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We call a restriction semigroup almost perfect if it is proper 
and the least congruence that identifies all its projections 
is perfect. We show that any such semigroup is isomorphic 
to a ‘W -product’ W (T, Y ), where T is a monoid, Y is 
a semilattice and there is a homomorphism from T into 
the inverse semigroup TIY of isomorphisms between ideals 
of Y . Conversely, all such W -products are almost perfect. 
Since we also show that every restriction semigroup has an 
easily computed cover of this type, the combination yields 
a ‘McAlister-type’ theorem for all restriction semigroups. It 
is one of the theses of this work that almost perfection 
and perfection, the analogue of this definition for restriction 
monoids, are the appropriate settings for such a theorem. 
That these theorems do not reduce to a general theorem for 
inverse semigroups illustrates a second thesis of this work: that 
restriction (and, by extension, Ehresmann) semigroups have 
a rich theory that does not consist merely of generalizations 
of inverse semigroup theory. It is then with some ambivalence 
that we show that all the main results of this work easily 
generalize to encompass all proper restriction semigroups.
The notation W (T, Y ) recognizes that it is a far-reaching 
generalization of a long-known similarly titled construction. 
As a result, our work generalizes Szendrei’s description 
of almost factorizable semigroups while at the same time 
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including certain classes of free restriction semigroups in its 
realm.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The study of the structure of restriction semigroups has in large part been motivated 
by consideration of structure theorems for inverse semigroups. For instance, the Munn 
representation of inverse semigroups by isomorphisms between the principal ideals of 
its semilattice of idempotents generalizes naturally [6] to representations of restriction 
semigroups by similar mappings of its semilattice of projections, and these generalized 
representations are at the very heart of our work. The ‘inductive groupoid’ approach 
to inverse semigroups has been extended successfully to restriction semigroups by Law-
son [16].

Somewhat complementary to the Munn representation is the McAlister theory, 
whereby every inverse semigroup is an idempotent-separating image of an E-unitary 
inverse semigroup, and the latter semigroups are described as ‘P -semigroups’, relative 
to their semilattices, greatest group images and one further structural parameter. This 
theory has been extended with success to restriction semigroups, with E-unitariness 
replaced by ‘properness’ and pairs of actions replacing a single one.

When moving yet further from inverse semigroups, Branco, Gomes and Gould [1,7]
introduced the notion of T -properness of (one-sided) Ehresmann semigroups, with re-
spect to a submonoid T . The main thesis of our work is that (returning to the realm of 
restriction semigroups) a modification of this idea yields narrower notions of properness 
that are the appropriate ones in which to prove a ‘McAlister-type’ theory. That this 
theory specializes in the case of proper inverse semigroups to a very narrow subclass we 
take to be a witness to our thesis, rather than the contrary. Our results suggest that the 
road taken for Ehresmann semigroups in the cited papers is indeed a natural one.

To illustrate that this is not merely a conceit, we state the main result of this pa-
per, to illustrate its simplicity. In fact, we prove a more general theorem, applying to 
all proper restriction semigroups, about which more will be said below. Recall first that 
for restriction semigroups, monoids, considered as restriction semigroups with a single 
projection, play the role that groups play for inverse semigroups and that such a semi-
group is proper if the least congruence σ that identifies all the projections (loosely, the 
least monoid congruence) meets each class of the generalized Green relations L̃ and R̃
trivially.

We call a restriction semigroup S almost perfect if it is proper and σ is perfect (meaning 
that the product of classes is again a class). The reason for the qualifier ‘almost’ is that 
we term a restriction monoid M perfect if, further, each σ-class has a greatest element, 
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that is, M is also an F -restriction monoid. The connections with T -properness will be 
made below.

Now suppose T is a monoid, Y is a semilattice and there is a representation of T in 
the inverse semigroup TIY of isomorphisms between ideals of Y . For t ∈ T , denote by 
Δt and ∇t the domain and range, respectively of its image in TIY . The representation 
may be expressed, in the language of actions, as (e, t) �→ et, for t ∈ T and e ∈ Δt. Let

W (T, Y ) = {(t, et) ∈ T × Y : e ∈ Δt} (= {(t, f) ∈ T × Y : f ∈ ∇t}).

The multiplication in this ‘W -product’ is defined by (t, et)(u, fu) = (tu, (etf)u); unary 
operations are defined by (t, et)+ = (1, e) and (t, f)∗ = (1, f).

Theorem 1.1. (See Theorems 5.1 and 6.1, Corollary 4.2.) Every restriction semigroup 
has an almost perfect (projection-separating) cover. Every semigroup W (T, Y ) is almost 
perfect and, conversely, every almost perfect restriction semigroup S is isomorphic to a 
semigroup of that form.

Every restriction monoid has a perfect monoidal cover. If the monoid T acts by iso-
morphisms between principal ideals of a semilattice Y = Y 1, then W (T, Y ) is a perfect 
monoid and, conversely, every perfect restriction monoid M is isomorphic to such a 
monoid, where Y is the semilattice PM of projections of M , T = M/σ, and the action 
is induced by the (generalized) Munn representation of M .

We must emphasize that our construction, although using the same notation, is more 
general than the original construction [5,8,20], which corresponds precisely to the case 
that the representation is by fully defined isomorphisms between ideals of Y , that is, 
by injective endomorphisms whose ranges are ideals of Y . See the discussion following 
Theorem 5.1, and its application in Proposition 7.4.

The connection with the term ‘T -proper’ mentioned earlier is a central part of this 
work. We call a proper monoid M strongly T -proper if it contains a plain submonoid 
T such that M = PMT and T is separated by σ; equivalently, each element of M can 
be uniquely expressed in the form et, where e ∈ PM , t ∈ T, e ≤ t+. In fact, strong 
T -properness is equivalent to perfection (Proposition 3.2). For a restriction semigroup, 
almost perfection is equivalent to almost T -properness (Proposition 3.3), which is the 
property that the monoid C(S) of permissible sets, in which S embeds, is strongly 
T -proper (that is, perfect).

In the semigroup case of the theorem above, the representation is obtained as follows: 
Y is again the semilattice of projections, T is a monoid such that S1 = PS1T , and the 
action is induced by the extension of the (generalized) Munn representation of S to the 
monoid C(S). The key role played by C(S) was suggested by its role in the determination 
of proper left factorizable and almost factorizable semigroups by Gomes and Szendrei 
[8,20], which together with their use of the original construction W (T, Y ) provided some 
of the motivation for our techniques.
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In Section 7, our construction is applied to both the one- and two-sided versions of fac-
torizable and almost factorizable semigroups, to free restriction semigroups and monoids 
and to relatively free semigroups in certain varieties of restriction semigroups. The ap-
plication to freedom provided the second main impetus for the ‘T -proper’ approach to 
our work.

In fact, the construction of the semigroups W (T, Y ) and the constructions used in the 
covering theorems – and moreover a description of all such covers (Corollary 4.5) – are all 
instances of a very general construction ST,R (Theorem 4.1) which, despite its somewhat 
technical hypotheses, has a simple verification since the calculations are performed within 
a direct product S×T . The virtue of this approach is witnessed in the following section, 
when all the properties (associativity included) of the W -product follow. Further, the 
representation theorem by the W -product also then follows from the description of covers 
mentioned above.

In the penultimate section of the paper, a further level of generality, about which we 
have a certain ambivalence, is achieved by weakening the requirement that the repre-
sentation of T in TIY , introduced prior to Theorem 1.1, be a homomorphism: we now 
must allow subhomomorphisms. These are mappings α such that only (aα)(bα) ≤ (ab)α, 
referring to the natural partial order, is required. By means of this generalization, all
proper restriction semigroups are described via the W -product construction. In fact, all 
the general theorems of the paper have straightforward extensions to the proper case 
by this means. Expressed in rather different language, our construction is an alterna-
tive formulation to the semigroups M(T, Y ) used in [2,3] to describe proper restriction 
semigroups.

Our ambivalence stems from the main thesis of this paper: that the concept of per-
fection (for monoids) and almost perfection (for semigroups) is in reality the ‘optimum’ 
one, rather than properness per se, with Theorem 1.1 and the examples in Section 7
our support for this thesis, in practical terms, along with the elegance of homomorphic 
actions by monoids, rather than subhomomorphic ones.

The final section specializes the general results of the previous section to inverse 
semigroups: the representation turns out to be essentially that of Petrich and Reilly [19], 
though this played no role in the development of our work. More importantly, we demon-
strate that the covering theorems, in particular, do not extend in a meaningful way to 
inverse semigroups, producing a restriction semigroup even when starting from an inverse 
semigroup, in general.

Although we believe that this paper incorporates a new approach, there is a already 
a body of work on the structure of proper restriction semigroups. Lawson [15] obtained 
a structure theorem for proper ‘type A’ semigroups, based more on the work of Petrich 
and Reilly [19], cited above, than on McAlister’s theorem per se. As mentioned above, 
Cornock and Gould [3] obtained one for proper restriction semigroups in general, again 
using as parameters a monoid that acts partially on both sides of a semilattice.

As this paper was nearing submission, the author received a copy of a preprint of 
the article [14] by G. Kudryavtseva. Although, by and large, her paper is complemen-
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tary to this one, in goals and approach, being primarily expressed in terms of actions, 
there is significant overlap. For instance, F -restriction monoids appear under the same 
name (unsurprisingly, given their genesis in F -inverse monoids). Her ‘ultra-F restric-
tion’ monoids coincide with our perfect restriction monoids. Similarly her ‘ultra proper 
restriction semigroups’ coincide with our almost perfect restriction semigroups. Thus her 
structural results on these classes of necessity offer alternative viewpoints on ours. At the 
end of Section 2.2 we outline the connection, basing the connection on our fundamental 
Corollary 2.8, as suggested by Kudryavtseva in a private communication.

The author thanks Victoria Gould for her input at various times during the prepara-
tion of this work and thanks the referee for a careful reading that has greatly improved 
its exposition and accuracy.

2. Preliminaries

We first introduce restriction semigroups more formally, along with their basic prop-
erties and related definitions. A left restriction semigroup is a unary semigroup (S, · , +)
that satisfies the ‘left restriction’ identities

x+x = x; (x+y)+ = x+y+; x+y+ = y+x+; xy+ = (xy)+x.

A right restriction semigroup is a unary semigroup (S, · , ∗) that satisfies the ‘dual’ identi-
ties, obtained by replacing + by ∗ and reversing the order of each expression. A restriction
semigroup is then a biunary semigroup (S, · , +, ∗) that satisfies both sets of identities, 
along with (x+)∗ = x+ and (x∗)+ = x∗.

From these identities it follows that for all x ∈ S, x+ is idempotent and (x+)+ = x+. 
These idempotents are the projections of S; by duality these are also the idempotents x∗, 
x ∈ S. Denote the set of projections by PS and the set of idempotents by ES. Although, 
by the third identity, PS is a semilattice, this need by no means be true of ES. The 
following consequence of the identities is well known.

Lemma 2.1. Let S be a restriction semigroup. Then S satisfies x+ ≥ (xy)+ and (xy)+ =
(xy+)+ and their duals, namely y∗ ≥ (xy)∗ and (xy)∗ = (x∗y)∗.

Until quite recently, the term ‘weakly E-ample’ was used for restriction semigroups, 
providing evidence of a succession of generalizations – by the so-called York school – of 
Fountain’s ‘ample semigroups’, which we will define below.

A restriction monoid is a restriction semigroup with identity 1. When adjoining an 
identity element to a restriction semigroup, setting 1+ = 1∗ = 1 ensures that a restriction 
monoid is obtained. In the standard terminology, restriction semigroups S with |PS | = 1, 
necessarily monoids, are termed reduced. On the other hand, ‘plain’ monoids may be 
regarded as reduced restriction semigroups, setting a+ = a∗ = 1 for all a. Since there is 
considerable room for ambiguity in this article, we shall use either ‘plain’ or ‘reduced’ to 
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distinguish such monoids from restriction semigroups that also happen to be restriction 
monoids.

The relevant generalized Green relations may be defined as follows. In any restriction 
semigroup we put R̃ = {(a, b) : a+ = b+}, L̃ = {(a, b) : a∗ = b∗} and H̃ = L̃ ∩ R̃. 
It follows easily from Lemma 2.1 that each contains the corresponding usual Green re-
lations, that R̃ is a left congruence and that L̃ is a right congruence. In the standard 
literature, these relations would have been denoted R̃E, L̃E and H̃E , respectively, re-
ferring to a ‘distinguished semilattice of idempotents’ E. When restriction semigroups 
are defined as we have done, E is necessarily PS and so there is no ambiguity. Due 
to the potential for conflict, the author has nevertheless used R, L and H instead 
in recent work such as [12], but hopes the notation used here will prove standard 
in future. A left restriction semigroup is left ample if R̃ coincides with the relation 
R∗= {(a, b) : xa = xb if and only if xb = yb, for all x, y ∈ S1}; right ampleness is de-
fined dually; a restriction semigroup is ample if both left and right ample.

The natural partial order on a restriction semigroup S is defined by a ≤ b if a = eb for 
some e ∈ PS ; equivalently if a = a+b. It is self-dual, compatible with the operations on 
S and extends the usual order on PS. Put a ↓= {b ∈ S : b ≤ a}, the principal order ideal 
generated by a. An order ideal of S is then a nonempty subset that is closed under ↓. 
The order ideals of a semilattice are just its ideals.

In general, the term ‘homomorphism’ will be used appropriate to context: that is, 
it should respect the binary operation for plain semigroups, and either or both unary 
operations for one-sided or two-sided restriction semigroups. In the case of monoids, 
we shall use the qualifier ‘monoidal’ to indicate that it should respect the identity el-
ements. When considering subsemigroups (or submonoids), we shall use qualifiers such 
as ‘biunary’ or ‘plain’ when the situation might not be clear. A plain submonoid of a 
restriction monoid, for instance, is any subsemigroup having as its identity that of the 
larger monoid. A biunary subsemigroup of a restriction semigroup S is full if it con-
tains all of the projections of S. A homomorphism S −→ T of restriction semigroups is 
P -separating (or projection-separating) if it is injective on PS .

Likewise, the term ‘congruence’ is used appropriate to context. We denote the greatest 
P -separating congruence by μ and observe that μ ⊆ H̃. In the standard terminology, a 
congruence ρ on a semigroup is perfect if (aρ)(bρ) = (ab)ρ.

Denote by σ the least congruence on a restriction semigroup S that identifies all 
projections (easily seen also to be the least ‘plain’ congruence with this property). Clearly 
σ is the least congruence on S whose quotient is reduced, as defined above. Thus, σ might 
loosely be called the ‘least monoid congruence’ by analogy with the term ‘least group 
congruence’, to which σ specializes on inverse semigroups. It is well known that

σ = {(a, b) ∈ S : ea = eb for some e ∈ PS} = {(a, b) ∈ S : af = bf for some f ∈ PS}.

It is clear that any principal order ideal of S is contained in a σ-class and that any 
σ-class is an order ideal of S.
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A restriction semigroup S is proper if R̃ ∩ σ= L̃ ∩ σ= ι (where ι is the identical 
relation). From this definition it is immediate that σ ∩ μ = ι, that is, S is a subdirect 
product of S/σ and S/μ.

Given a restriction semigroup U , a cover for U [over a monoid T ] is a proper re-
striction semigroup S [such that S/σ ∼= T ] having U as a P -separating homomorphic 
image.

We recall the primary definitions of this paper. A restriction semigroup S is almost 
perfect if it is proper and σ is perfect. A restriction monoid is perfect if it is proper, 
σ is perfect and each σ-class has a greatest element. By extension of the usual term 
for inverse semigroups, a restriction semigroup is F -restriction if it is proper and each 
σ-class has a greatest element. Since in that case the projections form a σ-class, such 
a semigroup is of necessity a monoid. In any such monoid, let ma denote the greatest 
element of aσ, so that aσ = ma ↓.

The following elementary lemma plays a key role in this paper (and motivates con-
sideration of subhomomorphisms although, in the body of the paper, full consideration 
to the latter will only be given in Section 8). A mapping α : S −→ T of restriction 
semigroups is a subhomomorphism if (aα)(bα) ≤ (ab)α for all a, b ∈ S (and the unary 
operations are respected, which occurs automatically if S is a monoid, interpreted as 
either a plain monoid or a restriction monoid, and α is monoidal). The reader should be-
ware that, for inverse semigroups, Lawson [17] calls such maps dual prehomomorphisms, 
while for Petrich [18] a prehomomorphism is a subhomomorphism that, in addition, 
respects inversion (also see Section 9).

Lemma 2.2. Let M be an F -restriction monoid and put T = M/σ. The relation 
mamb ≤ mab always holds. Thus the map κM : T −→ M , (aσ)κM = ma, is a monoidal 
subhomomorphism.

Further, M is perfect if and only if mamb = mab for all a, b ∈ M and, therefore, if 
and only if κM is a homomorphism.

Proof. Since (aσ)(bσ) ⊆ (ab)σ always holds, the same is true for mamb ≤ mab. Thus 
κM is a subhomomorphism, and (aσ)κM = m1 = 1.

Now suppose M is perfect, so that (aσ)(bσ) = (ab)σ. Then mab = a1b1 for some 
a1 ∈ aσ and b1 ∈ bσ. Since a1 ≤ ma and b1 ≤ mb, mab ≤ mamb, so that equality 
holds. Conversely, suppose mamb = mab and let x ∈ (ab)σ. Then x ≤ mamb, so x =
(x+ma)(mb) ∈ (aσ)(bσ). �

The motivation for the term ‘T -proper’ comes from consideration of generators. Sup-
pose a restriction semigroup S is generated, as such, by a subset X. It is well known 
that every non-projection of S is expressible as the product of a projection and an el-
ement of the subsemigroup 〈X〉 generated by X. Thus for every s ∈ S, either s ∈ PS

or s ≤ t for some t ∈ 〈X〉, in which case, s = s+t = ts∗. Let T denote the plain sub-
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monoid of S1 generated by X. Then S = PST . In this case we say that S1 is P -generated
by T .

Finally, recall that any inverse semigroup (S, · , −1) may be regarded as a restriction 
semigroup by setting x+ = xx−1 and x∗ = x−1x and ‘forgetting’ the inverse opera-
tion. In that case, PS = ES . As noted above, σ is now the least group congruence 
and the term ‘E-unitary’ is more commonly used, rather than ‘proper’. Although, in a 
proper restriction semigroup, PS is indeed a unitary subset, the converse need not be 
true.

The inverse semigroups of most significance in this paper are the topic of the next 
subsection.

2.1. Munn semigroups and the (generalized) Munn representations

If Y is a semilattice, TY denotes the Munn semigroup on Y : the inverse subsemi-
group of the symmetric inverse semigroup IY consisting of the isomorphisms between 
principal ideals of Y . For an exposition of this semigroup, its basic properties, and ap-
plication to inverse semigroup theory, see [10]. The dual semigroup T r

Y again consists 
of the isomorphisms between principal ideals, but with functions instead written on the 
left and composition reversed. Denote by γ the isomorphism TY −→ T r

Y that is induced 
by inversion.

Less familiar is the inverse subsemigroup of IY , which we denote TIY , consisting of 
the isomorphisms between arbitrary ideals of Y , which plays a central role in this paper. 
In [18], this semigroup is denoted Σ(Y ). In Proposition 2.6 we shall provide an alternative 
representation of TIY (and cite another one at the end of the following subsection).

Throughout this paper, the domain and range of a mapping α are denoted Δα

and ∇α.
Let S be a restriction semigroup and put Y = PS . The generalized (right) Munn 

representation θ : S −→ TY is defined by a �→ θa, where Δθa = a+↓ and, for e ≤ a+, 
eθa = (ea)∗. In the case of an inverse semigroup, this reduces to the usual Munn rep-
resentation. The generalized left Munn representation is the dual map ψ : S −→ T r

Y , 
defined by a �→ ψa, where Δψa = a∗↓ and, for f ≤ a∗, fψa = (af)+. For each a, θa and 
ψa are mutually inverse isomorphisms between their respective domains. In the sequel, 
we shall omit the qualifier ‘generalized’.

The bulk of the following result is in [6, Proposition 5.2]. A broad generalization, 
framed in the language used herein, was found by the author [11].

Result 2.3. Let S be a restriction semigroup and put Y = PS. The maps θ and ψ are 
biunary, projection-separating homomorphisms from S onto full subsemigroups of TY

and T r
Y , respectively, related by ψ = θγ. Each induces the greatest P -separating congru-

ence μ on S.
If S is a monoid, then θ and ψ are monoidal.
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2.2. The monoids C(S) and their representations

We refer the reader to [20] for more details of the basic results cited here. In that work 
Szendrei defined C(S) for the case of restriction semigroups in general, closely following 
[8] (itself based on the one-sided notion of El Qallali [4] and extending the definition in 
the case of inverse semigroups [18, V.2.2]).

A permissible subset A of a restriction semigroup S is a nonempty order ideal such that 
a+b = b+a and ab∗ = ba∗ for all a, b ∈ A. (Thus for a semilattice the permissible subsets 
are simply the nonempty order ideals themselves.) Note that whenever the relation a+b =
b+a holds in S, it follows that a σ b, since eb = ea, where e = a+b+ ∈ PS . If S is proper, 
then the converse also holds: for if a, b ∈ S, the equations (a+b)+ = a+b+ = b+a+ =
(b+a)+ always hold, while if a σ b, then also a+b σ b+a and equality follows from 
properness. The dual is true, similarly. We summarize the properties that will be used 
in the sequel. Originally proved in [8] for the subclass of ‘weakly ample’ semigroups, the 
proofs carry over immediately to all restriction semigroups.

Result 2.4. (See [20, Theorems 3.1, 3.2], [8, Proposition 3.8].) Let S be a restriction 
semigroup. The set C(S) of all permissible subsets of S is a restriction monoid, under 
multiplication of subsets, with identity PS, where if A ∈ C(S), then A+ = {a+ : a ∈ A}
and A∗ = {a∗ : a ∈ A}; its natural partial order is inclusion; its semilattice of projections 
consists of the ideals of PS, under inclusion (and is thus C(PS)). The map τS : a �→ a ↓
embeds S in C(S). Extending τS to S1, if necessary, by setting 1τS = PS, embeds S1 in 
C(S) monoidally.

The monoid C(S) is proper if and only if S is proper. In that event, if A ∈ C(S) then 
A ⊆ aσS for any a ∈ A and aσS is the greatest element mA of AσC(S), so that C(S) is 
an F -restriction monoid. The monoids S/σ and C(S)/σ are therefore isomorphic, under 
the mapping aσS �→ (aσS)σC(S).

Let θ : S −→ T be a homomorphism of restriction semigroups whose image is an 
order ideal. Then the mapping θ̂ : C(S) −→ C(T ), defined by A �→ Aθ, is a monoidal 
homomorphism such that τS θ̂ = θ τT .

Proposition 2.5. Let S be a proper restriction semigroup. Then C(S) is perfect if and 
only S is almost perfect.

Proof. Since C(S) is an F -restriction monoid, by Lemma 2.2 it is perfect if and only 
if mAmB = mAB for all A, B ∈ C(S). By the second paragraph of Result 2.4, this is 
equivalent to (aσ)(bσ) = (ab)σ for all a, b ∈ S, that is, to perfection of σS . �
Proposition 2.6. Let Y be a semilattice. The map Σ : C(TY ) −→ TIY , where AΣ is the 
union of the members of A, regarded as relations on Y , is an isomorphism such that 
τTY

Σ is the inclusion map TY −→ TIY .
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Proof. If A ∈ C(TY ), then A is an order ideal that further satisfies α+β = β+α for all 
α, β ∈ A. The latter property says that any two members of A agree on the intersection 
of their domains, and so AΣ is a well-defined order isomorphism between the ideals 
consisting of the unions of the domains and ranges, respectively, of the members of A.

Conversely, if γ ∈ TI Y , let γΨ = {γ| e↓ : e ∈ Δγ}. For each e ∈ Δγ, γ| e↓ : e ↓−→ (eγ) ↓
and so γ| e↓ ∈ TY . If α ∈ TY , with Δα = f↓, say, and α ⊆ γ| e↓, then since f ≤ e, f ∈ Δγ

and so α = γ| f↓. Since the members of γΨ also obviously agree on their intersections, 
γΨ ∈ C(TY ).

To show that Σ and Ψ are mutually inverse bijections, first let γ ∈ TIY . Then γΨΣ =⋃
{γ| e↓ : e ∈ Δγ} ⊆ γ. But if (f, g) ∈ γ, then f ∈ Δγ and (f, g) ∈ γ| f↓. Thus the 

reverse inclusion also holds. Next let A ∈ C(TY ) and put δ = AΣ =
⋃

α∈A α. For each 
e ∈ Δδ, e ∈ Δα for some α ∈ A, so that δ| e↓ = α| e↓ ∈ A (since A is an order ideal). 
But if α ∈ A, with Δα = f↓, say, then f ∈ Δδ and, since δ extends α, α = δ| f↓ ∈ δΨ. 
Therefore A = AΣΨ.

To show Σ is a homomorphism, let A, B ∈ C(TY ). By the nature of the definitions, 
it suffices to show that the domains of (AB)Σ and (AΣ)(BΣ) agree. Put γ = AΣ and 
δ = BΣ. Then

Δ(γδ) = (∇γ ∩ Δδ)γ−1 = ((
⋃
α∈A

∇α) ∩ (
⋃
β∈B

Δβ))γ−1 = (
⋃
α∈A

⋃
β∈B

(∇α ∩ Δβ))γ−1.

Now for each α ∈ A and β ∈ B, ∇α ∩ Δβ ⊆ ∇α ⊆ ∇γ, so

Δ(γδ) =
⋃
α∈A

⋃
β∈B

(∇α ∩ Δβ)α−1 =
⋃
α∈A

⋃
β∈B

Δ(αβ) = Δ((AB)Σ).

Therefore Ψ and Σ are mutually inverse isomorphisms. If α ∈ TY , then since α ↓
is a principal order ideal, the union of its members is just α itself, yielding the final 
statement. �
Proposition 2.7. For any restriction semigroup S, the Munn representation θ : S −→ TPS

induces the homomorphism θ = θ̂Σ : C(S) −→ TIPS
, satisfying τSθ = θ. As usual, if 

A ∈ C(S), we denote Aθ by θA. Then θA : A+ −→ A∗ and, if e ∈ A+, eθA = b∗, where 
b ∈ A, b+ = e.

Proof. For convenience, put Y = PS and see Fig. 1 below. Since the image of θ in 
TY is full (Result 2.3), it is an order ideal. By Result 2.4, θ̂ : C(S) −→ C(TY ) is a well 
defined homomorphism. Thus θ is a homomorphism. Combining the two previous results, 
τSθ = τS θ̂Σ = θ τTY

Σ = θ. Finally, if A ∈ C(S), then Aθ =
⋃

a∈A θa, from which the 
formula eθA = b∗ follows (putting b = ea, for any a ∈ A such that e ≤ a+). �

We will call θ the extension of θ to C(S). It is easily checked that if S is a monoid, 
then all the homomorphisms above preserve the relevant identity elements.
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T
κ−−−−−→ C(S) θ̂−−−−−→ C(TY ) Σ−−−−−→ TIY

τS

�⏐⏐ τTY

�⏐⏐
S

θ−−−−−→ TY

Fig. 1. The mappings in this section.

Referring back to Result 2.4, in the event that S is proper and we put T = S/σ, then 
by a slight abuse of notation we shall denote by κ the injection T −→ C(S), aσS �→
aσS . Notice that κ is the subhomomorphism induced by κC(S) : C(S)/σC(S) −→ C(S), 
according to Lemma 2.2, under the isomorphism T ∼= C(S)/σC(S) exhibited in Result 2.4. 
For if a ∈ S and we put A = aσ, then (AσC(S))κC(S) = mA = A = Aκ. Further, by 
the same lemma and Proposition 2.5, κ is a homomorphism if and only if S is almost 
perfect.

Now the combination of Proposition 2.7, Lemma 2.2, applied to C(S), and Proposi-
tion 2.5 yields the following corollary, which is at the heart of this paper.

Corollary 2.8. Let S be a proper restriction semigroup. Put T = S/σ and Y = PS and 
let κ be the injection of T in C(S) just defined. Then the composition κθ : T −→ TIY is 
a monoidal subhomomorphism, which is a homomorphism if and only if σ is perfect on 
S (that is, S is almost perfect).

Proof. All that remains to show is that if κθ is a homomorphism, then σ is perfect 
on S. Let a, b ∈ S. In the monoid T , (ab)σ = (aσ)(bσ), so ((ab)σ)κθ = (aσ)κθ (bσ)κθ =
((aσ)κ(bσ)κ))θ. Recall that κ injects T into C(S). Regarding the σ-classes now as el-
ements of C(S), we use the notation and details of Proposition 2.7 to write the last 
equation as θ(ab)σ = θaσbσ. It follows that the domains of these two mappings agree, 
that is, again using the details of the cited proposition, ((ab)σ)+ = (aσbσ)+.

Now let s ∈ (ab)σ. Then for some a1 ∈ aσ and b1 ∈ bσ, s+ = (a1b1)+, that is, sR̃a1b1. 
But s σ ab σ a1b1 so, by properness, s = a1b1 ∈ aσbσ. Therefore σ is perfect. �

We state without proof, since it is not used in this paper, that for any semilattice Y , 
TIY is also isomorphic to the Munn semigroup of the semilattice C(Y ); and the homo-
morphisms θ̂ : C(S) −→ C(TPS

) and θ : C(S) −→ TIY are equivalent to the Munn 
representations of C(S).

Implicit in the proof of Corollary 2.8 was a direct description of the map κθ. For t ∈ T , 
identify it with the σ-class tκ ∈ C(S). Then, based again on the details of Proposition 2.7, 
write θt for (tκ)θ. Here Δθt and ∇θt are respectively the ideals t+ = {a+ : a ∈ t} and 
t∗ = {a∗ : a ∈ t}; and for e ∈ t+, eθt = b∗, where b ∈ t, b+ = e.

Referring back to the article [14] by Kudryavtseva cited in the penultimate paragraph 
of Section 1, its author has kindly informed me that the interpretation of Corollary 2.8
just stated provides the most transparent linkage between the ultra proper restriction 
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semigroups, introduced and studied in that article, and our almost perfect restriction 
semigroups.

Her definition is in terms of the partial actions of T on PS that underlie S [14, 
Section 3.1]. While her work is phrased in terms of left actions, it is readily seen that the 
right partial action that underlies S, exhibited in the dual of equation (3.1), is precisely 
that induced by the subhomomorphism κθ of Corollary 2.8 (and indeed she offers there 
the alternative viewpoint of partial actions as being induced by subhomomorphisms – 
dual prehomomorphisms or dual antiprehomomorphisms, in her language).

She then [14, Section 3.8] calls a restriction semigroup ultra proper if its underlying 
right action is ‘a partially defined action’, which as she explains there holds if and only if 
the associated subhomomorphism is in fact a homomorphism. By our Corollary 2.8, this 
holds for a proper restriction semigroup if and only if the semigroup is almost perfect.

She terms a restriction monoid ultra F -restriction [14, Section 3.9] if it is ultra proper 
and F -restriction, using the latter term just as we do here. Therefore this definition is 
equivalent to our definition of perfect restriction monoids. We summarize.

Proposition 2.9. The ultra proper restriction semigroups and ultra F -restriction monoids 
in [14] are precisely our almost perfect restriction semigroups and perfect restriction 
monoids, respectively.

3. Strong T -properness and almost T -properness

Recall from Section 1 that a restriction monoid M , with plain submonoid T , is strongly 
T -proper if M = PMT and σ separates T ; and that a restriction semigroup S is almost 
T -proper if C(S) is strongly T -proper (with respect to some plain submonoid T ). The rea-
son for the qualifier ‘strongly’ is that ‘T -properness’, as used in [1] in the broader context 
of Ehresmann semigroups, specializes in proper restriction semigroups to a strictly weaker 
property. While, technically, we should also use the term ‘almost strongly T -proper’ in-
stead of ‘almost T -proper’, the latter term generates no conflict and is less cumbersome.

The equation M = PMT merely states that M is P -generated by T , as a restriction 
monoid (in the terminology introduced in Section 2). By abuse of terminology, given any 
plain monoid T , we may call M strongly T -proper when it is strongly T ′-proper with 
respect to some plain submonoid T ′ isomorphic to T .

In Propositions 3.2 and 3.3, we show that these definitions are equivalent, respec-
tively, to those of perfection and almost perfection. Each form has its own benefits: the 
‘T -proper’ versions have the virtue of following a path that has been fruitful for Ehres-
mann semigroups [9], and allow ready identification of examples; the ‘perfect’ versions 
have the virtue of independence from T and of straightforward verification once σ has 
been computed.

We begin with element-wise criteria for the monoidal case, illustrating calculations 
prevalent in the sequel. The global characterizations immediately follow.
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Lemma 3.1. Let M be a restriction monoid and T a plain submonoid. Then M is strongly 
T -proper if and only if for all m ∈ M , m ≤ t for some unique t ∈ T ; equivalently, 
m = m+t for some unique t ∈ T ; and equivalently if and only if for all m ∈ M , 
m = tm∗ for a unique t ∈ T . In that event, M is necessarily proper and T ∼= M/σ.

Proof. It was noted in Section 2 that M is P -generated by T if and only if for all m ∈ M , 
m ≤ t for some t ∈ T . Suppose M is strongly T -proper and m ≤ t, u, where m ∈ M and 
t, u ∈ T . Then t σ m σ u and so equality holds. To prove the converse, suppose t, u ∈ T

and t σ u. Then for some e ∈ PS , et = eu = a, say. Now a ≤ t, u and so, by hypothesis, 
t = u. So M is strongly T -proper. The equivalence of the next two statements follows 
from the discussion of σ in Section 2.

To prove the last statements, assume M is strongly T -proper for some plain monoid T , 
which we may take to be a submonoid, and suppose that (a, b) ∈σ ∩ R̃. Write a = a+t

and b = b+u, for t, u ∈ T . Then t σ a σ b σ u, so that t = u; and a+ = b+; so a = b. 
The dual statement is proved analogously. Now the submonoid T is a transversal of the 
σ classes, whereby it is isomorphic to the quotient monoid. �
Proposition 3.2. The following are equivalent for a proper restriction monoid M :

(i) M is strongly T -proper for some plain monoid T ;
(ii) M is strongly M/σ-proper;
(iii) M is perfect.

Proof. The equivalence of (i) and (ii) follows from the last statement of the previous 
lemma. Now suppose (iii) holds. Then by Lemma 2.2, M is strongly T -proper with 
respect to T = {ma : a ∈ M}. Under (i), if a ∈ M , then since M is P -generated by T , 
we have a σ t for some t ∈ T with a ≤ t. Now σ separates T so it follows that t = ma. 
Thus these greatest elements are precisely the members of the submonoid T . That is, 
mamb = mab for all a, b ∈ M . By Lemma 2.2, M is perfect. �

Turning now to an arbitrary restriction semigroup, we may of course consider strong 
T -properness of the monoid M = S1. However, that is not general enough for our 
purposes, as will be seen in the sequel.

By Lemma 3.1, that a semigroup be almost T -proper is equivalent to the property 
that every A ∈ C(S) be contained in a unique member of T . Also by that lemma, in that 
case C(S) and, therefore, S itself is necessarily proper. The next result is the analogue 
of Proposition 3.2.

Proposition 3.3. The following are equivalent for a proper restriction semigroup S:

(i) S is almost T -proper for some plain monoid T ;
(ii) S is almost S/σ-proper;
(iii) S is almost perfect.
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Proof. According to Result 2.4, C(S)/σ ∼= S/σ. The equivalence of (i) and (ii), and of 
each with perfection of C(S), then follows from the definition and from applying the 
corresponding equivalence in Proposition 3.2 to C(S).

Now the equivalence of perfection of C(S) with almost perfection of S itself was shown 
in Proposition 2.5. �

In the case of a monoid, the relationship between these two definitions needs to be 
elucidated. We return to the original terminology of ‘perfection’.

Proposition 3.4. (1) Every perfect restriction monoid is almost perfect; the converse need 
not hold. (2) If S is a proper restriction semigroup without identity and S1 is almost 
perfect, then S is almost perfect; the converse holds if S/σ has trivial group of units.

Proof. The direct statement in (1) is obvious from the definitions. Example 7.1 shows 
that the converse need not be true.

To prove the direct statement in (2), note that in this case σ on S is simply the 
restriction of that on S1. Now by assumption σ is perfect on S1. But the only product in 
S1 that yields 1 is 1 ·1, so σ is also perfect on S and S is therefore also almost perfect. For 
the converse, if σ on S is perfect, then so is σ on S1, under the stated assumption. �

Two natural motivating classes of examples for strong T -properness and almost 
T -properness are (i) free (and certain relatively free) restriction semigroups and monoids, 
and (ii) factorizable and almost factorizable restriction semigroups (in one- and two-sided 
versions). Rather than break the flow at this point, we refer the reader to Section 7 for 
the precise connection. The constructions in Sections 4 and 5 provide a ready source of 
further examples.

4. Almost perfect covers

We present in Theorem 4.1 a far-reaching generalization ST,R of a construction first 
explicitly stated in [13, Theorem 9.1], although special cases have appeared elsewhere in 
the literature. Its simplicity is somewhat obscured by the generality in which we frame 
it. The pairs (S, R) of restriction semigroups of most interest satisfy S ≤ R ≤ C(S)
(identifying S with its image in C(S) under τS). In particular, the pairs (S, C(S)) and 
(S, S1) (recalling from Result 2.4 that S1 embeds in C(S)) play distinct major roles in 
this paper, as demonstrated in Corollaries 4.3 and 4.2 respectively. The slightly more 
abstract setting that we have chosen simplifies the notation considerably and specializes 
more straightforwardly to the monoidal setting.

Because the specific monoid T is crucial to this section, we tend to prefer the ‘T -proper’ 
terminology instead.

Let R be a restriction monoid and S a restriction subsemigroup such that for each 
r ∈ R the following conditions and their duals are satisfied: (i) there exists e ∈ PS , 
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e ≤ r+, and (ii) for any such e, er ∈ S. Clearly this criterion is satisfied if R = S1. It will 
be shown after the theorem that this is also the case for the other instances described 
in the previous paragraph. Let T be a plain monoid and α : T −→ R a monoidal 
homomorphism. In Section 8, α will be allowed to be a subhomomorphism. Let

ST,R = {(a, t) ∈ S × T : a ≤ tα in R}.

Write ST in case R = S1.

Theorem 4.1. As just defined, ST,R is an almost T -proper restriction subsemigroup of 
S × T , with ST,R/σ ∼= T , now regarding T as a (reduced) restriction semigroup (that is, 
a plain monoid), and the first projection is a P -separating homomorphism onto a full 
subsemigroup of S. Further:

1. if S ⊆ (Tα) ↓, then ST,R is a subdirect product of S and T and is therefore a cover of 
S over T ; in particular, if R = S1 and R is P -generated by Tα, then ST is a cover 
of S;

2. if S is a monoid and α is monoidal, then ST is strongly T -proper.

Proof. Let (a, t), (b, u) ∈ ST,R. By compatibility of the natural partial order on R and the 
homomorphism property of α, ab ≤ (tα)(uα) ≤ (tu)α, so ST,R is closed. Observe that α
only need be a subhomomorphism for this to hold. For any (a, t) ∈ ST,R, (a, t)+ = (a+, 1)
and (a, t)∗ = (a∗, 1), where a+, a∗ ≤ 1 = 1α, so ST,R is a restriction subsemigroup of 
S × T . The semilattice PST,R

= {(e, 1) : e ∈ PS} ∼= PS .
By the assumption on S and R, for any t ∈ T there exists e ∈ PS such that e ≤ (tα)+

and e(tα) ∈ S, so that (e(tα), t) ∈ ST,R. That is, the second projection map ST,R −→ T

is surjective. In general, this is not true of the first projection map ST,R −→ S. However 
since (e, 1) �→ e, it is projection-separating and its image is a full subsemigroup.

Next we compute σ. Let (a, t), (b, u) ∈ ST,R. If (a, t) σ (b, u) then from the triviality 
of σ on T , t = u. Conversely, if t = u, then a, b ≤ tα. In the case t = 1, then (a, 1), 
(b, 1) are both projections and so are σ-related; otherwise, (b+, 1)(a, t) = (b+a+(tα), t) =
(a+b+(tα), t) = (a+, 1)(b, t), so that (a, t) σ (b, t). Therefore the σ-classes of ST,R are the 
sets St = {(a, t) : a ≤ tα}, t ∈ T , and ST,R/σ ∼= T .

Now suppose ((a, t), (b, u)) ∈ R̃∩ σ in ST,R. Then t = u and a = a+t = b+u = b. In 
combination with the dual argument, this shows that ST,R is proper.

To prove almost T -properness, using Proposition 3.3 it must be shown that 
StSu = Stu. Clearly StSu ⊆ Stu; conversely, suppose (c, tu) ∈ Stu, where c ≤ (tu)α =
(tα)(uα) (using the homomorphism property of α) and t, u ∈ T . Then c = c+(tα)(uα)c∗, 
where c+, c∗ ∈ PS , so that c+(tα), (uα)c∗ ∈ S, using the assumption (ii) on S and its 
dual. Therefore (c, tu) = (c+(tα), t)((uα)c∗, u) ∈ StSu.
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To prove 1, suppose that S ⊆ (Tα) ↓. Then for each a ∈ S, (a, t) ∈ ST,R for some 
t ∈ T . Thus ST,R is a subdirect product of S and T and the first projection map, being 
already projection-separating, is a covering map.

To prove 2, suppose that S is a monoid (and R = S). Since ST contains (1, 1), it is a 
monoid. Now for each t ∈ T , (tα, t) is the greatest element in the σ-class St. Thus ST is 
F -restriction and therefore perfect (and so strongly T -proper). �

We detail the special case R = S1 since for each restriction semigroup it produces a 
very simple almost perfect cover. In Corollary 6.2 we will provide a simple alternative 
representation of the coverings in the next corollary by means of the W -semigroup con-
struction. It will be shown below that, in the monoidal case, all perfect covers may be 
found as in Corollary 4.2. That when applied to an inverse semigroup S, this covering 
does not in general produce another inverse semigroup is at the heart of the divergence 
of our work from inverse semigroup theory (see Section 9).

Corollary 4.2. Let S be a restriction semigroup. If T is a monoid and α : T −→ S1

is a monoidal homomorphism, the image of which P -generates S1, then ST = {(s, t) ∈
S × T : s ≤ tα in S1} is an almost T -proper cover of S that is a subdirect product of S
and T . In particular, if S is generated, as a restriction semigroup, by a subset X and T
is the plain submonoid of S1 generated by X, then ST = {(s, t) ∈ S × T : s ≤ t in S1}
is such a cover.

If S is a monoid to begin with, then the above covers are strongly T -proper and 
monoidal.

One case of special interest occurs when S is generated, as a restriction semigroup, 
by a subset X: the cover SX∗ associated with the homomorphism α : X∗ −→ S1. In this 
case the cover is ample.

We now present another useful specialization. In Theorem 4.4 and its corollary, it will 
be shown that this specialization is in a sense as general as the original theorem. In the 
following, we shall identify a restriction semigroup S with its image in C(S) under the 
embedding τS : a �→ a ↓ in C(S), according to the first paragraph of Result 2.4. However 
we shall at times revert to the explicit use of τS when clarification is called for. Recall 
that the partial order in C(S) is inclusion, whereby the definition of ST,R below is the 
specialization of that in Theorem 4.1. Note that Corollary 4.2 represents the simplest 
case of this result, since by Result 2.4 the embedding of S1 in C(S) is monoidal, so that 
the element 1 can be identified with the identity of C(S).

Corollary 4.3. Let S be a restriction semigroup, R a submonoid of C(S) that contains 
S, T a plain monoid and α : T −→ R a monoidal homomorphism. The almost T -proper 
semigroup

ST,R = {(a, t) ∈ S × T : a ∈ tα}
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T
κ−−−−−→ C(N) β̂−−−−−→ C(S)

τN

�⏐⏐ τS

�⏐⏐
N

β−−−−−→ S

Fig. 2. The mappings in the proof of Theorem 4.4.

is well defined. In particular, ST,C(S) is well defined.
For any semilattice Y , plain monoid T and monoidal homomorphism α : T −→ TIY , 

the semigroup (TY )T,TIY
is a well defined, almost T -proper restriction semigroup. If Y

has an identity element and α : T −→ TY , then (TY )T is a strongly T -proper monoid.

Proof. We verify that the criteria (i) and (ii) are met. For the sake of clarity, we set aside 
the identification of S with SτS . Let A ∈ R. Then A is an order ideal of S that satisfies 
a+b = b+a for all a, b ∈ A. Here A+ is an ideal of PS and so contains e ↓= eτS , for some 
e ∈ PS . For any such e, there exists b ∈ A such that b+ = e. Then e ↓A = b ↓= bτS : 
for if f ≤ e and a ∈ A, then fa = fb+a = fa+b ∈ b ↓; and if c ∈ b ↓, then c ∈ A and 
c = b+c ∈ e ↓A. The dual statement follows from the self-duality of the pair (S, R).

The statements in the second paragraph follow from the identification of C(TY ) with 
TIY in Proposition 2.6. In fact, once (i) and (ii) have been established, Theorem 4.1
could itself be applied to the pair (TY , TI Y ). �

The following theorem may be regarded as a converse of Theorem 4.1. Its generality 
allows two distinct important applications. Again we identify S with its image in C(S)
under τS , except where additional clarity is required. Refer to Section 2.2 for the relevant 
properties of C(S) and κ.

Theorem 4.4. Let N and S be restriction semigroups, with T = N/σ. If N is almost 
perfect and β : N −→ S is a P -separating homomorphism whose image is full in S, then 
N ∼= ST,C(S), with respect to α = κβ̂ : T −→ C(S).

Let N and M be restriction monoids. If N is perfect and β : N −→ M is a 
P -separating homomorphism whose image is full in M , then N ∼= MT , where α = κβ :
T −→ M .

Proof. By Corollary 4.3, ST,C(S) is well defined. Recall that κ : T −→ C(N) and β̂ :
C(N) −→ C(S) is the monoidal extension of β, according to Result 2.4, noting that since 
Nβ is full in S, it is an order ideal. See Fig. 2. Since 1κ = PN = 1C(N), α is monoidal.

Define ω : N −→ ST,C(S) by nω = (nβ, nσ). Since nβ ∈ (nσ)β = (nσ)β̂ = (nσ)α, ω is 
well defined. Clearly it is a homomorphism. Since β is P -separating, so is the congruence 
on N that it induces. Since N is proper, μ ∩ σ = ι, so ω is injective.

Let (s, t) ∈ ST,C(S), that is, s ≤ tα or, more precisely, s ↓⊆ tα in C(S), so that s ∈ tα. 
Therefore s = aβ for some a in the σ-class t = aσ of N . But then (s, t) = aω. So ω is 
surjective.
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In the monoidal case, κ maps directly into N and ω may now be regarded as mapping 
directly into MT ; the proof then proceeds almost identically. �

The first application of this theorem is a description of the almost perfect covers of a 
restriction semigroup.

Corollary 4.5. Let N be an almost perfect cover of a restriction semigroup S, via the 
homomorphism β. Put T = N/σ. Then N ∼= ST,C(S), where α = κβ̂ : T −→ C(S) and 
S ⊆ (Tα) ↓ is satisfied (cf. 1 in Theorem 4.1).

If N is a perfect, monoidal cover of the restriction monoid M , again via β, then 
N ∼= MT , where α = κβ : T −→ M and M is P -generated by Tα.

Proof. Here β is, further to the theorem above, surjective. Let s ∈ S, s = aβ, say. 
Reversing the argument in the proof of surjectivity above, s ≤ tα, where t = aσ ∈ T . 
The monoidal case proceeds similarly. �

In the case that S itself is almost perfect, regarded as its own cover, that is, β is the 
identity map, put T = S/σ. Then ST,C(S) ∼= S, since if (s, t) ∈ ST,C(S), then t must 
be sσ. Likewise, if M is a perfect monoid, then M ∼= MT .

Alternatively, S may also be represented in the form FT,R via its Munn representa-
tion, as follows. This result is a sort of precursor to the W -semigroup representation 
Theorem 6.1. See the remarks following that theorem.

Corollary 4.6. Let S be an almost perfect restriction semigroup, with T = S/σ and 
Y = PS. Then S ∼= FT,C(F ), where F ∼= S/μ is the image of S in TY under the Munn 
representation.

5. The general W -product

Let T be a monoid, Y a semilattice and suppose there is a monoidal homomorphism 
α : T −→ TIY , where (see Section 2) TIY is the inverse semigroup of isomorphisms 
between ideals of Y . Adapting the usual language of actions, we say that T acts on Y
(on the right) by isomorphisms between ideals. If the image lies in TY , then we say that 
the action is by isomorphisms between principal ideals. Once more, in Section 8 we will 
allow subhomomorphisms in the construction. The relationship between our construction 
and the original W -product will be elucidated following Theorem 5.1.

For t ∈ T , write αt instead of tα and denote by Δt and ∇t, respectively, its domain 
and range. Expressed in the notation of actions, for e ∈ Δt write et instead of eαt.

Consider the set

W (T, Y ) = {(t, f) ∈ T × Y : f ∈ ∇t} = {(t, et) ∈ T × Y : e ∈ Δt}.
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The alternative form (t, et) for (t, f) results from the bijectivity of αt. Each form will 
prove to be the more convenient one at different points.

The product is defined by:

(t, et)(u, fu) = (tu, (etf)u).

Since Δu is an ideal containing f and etf ≤ f , (etf)u is defined; likewise, etf ∈ ∇t, 
etf = gt, say. Since the action is induced by a homomorphism, g ∈ Δtu and (etf)u =
(gt)u = gtu ∈ ∇tu. Thus the operation W (T, Y ) is well defined. Note that α only need 
be a subhomomorphism for this to hold.

Unary operations are defined by:

(t, et)+ = (1, e) and (t, f)∗ = (1, f).

Theorem 5.1. Let T be a monoid, Y a semilattice, and α : T −→ TIY a monoidal ho-
momorphism, that is, T acts on Y by isomorphisms between ideals. Then W = W (T, Y )
is isomorphic to the semigroup (TY )T,TIY

and is therefore an almost perfect restriction 
semigroup, with PW

∼= Y and W/σ ∼= T .
Further if Y is also a monoid and α is a homomorphism into TY , that is, T acts 

on Y by isomorphisms between principal ideals, then W is isomorphic to (TY )T and is 
therefore a perfect restriction monoid.

Proof. The general conclusions will follow once the isomorphism is proved. Corollary 4.3
shows that (TY )T,TIY

is well defined. Recall that Y ∼= PTY
= ETY

, under the map 
e �→ e ↓.

Define Π : (TY )T,TIY
−→ W = W (T, Y ) by

(β, t)Π = (t, et), where e↓= Δβ.

By assumption, β ⊆ tα, so e ∈ Δt. Therefore (β, t)Π is well defined. On the other 
hand, for any (t, et) ∈ W , let β be the restriction of αt to e ↓. Then (t, et) = (β, t)Π, so 
Π is surjective.

To prove that Π respects the binary operation, let (β, t), (γ, u) ∈ (TY )T,TIY
, where 

Δβ = e ↓ and Δγ = f ↓. Now (βγ, tu)Π = (tu, gtu), where g↓= Δ(βγ) = (∇β ∩Δγ)β−1. 
Here since β ⊆ tα, ∇β = (eβ) ↓= eαt ↓= et ↓ and so ∇β ∩ Δγ = et ↓ ∩f ↓= (etf) ↓, 
whereby gβ = gt = etf . As in the definition of the operation on W , (etf)u = (gt)u = gtu

and so (tu, gtu) = (t, et)(u, fu).
Finally, (β, t)+Π = (β+, 1)Π = (1, e) = (t, et)+, since β+ is the identity map on e ↓. 

Likewise, (β, t)∗Π = (β∗, 1)Π = (1, h), where h ↓= ∇β = (eβ) ↓= (eαt) ↓= et↓, that is 
(1, h) = (1, et) = (t, et)∗. So Π is a biunary isomorphism.

The monoidal case proceeds similarly. �
As noted in Section 1, the original W -semigroup construction [5,8,20] corresponds 

precisely to the special case whereby Δt = Y for all t ∈ T , that is, the action is by 
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endomorphisms of Y . In that case, W (T, Y ) = T × Y and so is a ‘reverse’ semidirect 
product. Observe that the action is then not simply by endomorphisms, however, since 
these endomorphisms must be injective and their images must be ideals of Y . The original 
construction of course includes the case that the action be by automorphisms of Y .

In our general situation, the dual to that just considered would be the special case 
whereby ∇t = Y for all t ∈ T , that is, the representation is by isomorphisms from ideals 
of Y onto Y itself. See almost right factorizability in Proposition 7.3(c). This stems from 
the natural self-duality of our construction under the anti-isomorphism δ �→ δ−1 of TIY . 
This dual therefore corresponds to the ‘ordinary’ semidirect product.

Proposition 7.4 specializes Theorem 6.1 below to the original construction.
The following are consequences of the definitions of the unary operations and the 

elementary properties of ST,R in Section 4.

Lemma 5.2. Under the hypotheses of Theorem 5.1, if the pairs (t, et) = (t, g) and 
(u, fu) = (u, h) belong to W = W (T, Y ), then: (t, et)R̃(u, fu) if and only if e = f ; 
(t, g)L̃(u, h) if and only if g = h; (t, g) ≤ (u, h) if and only if t = u and g ≤ h; 
(t, g) σ (u, h) if and only if t = u.

Using Lemma 5.2, the σ-classes of W are precisely the sets At = {(t, h) : h ∈ ∇t} =
{(t, et) : e ∈ Δt}, t ∈ T . Translating into this language the corresponding statement 
from (the proof of) Theorem 4.1, AtAu = Atu for all t, u ∈ T . That is, in the original 
terminology, the strong T -properness of C(W ) is witnessed by the submonoid Tκ =
{At : t ∈ T}.

Likewise, in the case that Y has an identity element and T acts by isomorphisms 
between principal ideals, then strong T -properness of W (T, Y ) is witnessed by the sub-
monoid Tκ = {(t, gt) : t ∈ T} of W itself, where for each t, g generates the principal 
ideal Δt of Y .

Proposition 5.3. Under the hypotheses of Theorem 5.1, identify PW with Y under 
(e, 1) �→ e. Recall the homomorphism κθ introduced in Corollary 2.8: the composition 
of the injection of T in C(W ) with the extension of the Munn representation of W
to C(W ). This homomorphism is precisely α and so the original action of T on Y is 
equivalent to that induced by κθ.

In the case where Y = Y 1 and the original action is by isomorphisms between principal 
ideals, the restriction of the Munn representation of W itself to (the image under κ of) 
T is α and so induces an action of T on Y that is equivalent to the original one.

Proof. In the general case, see Fig. 1 for the mappings involved, with W replacing S. 
If t ∈ T , then tκ = At, in the notation above. According to Proposition 2.7, ΔθAt

= A+
t =

{(1, e) : e ∈ Δt} and, for (1, e) in this domain, (1, e)θAt
= b∗, where b = (t, f t) ∈ At and 

(1, f) = b+ = (1, e). That is, (1, e)(κθ)t = (t, et)∗ = (1, et) = (1, eαt). Identifying (1, e)
with e, α and κθ therefore have the same domains and take the same values.
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In the monoidal case, if t ∈ T and Δt = g ↓, as above, then Δθ(t,gt) = (t, gt)+ ↓=
(1, g) ↓. For e ≤ g, (1, e)θ(t,gt) = ((1, e)(t, gt))∗ = (t, et)∗ = (1, et) = (1, eα). Again 
identifying (1, e) with e, and T with its image Tκ in W , the restriction to T of the Munn 
representation agrees with α. �
6. Representing proper restriction semigroups as W -products

Proposition 5.3 suggests a straightforward route to the converse of Theorem 5.1, via 
the homomorphism κθ introduced in Corollary 2.8, using Theorem 4.4.

Theorem 6.1. Let S be an almost perfect restriction semigroup. Put T = S/σ and Y = PS. 
Then S ∼= W (T, Y ), where Y = PS and the action of T on Y , by isomorphisms between 
ideals, is induced by the homomorphism κθ, the composition of the injection of T in C(S)
with the extension of the Munn representation of S to C(S).

If S is a perfect restriction monoid, then Y = Y 1 and the action of T on Y is by 
isomorphisms between principal ideals, induced by the Munn representation of S itself.

Proof. The Munn representation θ : S −→ TY is P -separating and its image is a full 
subsemigroup of TY , so by Theorem 4.4, S ∼= (TY )T,C(TY ), with respect to α = κθ̂ : T −→
C(TY ). Now by Proposition 2.6, (TY )T,C(TY ) ∼= (TY )T,TIY

, with respect to αΣ = κθ. 
Alternatively, the identifications in Corollary 4.3 could have been used to combine those 
steps. Finally, by Theorem 5.1, (TY )T,TIY

∼= W (T, Y ), with respect to the same map κθ.
The proof in the monoid case proceeds similarly. �
Note that Corollary 4.6 actually gave a sharper conclusion, based on the precise 

image F of S in TY , one that could be sharpened further by replacing C(F ) by the 
restriction monoid generated by Tα. The advantage of the W (T, Y ) formulation is that 
its parameters do not require specifying such subsemigroups.

In a different direction, observe that if S is almost perfect, then strong T -properness 
of C(S) implies that the latter semigroup is isomorphic to W (T, PC(S)), via the action 
induced by its own Munn representation in TPC(S) = TC(PS). At the end of Subsection 2.2, 
it was remarked without proof that TC(PS) ∼= TIPS

and that the Munn representation 
is equivalent to θ.

As promised before Corollary 4.2, we interpret the coverings presented there in terms 
of the W -product. For any restriction semigroup R, with Y = PR, the Munn represen-
tation θ : R −→ TY extends to a monoidal representation R1 −→ TIY , by mapping 1 to 
the identity of TIY . Since this is in essence the Munn representation of R1 in TY 1 , we 
again denote it by θ. If R is a monoid, this is just the original representation in TY .

Corollary 6.2 (Alternative version of Corollary 4.2). Let S be a restriction semigroup, T a 
monoid and α : T −→ S1 a monoidal homomorphism, the image of which P -generates S. 
In the notation of Corollary 4.2, ST

∼= W (T, Y ), where Y = PS and the action between 
ideals of Y is induced by αθ.
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If S is a monoid, then the action is by isomorphisms between principal ideals of Y , 
induced by the composition of α with the Munn representation of S. In particular, if the 
plain submonoid T of S itself P -generates S, the action is induced by the restriction of 
the Munn representation to T .

Proof. Replacing S by ST in Theorem 6.1, the action specified there is induced by the 
homomorphism κθ = κθ̂Σ exhibited in Corollary 2.8 and Fig. 1. It only needs to be 
verified that that action is equivalent to the one in the statement of this corollary. Here 
ST /σ ∼= T and PST

= PS × {1} ∼= Y . Under these identifications, for t ∈ T , the σ-class 
tκ in C(ST ) is At = {(a, t) : a ≤ tα in S1}. The action induced by the homomorphism θ
is detailed in Proposition 2.7, as follows.

If t ∈ T then

Δt = ΔAt
= A+

t = {(a, t)+ : a ≤ tα} = {(e, 1) : e ≤ (tα)+}.

The last equation holds because if a ≤ tα, then a+ ≤ (tα)+; and if e ≤ (tα)+, then 
(e, 1) = (e(tα), t)+, where e(tα) ≤ tα.

Now for (e, 1) ∈ Δt, (e, 1)θAt
= (a, t)∗, where (a, t)+ = (e, 1). Since a ≤ tα, a = e(tα)

and so (e, 1)θAt
= (e(tα), t)∗ = ((e(tα))∗, 1).

Identifying PS with PST
, the action of t therefore has domain PST

, if t = 1, and 
domain (tα)+↓ otherwise, with et = (e(tα))∗ in either case. The latter action is that 
induced by the composition of α with the (extension of the) Munn representation θ. �

An explicit isomorphism ST
∼= W (T, Y ) is given by (s, t) �→ (t, s∗), with inverse 

(t, f) �→ ((tα)f, t).

7. Examples

The W -product provides a simple mechanism for producing specific examples. We 
begin this section with one promised in Proposition 3.4.

Example 7.1. An almost perfect restriction monoid need not be perfect.

Proof. Let Y = Z, under the reverse of the usual order. Let T = {x}∗, the free monoid 
on {x}, and let T act totally on Y , determined by nx = n +1, n ∈ Z. Then S = W (T, Y )
is an almost perfect restriction semigroup. In fact, by Corollary 7.4 below, S is almost 
factorizable. Note that each of its σ-classes is isomorphic to Y , as a poset. Now the 
monoid S1 is again almost perfect, by Proposition 3.4(2), but is not perfect, since the 
only σ-class with a maximum element is PS ∪ {1}. �

Given any semilattice Y , a range of examples may be constructed from TY itself, for 
instance by considering TIY , or any restriction subsemigroups that contain TY , as plain 
monoids, with α the identical map. For example, (TY )TIY ,TIY

is such a semigroup.
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Examples of strongly T -proper monoids and almost T -proper semigroups were given 
briefly at the end of Section 3. We shall consider factorizability in the next section.

7.1. Relatively free restriction semigroups

Let FRX and FRMX be the free restriction semigroup and monoid respectively, on 
the set X. It is easily seen (and well known) that FRMX = FR1

X . The submonoid T
of FRMX generated by X also P -generates FRMX . Let X∗ be the free monoid on X. 
The natural map FRMX −→ X∗ restricts to an isomorphism on T and induces σ, 
cf. [1, Theorem 5.1]. Therefore FRMX is strongly X∗-proper and so FRX is almost 
X∗-proper (and so almost perfect). We omit further reference to FRX . The semilattice 
of projections of FRMX is isomorphic to the semilattice of idempotents of the free inverse
monoid on X. While this of course follows from the published structure theorems for 
FRMX , it can be independently proven (e.g. [13]).

Corollary 7.2. The free restriction monoid FRMX on X is isomorphic to W (X∗, Y ), 
where X∗ is the free monoid on X, acting on the semilattice of projections Y of FRMX

according to the Munn representation.

A similar argument applies to the free restriction monoids relative to any variety 
of restriction semigroups that contains all monoids. Here, however, the semilattice of 
projections would need to be constructed in order to yield a concrete structure theorem.

7.2. (Almost) factorizable restriction semigroups

In any restriction monoid M , the R̃-class R̃1 is a submonoid, since R̃ is a left con-
gruence. Such a monoid is left factorizable [4,8,20] if M = PMR̃1. If M is proper, then σ
separates R̃1. Therefore the proper left factorizable monoids are precisely the strongly 
R̃1-proper monoids, in our language. Similarly, the proper right factorizable monoids are 
the strongly L̃1-proper monoids and the proper factorizable monoids are the H̃1-monoids.

According to [8,20], a restriction semigroup S is almost left factorizable if every ele-
ment of S belongs to some member of the R̃-class of the identity in C(S). Again there 
are naturally right and two-sided versions of this definition. They extend to restriction 
semigroups the definition for inverse semigroups of Lawson [17]. The first equivalence in 
the following result was no doubt known to the authors of [8,20].

Lemma 7.3. A proper restriction semigroup S is almost [left, right] factorizable if and 
only if C(S) is [left, right] factorizable, and thus if and only if S is almost T -proper, 
where T = [R̃1, L̃1]H̃1 of C(S).

Proof. Suppose S is almost left factorizable. Let B ∈ C(S). By hypothesis, each a ∈ B

belongs to some A ∈ R̃1. Since both B and A are contained within σ-classes of S, in 
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fact A is the same for each choice of a, that is B ⊆ A. By Lemma 3.1, C(S) is strongly 
R̃1-proper and, by the discussion above, left factorizable. Conversely, if C(S) is strongly 
R̃1-proper, then for each a ∈ S, a ↓⊆ A, that is, a ∈ A, for some A ∈ R̃1. The other 
cases are similar. �

The semigroups W (T, Y ) that arise in the representations of the left and two-sided 
almost factorizable semigroups in the following result are precisely the ‘original’ ones 
of [5,8,20] (see the discussion following Theorem 5.1). Note that the right-hand version 
falls within the realm of our broader W -product, but not within that of the original. 
The rather simpler statement of the proposition in the case of factorizability is left to 
the reader.

Proposition 7.4. The following are equivalent for a proper restriction semigroup S:

(a) S is almost left factorizable [almost right factorizable, almost factorizable];
(b) S is almost T -proper, where T is the R̃-class [L̃-class, H̃-class] of the identity in 

C(S);
(c) the action that is induced by the Munn representation of S, by isomorphisms between 

ideals of PS, is by endomorphisms [onto mappings, automorphisms];
(d) S ∼= W (T, Y ) for such an action of a monoid T upon a semilattice Y (that is, in the 

left and two-sided cases, the ‘original’ W -product).

Proof. First consider the left-hand case. The first equivalence was shown in Lemma 7.3. 
Now suppose C(S) is strongly R̃1-proper. Then the action induced by the Munn repre-
sentation of S, according to Proposition 2.7 and its corollary, is by fully defined mappings, 
that is, by endomorphisms. An application of Theorem 6.1 yields (d). That W (T, Y ) as 
in (d) is almost left factorizable can be checked directly, or by using Proposition 5.3 to 
prove (b).

In the right-hand case, by duality, the action is instead by onto partial mappings. 
In the two-sided case, the requirement becomes that the action be by automorphisms
of Y . �

That any restriction semigroup with one of the factorizability properties considered 
above has a proper cover of the same type was shown in [8,20]. This can also be obtained 
by direct calculation using Corollary 4.2, the simplest form of the coverings in that 
section.

8. Proper restriction semigroups in general

As noted in Section 1, only minor modifications, based on Lemma 2.2 and the general 
case of Corollary 2.8, are needed to extend all of the main results of this paper to proper 
restriction semigroups (and monoids). In this section, we focus on the extensions of 
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each of the cited results to the proper case. We refer the reader to the statement of 
Theorem 4.1 and the construction that precedes it. We should note here that, in the 
general situation of that theorem, the connection between S and R may be too tenuous 
to deduce the converse statement in the next result. Instead, therefore, we phrase it in 
terms of Corollary 4.3. As noted there, in view of Theorem 4.4 that situation includes 
the case R = S1 and, moreover, is in a sense general.

Theorem 8.1. (Cf. Theorem 4.1.) If α : T −→ R is a subhomomorphism, then ST,R is a 
proper restriction semigroup.

If S ≤ R ≤ C(S) (cf. Corollary 4.3), then ST,R is almost perfect if and only if α is a 
homomorphism. In particular, this is true for ST .

If S is a monoid and α is monoidal, then ST is an F -restriction monoid; thus ST is 
strongly T -proper (that is, perfect) if and only if α is also a homomorphism.

Outline of proof. It was mentioned during the proof of the cited theorem that only the 
subhomomorphism property of α was required for closure; the homomorphism property 
was not used in the proof of properness. In the monoidal case, the stated property of 
σ-classes was also proved there.

Next we show that in the case S ≤ R ≤ C(S), if σ is perfect on ST,R then α must 
be a homomorphism. For clarity’s sake, we shall explicitly use the embedding τS, where 
aτS = a ↓. In the notation of the cited theorem, the σ-classes of ST,R are the sets St, 
t ∈ T , where St = {(a ↓, t) : a ↓≤ tα} in C(S). Note that if A ∈ C(S) and a ∈ S, then 
a ↓≤ A if and only if a ∈ A.

Let t, u ∈ T . Each of tα, uα and (tu)α is an order ideal of S. It must be shown that 
(tu)α ⊆ (tα)(uα) in C(S). Let a ∈ (tu)α. So a ↓≤ (tu)α and therefore (aτS, tu) ∈ Stu. By 
perfection of σ, (aτS , tu) = (bτS , t)(cτS , u) for some b ∈ tα, c ∈ uα. Since τS is injective, 
a = bc ∈ (tα)(uα), as required.

In the monoidal case, either the proof above may be modified or one can directly use 
the assumption that the elements (tα, t), t ∈ T form a subsemigroup to show that α is 
a homomorphism. �

With ‘almost perfect’ replaced by ‘proper’ in the semigroup case, and ‘perfect’ re-
placed by ‘F -restriction’ in the monoid case (so that the map κ : T −→ N is defined), 
Theorem 4.4 and Corollary 4.5 now characterize the respective covers in terms of the 
broader construction in the theorem just stated.

In the context of this section, if there is a subhomomorphism α : T −→ TIY , then T
is said to sub-act on the semilattice Y . We otherwise retain the notation of Section 5. 
The construction W (T, Y ) is as in that section; as noted at that point, the argument for 
closure only required a sub-action.

Theorem 8.2. (Cf. Theorem 5.1.) Let T be a monoid, Y a semilattice, and α : T −→
TI Y a monoidal subhomomorphism, that is, T sub-acts on Y by isomorphisms between 
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ideals. Then W = W (T, Y ) is isomorphic to the semigroup (TY )T,TIY
and so is a proper 

restriction semigroup, with PW
∼= Y and W/σ ∼= T ; it is almost T -proper if and only if 

α is a homomorphism.
Further if Y is a monoid and α is a subhomomorphism into TY , that is, T sub-acts 

on Y by isomorphisms between principal ideals, then W is isomorphic to the monoid 
(TY )T and so is an F -restriction monoid; it is strongly T -proper if and only if α is a 
homomorphism.

Proof. This follows from Theorem 8.1 and the cited theorem. �
Finally, the converse again follows from application of the above and the cited theorem.

Theorem 8.3. (Cf. Theorem 6.1.) Let S be a proper restriction semigroup. Put T = S/σ

and Y = PS. Then S ∼= W (T, Y ), where the sub-action of T on Y , by isomorphisms 
between ideals, is induced by the subhomomorphism κθ, the composition of the injection 
of T in C(S) with the extension of the Munn representation of S to C(S).

If S is an F -restriction monoid then Y = Y 1 and the sub-action of T on Y is by 
isomorphisms between principal ideals, induced by the Munn representation of S itself.

Cornock and Gould [3] provided a structure theorem for proper restriction semigroups 
in general, based on pairs of partial actions of a monoid T on a semilattice Y . For such 
a pair, they define a semigroup M(T, Y ) and show that this construction describes 
proper restriction semigroups. Clearly, there must be a correspondence between their 
construction and that in this section, but we have not pursued this explicitly since the 
general case is not the one of main interest in our work.

9. Specialization to inverse semigroups

Recall from Section 2 that proper inverse semigroups are usually termed E-unitary. 
The specializations of the general parts of Theorems 8.2 and 8.3 to inverse semigroups 
are easily obtained. We use the terminology of [18], that a prehomomorphism of inverse 
semigroups is a subhomomorphism that respects inverses. We leave the statement in the 
case of monoids to the reader.

Corollary 9.1. (Cf. [19].) Let T be a group, Y a semilattice, and α : T −→ TI Y a 
monoidal prehomomorphism. Then W = W (T, Y ) is an E-unitary inverse semigroup, 
isomorphic to (TY )T,TIY

, with EW
∼= Y and W/σ ∼= T . Conversely, for any E-unitary 

inverse semigroup S, let T be the group S/σ and Y = ES. Then S ∼= W (T, Y ), where 
the sub-action of T on Y , by isomorphisms between ideals, is induced by the prehomo-
morphism κθ.

Proof. In the direct case, the conclusion is clearer if we consider the semigroups ST,R of 
Theorem 5.1, with R and S inverse semigroups, under the same assumptions on T and α, 
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for we may then quote the second isomorphism in the theorem. If (s, t) ∈ ST,R, then 
s ≤ tα; by the assumption on α and compatibility of the natural partial with inverses in 
inverse semigroups, s−1 ≤ t−1α, so (s−1, t−1) is an inverse for (s, t).

In the converse case, T is necessarily a group and PS = ES . Since (aσ)−1 = a−1σ in 
any inverse semigroup, κ, and therefore κθ, is a prehomomorphism. �

The theory of E-unitary inverse semigroups is very well mined and it is hardly to be 
expected that the general theory, such as this corollary, would reduce to anything but 
well-trodden ground (albeit in somewhat different language), even though that ground 
played no part in the development of our theory. As cited incidentally above, the main 
body of Corollary 9.1 above is essentially the description of E-unitary inverse semigroups 
found by Petrich and Reilly [19] (see also [18, Theorem VI.8.12], where the inverse 
semigroup of isomorphisms between ideals of a semilattice Y is denoted Σ(Y )).

Since we are more interested in where our theory does not simply extend inverse semi-
group theory, we refer the reader to Chapter VII of the monograph [18] by Petrich for 
comprehensive coverage. Of course, McAlister’s P -theory is the gold standard, especially 
when treated in concert with the various alternative descriptions of E-unitary covers 
discovered in subsequent years ([18, Section VII.4]), where the semigroup C(S) not sur-
prisingly plays a significant role. Chapter 7 of the monograph [17] by Lawson presents 
the P -theorem from a somewhat different perspective.

The point that we wish to emphasize here is that the specialization of almost perfec-
tion and perfection to inverse semigroups does not yield a general theory as it does for 
restriction semigroups. They are well-studied classes:

Proposition 9.2. The almost perfect inverse semigroups are the semidirect products of 
semilattices and groups. The perfect inverse monoids are the monoidal such products.

Proof. This is simply the combination of Propositions VII.5.11, VII.5.14, and VII.5.24 
of [18]. �

The key point of divergence in our work is then the covering result Theorem 4.1
and, more particularly, the simpler result Corollary 4.2. The latter produces an almost 
perfect cover ST for S which, as we have just seen, is a semidirect product of a semilattice 
and a group. By [17, Theorem 7.10] only the almost factorizable inverse semigroups are 
quotients of such semidirect products. In the monoidal case, only the factorizable inverse 
semigroups are quotients.
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