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1. Introduction

The theory of multiplier ideal sheaves has become an important part of complex 
algebraic and complex analytic geometry. To a coherent ideal sheaf a ⊂ OX on a smooth 
(or more generally normal and Q-Gorenstein) complex variety X and a real exponent 
c ≥ 0, it associates an ideal sheaf J (X, ac) satisfying strong vanishing theorems. If the 
subscheme Z ⊂ X corresponding to a is a divisor D, the multiplier ideal can be thought 
of as measuring the failure of the pair (X, cD) to be klt.

In particular, multiplier ideals are able to detect the log canonical threshold of D, 
which is defined as the smallest number t such that (X, tD) is log canonical but not 
klt, and which is an important invariant of the pair (X, D). However, using multiplier 
ideals one sees that the log canonical threshold is merely the first member of an infinite 
sequence of numbers, the jumping coefficients (or jumping numbers) attached to (X, D). 
Intuitively, the multiplier ideals J (X, tD) get smaller as t increases, and the jumping 
coefficients are those values of t where J (X, tD) jumps. These numbers first appeared 
implicitly in the work of Libgober [13] and Loeser and Vaquié [14]. They were studied 
systematically by Ein, Lazarsfeld, Smith, and Varolin [6].

On the other hand, in positive characteristic there is the theory of test ideals, which 
is understood to be the analogue of the theory of multiplier ideals (see e.g. [18]). Test 
ideals can be defined for any variety, that is, no Q-Gorenstein assumption is required. 
It is thus natural to wonder whether also in characteristic zero, the theory of multiplier 
ideals can be extended to arbitrary (say normal) varieties. Such an extension was de-
veloped by de Fernex and Hacon [5] and elaborated on by Boucksom, de Fernex, and 
Favre [1]. Multiplier ideals in this generality are still poorly understood, partly due to 
the asymptotic nature of their definition involving infinitely many resolutions of singu-
larities.

The aim of this paper is to study jumping numbers in the non-Q-Gorenstein case. Let 
us fix our definitions.

Definition 1.1 (Pairs and jumping numbers). A pair (X, Z) consists of a normal complex 
variety X and a proper closed subscheme Z � X. A positive real number ξ > 0 is called 
a jumping number of the pair (X, Z) if

J (X, ξZ) � J (X,λZ) for all 0 ≤ λ < ξ.

The set of jumping numbers of (X, Z) is denoted by Ξ(X, Z) ⊂ R+.

For the reader’s convenience, in Sections 3 and 4 of this paper we recall the definition 
of the multiplier ideals J (X, cZ) according to [5]. We then begin by establishing some 
basic properties of jumping numbers, which give a first idea what the set of jumping 
numbers of a pair looks like.
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Proposition 1.2 (Basic properties of jumping numbers). Let (X, Z) be a pair.

(1.2.1) (Nonemptiness) If Z �= ∅, then Ξ(X, Z) �= ∅.
(1.2.2) (Unboundedness) If ξ ∈ Ξ(X, Z), then also ξ + 1 ∈ Ξ(X, Z). In particular, if 

Z �= ∅ then the set Ξ(X, Z) is unbounded above.
(1.2.3) (DCC property) The set Ξ(X, Z) satisfies the descending chain condition, i.e. any 

decreasing subsequence of Ξ(X, Z) becomes stationary. In particular, if ξ ≥ 0 is 
any real number, then (ξ, ξ + ε] ∩ Ξ(X, Z) = ∅ for sufficiently small ε > 0, 
depending on ξ. Furthermore, the set Ξ(X, Z) is countable.

(1.2.4) (Periodicity) If ξ > dimX − 1, then ξ ∈ Ξ(X, Z) if and only if ξ + 1 ∈ Ξ(X, Z).

In the Q-Gorenstein case, it is elementary to see that for any pair (X, Z) the jump-
ing numbers Ξ(X, Z) form a discrete set of rational numbers. De Fernex and Hacon 
[5, Rem. 4.10] asked whether this still holds true in general.

Question 1.3. Let (X, Z) be a pair. Then is the set Ξ(X, Z) of jumping numbers a discrete 
set of rational numbers?

A positive answer at least to the discreteness part of the question is known in several 
cases: if X is projective with at most log terminal2 or isolated singularities [20, Thm. 5.2], 
if X is a toric variety [21, Sec. 5], or if KX is numerically Q-Cartier [2, Thm. 1.3]. For 
the definition of numerically Q-Cartier divisors and numerically Q-factorial varieties, see 
Section 3.3 below.

While it is expected that the set Ξ(X, Z) is always discrete, at the moment we are 
unable to prove this. Therefore we have to content ourselves with considering special 
classes of singularities. Our two main results are the following.

Theorem 1.4 (Discreteness for isolated non-Q-Gorenstein loci). Let (X, Z) be a pair such 
that the non-Q-Cartier locus of KX is zero-dimensional. Then Ξ(X, Z) is a discrete 
subset of R.

Recall that the non-Q-Cartier locus of a Weil divisor D on a normal variety X is 
defined as the closed subset of X consisting of those points where all positive multiples 
mD fail to be Cartier.

Theorem 1.5 (Discreteness in dimension three). Let (X, Z) be a pair, where X is a 
normal threefold (not necessarily projective) whose locus of non-rational singularities is 
zero-dimensional. Then Ξ(X, Z) is discrete.

2 In the sense of [5], i.e. without assuming that KX is Q-Cartier.



326 P. Graf / Journal of Algebra 450 (2016) 323–348
Remark 1.6. By Proposition 1.2.3, the conclusion about discreteness can be rephrased 
as saying that Ξ(X, Z) satisfies ACC (the ascending chain condition) for bounded sub-
sequences.

Theorem 1.5 follows from Theorem 1.4 combined with the following result also proved 
in this article.

Theorem 1.7 (Generic numerical Q-factoriality). Let X be a normal complex variety. 
Then there is a closed subset W ⊂ X of codimension at least three such that X \W is 
numerically Q-factorial.

Concerning rationality of jumping numbers, Urbinati [20, Thm. 3.6] gave an example 
of a normal projective threefold X with a single isolated singularity x ∈ X such that 
for the reduced subscheme Z = {x}, the set Ξ(X, Z) consists only of irrational numbers. 
From Theorem 1.7 and [2, Thm. 1.3], we see that quite generally this phenomenon can 
only happen in codimension at least three.

Corollary 1.8 (Generic discreteness and rationality). Let (X, Z) be a pair. Then there is 
a dense open subset U ⊂ X, not depending on Z, whose complement has codimension at 
least three and such that Ξ(U, Z|U ) is a discrete set of rational numbers.

Remark 1.9. In the example of Urbinati mentioned above, all the jumping numbers are 
algebraic. What is more, all of them are contained in Q(

√
17). In view of this, it is 

natural to ask whether jumping numbers can also be transcendental. It certainly seems 
reasonable to expect this. However, jumping numbers are hard to compute in concrete 
examples, especially in the non-Q-Gorenstein case.

Under a Q-Gorenstein assumption, multiplier ideals are known to reduce to the cor-
responding test ideals in sufficiently large characteristic [18,7,8,19]. It has been asked 
whether this is still true in general (see e.g. [17, Rem. 6.2]). An affirmative partial answer 
was given in [4, Thm. 1]. Using that result, from Theorem 1.7 we deduce the following 
statement.

Corollary 1.10 (Generic comparison to test ideals). Let (X, Z) be a pair, where Z is an 
effective Q-Cartier Weil divisor on X. Then there is a dense open subset U ⊂ X inde-
pendent of Z, whose complement has codimension at least three, such that the following 
holds: Given a model of (U, Z|U ) over a finitely generated Z-subalgebra A of C, and a 
rational number c ≥ 0, there is a dense open subset S ⊂ SpecA such that for all closed 
points s ∈ S, we have

J (U, cZ|U )s = τ(Us, c(Z|U )s).

Here τ(Us, c(Z|U )s) denotes the big (non-finitistic) test ideal of the pair (Us, c(Z|U )s).
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Outline of proof of Theorem 1.4. The key point is the following conjecture of Urbinati 
[21, Conj. 4.6].

Conjecture 1.11 (Global generation conjecture). Let X be a complex normal projective 
variety and D a Weil divisor on X. Then there is an ample Cartier divisor H on X such 
that for any m ∈ N, the sheaf OX(m(D + H)) is globally generated.

It was noted by Urbinati in [20, Sec. 5] that Conjecture 1.11 is closely related to the 
question of discreteness of jumping numbers. In fact, a proof of the conjecture would 
provide an unconditionally positive answer to that question. We establish a weak form 
of the conjecture that only deals with isolated points of the non-Q-Cartier locus of the 
Weil divisor D in question (Theorem 7.1). Turning to the proof of Theorem 1.4, assume 
first for simplicity that X is projective, and suppose by way of contradiction that we are 
given a strictly descending chain of multiplier ideals

J (X, t1Z) � J (X, t2Z) � · · · , (1.12)

where the sequence (tk) converges to an accumulation point t0 of Ξ(X, Z). Theorem 7.1
enables us to find an ample line bundle L on X such that L ⊗ J (X, tkZ) is glob-
ally generated for all k ≥ 1. Taking global sections in (1.12) then yields a contradic-
tion.

In general, if X is a quasi-projective variety such that the non-Q-Cartier locus of KX is 
zero-dimensional, to apply the above reasoning we need to compactify X to a projective 
variety X. The non-Q-Cartier locus of KX may then no longer be zero-dimensional. 
We therefore construct a sequence of ideal sheaves Ik ⊂ OX which on X restricts to 
the sequence (1.12) and which has the property that all L ⊗ Ik are globally generated 
on the open set X ⊂ X, for some ample line bundle L on X. Then we conclude as 
before.

2. Notation and conventions

We work over the field of complex numbers C throughout. A variety is an integral 
separated scheme of finite type over C. A pair (X, Z) consists of a normal variety X
and a proper closed subscheme Z � X. Unless otherwise specified, by a divisor on a 
normal variety X we mean a Weil divisor with integer coefficients. For k ∈ {Z, Q, R}, 
a k-divisor is a Weil divisor with coefficients in k. The group of Z-divisors on X modulo 
linear equivalence is denoted Cl(X).

Boundaries. A boundary on a normal variety X is an effective Q-divisor Δ such that 
KX + Δ is Q-Cartier. In this case we will say that (X, Δ) is a log pair. Note that the 
coefficients of Δ may be larger than 1. If f : Y → X is a proper birational morphism 
from a normal variety Y , we write
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KΔ
Y/X := KY + f−1

∗ Δ − f∗(KX + Δ)

for the relative canonical divisor of (X, Δ).

Reflexive sheaves. If F is a coherent sheaf on a normal variety X, we denote its reflexive 
hull (i.e. its double dual) by F ∗∗. The torsion subsheaf of F is denoted torF . We often 
write F

/
tor as a shorthand for F

/
tor F .

Log resolutions. We will need to discuss log resolutions of different kinds of objects, all of 
which are of course variations on the same theme. For the existence of such resolutions, 
we refer to [5, Thm. 4.2]. Let X be a normal variety. A log resolution of X is a proper 
birational morphism f : X̃ → X, where X̃ is smooth and Exc(f), the exceptional locus 
of f , is a divisor with simple normal crossings (snc, for short). A log resolution of a log 
pair (X, Δ) is a log resolution of X such that Exc(f) ∪ f−1

∗ Δ has snc support.
The constant sheaf of rational functions on X is denoted by KX . A fractional ideal 

sheaf a ⊂ KX on X is a coherent OX-submodule of KX . A log resolution of a nonzero 
fractional ideal sheaf a ⊂ KX is a log resolution f : X̃ → X of X such that a · O

X̃
=

O
X̃

(E) ⊂ K
X̃

for some Cartier divisor E on X̃, where Exc(f) ∪ supp(E) has simple 
normal crossings. Note that a ·O

X̃
∼= f∗a

/
tor, i.e. we do not take the reflexive hull. A log 

resolution of a subscheme Z � X is a log resolution of the ideal sheaf a ⊂ OX ⊂ KX

of Z. That is, the scheme-theoretic inverse image f−1(Z) ⊂ X̃ is required to be a Cartier 
divisor whose support has simple normal crossings with Exc(f).

If we need to simultaneously resolve several objects of the types described above, we 
will talk about joint log resolutions. E.g. using the above notation, a joint log resolution 
of (X, Δ), a, and Z would be a log resolution of each of the three objects such that 
Exc(f) ∪ f−1

∗ Δ ∪ supp(E) ∪ f−1(Z) has snc support.

Remark 2.1. If Z ⊂ X is a Weil divisor such that KX + Z is Q-Cartier, then being a 
log resolution of the subscheme Z ⊂ X is a slightly stronger notion than being a log 
resolution of the log pair (X, Z). We trust that this will not lead to any confusion.

Global generation of sheaves. If F is a coherent sheaf on a variety X and x ∈ X is a 
point, we say that F is globally generated at x if the natural morphism

H0(X,F ) ⊗C OX −→ F

is surjective at x. We say that F is globally generated on an open subset U ⊂ X if F
is globally generated at every point x ∈ U .

Relative Néron–Severi spaces. Let f : Y → X be a proper morphism between normal 
varieties, where Y is Q-factorial. We denote by N1(Y/X)Q the vector space of Q-divisors 
on Y modulo f -numerical equivalence (that is, numerical equivalence on all curves con-
tracted by f). We denote by N1(Y/X)Q the vector space spanned by all curves contracted 
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by f , modulo numerical equivalence. These two vector spaces are finite-dimensional, and 
dual to each other via the intersection pairing

N1(Y/X)Q ×N1(Y/X)Q −→ Q.

Their common dimension is called the relative Picard number ρ(Y/X) of f .

3. Pullbacks of Weil divisors and numerical QQQ-factoriality

In order to define multiplier ideals in the absence of any Q-Gorenstein assumption, 
it is necessary to dispose of a notion of pullback for arbitrary Weil divisors. Such a 
pullback was introduced in [5] and rephrased using the language of nef envelopes in [1]. 
For a certain class of Weil divisors, called numerically Q-Cartier divisors, this pull-
back is particularly well-behaved. Numerically Q-Cartier divisors were introduced in [1]
from a b-divisorial point of view and reinterpreted in a somewhat more down-to-earth 
fashion in [2]. For ease of reference, we recall in this section the relevant facts and defi-
nitions. For more details and full proofs, we refer the reader to the original papers cited 
above.

Remark 3.1. Closely related notions of pullback and numerical Q-Cartierness were al-
ready discussed by Nakayama [15, Ch. II, Lem. 2.12 and Ch. III, Cor. 5.11].

3.1. Pulling back Weil divisors

Consider a proper birational morphism f : Y → X between normal varieties, and let 
D be a Weil divisor on X. The natural pullback f �D of D along f is defined by

OY (−f �D) = (OX(−D) · OY )∗∗,

where we consider OX(−D) ⊂ KX as a fractional ideal sheaf on X. We define the pullback
f∗D of D along f by setting

f∗D := lim
k→∞

f �(kD)
k

= inf
k≥1

f �(kD)
k

,

where the limit and the infimum are to be understood coefficient-wise. The limits actually 
exist in R, hence f∗D is a well-defined R-divisor. If D is Q-Cartier, then this definition 
agrees with the usual notion of pullback. We have f∗(mD) = m · f∗D for any integer 
m ≥ 0. Thus we can extend the map f∗ to arbitrary Q-divisors by clearing denominators. 
Furthermore, we have f∗(−D) ≥ −f∗D. However, this inequality may be strict – see 
Section 3.3 below.



330 P. Graf / Journal of Algebra 450 (2016) 323–348
3.2. Relative canonical divisors

Let f : Y → X be as before, and fix canonical divisors KX and KY on X and on Y , 
respectively, that satisfy KX = f∗KY . For any m ≥ 1, we define the m-th limiting 
relative canonical divisor of Y over X by

KY/X,m := KY − 1
m
f �(mKX)

and the relative canonical divisor of Y over X by

K−
Y/X := KY − f∗KX = lim

m→∞
KY/X,m.

For any m, we have the inequality KY/X,m ≤ K−
Y/X . If KX is Q-Cartier, then K−

Y/X

coincides with the usual relative canonical divisor KY/X . Note, however, that here we 
have not defined the symbol KY/X in general.

3.3. Numerically Q-Cartier divisors

We next address the question of when the equality f∗(−D) = −f∗D holds.

Proposition 3.2 (Numerically Q-Cartier divisors). Let X be a normal variety and D a 
Q-divisor on X. Then the following conditions are equivalent:

(3.2.1) There is a proper birational morphism f : Y → X, where Y is Q-factorial, and 
an f -numerically trivial Q-divisor D′ on Y such that f∗D′ = D.

(3.2.2) For any proper birational morphism f : Y → X where Y is Q-factorial, there is 
an f -numerically trivial Q-divisor D′ on Y such that f∗D′ = D.

(3.2.3) For any proper birational morphism f : Y → X, we have f∗(−D) = −f∗D.

Proof. See [2, Props. 5.3, 5.9]. �
Definition 3.3 (Numerical Q-factoriality). A Q-divisor D on a normal variety X is 
called numerically Q-Cartier if the equivalent conditions of Proposition 3.2 are satis-
fied. The vector space of Q-divisors on X modulo the subspace of numerically Q-Cartier 
divisors is denoted by Clnum(X)Q. The variety X is called numerically Q-factorial if 
Clnum(X)Q = 0, i.e. if every Q-divisor on X is numerically Q-Cartier.

Remark 3.4. In (3.2.1) and (3.2.2), the divisor D′ is unique, and D′ = f∗D. Hence for a 
numerically Q-Cartier divisor D, the R-divisor f∗D is in fact a Q-divisor. In particular, 
if KX is numerically Q-Cartier, then for any normal modification Y → X the relative 
canonical divisor K−

Y/X is a Q-divisor.
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Example 3.5 (Surfaces). Any normal surface is numerically Q-factorial. This follows from 
the existence of Mumford’s pullback for divisors on surfaces [10, Ch. 4.1].

Example 3.6 (Cones). Let Y be a smooth projective variety and L an ample divisor 
on Y . We consider the affine cone X = Ca(Y, L) over Y with respect to L, defined as 
the spectrum of the section ring

R(X,L ) :=
⊕
n≥0

H0(Y, nL).

This is a generalization of the classical affine cone over a variety embedded in projective 
space.

For any prime divisor D on Y , the cone C(D) = Ca(D, L|D) is a divisor on X. The 
map D �→ C(D) extends linearly to give an isomorphism

Cl(X) ∼= Pic(Y )
/
Z · L.

The divisor C(D) is Q-Cartier if and only if D and L are Q-linearly proportional, while 
C(D) is numerically Q-Cartier if and only if D and L are numerically proportional 
[1, Ex. 2.31, Lem. 2.32]. The canonical divisor of X is given by KX = C(KY ).

It follows that X is Q-factorial if and only if on Y , numerical equivalence coincides with 
Q-linear equivalence, and the Picard number ρ(Y ) = 1. The first condition is well-known 
to be equivalent to H1(Y, OY ) = 0. On the other hand, X is numerically Q-factorial if 
and only if ρ(Y ) = 1.

Example 3.7 (More cones). This example is a continuation of the previous one. We make 
the following claim.

In every dimension n ≥ 2, there exist isolated singularities that are numeri-
cally Q-factorial, but not Q-factorial (more precisely, the canonical divisor is not 
Q-Cartier).

Namely, if Y is smooth projective of dimension n − 1 and Picard number one, KY is 
ample, and H1(Y, OY ) �= 0, let B ∈ Pic0(Y ) be a numerically trivial non-torsion divisor 
on Y . Then the cone X = Ca(Y, KY + B) over Y has the required properties.

Concerning the existence of Y , if n = 2 we may simply take Y to be a curve of genus 
g ≥ 2. If n ≥ 3, let A be an abelian n-fold of Picard number one [11, Ex. 1.2.26], and take 
Y ⊂ A to be a smooth ample divisor. Then KY is ample by the adjunction formula and 
H1(Y, OY ) = H1(A, OA) �= 0 by the weak Lefschetz theorem [11, Ex. 3.1.24]. If n ≥ 4, 
then PicA → PicY is an isomorphism [11, Ex. 3.1.25], hence ρ(Y ) = ρ(A) = 1. In case 
n = 3, at least if Y is very general in a sufficiently ample linear system the infinitesimal 
Noether–Lefschetz theorem implies that
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H1,1(A) ∩H2(A,Q) −→ H1,1(Y ) ∩H2(Y,Q)

is surjective [3, Cor. on p. 179]. By the Lefschetz (1, 1)-theorem [11, Rem. 1.1.21], we 
again obtain ρ(Y ) ≤ ρ(A) = 1.

We end this section with some facts about numerically Q-Cartier divisors which we 
will use later.

Proposition 3.8 (Short exact sequence). Let f : Y → X be a proper birational morphism, 
where Y is Q-factorial, and let E1, . . . , E� be the divisorial components of the exceptional 
locus of f . Then we have a short exact sequence of Q-vector spaces

0 −→
�⊕

i=1
Q · [Ei] −→ N1(Y/X)Q −→ Clnum(X)Q −→ 0

induced by the pushforward of divisors along f .

Proof. See [2, Cor. 5.4.ii)]. �
Theorem 3.9 (Rational singularities). If X has rational singularities, then the notions of 
Q-Cartier and numerically Q-Cartier divisors coincide, i.e. any numerically Q-Cartier 
divisor is already Q-Cartier.

Proof. See [2, Thm. 5.11]. �
Remark 3.10. In Theorem 3.9 it is sufficient to assume that X has 1-rational singularities, 
meaning that R1f∗OX̃

= 0 for some (equivalently, any) resolution f : X̃ → X. This can 
be seen from the proof of [2, Thm. 5.11].

4. Non-QQQ-Gorenstein multiplier ideals

Following [5], we recall in this section how to associate a multiplier ideal J (X, cZ) to 
a pair (X, Z) and a real number c ≥ 0. If a ⊂ OX is the ideal sheaf of the subscheme Z, 
the multiplier ideal may also be denoted by J (X, ac).

4.1. The classical case

Classically, one defines multiplier ideals under some Q-Gorenstein condition. More 
precisely, assume that a boundary Δ on X is given, i.e. the divisor KX +Δ is Q-Cartier. 
Let f : Y → X be a joint log resolution of (X, Δ) and a, and write a · OY = OY (−D)
with D an effective Cartier divisor. Then one defines

J ((X,Δ), cZ) := f∗OY (�KY − f∗(KX + Δ) − cD�).
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One checks that this definition is independent of the choice of log resolution. See [12, 
Def. 9.3.60] for more details.

4.2. The general case

Let (X, Z) be a pair and c ≥ 0 a real number. Fix a canonical divisor KX on X. For 
any natural number m ≥ 1, consider a joint log resolution f : Y → X of Z ⊂ X and 
OX(−mKX) ⊂ KX . Note that f may heavily depend on m. We define the m-th limiting 
multiplier ideal sheaf of (X, cZ) as

Jm(X, cZ) := f∗OY (�KY/X,m − cD�) ⊂ OX ,

where D = f−1(Z). This coherent ideal sheaf is independent of the choice of KX and f . 
For any k, m > 0, one has an inclusion Jm(X, cZ) ⊂ Jkm(X, cZ). By the Noethe-
rian property of OX , it follows that the set {Jm(X, cZ)}m≥1 has a unique maximal 
element. We define the multiplier ideal sheaf J (X, cZ) to be this maximal element. 
We have J (X, cZ) = Jm(X, cZ) for m sufficiently divisible. If KX is Q-Cartier, then 
this definition of multiplier ideal agrees with the classical one. More precisely, we have 
J ((X, 0), cZ) = Jm(X, cZ) as soon as mKX is Cartier.

By [5, Prop. 4.9], we have that J (X, cZ) ⊂ J (X, c′Z) for c′ < c and that J (X, cZ) =
J (X, (c +ε)Z) for ε > 0 sufficiently small, depending on c. Hence the following definition 
makes sense.

Definition 4.1 (Jumping numbers). A positive real number ξ > 0 is called a jumping 
number of the pair (X, Z) if

J (X, ξZ) � J (X,λZ) for all 0 ≤ λ < ξ.

We denote the set of jumping numbers of (X, Z) by Ξ(X, Z) ⊂ R+.

4.3. Compatible boundaries

The following definition [5, Def. 5.1] serves to relate the general case just described 
to the classical one.

Definition 4.2 (Compatible boundary). Let (X, Z) be a pair, and fix an integer m ≥ 2. 
A boundary Δ on X is said to be m-compatible for (X, Z) if there exists a canonical 
divisor KX on X and a joint log resolution f : Y → X of (X, Δ), Z ⊂ X and OX(−mKX)
such that:

(4.2.1) the divisor mΔ is integral, and �Δ� = 0,
(4.2.2) no component of Δ is contained in the support of Z, and
(4.2.3) the equality KΔ = KY/X,m holds.
Y/X
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The point of this definition is the following observation.

Proposition 4.3 (Realizing multiplier ideals as classical ones). Let (X, Z) be a pair and 
c ≥ 0 a real number. Choose an integer m such that J (X, cZ) = Jm(X, cZ), and let Δ
be an m-compatible boundary for (X, Z). Then we have

J (X, cZ) = J ((X,Δ), cZ).

Proof. See [5, Prop. 5.2]. �
Of course, the usefulness of this notion depends on the existence of compatible bound-

aries. This was established in [5, Thm. 5.4]. The proof given there is constructive and 
yields the following more precise result, which we record for later use.

Theorem 4.4 (Existence of compatible boundaries). Let (X, Z) be a pair, and let m ≥ 2
be a natural number. Choose an effective Weil divisor D on X such that KX − D is 
Cartier, and let L ∈ PicX be a line bundle such that L (−mD) := L ⊗ OX(−mD)
is globally generated. Pick a finite-dimensional subspace V ⊂ H0(X, L (−mD)) that 
generates L (−mD), and let M be the divisor of a general element of V . Then

Δ := 1
m
M

is an m-compatible boundary for (X, Z). �
It follows that for any pair (X, Z) and c ≥ 0, the set of ideal sheaves{

J ((X,Δ), cZ)
∣∣ Δ a boundary on X in the sense of Section 2

}
has a unique maximal element, namely J (X, cZ). This reduces some, but by no means 
all, questions about multiplier ideals to the classical case. Roughly speaking, as long 
as one is dealing with only finitely many values of (X, Z) and c, one may choose the 
number m sufficiently divisible such that J = Jm for all those pairs, and then one picks 
an m-compatible boundary. In general, however, it is hard to tell where the sequence of 
limiting multiplier ideals stabilizes. Even if the pair (X, Z) is fixed, given a collection of 
infinitely many values of c, the required m’s might become arbitrarily large. One then 
needs to consider infinitely many different compatible boundaries. If instead one tries 
to work directly with the definitions, one needs to consider infinitely many resolutions 
of X.

However, if KX is numerically Q-Cartier, we can circumvent these difficulties thanks 
to the following theorem.

Theorem 4.5 (Multiplier ideals on numerically Q-Gorenstein varieties). Let (X, Z) be a 
pair, where KX is numerically Q-Cartier. Choose a log resolution f : X̃ → X of (X, Z). 
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Then for any t > 0 we have

J (X, tZ) = f∗OX̃

(
�K−

X̃/X
− t · f−1(Z)�

)
.

Proof. See [2, Thm. 1.3]. �
5. Elementary properties of jumping numbers

The aim of the present section is to prove Proposition 1.2. So let (X, Z) be a pair. 
We denote the ideal sheaf of Z by a ⊂ OX .

5.1. Nonemptiness

Pick a canonical divisor KX on X and a number m such that J (X, ∅) = Jm(X, ∅). If 
f : Y → X is a joint log resolution of (X, Z) and OX(−mKX), then

J (X, ∅) = f∗OY (�KY/X,m�).

As Z �= ∅, we have a ·OY = OY (−D), where D is a nonzero effective Cartier divisor on Y . 
Pick x ∈ supp(Z) arbitrarily, and let E ⊂ supp(D) be a prime divisor with x ∈ f(E). 
Take any nonzero function germ h ∈ J (X, ∅)x. Then for ξ � 0, the coefficient of E
in −�K−

Y/X − ξD� will be larger than the order of vanishing of f∗h along E. Fix such 

a number ξ. Let � be such that J (X, ξZ) = J�(X, ξZ). Let g : Ỹ → X be a joint log 
resolution of (X, Z) and OX(−�KX) that factors through f . Then

J (X, ξZ) = g∗OỸ (�KỸ /X,� − ξD�).

As KỸ /X,� ≤ K−
Ỹ /X

, we see that g∗h is not contained in OỸ (�KỸ /X,� − ξD�) at the 

generic point of the strict transform of E on Ỹ . Hence h is not contained in J (X, ξZ)x. 
It follows that the inclusion J (X, ξZ) � J (X, ∅) is strict, and so there must be a jumping 
number of the pair (X, Z) in the interval (0, ξ].

5.2. Unboundedness

Let ξ ∈ Ξ(X, Z) be a jumping number. Spelled out explicitly, this means that for any 
0 < ε ≤ ξ there is a point x ∈ X and a function h ∈ OX,x, both depending on ε, such 
that h ∈ J (X, (ξ − ε)Z)x, but h /∈ J (X, ξZ)x.

Fix an arbitrary 0 < ε ≤ ξ. We regard a germ g ∈ ax as a regular function on a small 
neighborhood U of x. For any proper birational morphism f : Y → X such that Y is 
normal and a · OY = OY (−D) is invertible, we may then write

div(f∗g) = D|V + Mg,
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where V = f−1(U) and Mg is an effective divisor on V . Here we take the divisor of f∗g

as a function, not as a section of OY (−D).
Choose a finite set of generators for the ideal ax = 〈g1, . . . , gr〉 in the Noetherian

ring OX,x. Then after possibly shrinking U , the sheaf OY (−D)|V will be generated by 
the sections f∗g1, . . . , f∗gr. It follows that if g =

∑r
i=1 λigi ∈ ax is a general C-linear 

combination of the chosen generators, then Mg and D|V do not have any common com-
ponents.

Now fix such a general g ∈ ax. As h ∈ Jm(X, (ξ − ε)Z)x for some m, we get

g · h ∈ Jm(X, (ξ + 1 − ε)Z)x ⊂ J (X, (ξ + 1 − ε)Z)x

from the definitions. On the other hand, we will show that g · h /∈ J (X, (ξ + 1)Z)x. 
Proceeding by contradiction, assume that g · h ∈ Jm(X, (ξ + 1)Z)x for some m. Since 
Mg and D|V do not share any common components, it follows that

h ∈ Jm(X, ξZ)x ⊂ J (X, ξZ)x,

contradicting the definition of h. So J (X, (ξ + 1)Z) � J (X, (ξ + 1 − ε)Z). As ε was 
chosen arbitrarily, this proves that ξ + 1 is a jumping number.

The second statement of (1.2.2) follows from what we have just proved, combined 
with (1.2.1).

5.3. DCC property

Any decreasing sequence ξ1 > ξ2 > · · · contained in Ξ(X, Z) would give rise to a 
strictly ascending chain of coherent ideal sheaves

J (X, ξ1Z) � J (X, ξ2Z) � · · · ,

which is impossible by the Noetherian property of OX . For the second statement, assum-
ing it were false we can easily construct a decreasing sequence as above. For countability, 
consider the following subset of R:

A :=
{
a ∈ R

∣∣ Ξ(X,Z) ∩ [0, a] is countable
}
.

As 0 ∈ A, this set is nonempty. If (an) ⊂ A is a sequence converging to some number a, 
it is immediate that also a ∈ A. Hence A is closed. By the second part of (1.2.3), the 
set A is open. It follows that A = R, and then Ξ(X, Z) =

⋃
n∈N

(
Ξ(X, Z) ∩ [0, n]

)
is 

countable.

Remark 5.1. Of course, the proof just given has nothing to do with jumping numbers, 
and it shows quite generally that any DCC set is countable.
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5.4. Periodicity

By (1.2.2), it suffices to show that if ξ > dimX − 1 is not a jumping number, then 
also ξ + 1 is not a jumping number. So we assume that J (X, (ξ − ε)Z) = J (X, ξZ) for 
sufficiently small ε > 0, and we need to show J (X, (ξ + 1 − ε)Z) = J (X, (ξ + 1)Z) for 
small ε > 0.

Claim 5.2 (Skoda’s theorem). For any c ≥ dimX − 1, we have

J (X, (c + 1)Z) = a · J (X, cZ).

Proof. Fix a number m such that J (X, cZ) = Jm(X, cZ) and J (X, (c + 1)Z) =
Jm(X, (c + 1)Z), and choose an m-compatible boundary Δ for the pair (X, Z). We 
then have

J (X, cZ) = J ((X,Δ), cZ) and J (X, (c + 1)Z) = J ((X,Δ), (c + 1)Z)

by Proposition 4.3. The claim now follows from Skoda’s theorem [12, Thm. 9.6.21.ii)], 
asserting that

J ((X,Δ), (c + 1)Z) = a · J ((X,Δ), cZ).

Note that [12, Thm. 9.6.21] is only applicable if X is smooth, Δ = 0, and c is rational. 
However, as explained in Remark 9.6.23 and after Variant 9.6.39 of [12], the statement 
remains true in the generality required here. Indeed, upon replacing the relative vanishing 
of [12, Variant 9.4.4] by Thm. 9.4.17 of that book, the proof of Skoda’s theorem goes 
through verbatim, even if c is not rational. �

Returning to the proof of (1.2.4), for ε > 0 sufficiently small Claim 5.2 yields

J (X, (ξ + 1 − ε)Z) = a · J (X, (ξ − ε)Z) = a · J (X, ξZ) = J (X, (ξ + 1)Z),

finishing the proof of (1.2.4) and the whole Proposition 1.2.

6. Resolutions of sheaves

As a preparation for the proof of Theorem 1.4, we recall here the notion of resolution 
morphism for a coherent sheaf (not to be confused with resolutions in the sense of 
homological algebra) and a positivity property of such resolutions which will prove crucial 
for us.

The construction presented here is essentially due to Rossi [16, Thm. 3.5] in the more 
general context of coherent analytic sheaves on complex spaces. However, as the positivity 
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property mentioned above is not addressed in [16], we have chosen to include here a full 
account of the construction of sheaf resolutions (in the algebraic case). Our proof is 
somewhat simpler than the original argument. Furthermore, it answers a question of 
Rossi [16, p. 72] asking for a universal property of his construction.

Definition 6.1 (Resolution of a sheaf). Let F be a coherent sheaf on a normal variety X. 
A resolution of F is a proper birational morphism f : Y → X such that Y is normal and 
f∗F

/
tor is locally free. A resolution f of F is called minimal if every other resolution 

of F factors through f .

In the literature, the process of resolving a sheaf is also known as a Nash transfor-
mation. Note that a resolution of a sheaf F on X will usually not be a resolution of 
singularities for X. Of course, the minimal resolution of F is unique if it exists.

Theorem 6.2 (Existence of resolutions). Let X be a normal variety and F a coherent 
sheaf on X. Then the minimal resolution f : Y → X of F exists. Furthermore, if F has 
rank one, then f∗F

/
tor is an f -ample invertible sheaf.

Proof. First we construct the required resolution locally. After shrinking X, we may 
assume that there is a surjection α : O⊕p

X � F for some integer p. Let X◦ be the open 
subset of X where F is locally free, say of rank r. Then α determines a morphism 
F : X◦ → G := Gr(p, r) into the Grassmannian of r-dimensional quotients of Cp. We 
may view F as a rational map X ��� G.

Let π : X̃ → X be a resolution of indeterminacy for F , i.e. a blowup such that F
extends to a morphism ϕ : X̃ → G.

X̃

π
ϕ

X
F

G

Let O⊕p
G � E be the tautological quotient bundle on G. Then we have a surjection 

π∗F � ϕ∗E . It is an isomorphism on π−1(X◦), hence it induces an isomorphism 
π∗F

/
tor ∼= ϕ∗E . In particular, π∗F

/
tor is locally free. Conversely, if π : X̃ → X

is a blowup such that π∗F
/
tor is locally free, then the surjection

O⊕p

X̃

π∗α−−−→ π∗F −→ π∗F
/
tor

provides a morphism X̃ → G that extends F .
Now let Y ′ ⊂ X ×G be the closure of the graph of F , and let Y be the normalization 

of Y ′.
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Y
ν

f

Y ′

pr1
pr2

X
F

G

Then f = pr1 ◦ ν : Y → X is a resolution of indeterminacy for F , and every other such 
resolution π : X̃ → X with X̃ normal factors through f . By what we have observed 
above, this means that f is a minimal resolution of F . By uniqueness of the minimal 
resolution, f does not depend on the surjection α chosen in the beginning. In particular, 
the local constructions glue to give a globally defined minimal resolution of F . This 
proves the first half of the theorem.

For the second statement, assume that F has rank one. Since the statement is local, 
we may again assume that we are in the local situation described above, and we continue 
to use that notation. Note that since F has rank one, G = Gr(p, 1) = Pp−1. So

pr∗1 F
/
tor ∼= pr∗2 OPp−1(1).

It follows immediately that pr∗1 F
/
tor is ample (even very ample) on the fibres of pr1. 

As ampleness is preserved under finite pullbacks, pulling back everything to the normal-
ization Y of Y ′ we get that f∗F

/
tor is ample on the fibres of f . By [11, Thm. 1.7.8], 

this implies the f -ampleness of f∗F
/
tor. �

Remark 6.3. If F has rank one (which is the only case we shall need), an alternative 
approach is as follows. Replacing F by F

/
tor, we may assume that F is torsion-

free. Then F is isomorphic to a fractional ideal sheaf a ⊂ KX . Let f : Y → X be 
the normalization of the blowing-up of a, which can be defined in exactly the same 
fashion as the blowing-up of an ordinary ideal sheaf [9, Ch. II, Sec. 7]. Then the as-
sertions we need to prove follow directly from the analogues of [9, Ch. II, Props. 7.14, 
7.10].

Remark 6.4. If F has rank r ≥ 2, then there is no resolution f of F such that f∗F
/
tor

is an f -ample vector bundle. For the minimal resolution, this can be seen from the proof 
of Theorem 6.2 and the fact that the tautological quotient bundle on the Grassmannian 
Gr(p, r) is not ample if r ≥ 2 [12, Ex. 6.1.6]. As any resolution factors through the 
minimal one, the assertion follows.

Remark 6.5. It is clear that both the proof of Theorem 6.2 as well as the alternative 
approach outlined in Remark 6.3 work over an algebraically closed field of arbitrary 
characteristic.
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7. Global generation of Weil divisorial sheaves

The purpose of the present section is to prove the following theorem, which is a special 
case of Conjecture 1.11 and generalizes the previously known special case [20, Prop. 5.5], 
where X is required to have isolated singularities.

Theorem 7.1 (Global generation for isolated non-Q-Cartier loci). Let X be a normal 
projective variety and D a Weil divisor on X, with non-Q-Cartier locus W ⊂ X. Define 
the open set U ⊂ X as the complement of W union the isolated points of W . Then there 
is an ample Cartier divisor H on X such that for m ∈ N sufficiently divisible, the sheaf 
OX(m(D + H)) is globally generated on U .

The proof proceeds along the general lines of [20], except that instead of passing to 
a resolution of X and using Kawamata–Viehweg vanishing, we only resolve the sheaf 
OX(D) (in the sense of Section 6) and use Fujita vanishing. In particular, all the key 
ingredients of our proof (the others being relative Serre vanishing and Castelnuovo–
Mumford regularity) remain valid in arbitrary characteristic. Hence we see that Theo-
rem 7.1 is also true in positive characteristic, as one might expect.

Remark 7.2. In Conjecture 1.11, the conclusion holds for all m ∈ N and not just for 
sufficiently divisible m. This should also be true of Theorem 7.1. We have not paid 
attention to this, as it is not needed for our purposes and would only complicate the 
proof.

Before starting the proof, we record one auxiliary lemma.

Lemma 7.3 (Extensions of globally generated sheaves). Let X be a projective variety, and 
let

0 −→ F ′ −→ F −→ F ′′ −→ 0

be a short exact sequence of coherent sheaves on X. Assume that F ′ is globally generated 
and that H1(X, F ′) = 0. If x ∈ X is any point such that F ′′ is globally generated at x, 
then so is F .

Proof. We have the following diagram with exact rows:

0 H0(F ′) ⊗ OX,x H0(F ) ⊗ OX,x H0(F ′′) ⊗ OX,x 0

0 F ′
x Fx F ′′

x 0.

The outer vertical maps are surjective. By the four lemma, so is the middle one. �
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7.1. Proof of Theorem 7.1

For convenience of the reader, the proof is divided into four steps.

Step 1: Blowing up. Let D̃ = N0 · D be the smallest positive multiple of D which is 
Cartier outside of W , and let H̃ = N0 ·H for some very ample Cartier divisor H on X. 
Let f : Y → X be the minimal resolution of OX(D̃). Then f is an isomorphism outside 
of W , and

OY (B) := f∗OX(D̃)
/

tor

is an f -ample invertible sheaf by Theorem 6.2. Note that we are free to replace D by 
D + N1 · H̃ for any N1 > 0. This does not change N0 and f , and it changes B to 
B + f∗(N0N1 · H̃). Hence by [10, Prop. 1.45], we may assume that the Cartier divisor B
is globally ample on Y .

Step 2: Vanishing theorems. By Fujita vanishing [11, Thm. 1.4.35], we have

Hi(Y,OY (mB + P )) = 0 for i > 0, m � 0 and any nef divisor P on Y .

Furthermore, by relative Serre vanishing [11, Thm. 1.7.6]

Rif∗OY (mB) = 0 for i > 0 and m � 0.

It now follows from the projection formula for higher direct images [9, Ch. III, Ex. 8.3]
and the Leray spectral sequence associated to the map f and the sheaf OY (mB+� ·f∗H̃)
that

Hi(X, f∗OY (mB) ⊗ OX(�H̃)) = 0 for i > 0, m � 0 and � ≥ 0.

By Castelnuovo–Mumford regularity [11, Thm. 1.8.5], for m � 0 the sheaf

Fm := f∗OY (mB) ⊗ OX(mH̃)

is globally generated and satisfies H1(X, Fm) = 0.

Step 3: Pushing down. Observe that Fm is torsion-free and that its reflexive hull F ∗∗
m is 

isomorphic to OX(m(D̃+ H̃)). Indeed, both sheaves are reflexive and they agree outside 
of W , which has codimension at least two in X. Thus the natural map Fm → F ∗∗

m yields 
a short exact sequence

0 −→ Fm −→ OX(m(D̃ + H̃)) −→ Qm −→ 0,
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where Qm is supported on W . We are aiming to show that the middle term OX(m(D̃ +
H̃)) is globally generated on U . So let x ∈ U be arbitrary. Then either x /∈ W , whence 
the stalk Qm,x is zero, or x ∈ W is isolated, hence so is x ∈ suppQm. In either case, 
Qm is globally generated at x. By Lemma 7.3, also OX(m(D̃+ H̃)) is globally generated 
at x. Since x ∈ U was arbitrary, it follows that OX(m(D̃ + H̃)) is globally generated 
on U .

Step 4: End of proof. We have shown that there is an m0 ∈ N such that for m ≥ m0, the 
sheaf OX(m(D̃+ H̃)) is globally generated on U . Since m(D̃+ H̃) = mN0 · (D+H), this 
proves the claim of the theorem if we take “m sufficiently divisible” to mean “m divisible 
by m0N0”.

8. Discreteness for isolated non-QQQ-Gorenstein loci

This section is devoted to the proof of Theorem 1.4, repeated here for the reader’s 
convenience.

Theorem 8.1 (Discreteness for isolated non-Q-Gorenstein loci). Let (X, Z) be a pair such 
that the non-Q-Cartier locus of KX is zero-dimensional. Then Ξ(X, Z) is a discrete 
subset of R.

8.1. Auxiliary results

We begin with a few easy observations.

Lemma 8.2 (Descending chains of ideals). Let X be a projective variety, and let

J1 ⊃ J2 ⊃ · · ·

be a descending chain of coherent ideal sheaves on X. Let U ⊂ X be an open subset. 
Assume that there exists a line bundle L ∈ PicX such that for any k ≥ 1, the sheaf 
L ⊗ Jk is globally generated on U . Then the sequence

J1|U ⊃ J2|U ⊃ · · ·

stabilizes, i.e. we have Jk|U = Jk+1|U for k � 1.

Proof. The chain of complex vector spaces

H0(X,L ⊗ J1) ⊃ H0(X,L ⊗ J2) ⊃ · · ·

stabilizes for dimension reasons. So for k � 1 we have a diagram
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H0(X,L ⊗ Jk) ⊗C OU H0(X,L ⊗ Jk+1) ⊗C OU

(L ⊗ Jk)|U (L ⊗ Jk+1)|U .

This implies (L ⊗ Jk)|U = (L ⊗ Jk+1)|U , and then Jk|U = Jk+1|U . �
Proposition 8.3 (Global generation of twisted multiplier ideals). Let (X, Z) be a pair, 
where X is projective, and let c ≥ 0 be a real number. Choose a boundary Δ on X and 
a Cartier divisor B such that OX(B) ⊗ JZ is globally generated. Furthermore let L be 
a very ample Cartier divisor such that L − (KX + Δ + cB) is big and nef. Then for 
n ≥ dimX + 1, the sheaf

OX(nL) ⊗ J ((X,Δ), cZ)

is globally generated.

Proof. This is a combination of Nadel vanishing in the form of [12, Prop. 9.4.18] and 
Castelnuovo–Mumford regularity. �
8.2. Proof of Theorem 8.1

Again, for the sake of readability the proof is divided into five steps.

Step 0: Setup of notation. We need to show that Ξ(X, Z) is discrete. Arguing by con-
tradiction, assume that t0 ∈ R is an accumulation point. Then there is a sequence 
(tk) ⊂ Ξ(X, Z) \ {t0} converging to t0. By Proposition 1.2(3), we may assume that the 
sequence (tk) is strictly increasing.

Step 1: Simplifying assumptions. Cover X by finitely many affine open subsets Ui. Then 
clearly

Ξ(X,Z) =
⋃
i

Ξ(Ui, Z|Ui
).

For some index i, the set Ξ(Ui, Z|Ui
) contains a subsequence of (tk). Hence we may 

assume that X = Ui ⊂ AN is affine. Taking the closure of X in PN and normalizing 
yields the following assumption.

Additional Assumption 8.4. The variety X is embedded as an open set X ⊂ X in a 
normal projective variety X.

We denote by Z the closure of Z considered as a locally closed subscheme of X.
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Step 2: Constructing compatible boundaries. Let D be an effective Weil divisor on X
such that KX − D is Cartier, and let D be its closure in X. By our assumptions, the 
non-Q-Cartier locus of D is finite. Hence by Theorem 7.1, there exists an ample Cartier 
divisor H on X and a positive integer m0 such that OX(m(H−D)) is globally generated 
on X for all m ∈ m0 · N. For such m, define

Δm := 1
m
M, where M ∈ |m(H −D)| is a general element.

Then by Theorem 4.4, the divisor Δm := Δm|X is an m-compatible boundary for the 
pair (X, Z). Note that the Q-linear equivalence class of Δm ∼Q H −D does not depend 
on m. Note also that Δm need not be the closure of Δm, as Δm might have components 
contained in X \X.

Step 3: Global generation. Let B be an ample Cartier divisor on X such that OX(B) ⊗JZ

is globally generated. As we have remarked above, the numerical equivalence class of 
KX + Δm is independent of m. Thus we can find a very ample Cartier divisor L on X
such that

L− (KX + Δm + t0B) is big and nef for all m ∈ m0 · N.

Then also L − (KX + Δm + tkB) is big and nef for k ≥ 1. Fix n ≥ dimX + 1. By 
Proposition 8.3,

OX(nL) ⊗ J ((X,Δm), tkZ) is globally generated for all m ∈ m0 · N, k ≥ 1.

Claim 8.5. The sheaf OX(nL) ⊗ J (X, tkZ) is globally generated on X for all k ≥ 1.

Proof. For m ∈ m0 ·N sufficiently divisible, we have J (X, tkZ) = Jm(X, tkZ). Fix such 
an m. Then, since Δm is m-compatible,

J (X, tkZ)|X = J (X, tkZ) = J ((X,Δm), tkZ) = J ((X,Δm), tkZ)|X .

We also have

OX(nL) ⊗ J ((X,Δm), tkZ) ⊂ OX(nL) ⊗ J (X, tkZ)

by [5, Rem. 5.3]. As the left-hand side sheaf is globally generated, so is the right-hand side 
one wherever they agree. In particular, this is the case on the open subset X ⊂ X. �
Step 4: End of proof. Consider the descending chain

J (X, t1Z) ⊃ J (X, t2Z) ⊃ · · · .
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By Claim 8.5 and Lemma 8.2, the restriction of this chain to X stabilizes. This restriction 
is nothing but

J (X, t1Z) ⊃ J (X, t2Z) ⊃ · · · .

However, by the definition of jumping numbers we have J (X, tkZ) � J (X, tk+1Z) for 
all k. This is a contradiction, showing that Ξ(X, Z) is discrete and thus finishing the 
proof.

9. Generic numerical QQQ-factoriality

In this section, we prove Theorem 1.7 from the introduction:

Theorem 9.1 (Generic numerical Q-factoriality). Let X be a normal variety. Then there 
is a closed subset W ⊂ X of codimension at least three such that X \W is numerically 
Q-factorial.

Proof. Let f : X̃ → X be a log resolution of X, with exceptional locus E = E1+ · · ·+Ek. 
Re-indexing, we may assume that for some number �, we have codimX f(Ei) = 2 for 1 ≤
i ≤ �, while codimX f(Ei) ≥ 3 for � < i ≤ k. We may remove the closed set 

⋃
�<i≤k f(Ei)

from X, since it has codimension at least three. Furthermore, by generic smoothness 
[9, Ch. III, Cor. 10.7], for each 1 ≤ i ≤ � the morphism fi := f |Ei

: Ei → f(Ei) is 
smooth over a smooth dense open subset Vi of f(Ei). The union 

⋃�
i=1 f(Ei) \Vi is again 

closed of codimension at least three in X, hence we may remove it. Put together, this 
yields the following additional assumption.

Additional Assumption 9.2. The exceptional locus of f is E = E1 + · · · + E�. For any 
1 ≤ i ≤ �, we have that f(Ei) is smooth of codimension exactly two in X and that the 
morphism fi : Ei → f(Ei) is smooth.

We then have the following claim.

Claim 9.3. For any index 1 ≤ i ≤ �, there is a natural number ni and a numerical class 
γi ∈ N1(X̃/X)Q such that the following holds. For any x ∈ f(Ei), we have that f−1

i (x) =
C

(1)
i ∪ · · · ∪ C

(ni)
i is a disjoint union of smooth curves, all of which are numerically 

equivalent to γi, i.e. we have [C(j)
i ] = γi ∈ N1(X̃/X)Q for all 1 ≤ j ≤ ni.

Proof. Fix an index i. The morphism fi : Ei → f(Ei) is smooth of relative dimension 
one. Let

Ei

gi
Bi

hi

f(Ei)



346 P. Graf / Journal of Algebra 450 (2016) 323–348
be its Stein factorization. Then gi is smooth of relative dimension one with connected 
fibres, and hi is finite étale, say of degree ni.

It is then clear that for any x ∈ f(Ei), the fibre f−1
i (x) is a disjoint union of ni many 

smooth curves C(j)
i . Each of these curves is a (scheme-theoretic) fibre of gi, hence they 

all represent the same class Γi ∈ N1(Ei/Bi)Q = N1(Ei/f(Ei))Q, independent of the 
point x. If γi is the image of Γi under the natural map N1(Ei/f(Ei))Q → N1(X̃/X)Q, 
then [C(j)

i ] = γi for all indices j. �
Claim 9.3 implies that N1(X̃/X)Q is spanned by γ1, . . . , γ�. In particular, the relative 

Picard number of f is ρ(X̃/X) = �. Hence the dimension of N1(X̃/X)Q is likewise �. 
We now make use of the short exact sequence of Q-vector spaces

0 −→
�⊕

i=1
Q · [Ei] −→ N1(X̃/X)Q −→ Clnum(X)Q −→ 0

given by Proposition 3.8. By what we have just proved, the map on the left is an iso-
morphism for dimension reasons, which yields that Clnum(X)Q = 0. This means that X
is numerically Q-factorial. �
10. Discreteness in dimension three

Recall that Theorem 1.5 states the following:

Theorem 10.1 (Discreteness in dimension three). Let (X, Z) be a pair, where X is a nor-
mal threefold whose locus of non-rational singularities is zero-dimensional. Then Ξ(X, Z)
is a discrete subset of R.

Proof. By Theorem 1.7 and the assumption, there is a finite subset W ⊂ X such that 
X \ W is numerically Q-factorial and has rational singularities. It then follows from 
Theorem 3.9 that X \W is Q-factorial, i.e. every Weil divisor on X is Q-Cartier outside 
a finite set of points. In particular, the non-Q-Cartier locus of KX is zero-dimensional. 
Now Theorem 1.4 applies to show that Ξ(X, Z) is discrete. �
11. Proof of corollaries

Proof of Corollary 1.8. By Theorem 9.1, there is an open subset U ⊂ X such that X \U
has codimension at least three in X, and U is numerically Q-factorial. In particular, 
KU is numerically Q-Cartier. Note that U does not depend on Z. Let π : Ũ → U be a log 
resolution of Z|U ⊂ U , so that JZ|U · OŨ = OŨ (−D) for some effective Cartier divisor 
D on Ũ . We may write
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K−
Ũ/U

=
k∑

i=1
aiEi and D =

k∑
i=1

riEi

for some k ∈ N and suitable ai ∈ Q, ri ∈ N0 and prime divisors Ei on Ũ .
By Theorem 4.5, for any t > 0 we have

J (U, tZ|U ) = π∗OŨ

(
�K−

Ũ/U
− tD�

)
= π∗OŨ

(
k∑

i=1
�ai − t · ri�Ei

)
.

This implies that if t is a jumping number of (U, Z|U ), then ai− t ·ri is a negative integer 
for some index 1 ≤ i ≤ k such that ri �= 0. Hence

Ξ(U,Z|U ) ⊂
{
ai + m

ri

∣∣∣∣ ∃ 1 ≤ i ≤ k such that ri �= 0, and m ∈ N

}
.

The set on the right-hand side is clearly discrete and consists of rational numbers only. 
So Ξ(U, Z|U ) enjoys the same properties. This ends the proof. �
Proof of Corollary 1.10. Immediate from Theorem 1.7 and [4, Thm. 1]. �
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