(J ′ + J).
(iii) If 

√
J =

√
J ′, then agdI(J) = agdI(J ′).

(iv) If 
√
J ⊆

√
I, then agdI(J) = 0.

(v) If I and I ′ are projectively equivalent, then agdI(J) = agdI′(J).
(vi) agdI(J) = min{agdI(p) | p is a minimal prime divisor of J}.
(vii) agdI(JJ ′) = agdI(J ∩ J ′) = min{agdI(J), agdI(J ′)}.
(viii) If x = x1, . . . , xn is an asymptotic sequence over I, then agdI((x)R) = n.

Proof. (i)–(iv) and (v) follow easily from Propositions 3.2 and 2.11. For (vi), it is enough 
to show that there exists a minimal prime divisor p of J such that agdI(J) = agdI(p), 
by (i). Let x = x1, . . . , xn be a maximal asymptotic I-sequence from J . Then there 
exists a prime ideal q ∈ A∗((I, (x))R) such that J ⊆ q. Let p be minimal prime divisor 
of J such that p ⊆ q, then n = agdI(J) ≤ agdI(p) ≤ agdI(q) = n, by (i). For (vii), 
agdI(JJ ′) ≤ agdI(J ∩ J ′) ≤ min{agdI(J), agdI(J ′)}, by (i), and agdI(JJ ′) = agdI(p)
for some minimal prime divisor p of JJ ′, by (vi). Now either J or J ′ is contained in p, 
say J . Then necessarily agdI(JJ ′) = agdI(J) = agdI(p), by (i), so it follows that 
min{agdI(J), agdI(J ′)} ≤ agdI(JJ ′). For (viii), since x is an asymptotic I-sequence 
from (x)R, then n ≤ agdI((x)R). Let p ∈ A∗((I, (x))R), then the image of x in Rp is a 
maximal asymptotic sequence over IRp, by Proposition 2.4(i) and Lemma 2.2(ii). There-
fore agdI((x)R) ≤ acogd(IRp) = n, by Proposition 3.2 and the conclusion follows. �

The next theorem shows that agdI(J) behaves nicely when passing to certain related 
ideals.

Theorem 3.4. Let I and J be ideals in a Noetherian ring R. Then the following hold:
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(i) If S is a multiplicatively closed subset of R disjoint from I and J , then agdI(J) ≤
agdIRS

(JRS).
(ii) agdI(J) = min{agdIRp

(JRp) | p ∈ V (I + J)}.
(iii) agdI(J) = min{agdIRm

(JRm) | m is a maximal prime ideal in V (I + J)}.
(iv) agdI(J) = min{agdI(R/z)(J(R/z)) | z ∈ mAssR R}.
(v) agdI(J) = agdI(R/K)(J(R/K)), for all ideals K contained RadR.
(vi) If T is an integral Noetherian extension ring of R such that every minimal prime 

of T lies over a minimal prime of R, then agdI(J) = agdIT (JT ).
(vii) If T is a flat Noetherian extension of R, then agdI(J) = agdIT(JT ).
(viii) agdI(J) = agd(I,X)R[X](JR[X]) = agdIR[X]((J, X)R[X]) − 1.

Proof. (i) and (iv)–(viii) follow from Propositions 2.4(i), 2.5(ii), 2.7(ii), 2.8, 2.9 and 
Corollary 2.6.

For (ii), there exists p ∈ V (I+J) such that agdI(J) = acogd(IRp), by Proposition 3.2. 
Then by (i) and Proposition 3.3(i), we have

agdI(J) ≤ agdIRp
(JRp) ≤ agdIRp

(pRp) = acogd(IRp) = agdI(J).

For (iii), there exists p ∈ V (I + J) such that agdI(J) = agdIRp
(JRp), by (ii). Then 

agdI(J) ≤ agdIRm
(JRm) ≤ agdIRp

(JRp) = agdI(J), for all maximal prime ideals m that 
contains p, by (i). �

The following proposition will be useful in Section 5.

Proposition 3.5. Let I, J be ideals in a Noetherian ring R, then there exist an integer 
m ≥ 0 and a chain of prime ideals J ⊆ p0 ⊂ p1 ⊂ . . . ⊂ pm such that pm is a maximal 
prime ideal and agdI(pi) = agdI(J) + i for i = 0, . . . , m.

Proof. Let agdI(J) = n and x = x1, . . . , xn be a maximal asymptotic I-sequence from J . 
Then there exists a prime ideal q0 ∈ A∗((I, (x))R) such that J ⊆ q0. So agdI(q0) = n. 
Let m0 be a maximal prime ideal such that q0 ⊆ m0.

We have two cases by Proposition 3.3(i):
Case 1: agdI(q0) = agdI(m0), then we set m = 0 and p0 = m0.
Case 2: agdI(q0) < agdI(m0), then we set p0 = q0. There exists xn+1 ∈ m0 such that 

xn+1 is an asymptotic sequence over (I, (x))R. Let q1 be a minimal prime divisor of 
(q0, (xn+1))R, then q1 ∈ A∗((I, (x), (xn+1))R), by [7, Lemma 6.13]. So agdI(q1) = n +1. 
Now, replace q0 with q1 and continue this process. Note that R is Noetherian ring. �
Proposition 3.6. Let I and J be ideals in a Noetherian ring R and let b be an element in 
the Jacobson radical of R. Then

agdI(J) ≤ agdI((J, (b))R) ≤ agdI(J) + 1.
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Proof. The first inequality follows from Proposition 3.3(i). Let agdI(J) = n and 
x = x1, . . . , xn be a maximal asymptotic I-sequence from J . If (J, (b))R ⊆ ∪{p | p ∈
A∗((I, (x))R)}, then x is a maximal asymptotic I-sequence from (J, (b))R and the second 
inequality holds. Otherwise, there exists j ∈ J such that j+b /∈ ∪{p | p ∈ A∗((I, (x))R)}, 
by [2, Theorem 124]. Let b1 = j + b, then (J, (b))R = (J, (b1))R. There exists a prime 
ideal q ∈ A∗((I, (x))R) such that J ⊆ q. Let q1 be a minimal prime divisor of (q, (b1))R. 
Since b1 is an asymptotic sequence over (I, (x))R, then q1 ∈ A∗((I, (x), (b1))R), 
by [7, Lemma 6.13]. We know (J, (b))R = (J, (b1))R ⊆ (q, (b1))R ⊆ q1. Therefore 
x1, . . . , xn, b1 is a maximal asymptotic I-sequence from (J, (b))R and agdI((J, (b))R) =
n + 1. �
Corollary 3.7. Let I, J and K be ideals in a Noetherian ring R such that J ⊆ K and 
K is contained in the Jacobson radical of R. If agdI(K) − agdI(J) = n ≥ 0, then there 
exists a chain of ideals J = J0 ⊂ J1 ⊂ . . . ⊂ Jn ⊆ K such that agdI(Ji) = agdI(J) + i

for i = 0, . . . , n.

Proof. If n = 0, the result is clear. Let n > 0 and x1, . . . , xm be a maximal asymptotic 
I-sequence from J . Since agdI(K) − agdI(J) = n > 0, then there exists xm+1, . . . , xm+n

in K such that x1, . . . , xm+n is a maximal asymptotic I-sequence from K. We set Ji =
(J, (xm+1, . . . , xm+i))R for i = 0, . . . , n, then agdI(Ji) ≥ m + i. So agdI(Ji) = m + i for 
i = 0, . . . , n, by Proposition 3.6. �

The following proposition gives a nice characterization for asymptotic sequences over 
an ideal.

Proposition 3.8. Let I be an ideal of a Noetherian ring R and x = x1, . . . , xn be a sequence 
of elements in the Jacobson radical of R, then x is an asymptotic sequence over I if and 
only if agdI((x)R) = n.

Proof. Let agdI((x)R) = n, we prove that x is an asymptotic sequence over I by 
induction on n. If n = 1, the result is clear. Let agdI((x)R) = n > 1, then 
agdI((x1, . . . , xn−1)R) = n − 1, by Proposition 3.6 and so x1, . . . , xn−1 is an asymptotic 
sequence over I. If xn ∈ ∪{p | p ∈ A∗((I, (x1, . . . , xn−1))R)}, then (x)R ⊆ ∪{p | p ∈
A∗((I, (x1, . . . , xn−1))R)}. Hence agdI((x)R) = n −1 which is a contradiction. Therefore, 
x is an asymptotic sequence over I. The converse follows from Proposition 3.3(viii). �

The next two corollaries were proved by Ratliff in [14, Corollary 6.3 and Theorem 6.4], 
we reprove them without using the Rees rings.

Corollary 3.9. Let I be an ideal of a Noetherian ring R and x = x1, . . . , xn be an asymp-
totic sequence over I that is contained in Jacobson radical of R, then each permutation 
of x is an asymptotic sequence over I.
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Proof. It follows immediately from Proposition 3.8. �
Corollary 3.10. Let I be an ideal of a Noetherian ring R and x = x1, . . . , xn be an 
asymptotic sequence over I that is contained in Jacobson radical of R, then x is an 
asymptotic sequence in R.

Proof. It follows immediately from Proposition 3.8, Theorem 4.6 and Generalized Prin-
cipal Ideal Theorem. �
Corollary 3.11. Let I, J = (x1, . . . , xn)R and J ′ = (y1, . . . , yn)R be ideals of a Noetherian 
ring R. If J and J ′ are contained in the Jacobson radical of R and 

√
J =

√
J ′, then 

x1, . . . , xn is an asymptotic sequence over I if and only if y1, . . . , yn are.

Proof. It follows from Propositions 3.8 and 3.3(iii). �
Corollary 3.12. Let I, J = (x1, . . . , xi−1, xi, xi+1, . . . , xn)R and J ′ = (x1, . . . , xi−1,

yi, xi+1, . . . , xn)R be ideals in a Noetherian ring R such that J and J ′ are contained 
in the Jacobson radical of R. Then x1, . . . , xi−1, xiyi, xi+1, . . . , xn is an asymptotic se-
quence over I if and only if x1, . . . , xi−1, xi, xi+1, . . . , xn and x1, . . . , xi−1, yi, xi+1, . . . , xn

are.

Proof. Let x = x1, . . . , xi−1, xiyi, xi+1, . . . , xn. Let x be an asymptotic sequence over I, 
then

n = agdI((x)R) ≤ agdI(J) ≤ heightJ(R/I) ≤ n,

by Propositions 3.8 and 3.3(i), Theorem 4.4 and Generalized Principal Ideal Theorem. 
So agdI(J) = n and x1, . . . , xi−1, xi, xi+1, . . . , xn is an asymptotic sequence over I, by 
Proposition 3.8. Also, x1, . . . , xi−1, yi, xi+1, . . . , xn is an asymptotic sequence over I simi-
larly. For the converse, there exists p ∈ V ((I, (x))R) such that agdI((x)R) = acogd(IRp), 
by Proposition 3.2. Now either I + J or I + J ′ is contained in p, say I + J . Then 
acogd(IRp) ≥ agdI(J) ≥ agdI((x)R), by Propositions 3.2 and 3.3(i). Therefore x is an 
asymptotic sequence over I, by Proposition 3.8. �
Corollary 3.13. Let I be an ideal in a Noetherian ring R and let x = x1, . . . , xn be 
a sequence of elements of Jacobson radical of R. Then the following statements are 
equivalent:

(i) x1, . . . , xn is an asymptotic sequence over I.
(ii) x1

m1 , . . . , xn
mn is an asymptotic sequence over I, for some positive integers mi.

(iii) x1
m1 , . . . , xn

mn is an asymptotic sequence over I, for all positive integers mi.

Proof. It follows from Corollary 3.12. �



354 S. Jahandoust / Journal of Algebra 441 (2015) 344–362
In [13, Corollary 3.7], Ratliff proved that if I is an ideal in a Noetherian ring R that 
can be generated by an asymptotic sequence in R, then agd(p) = agd(I) for all prime 
divisors p of In. Proposition 3.14 gives a generalization of this result for asymptotic
sequences over an ideal.

Proposition 3.14. Let I and J be ideals in a Noetherian ring R such that J can be 
generated by an asymptotic sequence over I, then for all h ≥ 1: agdI(p) = agdI(J) for 
all prime divisors p of (I + J)h.

Proof. Let x = x1, . . . , xn be an asymptotic sequence over I such that J = (x)R, then 
agdI(J) = n, by Proposition 3.3(viii). Let p be a prime divisor of (I + J)h, for some 
h ≥ 1, then p ∈ A∗(I + J), by Lemma 2.2(i). Therefore x is a maximal asymptotic 
I-sequence from p and so agdI(p) = n. �

In Proposition 3.16, we give a stronger result than Proposition 3.14. We need a defi-
nition.

Definition 3.15. Let I be an ideal in a Noetherian ring R, let A∗(I) = {p1, . . . , pk} and 
S = R \

⋃k
i=1 pi. Then (Ih)a = IhRS ∩ R is the asymptotic component of Ih, for all 

integers h > 0.

Proposition 3.16. Let I and J be ideals in a Noetherian ring R such that J can be 
generated by an asymptotic sequence over I, then for all h ≥ 1: agdI(p) = agdI(J) for 
all prime divisors p of ((I + J)h)a.

Proof. Let x = x1, . . . , xn be an asymptotic sequence over I such that J = (x)R. Let p
be a prime divisor of ((I + J)h)a, then there exists q ∈ A∗(I + J) such that p ⊆ q. It is 
clear that x is a maximal asymptotic I-sequence from q. Therefore

n = agdI(J) ≤ agdI(p) ≤ agdI(q) = n

by Proposition 3.3((i) and (viii)) and so agdI(p) = agdI(J). �
4. Some bounds for asymptotic I-grade

In this section, we give several bounds on asymptotic I-grade. We begin with an upper 
bound.

Theorem 4.1. Let I and J be ideals in a Noetherian ring R and x = x1, . . . , xh be an 
asymptotic sequence in I. Then there exists a maximal asymptotic I-sequence from I+J , 
say y = y1, . . . , yn such that x, y is an asymptotic sequence in I + J . In particular

agdI(J) ≤ agd(I + J) − agd(I).
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Proof. Let agdI(I+J) = n. If n = 0, we are done. If n > 0, then I+J � ∪{p | p ∈ A∗(I)}, 
and so I + J � ∪{p | p ∈ A∗((x)R)}, by [7, Lemma 5.7]. Pick y1 ∈ I + J with

y1 /∈ ∪{p | p ∈ A∗(I)} and y1 /∈ ∪{p | p ∈ A∗((x)R)}.

Now, y1 is an asymptotic I-sequence from I + J and agd(I,(y1))R(I + J) = n − 1. Since 
the choice of y1 assure that x1, . . . , xh, y1 is an asymptotic sequence in (I, (y1))R, we 
now may use induction. The inequality follows from this and Proposition 3.3(ii). �

The next result determines when the inequality in Theorem 4.1 becomes equality.

Theorem 4.2. Let I and J be ideals in a Noetherian ring R. Then the following statements 
are equivalent:

(i) agdI(J) + agd(I) = agd(I + J).
(ii) There exists p ∈ V (I + J) such that agdI(J) = acogd(IRp), agd(I) = agd(IRp)

and acogd(IRp) + agd(IRp) = agd(pRp).
(iii) The equalities in (ii) hold for every p ∈ V (I+J) such that agd(I+J) = agd(pRp).
(iv) There exist p ∈ V (I + J) and z ∈ mAssR∗

p
R∗

p such that

agdI(J) = acogd(IRp) = dimR∗
p/(IR

∗
p + z)

and

agd(I) = agd(IRp) = �((IR∗
p + z)/z) = height(IR∗

p + z)/z.

(v) There exists p ∈ V (I + J) such that the equalities in (iv) hold for every z ∈
mAssR∗

p
R∗

p with agd(pRp) = dimR∗
p/z.

(vi) For every p ∈ V (I + J) with agd(I + J) = agd(pRp), there exists z ∈ mAssR∗
p
R∗

p

such that the equalities in (iv) hold.
(vii) The equalities in (iv) hold for every p ∈ V (I + J) and for every z ∈ mAssR∗

p
R∗

p

such that agd(I + J) = agd(pRp) = dimR∗
p/z.

Proof. For (i) ⇒ (iii), let p ∈ V (I + J) such that agd(I + J) = agd(pRp), then

agd(I + J) = agd(pRp)

≥ agd(IRp) + acogd(IRp)

≥ agd(I) + agdI(J) = agd(I + J),

by [7, Proposition 6.9], Proposition 3.2 and Theorem 3.4(i). So the equalities in (ii) hold.
The implication (iii) ⇒ (ii) is obvious, since there exists p ∈ V (I + J) such that 

agd(I + J) = agd(pRp), by Proposition 3.2.
For (ii) ⇒ (i), since agd(I + J) ≤ agd(pRp) for all p ∈ V (I + J), by Proposition 3.2, 

so the result follows from Theorem 4.1.
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Finally, (ii) ⇔ (iv) ⇔ (v) and (iii) ⇔ (vi) ⇔ (vii) follow from [7, Proposition 6.11]. �
Theorem 4.3. Let I and J be ideals in a Noetherian ring R, then

agdI(J) ≤ agd(J(R/I)).

Proof. There exists a prime ideal p ∈ V (I +J) such that agd(J(R/I)) = agd(pRp/IRp), 
by Proposition 3.2. Therefore the conclusion follows from Proposition 3.2 and [7, Propo-
sition 6.6]. �

The next theorem follows from Theorem 4.3 and [7, Lemma 5.13], but we give another 
proof.

Theorem 4.4. Let I and J be ideals in a Noetherian ring R, then

agdI(J) ≤ heightJ(R/I).

Proof. There exists a prime ideal p ∈ V (I + J) such that heightJ(R/I) = height p/I, 
then agdI(J) ≤ acogd(IRp) ≤ dimR∗

p/z − �((IR∗
p + z)/z), by Proposition 3.2 and Re-

mark 3.1(ii). Since height does not exceed analytic spread and R∗
p/z is catenary, then 

agdI(J) ≤ dimR∗
p/(IR∗

p + z). Now agdI(J) ≤ height p/I. �
Corollary 4.5. Let I and J be ideals in a Noetherian ring R such that J is generated by 
agdI(J) elements, then agdI(J) = heightJ(R/I).

Proof. It follows from Theorem 4.4 and Generalized Principal Ideal Theorem. �
Theorem 4.6. Let I and J be ideals in a Noetherian ring R, then

agdI(J) ≤ agd(J) ≤ heightJ.

Proof. There exists a prime ideal p ∈ V (J) such that agd(J) = agd(pRp), by Propo-
sition 3.2. We have agdI(J) ≤ agdI(p) ≤ agdIRp

(pRp), by Proposition 3.3(i) and 
Theorem 3.4(i). Since agdIRp

(pRp) ≤ agd(pRp), by Theorem 4.1, then agdI(J) ≤ agd(J). 
The second inequality follows from Theorem 4.4. �
Corollary 4.7. Let I and J be ideals in a Noetherian ring R such that J is generated by 
agdI(J) elements, then agdI(J) = heightJ .

Proof. It follows from Theorem 4.6 and Generalized Principal Ideal Theorem. �
Now we give two lower bounds on agdI(J).

Theorem 4.8. Let I and J be ideals of a locally quasi-unmixed ring R, then agdI(J) ≥
grade(J(R/In)) for all large n.
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Proof. There exists a prime ideal p ∈ V (I + J) such that agdI(J) = acogd(IRp), by 
Proposition 3.2. Also, for all large n, acogd(IRp) ≥ grade(pRp/I

nRp), by [9, Theo-
rem 7.4]. So the conclusion follows from the standard facts on classical grade. �
Theorem 4.9. Let I and J be ideals in a Noetherian local ring R. Then,

agdI(J) ≥ agd(I + J) − �(I).

Proof. There exists a prime ideal p ∈ V (I + J) such that agdI(J) = acogd(IRp), by 
Proposition 3.2, and acogd(IRp) ≥ agd(pRp) −�(IRp), by [9, Theorem 7.6]. Also, �(IRp) ≤
�(I), by [9, Lemma 2.5], and agd(pRp) ≥ agd(p) ≥ agd(I +J), by Proposition 3.3(i) and 
Theorem 3.4(i). Now the desired result follows. �
5. Some characterizations for agdI(J) = height J(R/I)

It was shown in Theorem 4.4 that agdI(J) ≤ heightJ(R/I) always holds. The main 
result in this section, Theorem 5.2 gives several characterizations of when the equality
holds. We begin with a definition.

Definition 5.1. Let I be an ideal of a Noetherian local ring R. We say R is strongly 
quasi-I-unmixed ring, if dimR∗/(IR∗ +z) = dimR/I and �((IR∗ +z)/z) = height(IR∗ +
z)/z for all z ∈ mAssR∗ R∗. More generally, if R is not necessarily local, R is locally 
strongly quasi-I-unmixed ring if for every p ∈ V (I), Rp is strongly quasi-IRp-unmixed.

Theorem 5.2. Let I be an ideal of a Noetherian ring R. The following are equivalent:
(i) agd(I,(x))R(J) = heightJ(R/(I, (x))R) for all ideals J and all asymptotic 

I-sequences x = x1, . . . , xn from J .
(ii) agdI(J) = heightJ(R/I) for all ideals J .
(iii) agdI(p) = height p/I for all prime ideals p ∈ V (I).
(iv) agdI(m) = heightm/I for all maximal prime ideals m ∈ V (I).
(v) R is locally strongly quasi-I-unmixed ring.
(vi) If x = x1, . . . , xn is an asymptotic sequence over I and p ∈ A∗((I, (x))R), then 

height p/I = n.
(vii) If (I, (x1, . . . , xn))R �= R and if height(x1, . . . , xi)(R/I) = i for 1 ≤ i ≤ n, then 

x1, . . . , xn is an asymptotic sequence over I.

Proof. It is clear that (i) ⇒ (ii) ⇒ (iii) ⇒ (iv). Let (iii) hold and let p ∈ V (I), then

height p/I = agdI(p) ≤ agdIRp
(pRp) ≤ height pRp/IRp = height p/I,

by Theorems 4.4 and 3.4(i). So agdIRp
(pRp) = height pRp/IRp. Let z ∈ mAssR∗

p
R∗

p, 
then



358 S. Jahandoust / Journal of Algebra 441 (2015) 344–362
dimRp/IRp = height pRp/IRp

= agdIRp
(pRp)

≤ dimR∗
p/z − �((IR∗

p + z)/z)

≤ dimR∗
p/z − height(IR∗

p + z)/z

= dimR∗
p/(IR∗

p + z)

≤ dimR∗
p/IR

∗
p = dimRp/IRp,

by Remark 3.1(ii). Therefore dimR∗
p/(IR

∗
p + z) = dimRp/IRp and �((IR∗

p + z)/z) =
height(IR∗

p + z)/z and so (v) holds.
Let (v) hold. Assume x = x1, . . . , xn is an asymptotic sequence over I and p ∈

A∗((I, (x))R), then pRp ∈ A∗((I, (x))Rp), by Lemma 2.2(ii) and the image of x in Rp is 
a maximal asymptotic sequence over IRp, by Proposition 2.4(i). Therefore, there exists 
z ∈ mAssR∗

p
R∗

p such that dimR∗
p/z − �((IR∗

p + z)/z) = n, by Remark 3.1(ii). Now 
height p/I = n, by supposition and catenariness of R∗

p/z and so (vi) holds.
Assume that (vi) holds and assume inductively that x1, . . . , xi−1 have already been 

shown to be an asymptotic sequence over I (the case i = 1 works equally well). If p ∈
A∗((I, (x1, . . . , xi−1))R), then height p/I = i − 1, and since height(x1, . . . , xi)(R/I) = i

we have xi /∈ p for all p ∈ A∗((I, (x1, . . . , xi−1))R). Thus x1, . . . , xi is an asymptotic 
sequence over I, so by induction (vii) holds.

Let (vii) hold. Let x = x1, . . . , xn be an asymptotic I-sequence from J such 
that heightJ(R/(I, (x))R) = m. Then there exists xn+1, . . . , xn+m in J such that 
height(xn+1, . . . , xn+i)(R/(I, (x))R) = i, for 1 ≤ i ≤ m, by [11, Theorem 8, p. 61]. If 
1 ≤ i ≤ n, then height(x1, . . . , xi)(R/I) = i, by Corollary 4.5 and Proposition 3.3(viii). 
If n + 1 ≤ i ≤ n + m, we have

height(x, xn+1, . . . , xi)(R/I) �

height(xn+1, . . . , xi)(R/(I, (x))R) + height(x)(R/I) = i,

and so height(x, xn+1, . . . , xi)(R/I) = i by the Generalized Principal Ideal Theorem. 
Therefore height(x1, . . . , xi)(R/I) = i for 1 ≤ i ≤ n + m. Thus x1, . . . , xn+m is an 
asymptotic sequence over I. Since xn+1, . . . , xn+m is an asymptotic (I, (x))R-sequence 
from J , then agd(I,(x))R(J) � m. Therefore agd(I,(x))R(J) = m, by Theorem 4.4 and so 
(i) holds.

For (iv) ⇒ (ii), there exist an integer m ≥ 0 and a chain of prime ideals I + J ⊆ p0 ⊂
p1 ⊂ . . . ⊂ pm such that pm is a maximal prime ideal and agdI(pi) = agdI(J) + i for 
i = 0, . . . , m, by Propositions 3.5 and 3.3(ii). Since pm is a maximal prime ideal, then

agdI(pm−1) = agdI(pm) − 1 = height pm/I − 1 ≥ height pm−1/I ≥ agdI(pm−1),
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by Theorem 4.4 and so height pm−1/I = agdI(pm−1). By continuation of this process we 
have height p0/I = agdI(p0). Therefore

agdI(J) = agdI(p0) = height p0/I ≥ heightJ(R/I) ≥ agdI(J),

by Theorem 4.4 and so agdI(J) = heightJ(R/I). �
Corollary 5.3. Let I be an ideal of a Noetherian local ring (R, m) such that R is a strongly 
quasi-I-unmixed, then R is locally strongly quasi-I-unmixed.

Proof. If R is a strongly quasi-I-unmixed, then agdI(m) = dimR/I, by Definition 5.1
and Remark 3.1(ii). Now R is locally strongly quasi-I-unmixed, by Theorem 5.2. �
Corollary 5.4. Let I be an ideal of a Noetherian local ring (R, m), then the following are 
equivalent:

(i) R is strongly quasi-I-unmixed ring.
(ii) There exists a system of parameters in R/I, x1+I, . . . , xn+I, such that x1, . . . , xn

is an asymptotic sequence over I.
(iii) If x1 + I, . . . , xi + I is a subset of a system of parameters in R/I, then x1, . . . , xi

is an asymptotic sequence over I.

Proof. For (i) ⇒ (iii), let x1 + I, . . . , xi + I be a subset of a system of parameters 
in R/I, then dimR/(I, (x1, . . . , xj))R = dimR/I − j for j = 1, . . . , i. Since R is 
strongly quasi-I-unmixed, then agd(J(R/I)) = heightJ(R/I) for all ideals J of R, by 
Theorems 4.3 and 4.4, and Corollary 5.3. Therefore R/I is quasi-unmixed by [7, Corol-
lary 5.8] and so is catenary. Therefore height(x1, . . . , xj)(R/I) = j for j = 1, . . . , i and 
so x1, . . . , xi is an asymptotic sequence over I, by Theorem 5.2 and Corollary 5.3.

It is clear that (iii) ⇒ (ii).
For (ii) ⇒ (i), let x1 + I, . . . , xn + I be a system of parameters in R/I, such that 

x1, . . . , xn is an asymptotic sequence over I. Then

dimR/I = n = agdI((I, (x1, . . . , xn))R) = agdI(m)

by Proposition 3.3((ii), (iii) and (viii)). Therefore by Theorem 5.2 and Corollary 5.3 it 
follows that R is strongly quasi-I-unmixed ring. �
Corollary 5.5. Let I and J be ideals of a Noetherian ring R such that agdI(J) =
heightJ(R/I), then Rp is strongly quasi-IRp-unmixed ring for all minimal prime di-
visors p of I + J such that height p/I = heightJ(R/I).

Proof. Let p be a minimal prime divisor of I + J such that height p/I = heightJ(R/I). 
Then
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heightJ(R/I) = agdI(J) ≤ agdIRp
(JRp)

≤ agdIRp
(pRp) ≤ height p/I = heightJ(R/I),

by Proposition 3.3(i) and Theorems 3.4(i) and 4.4. So agdIRp
(pRp) = height p/I and so 

Rp is strongly quasi-IRp-unmixed ring by Theorem 5.2 and Corollary 5.3. �
Corollary 5.6. Let I be an ideal of a Noetherian ring R and x = x1, . . . , xn be an asymp-
totic sequence over I. Then Rp is strongly quasi-IRp-unmixed ring for all minimal prime 
divisors p of (I, (x))R.

Proof. We have agdI((I, (x))R) = height(x)(R/I) = height p/I, for all minimal prime 
divisors p of (I, (x))R, by Proposition 3.3((ii) and (viii)), Corollary 4.5 and Generalized 
Principal Ideal Theorem, and so the result follows from Corollary 5.5. �
Corollary 5.7. Let I be an ideal of a Noetherian ring R such that R is locally strongly 
quasi-I-unmixed ring. Let x1, . . . , xn be elements of R. Then x1 + I, . . . , xn + I is an 
asymptotic sequence in R/I if and only if x1, . . . , xn is an asymptotic sequence over I.

Proof. Let x1 + I, . . . , xn + I be an asymptotic sequence in R/I, then x1, . . . , xn is an 
asymptotic sequence over I by [13, Remark 3.3(iii)] and Theorem 5.2. The converse 
follows from [9, Proposition 4.1]. �

In [13, Proposition 4.6], Ratliff proved that if I is an ideal of the principal class in 
a locally quasi-unmixed ring R and p is a prime divisor of In, for some n ≥ 1, then 
height p = height I. We give a generalization of this result for asymptotic sequences over 
an ideal. Before this we need a lemma.

Lemma 5.8. Let I and J be ideals of a Noetherian ring R and x1, . . . , xn be elements 
of J such that J = (x1, . . . , xn). If agdI(J) = n, then there exists an asymptotic sequence 
over I, y1, . . . , yn, such that J = (y1, . . . , yn).

Proof. If n = 0 the result is clear. Let n > 0, then J �
⋃
{p | p ∈ A∗(I)}. There ex-

ists b1 ∈ (x2, . . . , xn)R such that x1 + b1 /∈
⋃
{p | p ∈ A∗(I)} by [2, Theorem 125]. 

We set y1 = x1 + b1. It is clear that J = (y1, x2, . . . , xn)R and (x2, . . . , xn)R �
⋃
{p | p ∈ A∗((I, (y1))R)}. There exists b2 ∈ (x3, . . . , xn)R such that x2 + b2 /∈

⋃
{p | p ∈ A∗((I, (y1))R)} by [2, Theorem 125]. We set y2 = x2 + b2. It is clear that

J = (y1, y2, x3, . . . , xn)R. We continue this process and replace xi with yi for i = 1, . . . , n. 
Therefore J = (y1, . . . , yn)R such that y1, . . . , yn is an asymptotic sequence over I. �
Proposition 5.9. Let I and J be ideals of a Noetherian ring R such that R is locally 
strongly quasi-I-unmixed. If J(R/I) is an ideal of principal class, then height p/I =
heightJ(R/I), for all prime divisors p of (I + J)h and h ≥ 1.
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Proof. There exists a sequence of elements of R, x = x1, . . . , xn, such that I + J =
(I, (x))R, then agdI((x)R) = n, by Proposition 3.3(ii) and Theorem 5.2. Then there 
exists an asymptotic sequence over I, y1, . . . , yn, such that (x)R = (y1, . . . , yn)R, by 
Lemma 5.8. So the result follows from Proposition 3.14 and Theorem 5.2. �

In Proposition 5.10, we give a stronger result than Proposition 5.9.

Proposition 5.10. Let I and J be ideals of a Noetherian ring R such that R is locally 
strongly quasi-I-unmixed. If J(R/I) is an ideal of principal class, then height p/I =
heightJ(R/I), for all prime divisors p of ((I + J)h)a and h ≥ 1.

Proof. The proof is the same as that given to prove Proposition 5.9, but use Proposi-
tion 3.16 in place of Proposition 3.14. �
Theorem 5.11. Let I ⊆ p be ideals of a Noetherian ring R such that p is a prime ideal 
and Rp is strongly quasi-IRp-unmixed ring. Let P = {q ∈ SpecR | p ⊂ q, height q/p = 1
and Rq is not strongly quasi-IRq-unmixed ring}, then P is finite.

Proof. Let P be infinite. Let

P ′ = {q ∈ P | height q/I = height p/I + 1},

then P ′ is infinite by [8, Theorem 1]. Let height p/I = n, then agdIRp
(pRp) = n by 

Theorem 5.2 and Corollary 5.3, and so there exists a sequence, x = x1, . . . , xn, in R such 
that its image in Rp is a maximal asymptotic sequence over IRp. Let Q =

⋃n
i=1{P ∈

A∗((I, (x1, . . . , xi−1))R) | xi ∈ P} and

P ′′ = {q ∈ P ′ | P � q for all P ∈ Q}.

Since Q is finite and each P ∈ Q can be contained in at most finitely many q ∈ P ′ it 
follows P ′′ is infinite. Also, the image of x in Rq is an asymptotic sequence over IRq for 
all q ∈ P ′′. Let

P ′′′ = {q ∈ P ′′ | q /∈ A∗((I, (x))R)},

then P ′′′ is infinite. It is clear that the image of x in Rq is not a maximal asymp-
totic sequence over IRq for all q ∈ P ′′′ and so agdIRq

(qRq) > n. On the other hand
agdIRq

(qRq) ≤ height qRq/IRq = height q/I = n + 1, by Theorem 4.4. Therefore 
agdIRq

(qRq) = height qRq/IRq and so Rq is strongly quasi-IRq-unmixed ring for all 
q ∈ P ′′′, by Theorem 5.2 and Corollary 5.3. This is a contradiction. �
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