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A celebrated theorem of Merkurjev—that the 2-torsion of the 
Brauer group is represented by Clifford algebras of quadratic 
forms—is in general false when the base is no longer a field. 
The first counterexamples, when the base is among certain 
arithmetically subtle hyperelliptic curves over local fields, 
were constructed by Parimala, Scharlau, and Sridharan. We 
prove that considering Clifford algebras of all line bundle-
valued quadratic forms, such counterexamples disappear and 
we recover Merkurjev’s theorem in these cases: for any smooth 
curve over a local field or any smooth surface over a finite 
field, the 2-torsion of the Brauer group is always represented 
by Clifford algebras of line bundle-valued quadratic forms.
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Introduction

A consequence of Merkurjev’s celebrated result [50]—settling the degree 2 case of the 
Milnor conjecture—is that every 2-torsion Brauer class over a field of characteristic �= 2
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is represented by the Clifford algebra of a quadratic form. There are many alternate 
proofs of Merkurjev’s theorem [4,51,61], [21, VIII], and it retains its status as one of 
the great breakthroughs in the theory of quadratic forms in the second half of the 20th 
century.

There have been many investigations into the validity of aspects of the Milnor con-
jecture over more general rings. For example, see [27, §3], [22,29], and [34,33] for a 
Milnor K-theoretic perspective, [55,52], and [25] for a Witt group perspective, and [9]
for a survey of results. In this context, Alex Hahn asked if there exists a commutative 
ring R over which the analogue of Merkurjev’s theorem doesn’t hold, i.e., 2Br(R) is 
not represented by Clifford algebras of regular quadratic forms over R. The surprising 
results of Parimala, Scharlau, and Sridharan [54–56] show that for a smooth complete 
hyperelliptic curve X with a rational point over a local field of characteristic �= 2, the 
analogue of Merkurjev’s theorem over X holds if and only if X has a rational theta char-
acteristic (which can fail to happen). These examples are also used to construct affine 
schemes over which Merkurjev’s theorem does not hold, thus answering Hahn’s original 
question.

In this work we show that even when Brauer classes of period 2 over a given scheme X
cannot be represented by Clifford algebras of regular quadratic forms over X, they may 
be represented by Clifford algebras of regular line bundle-valued quadratic forms. Let 
Wtot(X) be the total Witt group of line bundle-valued quadratic forms (see Section 2.1
for definitions) and let I2

tot(X) be the subgroup of line bundle-valued quadratic forms 
of even rank and trivial discriminant. We construct (in Section 2.4) a natural group 
homomorphism e2 : I2

tot(X) → 2Br(X) with values in the 2-torsion of the Brauer group 
of X, generalizing the classical Clifford invariant, and which we call the total Clifford 
invariant. A succinct consequence of our main result is the following.

Theorem A. Let X be a smooth curve over a local field of characteristic �= 2 or a smooth 
surface over a finite field of odd characteristic. Then the total Clifford invariant

e2 : I2
tot(X) → 2Br(X)

is surjective. In other words, every 2-torsion Brauer class on X is represented by the 
Clifford algebra of a regular line bundle-valued quadratic form on X.

In the proof (see Section 3), we apply results of Saltman [59] and Lieblich [47] on 
the Brauer dimension of function fields of curves over local fields and surfaces over 
finite fields, respectively. Together with a purity result for division algebras on surfaces 
(Theorem 3.6), we reduce the problem to one concerning Azumaya algebras of degree 
dividing 4 and index dividing 2. Then we generalize results of Knus, Ojanguren, Parimala, 
Paques, and Sridharan [41,42,37,43,44], and [15] (also see [39, IV §15]), on the exceptional 
isomorphisms of Dynkin diagrams A2

1 = D2 and A3 = D3, which provide beautiful 
constructions of line bundle-valued quadratic forms with specified even Clifford algebras. 
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In fact, our main result (Theorem 3.5) applies to any regular integral scheme X satisfying 
purity and Brauer dimension bounded by 2 for algebras of period 2 over the function 
field.

The verification that the total Clifford invariant is well defined is no small task, 
and occupies the bulk of Sections 1–2. The majority of the work goes into establishing 
two fundamental algebraic structural results: the Brauer triviality of the even Clifford 
algebra of a line bundle-valued metabolic form (Theorem 1.7), generalizing the main 
result of [40]; and a formula to compute the even Clifford algebras and bimodules of 
orthogonal sums (Theorem 1.8) leading to a generalization of the classical fundamental 
relation in the Brauer group (Theorem 2.6). To this end, we use a new direct tensorial 
construction of the even Clifford algebra and bimodule (see Section 1.2), which offers 
novel universal properties (Propositions 1.1 and 1.4) useful in establishing these results. 
These structural results for line bundle-valued forms are new and are useful in a variety of 
contexts. In particular, they go beyond the author’s previous cohomological construction 
[7] of Clifford-type invariants.

History. The notion of a line bundle-valued quadratic form on X appeared in many 
different contexts in the early 1970s. Geyer–Harder–Knebusch–Scharlau [24] introduced 
the notion of symmetric bilinear forms with values in the module of Kähler differentials 
over a global function field. This notion enables a consistent choice of local traces in order 
to generalize residue theorems to nonrational function fields. For a smooth complete 
algebraic curve X, Mumford [53] introduced the notion of locally free OX -modules with 
pairings taking values in the sheaf of differentials ωX to study theta characteristics. 
Kanzaki [30] introduced the notion of a Witt group of quadratic forms with values 
in an invertible module over a commutative ring. Saltman [58, Thm. 4.2] showed that 
involutions on Azumaya algebras naturally lead to the consideration of line bundle-valued 
bilinear forms.

In his thesis, Bichsel [14] (reported in [15]) constructed an even Clifford algebra of 
a line bundle-valued quadratic form. This was later used in [57,12], and [60]. Kapra-
nov [31, §4.1] constructed a homogeneous Clifford algebra of a quadratic form—which 
in hindsight is related to the generalized Clifford algebra of [15] or the graded Clifford 
algebra of [17]—to study the derived category of projective quadrics and quadric fibra-
tions. This was further developed by Kuznetsov [45]. With respect to Clifford algebras, 
line bundle-valued quadratic forms behave much like Azumaya algebras with orthogonal 
involutions, which do not enjoy a “full” Clifford algebra, only an even part together with 
a bimodule. In particular, line bundle-valued quadratic forms have no Clifford invari-
ant in the classical sense. The construction of secondary invariants in étale cohomology 
capturing the even Clifford algebra of a line bundle-valued quadratic form with fixed 
discriminant appeared in [7]. In the present work, we develop a purely algebraic Clifford 
invariant for line bundle-valued quadratic forms with trivial discriminant, taking values 
in the 2-torsion of the Brauer group.
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1. Line bundle-valued quadratic forms and even Clifford algebras

Let X be a separated noetherian scheme. By a vector bundle, we mean a locally 
free OX -module of constant finite rank. Fix a line bundle L on X, i.e., an invertible 
OX -module.

1.1. Line bundle-valued quadratic forms

A (line bundle-valued) symmetric bilinear form on X is a triple (E , b, L ), where 
E is a vector bundle on X and b : S2E → L is an OX -module morphism. A (line 
bundle-valued) quadratic form on X is a triple (E , q, L ), where E is a vector bundle on X
and q : E → L is an OX -homogeneous morphism of degree two such that the associated 
morphism bq : S2E → L defined on sections by bq(vw) = q(v + w) − q(v) − q(w) is 
a symmetric bilinear form. We will mostly dispense with the title “line bundle-valued.” 
The rank of (E , q, L ) is the rank of E .

A symmetric bilinear form (E , b, L ) is regular if the canonical adjoint ψb : E →
Hom(E , L ) is an isomorphism. A quadratic form q is regular if bq is regular. If 2 
is assumed invertible on X, then we can pass back and forth between quadratic and 
symmetric bilinear forms on X.

A similarity transformation between symmetric bilinear forms (E , b, L ) and
(E ′, b′, L ′) or quadratic forms (E , q, L ) and (E ′, q′, L ′) is a pair (ϕ, λ) consisting of 
OX -module isomorphisms ϕ : E → E ′ and λ : L → L ′ such that b′(ϕ(v), ϕ(w)) =
λ ◦ b(v, w) or q′(ϕ(v)) = λ ◦ q(v) on sections, respectively. A similarity transformation 
(ϕ, λ) is an isometry if L = L ′ and λ is the identity map.

Denote by GO(E , q, L ) (resp. O(E , q, L )) the presheaf, on the large fppf site Xfppf , 
of similitudes (resp. isometries) of a regular quadratic form (E , q, L ). In fact, this is 
a sheaf and it is representable by a smooth affine reductive group scheme over X; see 
[18, II.1.2.6, III.5.2.3]. Here we consider reductive group schemes whose fibers are not 
necessarily geometrically integral, in contrast to [19, XIX.2]. In particular, the pointed 
nonabelian cohomology set H1

fppf(X, GO(E , q, L )) is in bijection with the similarity 
classes of regular line bundle-valued quadratic forms with the same rank as (E , q, L ); 
see [7, Prop. 1.2]. If n is even or 2 is invertible on X, then the fppf site can be replaced 
by the étale site.

Define the projective similarity class of a quadratic form (E , q, L ) to be the set of 
similarity classes of quadratic forms (N ⊗E , qN ⊗q, N ⊗2⊗L ) ranging over all regular 
bilinear forms (N , qN , N ⊗2) of rank 1 on X. In [13], this is referred to as a lax-similarity
class. In their notation, a quadratic alignment A = (N , φ) between line bundles L and 
L ′ consists of a line bundle N and an OX -module isomorphism φ : N ⊗2 ⊗ L → L ′. 
A quadratic alignment induces an equivalence A� between categories of L -valued and 
L ′-valued quadratic forms (in particular, an isomorphism A� : W (X, L ) → W (X, L ′)
of Witt groups) defined by A� : (E , q, L ) �→ (N ⊗ E , φ ◦ (qN ⊗ q), L ′), where
qN : N → N ⊗2 is the canonical squaring form.
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1.2. Even Clifford algebra

In his thesis, Bichsel [14] constructs an even Clifford algebra of a line bundle-valued 
quadratic form on an affine scheme. Alternate constructions are given in [15,17], and [57, 
§4], which are all detailed in [7, §1.8]. Inspired by [39, II Lemma 8.1, §9], we now give a 
direct tensorial construction. Let (E , q, L ) be a line bundle-valued quadratic form on X.

Define ideals J1 and J2 of the tensor algebra T (E ⊗E ⊗L ∨) to be locally generated 
by

v ⊗ v ⊗ f − f(q(v)) · 1 and u⊗ v ⊗ f ⊗ v ⊗ w ⊗ g − f(q(v))u⊗ w ⊗ g, (1)

respectively, for sections u, v, w of E and f , g of L ∨. We define

C0(E , q,L ) = T (E ⊗ E ⊗ L ∨)/(J1 + J2) (2)

together with the canonically induced morphism of OX-modules

i : E ⊗ E ⊗ L ∨ → C0(E , q,L ), (3)

which factors through the degree one elements of the tensor algebra.
Writing the rank as n = 2m or n = 2m + 1, there is a filtration by OX -modules

OX = F0 ⊂ F2 ⊂ · · · ⊂ F2m = C0(E , q,L ),

where F2i is the image of the truncated tensor algebra T≤i(E ⊗E ⊗L ∨) in C0(E , q, L ), 
for each 0 ≤ i ≤ m. As in [38, IV §1.6], this filtration has associated graded pieces 
F2i/F2(i−1) ∼=

∧2iE ⊗ (L ∨)⊗i. In particular, C0(E , q, L ) is a locally free OX -algebra 
of rank 2n−1. By its tensorial construction, the even Clifford algebra has the following.

Proposition 1.1 (Universal property of the even Clifford algebra). Given an OX-algebra 
A and an OX-module morphism j : E ⊗ E ⊗ L ∨ → A such that

j(v ⊗ v ⊗ f) = f(q(v)) · 1 and j(u⊗ v ⊗ f) · j(v ⊗ w ⊗ g) = f(q(v)) j(u⊗ w ⊗ g),

then there exists a unique OX-algebra homomorphism ψ : C0(E , q, L ) → A satisfying 
j = ψ ◦ i.

A similar universal property for algebras with involution over a field is stated in [49, 
§3]. The even Clifford algebra has the following additional properties.

Proposition 1.2. Let (E , q, L ) be a regular quadratic form of rank n on a scheme X. 
Write n = 2m or n = 2m + 1.
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a) If n is odd, C0(E , q, L ) is a central OX-algebra. If n is even, the center Z (E , q, L )
of C0(E , q, L ) is an étale quadratic OX-algebra.

b) If n is odd, C0(E , q, L ) is an Azumaya OX-algebra of degree 2m. If n is even, 
C0(E , q, L ) is an Azumaya Z (E , q, L )-algebra of rank 2m−1

c) The canonical OX-module morphism i : E ⊗ E ⊗ L ∨ → C0(E , q, L ) is a locally 
split embedding and there exists a unique canonical involution τ0 : C0(E , q, L ) →
C0(E , q, L )op satisfying τ0(i(v ⊗ w ⊗ f)) = i(w ⊗ v ⊗ f) for sections v, w of E and 
f of L ∨.

d) Any similarity (ϕ, λ) : (E , q, L ) → (E ′, q′, L ′) induces an OX-algebra isomorphism

C0(ϕ, λ) : C0(E , q,L ) → C0(E ′, q′,L ′)

satisfying i(v) ⊗ i(w) ⊗ f �→ i(ϕ(v)) ⊗ i(ϕ(w)) ⊗ f ◦ λ−1 for sections v, w of E and 
f of L ∨.

e) Any quadratic alignment A = (N , φ), with φ : N ⊗2 ⊗ L → L ′, induces an 
OX-algebra isomorphism

C0(A�) : C0(A�(E , q,L )) → C0(E , q,L )

satisfying i(a ⊗ v) ⊗ i(b ⊗ w) ⊗ f �→ i(v) ⊗ i(w) ⊗ φ′(a ⊗ b ⊗ f), for sections a, b of 
N , v, w of E , and f of L ′∨, where φ′ : N ⊗2 ⊗ L ′∨ → L ∨ is the isomorphism 
canonically induced from φ.

f ) For any morphism of schemes p : X ′ → X, there is a canonical OX-module isomor-
phism

C0(p∗(E , q,L )) → p∗C0(E , q,L ).

Proof. Properties a and b are étale local and hence follow from the corresponding prop-
erties of the classical even Clifford algebra (cf. [38, IV Thm. 2.2.3, Prop. 3.2.4]), also see 
[15, §3]. Properties c, d, and e are all consequence of the universal property. Property f
is a direct consequence of the tensorial construction. �
Definition 1.3. Let (E , q, L ) be a quadratic form of even rank on X. We call f : Z =
SpecZ (E , q, L ) → X the discriminant cover of (E , q, L ). If (E , q, L ) is regular, then 
f : Z → X is étale quadratic.

1.3. Clifford bimodule

As in the case of central simple algebras with orthogonal involution, line bundle-valued 
quadratic forms do not generally enjoy a “full” Clifford algebra, of which the even Clifford 
algebra is the even degree part. Inspired by [39, II §9], we can directly define the Clifford 
bimodule C1(E , q, L ) of a quadratic form (E , q, L ), corresponding to the “odd” part of 
the classical Clifford algebra.
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The OX -module E ⊗ T (E ⊗ E ⊗ L ∨) has a natural right T (E ⊗ E ⊗ L ∨)-module 
structure denoted by ⊗. The OX-bilinear map ∗ : (E ⊗E ⊗L ∨) ×E → E ⊗(E ⊗E ⊗L ∨)
defined by

(u⊗ v ⊗ f) ∗ w = u⊗ (v ⊗ w ⊗ f)

for sections u, v, w of E and f of L ∨, induces a left T (E ⊗ E ⊗ L ∨)-module structure 
∗ on E ⊗ T (E ⊗ E ⊗ L ∨), uniquely defined so that it commutes with the natural right 
T (E ⊗ E ⊗ L ∨)-module structure. We define

C1(E , q,L ) = E ⊗ T (E ⊗ E ⊗ L ∨)/(E ⊗ J1 + J1 ∗ E ) (4)

together with the canonically induced morphism of OX-modules

i : E → C1(E , q,L ), (5)

which is a locally split embedding. One immediately checks that E ⊗J2 ⊂ J1 ∗ E and 
J2 ∗ E ⊂ E ⊗J1, hence C1(E , q, L ) inherits a C0(E , q, L )-bimodule structure. Denote 
the right and left C0(E , q, L )-module structures by · and ∗, respectively.

Writing the rank as n = 2m or n = 2m + 1, there is a filtration

E = F1 ⊂ F3 ⊂ · · · ⊂ F2m+1 = C1(E , q,L ),

where F2i+1 is the image of the truncation E ⊗ T≤i(E ⊗ E ⊗ L ∨) in C1(E , q, L ), for 
each 0 ≤ i ≤ m. This filtration has associated graded pieces F2i+1/F2i−1 ∼=

∧2i+1E ⊗
(L ∨)⊗i. In particular, C1(E , q, L ) is a locally free OX -module of rank 2n−1. By its 
tensorial construction, the Clifford bimodule has the following.

Proposition 1.4 (Universal property of the Clifford bimodule). Given a C0(E , q, L )-bi-
module B (with right and left actions · and ∗) and an OX-module morphism j : E → B

such that

j(u) · i(v ⊗ w ⊗ f) = i(u⊗ v ⊗ f) ∗ j(w),

for sections u, v, w of E and f of L ∨, there exists a unique C0(E , q, L )-bimodule 
morphism ψ : C1(E , q, L ) → B satisfying j = ψ ◦ i.

The Clifford bimodule has the following additional properties.

Proposition 1.5. Let (E , q, L ) be a regular quadratic form on a scheme X.

a) The Clifford bimodule C1(E , q, L ) is invertible as a (left or right) C0(E , q, L )-mod-
ule.
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b) If n is even, then the action of Z (E , q, L ) on C1(E , q, L ) satisfies x ·z = ι(z) ∗x for 
sections z of Z (E , q, L ) and x of C1(E , q, L ), where ι is the nontrivial OX-auto-
morphism of Z (E , q, L ).

c) There is a canonical isomorphism

m : C1(E , q,L ) ⊗C0(E ,q,L ) C1(E , q,L ) → C0(E , q,L ) ⊗OX
L

of C0(E , q, L )-bimodules satisfying m(i(v) ⊗ i(v)) = 1 ⊗ q(v) for a section v of E .
d) Any similarity transformation (ϕ, λ) : (E , q, L ) → (E ′, q′, L ′) induces an OX-mod-

ule isomorphism

C1(ϕ, λ) : C1(E , q,L ) → C1(E ′, q′,L ′)

that is C0(ϕ, λ)-semilinear with respect to the bimodule structure.
e) Any quadratic alignment A = (N , φ), with φ : N ⊗2 ⊗ L → L ′, induces an 

OX-module isomorphism

C1(A�) : C1(A�(E , q,L )) → N ⊗ C1(E , q,L )

that is C0(A�)-semilinear with respect to the bimodule structure.
f ) For any morphism of schemes p : X ′ → X, there is a canonical OX-module isomor-

phism

C1(p∗(E , q,L )) → p∗C1(E , q,L ).

Proof. For simplicity, we write C0 = C0(E , q, L ) and C1 = C1(E , q, L ). For a, since q is 
fiberwise nonzero, Zariski locally there exists a line subbundle N ⊂ E such that q|N is 
regular. Then as in the classical case (see [38, IV Prop. 7.5.2]), N locally generates C1

over C0 as a right or left module.
For b, this is a local question and hence follows from [38, IV Prop. 4.3.1(4)]. For c, we 

will define a C0(E , q, L )-bimodule morphism ψm : C1(E , q, L ) → HomC0(C1, C0 ⊗L ), 
where HomC0 denotes the sheaf of right C0-module homomorphisms (here L is acted 
trivially on). Then m will be the C0-bimodule map with adjoint ψm. To this end, for 
each section v of E , we define a section mv of HomC0(C1, C0⊗L ) ∼= HomC0(C1⊗L ∨⊗
L , C0 ⊗L ) by applying the universal property to the map w⊗ f ⊗ l �→ i(v⊗w⊗ f) ⊗ l

for a section w of E , f of L ∨, and l of E . Then applying the universal property to the 
map defined by v �→ mv, yields the required ψm. Finally, m is an isomorphism by a, 
since it’s a nontrivial map of invertible C0-bimodules.

Properties d and e are consequence of the universal property (cf. [14, Prop. 2.6] and 
[15, Lemma 3.3]). Property f is a direct consequence of the tensorial construction. �
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1.4. Metabolic forms

A quadratic form (E , q, L ) of rank n = 2m on X is metabolic if there exists a locally 
direct summand F → E of rank m such that the restriction of q to F is zero. Any 
choice of such P is a Lagrangian. The class of hyperbolic forms is the main example.

Example 1.6. For any vector bundle P of rank m and any line bundle L the (L -valued) 
hyperbolic quadratic form HL (P) has underlying OX -module Hom(P, L ) ⊕P and is 
given by t + v �→ t(v) on sections. Here, P and Hom(P, L ) are Lagrangians.

We now proceed to compute the even Clifford algebra and Clifford bimodule of a 
hyperbolic form, which will be necessary for us later. Given an OX-module morphism 
t : P → L , for each i ≥ 0 we define

d
(i)
t :

∧i+1P →
∧iP ⊗ L

inductively by d(i)
t (v ∧ x) = x ⊗ t(v) + x ∧ d

(i−1)
t (x) for sections v of P and x of 

∧iP, 
cf. [8, §2]. Under the identification 

∧0P = OX , we set d(0)
t = t. Defining

∧+
L P =

�m/2�⊕
i=0

∧2iP ⊗ (L ∨)⊗i,
∧−

L P =
�(m−1)/2�⊕

i=0

∧2i+1P ⊗ (L ∨)⊗i,

there are induced OX -module morphisms

d+
t :

∧+
L P →

∧−
L P, d−t :

∧−
L P →

∧+
L P ⊗ L .

Also, for each global section v of P, left wedging defines OX -module morphisms

l+v :
∧+

L P →
∧−

L P, l−v :
∧−

L P →
∧+

L P ⊗ L .

One immediately checks that the maps

HL (P) ⊗HL (P) ⊗ L ∨ → End
(∧+

L P
)
× End

(∧−
L P

)

(t + v) ⊗ (s + w) ⊗ f �→ (id ⊗ f)(d−t ◦ d+
s + d−t ◦ l+w + l−v ◦ d+

s + l−v ◦ l+w)

+ (d+
t ⊗ f ◦ d−s + d+

t ⊗ f ◦ l−w + l+v ⊗ f ◦ d−s + l+v ⊗ f ◦ l−w)

and

HL (P) → Hom
(∧+

L P,
∧−

L P
)
⊕ Hom

(∧−
L P,

∧+
L P

)
⊗ L

t + v �→ (d+
t + l+v ) + (d−t + l−v )
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satisfy the universal properties of the even Clifford algebra and Clifford bimodule, hence 
induce a canonical OX -algebra morphism

Φ0 : C0(HL (P)) → End
(∧+

L P
)
× End

(∧−
L P

)

and a canonical OX -module morphism

Φ1 : C1(HL (P)) → Hom
(∧+

L P,
∧−

L P
)
⊕ Hom

(∧−
L P,

∧+
L P

)
⊗ L

transporting, via the morphism Φ0, the C0(HL (P))-bimodule structure to the evident 
composition End(

∧+
L P) × End(

∧−
L P)-bimodule structure. Zariski locally, Φ0 and Φ1

agree with the restriction of the classical isomorphism C (HOX
(P)) ∼= End(

∧
P) (see 

[38, IV Prop. 2.1.1]) to the even and odd components of the Clifford algebra, hence Φ0
and Φ1 are isomorphisms.

We point out that Z (HL (P)) ∼= OX × OX is the split étale quadratic algebra.

The formula for the even Clifford algebra of a hyperbolic form given in Example 1.6
does not persist to (nonsplit) metabolic quadratic forms, a phenomenon already apparent 
when L = OX ; see [40]. However, the main result of this section is that C0 is still a 
product of split Azumaya algebras.

Theorem 1.7. Let (E , q, L ) be a metabolic quadratic form of rank n = 2m on a scheme X. 
Any choice of Lagrangian F → E induces a natural choice of vector bundles M + and 
M− of rank 2m−1, an OX-algebra isomorphism

Φ0 : C0(E , q,L ) ∼= End(M +) × End(M−),

and an OX-module isomorphism

Φ1 : C1(E , q,L ) ∼= Hom(M +,M−) ⊕ Hom(M−,M +) ⊗ L

transporting, via Φ0, the C0(E , q, L )-bimodule structure to the evident composition 
End(M +) × End(M−)-bimodule structure.

Proof. We generalize the proof from Knus–Ojanguren [40] to the line bundle-valued 
setting. On the category of vector bundles, write (−)∨L for the functor Hom(−, L )
and canL for the canonical isomorphism of functors id → ((−)∨L )∨L .

Let P be a vector bundle of rank m ≥ 1 and HL (P) be the corresponding L -valued 
hyperbolic form. Denote by γ0 : O

(
HL (P)

)
→ AutOX -alg

(
C0(HL (P))

)
the homo-

morphism induced by Proposition 1.2d. Restricting γ0 to the center yields the Dickson
homomorphism Δ : O

(
HL (P)

)
→ AutOX -alg

(
Z (HL (P))

)
= Z/2Z of group schemes, 

cf. [7, §1.9]. Its kernel is the special orthogonal group scheme SO
(
HL (P)

)
. Under the 
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identification C0(HL (P)) = End
(∧+

L P
)
× End

(∧−
L P

)
of Example 1.6, we have that 

γ0 restricts to a homomorphism

γ0 : SO
(
HL (P)

)
→ AutZ -alg

(
C0(HL (P))

) ∼= PGL
(∧+

L P
)
× PGL

(∧−
L P

)
.

Similarly, denote by γ1 : O
(
HL (P)

)
→ AutOX-mod

(
C1(HL (P))

)
the homomor-

phism induced by Proposition 1.5d. Under the identification of C1(HL (P)) with the 

vector bundle Hom
(∧+

L P,
∧−

L P
)
⊕ Hom

(∧−
L P,

∧+
L P

)
⊗ L of Example 1.6, we 

have that γ1 restricts to a homomorphism

γ1 : SO
(
HL (P)

)
→ AutZ

(
C1(HL (P))

) ∼= GL(H +) × GL(H −)

where we write H + = Hom
(∧+

L P, 
∧−

L P
)

and H − = Hom
(∧−

L P, 
∧+

L P ⊗ L
)
.

The parabolic subgroup SO
(
HL (P), P

)
⊂ SO

(
HL (P)

)
of isometries preserving 

P has the following block description:

SO
(
HL (P),P

)
(U) =

{(
(α∨L )−1 β

0 α

)
: β∨L canL α is alternating

}

where for each U → X and each α ∈ Hom(P|U , P|U ) and β ∈ Hom(P|U , P|∨L
U ), we 

consider β∨L canL α : PU → P|∨L
U as the adjoint of an L |U -valued bilinear form.

We use an L -valued version of Bourbaki’s tensor operations for even Clifford algebras, 
cf. [12, Thm. 2.2]. In particular, under the canonical identifications C0(P, 0, L ) =

∧+
L P

and C1(P, 0, L ) =
∧−

L P, there exist homomorphisms of sheaves of groups

Ψ± : Hom
(∧2P,L

)
→ GL

(∧±
L P

)

satisfying the following properties:

Ψ±(b ◦ ∧2ϕ) = ∧±
L (ϕ)−1 Ψ±(b) ∧±

L (ϕ) (6)

for each alternating form b :
∧2P → L and each ϕ ∈ GL(P); and

ψb = ψb′ ⇒ Ψ±(b) = Ψ±(b′) (7)

where ψb : P → P∨L is the adjoint map to the alternating form b :
∧2P → L . By 

(7), we can write Ψ±(ψ) in place of Ψ±(b) for any OX -module morphism ψ : P → P∨L

that is adjoint to an alternating form b :
∧2P → L .

With this in hand, we define maps

ρ± : SO
(
HL (P),P

)
→ GL

(∧±
L P

)
(

(α∨L )−1 β
0 α

)
�→ ∧±

L (α) Ψ±(α∨L β)
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which we now proceed to verify are well defined homomorphisms. Consider the Levi 
decomposition SO

(
HL (P), P

)
= MN = NM given explicitly by

(
(α∨L )−1 β

0 α

)
=

(
(α∨L )−1 0

0 α

)(
1 α∨L β
0 1

)
=

(
1 βα−1

0 1

)(
(α∨L )−1 0

0 α

)

and note that α∨L β (being the transpose of β∨L canL α) is adjoint to an alternating 
form, say b :

∧2P → L . Then βα−1 is adjoint to the alternating form b ◦ ∧2α−1, 
since we can write βα−1 = (α−1)∨L (α∨L β)α−1. Hence by (6), ρ± is also given by 
Ψ±(βα−1) ∧±

L (α). Since ρ± is based on, and independent of, the Levi decomposition 
order, it is a well defined group scheme homomorphism.

Denoting by ρ0 = ρ+×ρ− : SO
(
HL (P), P

)
→ GL

(∧+
L P

)
×GL

(∧−
L P

)
, consider 

the diagram

SO
(
HL (P),P

)
ρ0

SO
(
HL (P)

)
γ0

GL
(∧+

L P
)
× GL

(∧−
L P

)
PGL

(∧+
L P

)
× PGL

(∧−
L P

)

of group schemes, where the horizontal arrows are the obvious ones. The fiber of this 
diagram over any point of X is isomorphic to the restriction, to the special orthogonal 
group and even Clifford algebra, of the corresponding commutative diagram of orthogonal 
groups and (full) Clifford algebras in [40, Thm.] (cf. [38, IV Prop. 2.4.2]). Hence the 
diagram commutes over X.

We now consider the induced commutative diagram of pointed nonabelian cohomology 
sets: H1

ét
(
X, SO(HL (P))) is in bijection with the set of similarity classes of L -valued 

quadratic forms (E , q, L ) of rank 2m together with an orientation isomorphism
ζ : Z (E , q, L ) ∼= OX ×OX (cf. [7, Prop. 1.15]); H1

ét(X, SO(HL (P), P)) is in bijection 
with the set of similarity classes of metabolic L -valued quadratic forms (E , q, L ) of rank 

n = 2m together with a choice of Lagrangian; H1
ét(X, GL(

∧±
L P)) is in bijection with the 

set of isomorphism classes of vector bundles M± of rank 2m−1; H1
ét(X, PGL(

∧±
L P))

is in bijection with the set of isomorphism classes of Azumaya algebras of degree 2m−1; 
the induced map

H1
ét
(
X,SO

(
HL (P),P

))
→ H1

ét
(
X,SO

(
HL (P)

))

replaces the choice of Lagrangian by the orientation it canonically induces (cf. [7, 
Lemma 1.14]); the map induced by γ0 takes an oriented quadratic form to its even 
Clifford algebra together with the splitting of its center induced by the orientation; the 
map induced by ρ0 takes a metabolic quadratic form of rank n = 2m together with a 
choice of Lagrangian to a pair of vector bundles M + and M− of rank 2m−1; the induced 



A. Auel / Journal of Algebra 443 (2015) 395–421 407
map

H1
ét
(
X,GL

(∧±
L P

))
→ H1

ét
(
X,PGL

(∧±
L P

))

takes a vector bundle M± to the Azumaya algebra End(M±). Chasing the diagram 
around shows that if (E , q, L ) is a metabolic quadratic form of rank 2m, then C0(E , b, L )
is isomorphic to End(M +) × End(M−) for vector bundles M + and M− of rank 2m−1

on X.
To identify the Clifford bimodule, consider the diagram

SO
(
HL (P),P

)
ρ0

SO
(
HL (P)

)
γ1

GL
(∧+

L P
)
× GL

(∧−
L P

) c GL(H +) × GL(H −)

of group schemes, where the top horizontal arrow is the canonical one, and c is the 
evident homomorphism defined by compositions. The fiber of this diagram over any 
point of X is isomorphic to the restriction, to the special orthogonal group and odd part 
of the Clifford algebra, of the corresponding commutative diagram of orthogonal groups 
and (full) Clifford algebras in [40, Thm.] (cf. [38, IV Prop. 2.4.2]). Hence the diagram 
commutes over X.

As above, we consider the induced commutative diagram of pointed nonabelian co-
homology sets: the map induced by γ1 takes an oriented quadratic form to its Clifford 
bimodule, together with a direct sum decomposition stable under the action of the cen-
ter; the map induced by c takes a pair of vector bundles M + and M− of rank 2m−1

to Hom(M +, M−) ⊕ Hom(M−, M + ⊗ L ). Chasing the diagram around gives the 
stated identification. The compatibility of the bimodule structures can then be checked 
locally. �
1.5. Orthogonal sums

We will also need an orthogonal sum formula for the even Clifford algebra. Let 
(E , q, L ) and (E ′, q′, L ) be quadratic forms over a scheme X and denote by

i0 : E ⊗ E ⊗ L ∨ → C0(q), i′0 : E ′ ⊗ E ′ ⊗ L ∨ → C0(q′),

i1 : E → C1(q), i′1 : E ′ → C1(q′),

the canonical OX -module morphisms (3) and (5), respectively.
We define an OX-algebra structure on C0(q) ⊗C0(q′) ⊕C1(q) ⊗C1(q′) ⊗L ∨ as follows: 

by multiplication in C0 (for products between elements of the first summand), by the 
C0-bimodule action C1 (between elements of the first and second summands), and by 
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the multiplication map m : C1 ⊗C1 → C0 ⊗L in Proposition 1.5c (between elements of 
the second summand) followed by evaluation with L ∨. One can check that the map

(E ⊕ E ′) ⊗ (E ⊕ E ′) ⊗ L ∨ → C0(q) ⊗ C0(q′) ⊕ C1(q) ⊗ C1(q′) ⊗ L ∨

(v + v′) ⊗ (w + w′) ⊗ f �→
(
i0(v ⊗ w ⊗ f) ⊗ 1 + 1 ⊗ i′0(v′ ⊗ w′ ⊗ f)

)
+

(
i1(v) ⊗ i′1(w′) ⊗ f − i1(w) ⊗ i′1(v′) ⊗ f

)

satisfies the universal property of the even Clifford algebra, hence induces an OX-algebra 
morphism C0(q ⊥ q′) → C0(q) ⊗C0(q′) ⊕C1(q) ⊗C1(q′) ⊗L ∨. Via this morphism, there 
is an induced C0(q ⊥ q′)-bimodule structure on C0(q) ⊗C1(q′) ⊕C1(q) ⊗C0(q′), and one 
can check that the map

E ⊕ E ′ → C0(q) ⊗ C1(q′) ⊕ C1(q) ⊗ C0(q′)

v + v′ �→ i1(v) ⊗ 1 + 1 ⊗ i′1(v′)

satisfies the universal property of the Clifford bimodule.

Theorem 1.8. Let (E , q, L ) and (E ′, q′, L ) be quadratic forms over a scheme X. Then 
the OX-algebra morphism

C0(q ⊥ q′) → C0(q) ⊗ C0(q′) ⊕ C1(q) ⊗ C1(q′) ⊗ L ∨ (8)

and the C0(q ⊥ q′)-bimodule morphism

C1(q ⊥ q′) → C0(q) ⊗ C1(q′) ⊕ C1(q) ⊗ C0(q′), (9)

induced from the universal properties, are isomorphisms.

Proof. Locally, when L is trivial, these maps agree with their classical counterparts (cf. 
[38, IV Thm. 1.3.1]) and hence are isomorphisms. �
2. Total Witt groups and total classical invariants

In this section, we define the notion of total Witt groups and construct the total 
classical cohomological invariants on these groups.

2.1. Total Witt groups

One must be careful when working with “total” Witt groups. Fix a scheme X and 
denote by W (X, L ) the (quadratic) Witt group of regular L -valued quadratic forms 
modulo metabolic forms on X. We usually write W (X) = W (X, OX). Every Witt class 
can be represented by a regular quadratic form, see [35, §5].
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We also fix a set P of line bundle representatives of the quotient group Pic(X)/2. 
With respect to this choice, we define the total (quadratic) Witt group Wtot(X) =⊕

L∈P W (X, L ). While the abelian group Wtot(X) is only well defined up to non-
canonical isomorphism depending on our choice of P , the cohomological invariants we 
consider will not depend on such choices. Definition 2.1 makes this precise.

Most importantly, we will not consider any ring structure on Wtot(X) and thus will 
not need to descend into the subtle considerations of [13].

Definition 2.1. Fix an abelian group H and group homomorphisms eL : W (X, L ) → H

for each line bundle L . We say that the system {eL } is a system of projective similarity 
class invariants if for any quadratic alignment A = (N , φ) between line bundles L and 
L ′, there is a commutative diagram

W (X,L )

A�

eL

H

W (X,L ′)
eL ′

H

of abelian groups. One could axiomatize this notion using the language of morphisms of 
functors, together with a compatibility condition with respect to quadratic alignments.

Given a system {eL } of projective similarity class invariants, the combined homo-
morphism

e = ⊕L∈P eL : Wtot(X) =
⊕

L∈PW (X,L ) → H

is well defined and independent of the choice P of representatives of Pic(X)/2. We 
call e the total invariant associated with the system {eL } of projective similarity class 
invariants.

A reader who is unhappy with this formalism may, for example, simply replace the 
statement “e : Wtot(X) → H is surjective” by the equivalent statement “for each h ∈ H, 
there exists a line bundle L and a class q ∈ W (X, L ), such that eL (q) = h”.

2.2. Rank modulo 2

For each line bundle L , the rank modulo 2 defines a homomorphism e0
L : W (X, L ) →

H0
ét(X, Z/2Z). Then {e0

L } is a system of projective similarity class invariants and there 
is a total rank modulo 2 homomorphism

e0 : Wtot(X) → H0
ét(X,Z/2Z).

Denote by I1(X, L ) ⊂ W (X, L ) the kernel of e0
L and by I1

tot(X) =
⊕

L∈P I1(X, L ). 
Note that if L is not a square in Pic(X) then I1(X, L ) = W (X, L ), cf. [7, Lemma 1.6]. 
Thus e0 has kernel I1

tot(X).
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2.3. Total discriminant

Recall from Proposition 1.2a that the center Z (E , q, L ) of the even Clifford algebra 
C0(E , q, L ) of a regular quadratic form (E , q, L ) is an étale quadratic OX -algebra. 
We call its X-algebra isomorphism class in H1

ét(X, Z/2Z) the discriminant invariant
d(E , q, L ).

Remark 2.2. If 2 is invertible on X and (E , q, L ) is a regular quadratic form of even 
rank n = 2m, then under the canonical homomorphism H1(X, Z/2Z) → H1(X, μ2), the 
discriminant invariant d(E , q, L ) maps to the class of the signed discriminant module 
det E ⊗ (L ∨)⊗m (defined in [57, §4]) of the associated symmetric bilinear form bq, cf. [7, 
§1.9].

Proposition 2.3. Let (E , q, L ) and (E ′, q′, L ) be regular quadratic forms of even rank 
over a scheme X. Then d(q ⊥ q′) = d(q) + d(q′) in H1

ét(X, Z/2Z).

Proof. We recall (cf. [38, III Prop. 4.1.4]) that given étale quadratic OX -algebras Z and 
Z ′, the addition of classes [Z ] and [Z ′] in H1

ét(X, Z/2Z) is represented by the quadratic 
étale algebra Z ◦ Z ′, defined to be the OX -subalgebra of Z ⊗ Z ′ invariant under the 
diagonal Galois action ι ⊗ ι′, where ι and ι′ are the nontrivial OX-automorphisms of Z
and Z ′, respectively.

Using Proposition 1.5b, we see that restricting the isomorphism (8) to the center yields 
an OX -algebra morphism Z (q ⊥ q′) → Z (q) ⊗ Z (q′), which we claim factors through 
Z (q) ◦Z (q′). Indeed, for any section v ⊗ v′ ⊗ f of E1 ⊗ E2 and z ⊗ z′ of Z (q) ⊗Z (q′), 
we have that

(v⊗v′⊗f) (z⊗z′) = (v·z)⊗(v′·z′)⊗f = (ι(z)∗v)⊗(ι′(z′)∗v′)⊗f = (ι⊗ι′)(z⊗z′) (v⊗v′⊗f)

by Proposition 1.5b,c, where we suppress the canonical embeddings (3), (5) and the 
isomorphism (8). Hence (id − ι ⊗ ι′)Z (q ⊥ q′) annihilates E ⊗ E ′ ⊗ L ∨, hence is zero. 
This proves the claim. The resulting OX -algebra morphism Z (q ⊥ q′) → Z (q) ◦ Z (q′)
is Zariski locally an isomorphism by [38, IV §4.4], hence is an isomorphism. �

As a consequence, for each line bundle L , the discriminant invariant defines a homo-
morphism e1

L : I1(X, L ) → H1
fppf(X, Z/2Z). By Proposition 1.2e, {e1

L } is a system of 
projective similarity class invariants and there is a total discriminant invariant homo-
morphism

e1 : I1
tot(X) → H1

fppf(X,Z/2Z).

Denote by I2(X, L ) ⊂ I1(X, L ) the kernel of e1
L and by I2

tot(X) = ⊕L∈P I
2(X, L ). 

Then I2
tot(X) ⊂ ker(e1).
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Remark 2.4. The quotient group ker(e1)/I2
tot(X) is generated by elements of the form 

[E , q, L ] − [E ′, q′, L ′], where both q and q′ have equal nontrivial discriminant invariant 
and yet L and L ′ are in different square classes. This group will be the subject of future 
investigation.

2.4. Total Clifford invariant

For a regular quadratic form (E , q, L ) of even rank n = 2m and trivial discrimi-
nant on X, the even Clifford algebra decomposes as a product of Azumaya OX-algebras 
C0(E , q, L ) ∼= C +

0 (E , q, L ) × C−
0 (E , q, L ) upon fixing a splitting idempotent of the 

center Z (E , q, L ) ∼= OX × OX .

Proposition 2.5. Let X be a scheme with 2 invertible and (E , q, L ) be a regular 
line bundle-valued quadratic form of rank n = 2m and trivial discriminant. Then 
[C +

0 (E , q, L )] = [C−
0 (E , q, L )] in 2Br(X).

Proof. For m odd, the involution τ0 is of unitary type with respect to the center (cf. [7, 
Prop. 3.11]), hence induces an isomorphism

C +
0 (E , q,L ) ∼= C−

0 (E , q,L )op. (10)

Hence it suffices to prove that [C±
0 (E , q, L )] are 2-torsion in Br(X). For this, we can 

appeal to the étale cohomological Tits algebra construction of [7, Thm. 3.17].
For m even, the involution τ0 is of the first kind and trivial on the center, restricting 

to involutions τ±0 of the first kind on C±
0 (E , q, L ) (in particular, they have 2-torsion 

Brauer classes). Thus, there exist refined classes [C±
0 (E , q, L ), τ±0 ] in H2

ét(X, μ2) lifting 
the Brauer classes [C±

0 (E , q, L )] in 2Br(X) and satisfying

[C +
0 (E , q,L ), τ+

0 ] + [C−
0 (E , q,L ), τ−0 ] = c1(L ,μ2),

see [7, §2.8, §3.4], where c1(L , μ2) ∈ H2
ét(X, μ2) is the 1st Chern class arising 

from the coboundary map of the Kummer squaring sequence. In particular, we have 
[C +

0 (E , q, L )] = [C−
0 (E , q, L )] in 2Br(X) since 1st Chern classes are in the kernel of the 

natural map H2
ét(X, μ2) → H2

ét(X, Gm). �
The statement of Proposition 2.5 (and hence of Theorem 2.6, below) should remain 

true without the hypothesis that 2 is invertible on X. In the setting of Proposition 2.5, 
we will write [C ±

0 (q)] = [C±
0 (E , q, L )] for the Brauer class in question.

Theorem 2.6. Let X be a scheme with 2 invertible and (E , q, L ) and (E ′, q′, L ) be 
regular line bundle-valued quadratic forms of even rank and trivial discriminant. Then 
[C±

0 (q ⊥ q′)] = [C±
0 (q)] + [C±

0 (q′)] in 2Br(X).
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Proof. Let e, f be complementary central splitting idempotents of C0(q), inducing an 
OX -algebra decomposition

C0(q) = eC0(q) × fC0(q) = C +
0 (q) × C−

0 (q)

and a corresponding decomposition

C1(q) = C1(q) · e⊕ C1(q) · f = f · C1(q) ⊕ e · C1(q) = C +
1 (q) ⊕ C−

1 (q)

making C±
1 (q) into a C∓

0 (q)–C±
0 (q)-bimodule via the C0(q)-bimodule structure on C1(q). 

Local calculations, using Proposition 1.5b, shows that the map in Proposition 1.5c in-
duces pairings

C±
1 (q) × C∓

1 (q) → C∓
0 (q) ⊗ L . (11)

Similarly, C±
1 (q) annihilates itself via the map in Proposition 1.5c, C±

0 (q) and C∓
0 (q)

annihilate each other via the multiplication in C0(q), and the C±
0 (q)–C∓

0 (q)-bimodule 
structure on C±

1 (q) induces via the C0(q)-bimodule structure on C1(q), is zero.
Let e′, f ′ be complementary central splitting idempotents of C0(q′), as above. Then 

e ⊗ e′ + f ⊗ f ′ and e ⊗ f ′ + f ⊗ e′ (via the isomorphism (8)) are complementary central 
splitting idempotents of C0(q ⊥ q′), inducing a decomposition

C0(q ⊥ q′) = (e⊗ e′ + f ⊗ f ′)C0(q ⊥ q′) × (e⊗ f ′ + f ⊗ e′)C0(q ⊥ q′)

= C +
0 (q ⊥ q′) × C−

0 (q ⊥ q′).

A direct local calculation, using the C∓
0 (q)–C±

0 (q)-bimodule structure on C±
1 (q), the 

pairings (11), and the annihilation statements above, establishes the following block 
matrix algebra structures:

C +
0 (q ⊥ q′) =

(
C +

0 (q) ⊗ C +
0 (q′) C−

1 (q) ⊗ C−
1 (q′) ⊗ L ∨

C +
1 (q) ⊗ C +

1 (q′) ⊗ L ∨ C−
0 (q) ⊗ C−

0 (q′)

)

C−
0 (q ⊥ q′) =

(
C +

0 (q) ⊗ C−
0 (q′) C−

1 (q) ⊗ C +
1 (q′) ⊗ L ∨

C +
1 (q) ⊗ C−

1 (q′) ⊗ L ∨ C−
0 (q) ⊗ C +

0 (q′)

)

via the isomorphism (8). The pairings (11) induce morphisms

C∓
1 (q) ∼= HomC±

0 (q)
(
C±

1 (q),C±
0 (q)

)
⊗ L

of C±
0 (q)–C∓

0 (q)-bimodules (these are right hom sheaves). Regularity implies that these 
are isomorphisms, with respect to which we have OX -algebra isomorphisms

C +
0 (q ⊥ q′) = EndC+

0 (q)⊗C+
0 (q′)

(
C +

0 (q) ⊗ C +
0 (q′) ⊕ C +

1 (q) ⊗ C +
1 (q′) ⊗ L ∨)

C−
0 (q ⊥ q′) = EndC+

0 (q)⊗C−
0 (q′)

(
C +

0 (q) ⊗ C−
0 (q′) ⊕ C +

1 (q) ⊗ C−
1 (q′) ⊗ L ∨).
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In particular, C +
0 (q ⊥ q′) is Brauer equivalent to C +

0 (q) ⊗ C +
0 (q′) and C−

0 (q ⊥ q′) is 
Brauer equivalent to C +

0 (q) ⊗ C−
0 (q′). An application of Proposition 2.5 finishes the 

proof. �
When 2 is invertible on X, then by Theorems 1.7 and 2.6, for each line bundle L on 

X, the map [E , q, L ] �→ [C +
0 (E , q, L )], for any choice of central splitting idempotent, 

defines a homomorphism e2
L : I2(X, L ) → 2Br(X). By Proposition 1.2e, {e2

L } is a 
system of projective similarity class invariants and there is a total Clifford invariant
homomorphism

e2 : I2
tot(X) → 2Br(X). (12)

Remark 2.7. The invariant e2
OX

: I2(X) = I2(X, OX) → 2Br(X) coincides with the 
classical Clifford invariant map. Indeed, if (E , q) is a regular OX -valued quadratic form 
of even rank and trivial discriminant then C +

0 (E , q) is Brauer equivalent to the full 
Clifford algebra C (E , q). See also [7, Thm. 2.10b]. It was already proved in [40] that the 
full Clifford algebra yields a homomorphism W (X) → 2Br(X).

3. Surjectivity of the total Clifford invariant

The goal of this section is to prove Theorem A. Recall that an Azumaya algebra A
over a scheme X has OX -rank d2 for a positive integer d called the degree. The period of 
A is the order of the Brauer class [A ] ∈ Br(X). The index of A is the greatest common 
divisor of all degrees of Azumaya algebras B such that A ⊗ End P ∼= B ⊗ End Q for 
vector bundles P and Q on X. If X is integral with function field K, the generic index
of A is the index of the central simple K-algebra AK . The generic index divides the 
index, with equality if X is regular of dimension ≤ 2. We will assume that 2 is invertible 
on X.

3.1. Exceptional isomorphisms

The exceptional isomorphisms of Dynkin diagrams A2
1 = D2 and A3 = D3 have beau-

tiful reverberations in the theory of quadratic forms of rank 4 and 6, respectively. In 
these ranks, the reduced norm and reduced pfaffian constructions enable a quadratic 
form to be reconstructed from its even Clifford algebra (together with certain data). For 
quadratic forms over rings, this theory was initiated by Kneser, Knus, Ojanguren, Pari-
mala, Paques, and Sridharan, see [36,41,42,37,43,44]. Now, a standard reference on this 
work is Knus [38, Ch. V]. Over fields, a wonderful reference is [39, IV §15]. Bichsel [14]
and Bichsel–Knus [15] provide an extension of this theory to line bundle-valued forms 
over rings. The existing theory over rings immediately generalizes to base schemes when 
the corresponding algebraic groups are of inner type (i.e., the case of trivial discrimi-
nant). For an approach over general bases using Severi–Brauer schemes, see [57]. In the 
case of general discriminant, the details are worked out in [7, §5].
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We now outline the main results of this theory that we need. For even n = 2m, 
denote by PQF+

n (X) the set of projective similarity classes of regular line bundle-valued 
quadratic forms of rank n and trivial discriminant on X. Denote by 2Azd(X) the set of 
isomorphism classes of Azumaya OX -algebras of degree d and period 2.

For ease of exposition, and without loss of generality, we can assume that X is 
connected. The assignment, sending the projective similarity class of a quadratic form 
(E , q, L ) of even rank n = 2m and trivial discriminant to the unordered pair consisting 
of the OX -algebra isomorphism classes of the components C +

0 (E , q, L ) and C−
0 (E , q, L )

of the even Clifford algebra (for some central splitting idempotent), yields a well defined 
map

PQF+
n (X) → 2Az(2)

2m−1(X) (13)

where {−}(2) denotes the set of unordered pairs of elements.
For any odd k, denote by 2Az′2k(X) ⊂ 2Az(2)

2k (X) the subset of pairs of Brauer equiva-
lent Azumaya algebras. For any even k, denote by 2Az′2k(X) the set of equivalence classes 
of Azumaya algebras of degree 2k and period 2 under the relation A ∼ B if A ∼= B or 
A ∼= Bop. Then for even k, there is a canonical injective map 2Az′2k(X) → 2Az(2)

2k (X)
given by A �→ (A , A op).

For n ≡ 0 mod 4, recall that C +
0 (E , q, L ) is Brauer equivalent to C−(E , q, L ) by 

Proposition 2.5. For n ≡ 2 mod 4, recall that C +
0 (E , q, L ) ∼= C−

0 (E , q, L )op by (10). 
Hence (13) factors through a map

C±
0 : PQF+

n (X) → 2Az′2m−1(X). (14)

The main result is that for n = 4 and n = 6, the map (14) is a bijection, with inverse 
map realized, respectively, by the reduced norm and pfaffian construction outlined in 
[44], [38, V.4–5], [57]. We now proceed to summarize these constructions.

Reduced norm form
In the n = 4 case, given a pair of Brauer equivalent Azumaya quaternion algebras 

A and B, fibered Morita theory (cf. Lieblich [46, §2.1.4] or Kashiwara–Schapira [32, 
§19.5]) provides a A –B-bimodule P, which is invertible over A and B and is unique 
up to tensoring by a line bundle. Descending the reduced norm via étale splittings of 
A and B, there exists a reduced norm form N (P) = (P, qP , NP), consisting of 
line bundle NP and a regular quadratic form qP : P → NP satisfying qP(a · p · b) =
NrdA (a) qP(p) NrdB(b) for sections a of A , b of B, and p of P, where NrdA : A → OX

is the classical reduced norm. Tensoring P by a line bundle induces a projective similarity 
of reduced norm forms. Also, P is a B–A -bimodule by composing each action with the 
standard involution, giving rise to the same reduced norm form, hence we can freely 
exchange the role of A and B.
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Reduced pfaffian form
In the n = 6 case, given an Azumaya algebra A of degree 4 and period 2, there 

exists a vector bundle P of rank 16, unique up to tensoring by a line bundle, and 
an OX -algebra isomorphism ϕ : A ⊗ A ∼= End(P). The reduced trace, considered 
as an element of End A ∼= A op ⊗ A , is mapped via ϕ to an involutory OX -module 
endomorphism ψ : P → P. The subsheaf Aψ(P) = im(idP−ψ) of alternating elements 
with respect to ψ is a vector bundle of rank 6, as can be checked étale locally. Descending 
the pfaffian map via étale splitting of A and P, there exists a reduced pfaffian form
Pf (P) = (Aψ(P), pfP , PfP), consisting of a line bundle PfP and a regular quadratic 
form pfP : Aψ(P) → PfP . Tensoring P by a line bundle tensors Aψ(P) by the 
square of the line bundle, inducing a projective similarity of reduced pfaffian forms. 
Exchanging A with A op replaces P by P∨ and ψ by ψ∨, giving rise to isomorphisms 
Aψ∨(P∨) ∼= Aψ(P)∨ and PfP∨ ∼= (PfP)∨ (cf. [38, III Lemma 9.3.5]) and a projective 
similarity of reduced pfaffian forms Pf (P) and Pf (P∨) (cf. [38, III Prop. 9.4.2]).

Theorem 3.1. Let X be a scheme with 2 invertible.

a) There are inverse bijections

PQF+
4 (X)

C±
0

2Az′2(X)
N

where N is the reduced norm form construction.
b) There are inverse bijections

PQF±
6 (X)

C+
0

2Az′4(X)
Pf

where Pf is the reduced pfaffian form construction.

Proof. Given Brauer equivalent Azumaya algebras A and B, there exists an invert-
ible A –B-bimodule P such that B ∼= EndA (P). Hence for m even (e.g., m = 2), 
2Az′2m−1(X) is in bijection with the set of isomorphism classes of pairs (A , P), consist-
ing of an Azumaya algebra A of degree n and an invertible right A -module P. A direct 
proof of a can be deduced from [57, Prop. 4.1] (itself a generalization of [15, Prop. 4.5]), 
which states that if A is an Azumaya quaternion algebra and P is an invertible right 
A -module, then C0(N (P)) ∼= A ×EndA (P). By [57, Prop. 4.3], the map N is surjec-
tive. Hence N and C±

0 are inverse bijections. This is a generalization of [44, Thm. 10.7]
to the line bundle-valued (trivial discriminant) setting.

A direct proof of b can be given along similar lines. By [15, Prop. 4.8] (which im-
mediately generalizes to general base schemes), if A is an Azumaya OX -algebra of 
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degree 4, P is a locally free OX -module of rank 16, and ϕ : A ⊗ A → End(P)
is an OX -algebra isomorphism (corresponding to the element [A ] ∈ 2Az′4(X)), then 
C0(Pf (P)) ∼= A op × EndA op(P). By [57, Prop. 6.1], the map Pf is surjective. Hence 
Pf and C±

0 are inverse maps. This is a generalization of [44, Thm. 9.4] to the line 
bundle-valued (trivial discriminant) setting. �

As a result, we can realize any Azumaya algebra of degree dividing 4 on X as the 
even Clifford invariant of a line bundle-valued quadratic form. In particular, if 2Br(X)
is generated by such Azumaya algebras, then the total Clifford invariant is surjective.

Corollary 3.2. Let X be a scheme with 2 invertible. If 2Br(X) is generated by Azumaya 
algebras of degree ≤ 4, then the total Clifford invariant

e2 : I2
tot(X) → 2Br(X)

is surjective.

Note that if X is the spectrum of a field, then 2Br(X) is always generated by quater-
nion algebras by Merkurjev’s theorem, hence the hypotheses of Corollary 3.2 are quite 
global in nature.

In the same spirit, we can give a stronger condition sufficient for the surjectivity of the 
classical Clifford invariant e2

OX
: I2(X) → 2Br(X). First we recall some results from [44]. 

Let [A ] ∈ 2Az4(X) have reduced pfaffian form (Aψ(P), pfP , PfP), choosing a vector 
bundle P of rank 16 such that A ⊗A ∼= End P. The class d0(A ) = [PfP ] ∈ Pic(X)/2
is a well defined invariant of A , see [44, §9, p. 213]. When d0(A ) is trivial we say that 
A has trivial pfaffian invariant.

Proposition 3.3. (See [44, Prop. 3.2].) Let X be a scheme with 2 invertible and A ∈
2Az4(X). If A has an involution of the first kind then d0(A ) is 2-torsion. Moreover, if 
A has a symplectic involution then d0(A ) is trivial.

We recall that any Azumaya quaternion algebra has a standard symplectic involution, 
hence has trivial pfaffian invariant.

Corollary 3.4. Let X be a scheme with 2 invertible. If 2Br(X) is generated by Azumaya 
algebras of degree dividing 4 with trivial pfaffian invariant, then the classical Clifford 
invariant

e2
OX

: I2(X) → 2Br(X)

is surjective. In particular this is the case if 2Br(X) is generated by Azumaya quaternion 
algebras.
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Proof. We first remark that any A ∈ 2Az4(X) of index 2 is Brauer equivalent to A ′ ∈
2Az4(X) with trivial pfaffian invariant. Indeed, if A has index 2, then A ∼= EndB(P)
for an Azumaya quaternion algebra B and a locally free B-module P of rank 2. We 
can extend the standard symplectic involution on B to A ′ = M2(B), which then has 
trivial pfaffian invariant by Proposition 3.3. But A is Brauer equivalent to A ′.

Now, note that the reduced norm form qB : B → OX is a regular OX -valued quadratic 
form in I2(X) with e2

OX
(N (B)) = [B], by Theorem 3.1a. This already proves the 

final claim. In general, if A ∈ 2Az4(X) has trivial pfaffian invariant, then there exists 
an OX -valued quadratic form (E , q) in the projective similarity class of Pf (A ). By 
Theorem 3.1b, we have that e2

OX
(E , q) = [A ]. The first claim follows. �

3.2. Brauer dimension results

Now we investigate sufficient conditions under which 2Br(X) is generated by Azumaya 
algebras of degree dividing 4. Let X be an integral scheme with function field K. An 
Azumaya OX -algebra A is called an Azumaya division algebra if the generic fiber AK is 
a central division K-algebra.

We introduce two conditions on an integral scheme X with function field K:

A Every central division K-algebra of period 2 and degree dividing 4, which is Brauer 
equivalent to the generic fiber of an Azumaya OX -algebra, is isomorphic to the 
generic fiber of an Azumaya division OX-algebra, i.e., restriction to the generic point 
2Azd(X) → 2Azd(K) is surjective for d dividing 4.

B Every A ∈ 2Br(X) satisfies index(AK) | period(AK)2, i.e., index(AK) | 4.

Condition A is a kind of “purity for division algebras” of period 2 and degree di-
viding 4, or “purity for GL4/μ2-torsors” in the setting of Colliot-Thélène–Sansuc [16]. 
Condition B might be restated loosely as “X has Brauer dimension 2” for classes of 
period 2. See [10, §4] for the precise notion of Brauer dimension.

We now prove that under conditions A and B, we get an “unramified symbol length” 
bound on the Brauer group, which is stronger than the generation hypothesis needed for 
Corollary 3.2.

Theorem 3.5. Let X be a regular integral scheme with 2 invertible. If X satisfies condi-
tions A and B, then 2Br(X) is represented by Azumaya algebras of degree dividing 4. In 
particular, the total Clifford invariant is surjective.

Proof. Since X is regular, the canonical map Br(X) → Br(K) is injective, see [6] or [26, 
Cor. 1.8]. By condition B, for any A ∈ 2Br(X), we have that AK ∈ 2Br(K) is Brauer 
equivalent to a central division K-algebra D of degree dividing 4. By condition A, there 
exists an Azumaya OX-algebra B whose generic fiber is D, in particular, B has degree 
dividing 4. Since [BK ] = [D] = [AK ] ∈ 2Br(K), by the injectivity of Br(X) → Br(K), 
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we have that [B] = [A ] ∈ 2Br(X). The final claim is thus a direct consequence of 
Corollary 3.2. �

We now collect together some necessary conditions under which conditions A and B
hold. Condition A (and more generally, purity for division algebras of any degree) is 
satisfied quite generally for schemes of dimension ≤ 2.

Theorem 3.6. Any regular integral scheme X of dimension ≤ 2 satisfies condition A.

Proof. Apply Colliot-Thélène–Sansuc [16, Cor. 6.14] to the reductive group scheme 
GL4/μ2 over X. An alternate proof can be found in [11, Thm. 4.3]. �

Note that for schemes of higher dimension, Condition A can fail, see [3].
As for condition B, it holds in the following cases where the Brauer dimension of K

is known to be 1:

• smooth curves over finite fields (by class field theory),
• smooth surfaces over algebraically closed fields (by Artin [5] or de Jong [20]),

and where the Brauer dimension of K is known to be 2:

• smooth curves over local fields (by Saltman [59]),
• smooth surfaces over (pseudo-)finite fields (by Lieblich [47]).

We can now proceed to prove Theorem A.

Corollary 3.7. Let X be regular integral scheme with 2 invertible.

a) If X is a smooth curve over a finite field or surface over an algebraically closed field, 
then the classical Clifford invariant e2 : I2(X) → 2Br(X) is surjective.

b) If X is a smooth curve over a local field or a surface over a (pseudo-)finite field, 
then the total Clifford invariant e2 : I2

tot(X) → 2Br(X) is surjective.

Proof. This is a direct consequence of Corollaries 3.2 and 3.4, Theorem 3.5, Theorem 3.6, 
and the Brauer dimension results stated above. Note that a was already known for curves 
over finite fields by [55, Lemma 4.1] and for surfaces over algebraically closed fields by 
[23]. �

We remark that recent results of Lieblich–Parimala–Suresh [48] imply that, assum-
ing a conjecture of Colliot-Thélène on the Brauer–Manin obstruction to the existence 
of 0-cycles of degree 1 on smooth projective varieties over global fields, condition B
also holds for regular arithmetic surfaces, i.e., regular schemes proper and flat over the 
spectrum of the ring of integers of a number field whose generic fiber is a geometrically 
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connected curve. Thus Theorem A holds conditionally for regular arithmetic surfaces. 
Also, recent results of Harbater–Hartmann–Krashen [28] prove condition B for a wide 
class of local curves over complete discrete valuation rings with finite or algebraically 
closed residue fields.

3.3. A total unramified Milnor question

We are lead to the following natural question, inspired by our main result.

Question 3.8. Let X be a regular integral scheme with 2 invertible. Assume that the 
function field K of X satisfies cd2(K) ≤ 3. Is the homomorphism

e2 : I2
tot(X) → 2Br(X)

surjective?

A positive answer to Question 3.8 brings a scheme closer to having a positive answer to 
an analogue of the unramified Milnor question for the fundamental filtration I2

tot(X) ⊂
I1
tot(X) ⊂ Wtot(X) of the total Witt group; see [9, Question 3.1] for a survey of results on 

the unramified Milnor question. All schemes appearing in Corollary 3.7 have a positive 
answer to Question 3.8.

There are recent examples of Antieau–Williams [2, §7], [1, Example 3.13] of smooth 
affine schemes over C of dimension 5 with nonsurjective total Clifford invariant (these ex-
amples actually have nonsurjective classical Clifford invariant and trivial Picard group).

Acknowledgments

The author would like to thank the directors of the Max-Planck-Institut für Mathe-
matik in Bonn for providing excellent working conditions and a wonderfully stimulating 
environment where much of this work was accomplished. A visit at the Forschungsinsti-
tut für Mathematik at ETH Zürich also proved to be very fruitful. The author would also 
personally like to thank B. Calmès, T. Chinburg, M. Knus, R. Parimala, D. Saltman, 
and V. Suresh for many useful conversations and much encouragement. Author partially 
supported by National Science Foundation MSPRF grant DMS-0903039 and an NSA 
Young Investigator Grant.

References

[1] B. Antieau, B. Williams, Topology and purity for torsors, Doc. Math. 20 (2015) 333–355.
[2] B. Antieau, B. Williams, The topological period-index problem over 6-complexes, J. Topol. 7 (2014) 

617–640.
[3] B. Antieau, B. Williams, Unramified division algebras do not always contain Azumaya maximal 

orders, Invent. Math. 197 (2014) 47–56.
[4] J.K. Arason, A proof of Merkurjev’s theorem, in: Quadratic and Hermitian Forms, Hamilton, Ont., 

1983, in: CMS Conf. Proc., vol. 4, Amer. Math. Soc., Providence, RI, 1984, pp. 121–130.

http://refhub.elsevier.com/S0021-8693(15)00375-0/bib616E74696561755F77696C6C69616D733A746F706F6C6F67795F7075726974795F746F72736F7273s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib616E74696561755F77696C6C69616D733A746F706F6C6F676963616C5F706572696F642D696E6465785F362D636F6D706C65786573s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib616E74696561755F77696C6C69616D733A746F706F6C6F676963616C5F706572696F642D696E6465785F362D636F6D706C65786573s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib616E74696561755F77696C6C69616D733A756E72616D6966696564s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib616E74696561755F77696C6C69616D733A756E72616D6966696564s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib617261736F6E3A70726F6F665F4D65726B75726A65765F7468656F72656Ds1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib617261736F6E3A70726F6F665F4D65726B75726A65765F7468656F72656Ds1


420 A. Auel / Journal of Algebra 443 (2015) 395–421
[5] M. Artin, Brauer–Severi varieties, in: Brauer Groups in Ring Theory and Algebraic Geometry, 
Wilrijk, 1981, in: Lecture Notes in Math., vol. 917, Springer, Berlin, 1982, pp. 194–210.

[6] M. Auslander, O. Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 
(1960) 367–409.

[7] A. Auel, Clifford invariants of line bundle-valued quadratic forms, MPIM preprint series 2011-33, 
2011.

[8] A. Auel, Vector bundles of rank 4 and A3 = D3, Int. Math. Res. Not. 15 (2013) 3450–3476.
[9] A. Auel, Remarks on the Milnor conjecture over schemes, in: H. Nakamura, F. Pop, L. Schneps, 

A. Tamagawa (Eds.), Galois–Teichmüller Theory and Arithmetic Geometry, Kyoto, 2010, in: Adv. 
Stud. Pure Math., vol. 63, 2012, pp. 1–30.

[10] A. Auel, E. Brussel, S. Garibaldi, U. Vishne, Open problems in central simple algebras, Transform. 
Groups 16 (1) (2011) 219–264.

[11] A. Auel, R. Parimala, V. Suresh, Quadric surface bundles over surfaces, Doc. Math. (2015), in press.
[12] V. Balaji, Line-bundle valued ternary quadratic forms over schemes, J. Pure Appl. Algebra 208 

(2007) 237–259.
[13] P. Balmer, B. Calmès, Bases of total Witt groups and lax-similitude, preprint, arXiv:1104.5051v1, 

April 2011.
[14] W. Bichsel, Quadratische Räume mit Werten in invertierbaren Moduln, Ph.D. thesis, ETH Zürich, 

1985.
[15] W. Bichsel, M.-A. Knus, Quadratic forms with values in line bundles, Contemp. Math. 155 (1994) 

293–306.
[16] W. Bichsel, M.-A. Knus, Fibrés quadratiques et composantes connexes réelles, Math. Ann. 244 (2) 

(1979) 105–134.
[17] S. Caenepeel, F. van Oystaeyen, Quadratic forms with values in invertible modules, K-Theory 7 

(1993) 23–40.
[18] M. Demazure, P. Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes 

commutatifs. Avec un appendice, Corps de classes local, par Michiel Hazewinkel, Masson & Cie, 
Éditeur, Paris; North-Holland Publishing Company, Amsterdam, 1970.

[19] M. Demazure, A. Grothendieck, Schémas en groupes. III, in: Séminaire de Géométrie Algébrique 
du Bois Marie 1962/64 (SGA 3), vol. 153, Springer-Verlag, New York, 1970.

[20] A.J. de Jong, The period-index problem for the Brauer group of an algebraic surface, Duke Math. 
J. 123 (1) (2004) 71–94.

[21] R. Elman, N. Karpenko, A. Merkurjev, The Algebraic and Geometric Theory of Quadratic Forms, 
Amer. Math. Soc. Colloq. Publ., vol. 56, American Mathematical Society, Providence, RI, 2008.

[22] P. Elbaz-Vincent, S. Müller-Stach, Milnor K-theory of rings, higher Chow groups and applications, 
Invent. Math. 148 (1) (2002) 177–206.

[23] F. Fernández-Carmena, On the injectivity of the map of the Witt group of a scheme into the Witt 
group of its function field, Math. Ann. 277 (3) (1987) 453–468.

[24] W.-D. Geyer, G. Harder, M. Knebusch, W. Scharlau, Ein Residuensatz für symmetrische Bilinear-
formen, Invent. Math. 11 (1970) 319–328.

[25] S. Gille, A graded Gersten–Witt complex for schemes with a dualizing complex and the Chow group, 
J. Pure Appl. Algebra 208 (2) (2007) 391–419.

[26] A. Grothendieck, Le groupe de Brauer. II. Théorie cohomologique, in: Dix Exposés sur la Coho-
mologie des Schémas, North-Holland, Amsterdam, 1968, pp. 67–87.

[27] D. Guin, Homologie du groupe linéaire et K-théorie de Milnor des anneaux, J. Algebra 123 (1) 
(1989) 27–59.

[28] D. Harbater, J. Hartmann, D. Krashen, Refinements to patching and applications to field invariants, 
arXiv:1404.4349, 2014.

[29] R. Hoobler, The Merkuriev–Suslin theorem for any semi-local ring, J. Pure Appl. Algebra 207 (3) 
(2006) 537–552.

[30] T. Kanzaki, On bilinear module and Witt ring over a commutative ring, Osaka J. Math. 8 (1971) 
485–496.

[31] M. Kapranov, On the derived categories of coherent sheaves on some homogeneous spaces, Invent. 
Math. 92 (1988) 479–508.

[32] M. Kashiwara, P. Schapira, Categories and Sheaves, Grundlehren Math. Wiss. (Fundamental Prin-
ciples of Mathematical Sciences), vol. 332, Springer-Verlag, Berlin, 2006.

[33] M. Kerz, The Gersten conjecture for Milnor K-theory, Invent. Math. 175 (1) (2009) 1–33.
[34] M. Kerz, S. Müller-Stach, The Milnor–Chow homomorphism revisited, K-Theory 38 (1) (2007) 

49–58.

http://refhub.elsevier.com/S0021-8693(15)00375-0/bib617274696E3A4272617565722D536576657269s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib617274696E3A4272617565722D536576657269s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6175736C616E6465725F676F6C646D616E3A6272617565725F67726F75705F636F6D6D757461746976655F72696E67s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6175736C616E6465725F676F6C646D616E3A6272617565725F67726F75705F636F6D6D757461746976655F72696E67s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6175656C3A65756C65725F666F7572s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6175656C3A6B796F746Fs1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6175656C3A6B796F746Fs1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6175656C3A6B796F746Fs1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6B6574757261s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6B6574757261s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6175656C5F706172696D616C615F7375726573683A6465677175616473757266616365s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib62616C616A695F7465726E617279s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib62616C616A695F7465726E617279s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib62616C6D65725F63616C6D65733A6C6178s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib62616C6D65725F63616C6D65733A6C6178s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6269636873656C3A746865736973s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6269636873656C3A746865736973s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6269636873656C5F6B6E75733A76616C7565735F6C696E655F62756E646C6573s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6269636873656C5F6B6E75733A76616C7565735F6C696E655F62756E646C6573s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib636F6C6C696F742D7468656C656E655F73616E7375633A6669627265735F717561647261746971756573s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib636F6C6C696F742D7468656C656E655F73616E7375633A6669627265735F717561647261746971756573s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6361656E657065656C5F76616E5F6F797374616579656Es1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6361656E657065656C5F76616E5F6F797374616579656Es1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib64656D617A7572655F6761627269656Cs1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib64656D617A7572655F6761627269656Cs1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib64656D617A7572655F6761627269656Cs1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib53474133s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib53474133s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib64656A6F6E673A7375726661636573s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib64656A6F6E673A7375726661636573s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib656C6D616E5F6B617270656E6B6F5F6D65726B75726A6576s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib656C6D616E5F6B617270656E6B6F5F6D65726B75726A6576s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib656C62617A2D76696E63656E745F6D756C6C65722D7374616368s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib656C62617A2D76696E63656E745F6D756C6C65722D7374616368s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6665726E616E64657A2D6361726D656E613A576974745F67726F75705F7375726661636573s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6665726E616E64657A2D6361726D656E613A576974745F67726F75705F7375726661636573s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib67657965725F6861726465725F6B6E6562757363685F73636861726C6175s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib67657965725F6861726465725F6B6E6562757363685F73636861726C6175s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib67696C6C653A6772616465645F4765727374656E2D57697474s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib67696C6C653A6772616465645F4765727374656E2D57697474s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib67726F7468656E646965636B3A4272617565725F4949s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib67726F7468656E646965636B3A4272617565725F4949s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6775696E3A686F6D6F6C6F6769655F474C5F4D696C6E6F725F4B2D7468656F7279s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6775696E3A686F6D6F6C6F6769655F474C5F4D696C6E6F725F4B2D7468656F7279s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib48484B3A726566696E656D656E7473s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib48484B3A726566696E656D656E7473s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib686F6F626C65723A4D65726B75726A65762D5375736C696E5F73656D696C6F63616C5F72696E67s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib686F6F626C65723A4D65726B75726A65762D5375736C696E5F73656D696C6F63616C5F72696E67s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6B616E7A616B693A62696C696E6561725F6D6F64756C65s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6B616E7A616B693A62696C696E6561725F6D6F64756C65s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6B617072616E6F763A64657269766564s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6B617072616E6F763A64657269766564s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6B61736869776172615F73636861706972613A63617465676F726965735F73686561766573s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6B61736869776172615F73636861706972613A63617465676F726965735F73686561766573s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6B65727A3A4765727374656E5F636F6E6A6563747572655F4D696C6E6F725F4B2D7468656F7279s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6B65727A3A4D696C6E6F722D43686F775F686F6D6F6D6F72706869736Ds1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6B65727A3A4D696C6E6F722D43686F775F686F6D6F6D6F72706869736Ds1


A. Auel / Journal of Algebra 443 (2015) 395–421 421
[35] M. Kerz, S. Müller-Stach, Symmetric bilinear forms over algebraic varieties, in: G. Orzech (Ed.), 
Conference on Quadratic Forms–1976, Kingston, Ont., in: Queen’s Papers in Pure and Appl. Math., 
vol. 46, Queen’s Univ., 1977, pp. 103–283.

[36] M. Kneser, Composition of binary quadratic forms, J. Number Theory 15 (3) (1982) 406–413.
[37] M.-A. Knus, Pfaffians and quadratic forms, Adv. Math. 71 (1988) 1–20.
[38] M.-A. Knus, Quadratic and Hermitian Forms over Rings, Springer-Verlag, Berlin, 1991.
[39] M.-A. Knus, A. Merkurjev, M. Rost, J.-P. Tignol, The Book of Involutions, Amer. Math. Soc. 

Colloq. Publ., vol. 44, AMS, 1998.
[40] M.-A. Knus, M. Ojanguren, The Clifford algebra of a metabolic space, Arch. Math. (Basel) 56 (5) 

(1991) 440–445.
[41] M.-A. Knus, M. Ojanguren, R. Sridharan, Quadratic forms and Azumaya algebras, J. Reine Angew. 

Math. 303/304 (1978) 231–248.
[42] M.-A. Knus, A. Paques, Quadratic spaces with trivial Arf invariant, J. Algebra 93 (2) (1985) 

267–291.
[43] M.-A. Knus, R. Parimala, R. Sridharan, On rank 4 quadratic spaces with given Arf and Witt 

invariants, Math. Ann. 274 (2) (1986) 181–198.
[44] M.-A. Knus, R. Parimala, R. Sridharan, A classification of rank 6 quadratic spaces via pfaffians, 

J. Reine Angew. Math. 398 (1989) 187–218.
[45] A. Kuznetsov, Derived categories of quadric fibrations and intersections of quadrics, Adv. Math. 

218 (5) (2008) 1340–1369.
[46] M. Lieblich, Moduli of twisted sheaves and generalized Azumaya algebras, Ph.D. thesis, Mas-

sachusetts Institute of Technology, Cambridge, MA, June 2004.
[47] M. Lieblich, The period-index problem for fields of transcendence degree 2, Ann. of Math. 182 (2) 

(2015) 391–427, in press.
[48] M. Lieblich, R. Parimala, V. Suresh, Colliot-Thélène’s conjecture and finiteness of u-invariants, 

Math. Ann. 360 (1–2) (2014) 1–22.
[49] M. Mahmoudi, Orthogonal symmetries and Clifford algebras, Proc. Indian Acad. Sci. Math. Sci. 

120 (5) (2010) 535–561.
[50] A. Merkurjev, On the norm residue symbol of degree 2, Dokl. Akad. Nauk SSSR 261 (3) (1981) 

542–547.
[51] A. Merkurjev, On the norm residue homomorphism of degree two, in: Proceedings of the St. Peters-

burg Mathematical Society, vol. XII, Providence, RI, in: Amer. Math. Soc. Transl. Ser. 2, vol. 219, 
Amer. Math. Soc., 2006, pp. 103–124.

[52] F. Morel, Milnor’s conjecture on quadratic forms and mod 2 motivic complexes, Rend. Semin. Mat. 
Univ. Padova 114 (2005) 63–101.

[53] D. Mumford, Theta characteristics of an algebraic curve, Ann. Sci. Éc. Norm. Supér. 4 (4) (1971) 
181–192.

[54] R. Parimala, W. Scharlau, On the canonical class of a curve and the extension property for quadratic 
forms, in: Recent Advances in Real Algebraic Geometry and Quadratic Forms, Berkeley, CA, 
1990/1991, San Francisco, CA, 1991, in: Contemp. Math., vol. 155, Amer. Math. Soc., Providence, 
RI, 1994, pp. 339–350.

[55] R. Parimala, R. Sridharan, Graded Witt ring and unramified cohomology, K-Theory 6 (1) (1992) 
29–44.

[56] R. Parimala, R. Sridharan, Nonsurjectivity of the Clifford invariant map, Proc. Indian Acad. Sci. 
Math. Sci. 104 (1) (1994) 49–56, K.G. Ramanathan memorial issue.

[57] R. Parimala, R. Sridharan, Reduced norms and pfaffians via Brauer-Severi schemes, Contemp. Math. 
155 (1994) 351–363.

[58] D. Saltman, Azumaya algebras with involution, J. Algebra 52 (2) (1978) 526–539.
[59] D. Saltman, Division algebras over p-adic curves, J. Ramanujan Math. Soc. 12 (1997) 25–47;

D. Saltman, J. Ramanujan Math. Soc. 12 (1) (1997) 25–47 (Erratum).
[60] J. Voight, Characterizing quaternion rings over an arbitrary base, J. Reine Angew. Math. 657 (2011) 

113–134.
[61] A. Wadsworth, Merkurjev’s elementary proof of Merkurjev’s theorem, in: Applications of Algebraic 

K-Theory to Algebraic Geometry and Number Theory, part I, II, Boulder, Colo., 1983, in: Contemp. 
Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 741–776.

http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6B6E656275736368s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6B6E656275736368s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6B6E656275736368s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6B6E657365723A636F6D706F736974696F6E5F62696E617279s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6B6E75733A706661666669616E735F616E645F7175616472617469635F666F726D73s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6B6E75733A7175616472617469635F6865726D697469616E5F666F726D73s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib626F6F6B5F6F665F696E766F6C7574696F6E73s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib626F6F6B5F6F665F696E766F6C7574696F6E73s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6B6E75735F6F6A616E677572656E3A6D657461626F6C6963s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6B6E75735F6F6A616E677572656E3A6D657461626F6C6963s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6B6E75735F6F6A616E677572656E5F73726964686172616E3A7175616472617469635F617A756D617961s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6B6E75735F6F6A616E677572656E5F73726964686172616E3A7175616472617469635F617A756D617961s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6B6E75735F7061717565733A72616E6B5F34s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6B6E75735F7061717565733A72616E6B5F34s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6B6E75735F706172696D616C615F73726964686172616E3A72616E6B5F34s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6B6E75735F706172696D616C615F73726964686172616E3A72616E6B5F34s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6B6E75735F706172696D616C615F73726964686172616E3A72616E6B5F365F7669615F706661666669616E73s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6B6E75735F706172696D616C615F73726964686172616E3A72616E6B5F365F7669615F706661666669616E73s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6B757A6E6574736F763A7175616472696373s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6B757A6E6574736F763A7175616472696373s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6C6965626C6963683A746865736973s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6C6965626C6963683A746865736973s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6C6965626C6963683A7472616E7363656E64656E63655F32s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6C6965626C6963683A7472616E7363656E64656E63655F32s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6C6965626C6963685F706172696D616C615F7375726573683A752D696E76617269616E74s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6C6965626C6963685F706172696D616C615F7375726573683A752D696E76617269616E74s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6D61686D6F7564693A436C6966666F72645F616C676562726173s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6D61686D6F7564693A436C6966666F72645F616C676562726173s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6D65726B75726A65763A6465677265655F32s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6D65726B75726A65763A6465677265655F32s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6D65726B75726A65763A616E6F746865725F70726F6F665F6E6F726D5F32s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6D65726B75726A65763A616E6F746865725F70726F6F665F6E6F726D5F32s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6D65726B75726A65763A616E6F746865725F70726F6F665F6E6F726D5F32s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6D6F72656C3A70726F6F665F6D696C6E6F72s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6D6F72656C3A70726F6F665F6D696C6E6F72s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6D756D666F72643A74686574615F636861726163746572697374696373s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib6D756D666F72643A74686574615F636861726163746572697374696373s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib706172696D616C615F73636861726C61753A657874656E73696F6Es1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib706172696D616C615F73636861726C61753A657874656E73696F6Es1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib706172696D616C615F73636861726C61753A657874656E73696F6Es1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib706172696D616C615F73636861726C61753A657874656E73696F6Es1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib706172696D616C615F73726964686172616E3A6772616465645F57697474s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib706172696D616C615F73726964686172616E3A6772616465645F57697474s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib706172696D616C615F73726964686172616E3A6E6F6E7375726A6563746976697479s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib706172696D616C615F73726964686172616E3A6E6F6E7375726A6563746976697479s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib706172696D616C615F73726964686172616E3A6E6F726D735F616E645F706661666669616E73s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib706172696D616C615F73726964686172616E3A6E6F726D735F616E645F706661666669616E73s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib73616C746D616E3A617A756D6179615F616C6765627261735F776974685F696E766F6C7574696F6Es1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib73616C746D616E3A6469766973696F6E5F616C67656272615F702D616469635F637572766573s1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib73616C746D616E3A6469766973696F6E5F616C67656272615F702D616469635F637572766573s2
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib766F696768743A636861726163746572697A696E675F7175617465726E696F6Es1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib766F696768743A636861726163746572697A696E675F7175617465726E696F6Es1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib77616473776F7274683A70726F6F665F4D65726B75726A65765F7468656F72656Ds1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib77616473776F7274683A70726F6F665F4D65726B75726A65765F7468656F72656Ds1
http://refhub.elsevier.com/S0021-8693(15)00375-0/bib77616473776F7274683A70726F6F665F4D65726B75726A65765F7468656F72656Ds1

	Surjectivity of the total Clifford invariant and Brauer dimension
	Introduction
	1 Line bundle-valued quadratic forms and even Clifford algebras
	1.1 Line bundle-valued quadratic forms
	1.2 Even Clifford algebra
	1.3 Clifford bimodule
	1.4 Metabolic forms
	1.5 Orthogonal sums

	2 Total Witt groups and total classical invariants
	2.1 Total Witt groups
	2.2 Rank modulo 2
	2.3 Total discriminant
	2.4 Total Clifford invariant

	3 Surjectivity of the total Clifford invariant
	3.1 Exceptional isomorphisms
	Reduced norm form
	Reduced pfafﬁan form

	3.2 Brauer dimension results
	3.3 A total unramiﬁed Milnor question

	Acknowledgments
	References


