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1. Introduction

In [1] Aluffi introduced a graded algebra for the purpose of defining a characteristic 
cycle of a hypersurface in parallel to the well-known conormal cycle in intersection theory. 
Inspired by this construction, in [7] the first author and then in [8] the first two authors 
have explored its algebraic side, naming it the Aluffi algebra of a pair of ideals J ⊂ I (or 
of I on R/J). A little later, the torsion-freeness problem stated in [8] was considered by 
the first and the third authors in [9] for a special class of ideals. However, by and large, 
this question is widely open.

By definition, the (embedded) Aluffi algebra is

AR/J(I/J) := SR/J(I/J) ⊗SR(I) RR(I) �
⊕
t≥0

It/JIt−1,

where SB(a) and RB(a) denote respectively the symmetric and the Rees algebra of an 
ideal a in a ring B. Clearly, there are natural surjections SR/J(I/J) � AR/J(I/J) �
RR/J(I/J). The kernel of the rightmost surjection, called the module of Valabrega–Valla
has appeared before in a different context (see [13], also [14, 5.1]):

VVJ⊂I =
⊕
t≥2

J ∩ It

JIt−1 . (1)

As it turns out, provided I has a regular element module J , the Valabrega–Valla module 
is the torsion of the Aluffi algebra [8, Proposition 2.5] and, consequently, the Rees algebra 
of I/J is the Aluffi algebra modulo its torsion. We say that the pair of ideals J ⊂ I is
(Aluffi) torsion-free if VVJ⊂I = {0}. Dealing directly with the Valabrega–Valla module 
makes the structure of the Aluffi algebra itself slightly invisible. On the bright side, the 
results get simplified since for an ideal I of quadrics as considered in this paper the 
heavy work is transferred to the nature of the Jacobian ideal of I. Besides, the existence 
of non-trivial torsion is often delivered at the level of degree 2 of VVJ⊂I .

In this work we focus on the case where J ⊂ R = k[x0, . . . , xn] denotes the ideal of 
a set of points in projective space Pn = P

n
k over an algebraically closed field k, and I

denotes the Jacobian ideal of J , i.e., I = (J, In(Θ)) where In(Θ) is the ideal of n-minors 
of the Jacobian matrix Θ of a minimal set of homogeneous generators of J . We will 
restrict ourselves to the case where the number of points does not exceed 2n, in which 
case the ideal is generated by forms of degree ≤ 2 [4, Theorem 1.4], consequently Θ has 
linear entries. In addition, the standing assumption will be that the points are in general 
linear position.

Now, quite generally, suppose that J is an ideal generated by 2-forms in the standard 
graded polynomial ring R = k[x0, . . . , xn]. In this situation, the Jacobian matrix Θ has 
linear entries throughout. If ht (J) ≥ 2 then, as a particular case of [8, Example 2.19] (see 
also [9, Proposition 1.5]), knowing that the ideal Ir(Θ) is the rth power of the irrelevant 
maximal ideal of R implies that the pair J ⊂ (J, Ir(Θ)) is Aluffi torsion-free.
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The overall tactics we employ follow this path. However, there are some cases where 
Ir(Θ) is smaller. These exceptions require a special treatment since the pair J ⊂ I may 
still be torsion-free. The finer analysis crosses recent examples of Gorenstein ideals and 
in one case the underlying geometry has a classical flavor interwoven with additional 
results from commutative algebra.

The basic preliminary statement of the paper is Theorem 2.3, while the main results 
concerning the central matter are Proposition 4.1, Proposition 4.5 and Theorem 4.4.

2. Ideal of points generated by quadrics

Let R = k[X] = k[x0, . . . , xn] denote a standard graded polynomial ring over a field k, 
let J ⊂ R be a homogeneous ideal and let I ⊂ R stand for the Jacobian ideal of J , by 
which we always mean the ideal (J, Ir(Θ)) where r = ht (J) and Ir(Θ) stands for the 
critical ideal of J , i.e., the ideal generated by the r-minors of the Jacobian matrix Θ of 
a set of generators of J . (It is well-known that the ideal (J, Ir(Θ))/J ⊂ R/J does not 
depend on the choice of generators of J .)

We will henceforth focus on the case of an ideal of points in projective space generated 
by 2-forms. Let Γ = {p1, . . . , ps} be a set of distinct points of Pn = P

n
k , where k is an 

algebraically closed field and n ≥ 2. The defining ideal of Γ is the ideal J = ∩s
i=1I(pi)

where I(pi) is the prime ideal of pi – since we are assuming that k is algebraically 
closed then I(pi) is generated by n linear forms. Note that R/J is a reduced ring of 
dimension one, hence is a Cohen–Macaulay ring. We say that the points in Γ are in 
general linear position if either s ≤ n and the points span a Ps−1, or else s ≥ n + 1, 
in which case no subset of n + 1 points of Γ is contained in a hyperplane of Pn. We 
will often use the following facts without further ado: (1) the Aluffi torsion-freeness is 
invariant under a projective change of coordinates; given two sets each consisting of the 
same number s ≤ n + 2 of points in general linear position, then there is a projective 
change of coordinates carrying one onto the other.

2.1. Results for arbitrary n

The following preliminary result will allow us to focus on the case where the number 
s of points is at least n + 2.

Proposition 2.1. Let J ⊂ R denote the ideal of 1 ≤ s ≤ n + 1 points in general linear 
position in Pn. The pair J ⊂ I = (J, In(Θ)) is torsion-free if and only if s �= 2.

Proof. The case s = 1 is trivially torsion-free. For s = 2, by a projective change of 
coordinates, the ideal J will be J = (x0x1, x2, x3, . . . , xn) with Jacobian ideal I =
(J, In(Θ)) = (x0, . . . , xn). Then, for example, x0x1 ∈ J ∩ I2 \ JI.

Let 3 ≤ s ≤ n. By a projective change of coordinates, we may assume that the points 
are the coordinate points [0 : · · · : 0 : 1 : 0 : · · · : 0], where 1 is in the ith position 
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for i = 0, . . . , s − 1. The defining ideal J of these points is generated by square-free 
monomials of degree 2 and n − s + 1 variables as follows

J = (xixj : 0 ≤ i < j ≤ s− 1, xs, . . . , xn).

The Jacobian matrix Θ of J is of the form

Θ =

⎡
⎢⎢⎢⎢⎣

Θ′ 0 · · · 0
0 1 · · · 0
...
0 0 · · · 1

⎤
⎥⎥⎥⎥⎦ ,

where Θ′ is the Jacobian matrix of the defining ideal of s coordinate points in Ps−1. 
Then, In(Θ) = Is−1(Θ′) = (x0, . . . , xs−1)s−1. The Jacobian ideal I is

(J, In(Θ)) = (J, (x0, . . . , xs−1)s−1) = (J, xs−1
0 , . . . , xs−1

s−1).

Set Δ = (xs−1
0 , . . . , xs−1

s−1).

Claim: J ∩ Δt ⊆ JIt−1.

The proof uses the algorithmic procedure for intersection of monomial ideals. Namely, 
setting J1 = (xs, . . . , xn) and J2 = (xixj : 0 ≤ i < j ≤ s − 1), one has

J ∩ Δt = J1 ∩ Δt + J2 ∩ Δt , J1 ∩ Δt = J1Δt ⊂ JΔt−1

and

J2 ∩ Δt = J2 ∩
(
x
t(s−1)
0 , . . . , x

t(s−1)
s−1

)
+ J2 ∩

(
x
α0(s−1)
0 · · ·xαs−1(s−1)

s−1 |
s−1∑
i=0

αi = t

)

=
s−1∑
k=0

J2 ∩ (xt(s−1)
k ) +

(
x
α0(s−1)
0 · · ·xαs−1(s−1)

s−1 |
s−1∑
i=0

αi = t

)
.

For the first summand it obtains

(xixj) ∩ (xt(s−1)
k ) =

⎧⎪⎪⎨
⎪⎪⎩
x
t(s−1)
k xj = (xkxj)xt(s−1)−1

k if i = k

xix
t(s−1)
k = (xixk)xt(s−1)−1

k if j = k

(xixj)xt(s−1)
k if k �= i, j,

hence 
∑s−1

k=0 J2 ∩ (xt(s−1)
k ) ∈ JIt−1. Since s ≥ 3, the second summand belongs to JIt−1

and the claim is proved.
Assume next that s = n + 1. By a projective change of coordinates, we may assume 

that the given points are the coordinate points in Pn. The defining ideal is generated by 
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all degree 2 square-free monomials xixj , 0 ≤ i < j ≤ n. Since this ideal is the edge ideal 
of a complete graph, the assertion follows as in [9, Example 3.4(i)]. �

In the above proposition, if the assumption that the points are in general linear 
position is omitted, the assertion may fail, as shown in the following example.

Example 2.2. The points (0, 1, 0), (0, 0, 1), (0, 1, 1) ∈ P
2 lie on the straight line {x0 = 0}

and the ideal of these points is J = (x0, x1x2(x1 − x2)). A calculation with [2] shows 
that J ∩ I2 �⊂ JI – e.g., x1x

3
2(x1 − x2) ∈ J ∩ I2 \ JI.

2.2. Explicit generators

As remarked earlier, when 3 ≤ s ≤ 2n points are in general linear position in Pn then 
the corresponding ideal of points J is generated by quadrics. We wish to give further 
precision to this fact. The following result might exist in some form in the previous 
literature, but we could not find a definite reference.

Theorem 2.3. Let Γ be a set of n + 2 ≤ s ≤ 2n points in general linear position in Pn. 
Let t be an integer running in the interval [2n − s + 1, n − 1]. Then the corresponding 
ideal J of points is minimally generated by the quadrics of the form

gij = xixj +
n−1∑

t=2n−s+1
α

(t)
ij xtxn, (i, j) ∈ Λ,

where

Λ := {(i, j) ∈ {0, . . . , n} × {0, . . . , n} | (i, j) �= (t, n) ∀t},

and α(t)
ij ∈ k are uniquely determined by the coordinates of the points in Γ. In particular, 

the minimal number of generators μ(J) of J is |Λ| =
(
n+1

2
)
− (s − (n + 2)) =

(
n+2

2
)
− s, 

hence lies in the interval 
(
n
2
)

+ 1 ≤ μ(J) ≤
(
n+1

2
)

+ 1.

Proof. Since the points in Γ are in general linear position, we may assume that n + 1
of them are the coordinate points and an (n + 2)nd point is [1 : 1 : . . . : 1]. For the 
remaining points, write [ah,0 : ah,1 : . . . : ah,n−1 : 1] for n + 3 ≤ h ≤ s. Consider the 
system of equations in the unknowns α(t)

ij ∈ k (0 ≤ i < j ≤ n):

⎧⎨
⎩

1 +
∑n−1

t=2n−s+1 α
(t)
ij = 0

ah,iah,j +
∑n−1

t=2n−s+1 α
(t)
ij ah,t = 0, (n + 3 ≤ h ≤ s).

(2)
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To find α(t)
ij it is enough to solve the following matrix equations

⎡
⎢⎢⎢⎢⎣

1 1 · · · 1
an+3,t an+3,t+1 · · · an+3,n−1

...
... · · ·

...
as,t as,t+1 · · · as,n−1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

α
(t)
ij

α
(t+1)
ij
...

α
(n−1)
ij

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−1
−an+3,ian+3,j

...
−as,ias,j

⎤
⎥⎥⎥⎥⎦ . (3)

Now, since the points are in general linear position, any (n +1)-minor of the following 
matrix is nonzero.

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0 1 an+3,0 · · · as,0
0 1 · · · 0 0 1 an+3,1 · · · as,1
...

. . .
...

...
...

...
0 0 · · · 1 0 1 an+3,n−1 · · · as,n−1
0 0 · · · 0 1 1 1 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Then the minor

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0 0 · · · 0 0
0 1 · · · 0 0 0 · · · 0 0
...

. . .
...

...
...

...
0 0 · · · 1 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 1

an+3,0 an+3,1 · · · an+3,t−1 an+3,t an+3,t+1 · · · an+3,n−1 1
...

...
...

... · · ·
...

as,0 as,1 · · · as,t−1 as,t as,t+1 · · · as,n−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is nonzero, which implies that the determinant of the first matrix in (3) does not vanish. 
Therefore, the system (3) has unique solution. Furthermore, by Cramer’s rule, α(t)

in �= 0
for 0 ≤ i ≤ 2n − s and 2n − s + 1 ≤ t ≤ n − 1.

Consider the ideal J ′ ⊂ R generated by the quadrics gij as in the statement, where 
the coefficients α(t)

ij ∈ k (0 ≤ i < j ≤ n) are the uniquely determined solutions of (2). 
Clearly, the generators of J ′ vanish on Γ and J is a radical ideal. Therefore, J ′ ⊆ J . 
We show that J and J ′ have the same Hilbert function, hence must be equal. Now, 
one knows by [3] that the ideal J of a set of points in general linear position in Pn has 
maximal Hilbert function, that is

dimk(R/J)t = s, t > 0.

As for J ′, we claim that its Gröbner basis with respect to the deg-revlex term ordering 
with x0 > x1 > . . . > xn is the set
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G ∪ {x2
l xn +

n−1∑
t=2n−s+1,t �=l

β
(t)
l xtx

2
n, 2n− s + 1 ≤ l ≤ n− 1}, (4)

where G is the above generating set of J ′ and each indexed β(t)
l is a certain polynomial 

expression of the α’s. For this, we consider the S-pairs of elements in this set. First, we 
look at the S-polynomial of g0l and g0n for 2n − s + 1 ≤ l ≤ n − 1 is

xl

n−1∑
t=2n−s+1

α
(t)
0nxtxn − xn

n−1∑
t=2n−s+1

α
(t)
0nxtxn

which upon division by the generators of J ′ is reducible to fl = x2
l xn +∑n−1

t=2n−s+1,t �=l β
(t)
l xtx

2
n, where β(t)

l is a certain polynomial like expression in the α’s. 
Since the initial monomial of each of the fl’s is not divisible by the initial term of any 
generator of J ′ we add these polynomials to the generating set of J ′.

Now consider the S-pairs {gij, gkl} of the remaining generators of J ′, where either i �= 0
or j �= n. The initial monomial of any gij in the generating set of J ′ is xixj . Clearly, we 
may assume that {i, j} ∩{k, l} �= ∅, as otherwise xixj and xkxl are relatively prime. Say, 
i = k and j < l. In this case, the S-polynomial of gij and gkl is xj(

∑n−1
t=2n−s+1 α

(t)
ij xtxn) −

xl(
∑n−1

t=2n−s+1 α
(t)
kl xtxn). The monomial xjxtxn is divisible by initial term of gjt or fj

and the monomial xlxtxn is divisible by initial term of glt or fl. Thus, the remainder of 
this polynomial upon division by the augmented generating set of J ′ is zero.

The argument for the cases where i = l, j = k or j = l is entirely similar. As for a 
pair {gij , fl}, if j �= n then their initial terms are relatively prime, hence assume j = n. 
In this case the S-polynomial is

x2
l

n−1∑
t=2n−s+1

α
(t)
ij xtxn − xi

n−1∑
t=2n−s+1

β
(t)
l xtx

2
n.

Each term of this polynomial is divisible by the initial term of gin or of fl. The 
S-polynomial of a pair {fl, fl′} similarly reduces to zero.

Thus, the following set is a minimal generating set for the initial ideal of J ′:

{xixj , x2
txn, 0 ≤ i < j ≤ n, (i, j) �= (t, n), 2n− s + 1 ≤ t ≤ n− 1}.

Therefore for any r > 0,

dimk(R/J ′)r = #{xr
i , 0 ≤ i ≤ n, xtx

r−1
n , 2n− s + 1 ≤ t ≤ n− 1} = s,

as stated. In particular, μ(J) = dimk(J2) = dimk R2 − dimk(R/J2) =
(
n+2

2
)
− s is the 

minimal number of generators of J . �
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3. Points in P2

3.1. Exceptions

We now consider the case n = 2. For s ≤ 3, the question is taken care by Proposi-
tion 2.1.

The case of s = n + 2 = 4 is surprisingly more involved and it turns out that the pair 
is not Aluffi torsion-free. As will be seen later n = 2 is the only dimension for which 
n + 2 points in general linear position are such that the Aluffi algebra of the pair J ⊂ I

is not torsion-free.
We can assume that the four points in general linear position in the projective plane 

are the coordinate points (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) and the additional point 
(1 : 1 : 1). By Theorem 2.3, the defining ideal is J = (xz − yz, xy − yz), while the 
Jacobian matrix of these 2-forms is:

Θ =
(
z −z x− y

y x− z −y

)

Therefore, I := (J, I2(Θ)) = (xy−xz, xz−yz, xz+yz−z2, −xy+y2−yz, −x2+xy+xz).
A computation with [2] gives that J ∩ I2 is minimally generated by 11 quartics, while 

JI is obviously generated by at most 10 quartics. Therefore, the pair J ⊂ I is not 
torsion-free.

Strikingly enough, this example has a curious algebraic-geometric background.
In one end, the underlying algebra will tell us that the ideal I belongs to the class of 

ideals of k[x, y, z] of finite colength minimally generated by 5 quadrics which happen to 
be syzygetic in the sense of [11, Section 2]. By [6], these ideals are Gorenstein.

Let ϕ denote the 5 × 5 skew-symmetric matrix whose Pfaffians are the generators 
of I. Pick a new set of indeterminates T = {T1, T2, T3, T4, T5} (think of them as the 
homogeneous coordinates of P4) and consider the entries of the matrix product T · ϕ. 
Next take the Jacobian matrix ψ of these bihomogeneous polynomials of bidegree (1, 1)
with respect to x, y, z – the so-called Jacobian dual matrix of ϕ [12]. Note that this a 
5 × 3 matrix whose entries are linear forms in k[T].

By a known argument as in [5], one can show that the maximal minors of ψ are poly-
nomial relations of the 5 original quadrics. Therefore, since dim k[I] = 3 the codimension 
of the ideal I3(ψ) is at most 2. It can further be shown that I3(ψ) is a prime ideal of 
codimension 2.

But a lot more is true:

Proposition 3.1. With the above notation we have:

RR(I) � R[T]/(I1(T.ϕ), I3(ψ)).

Thus, I is an ideal of fiber type. Moreover, RR(I) has depth 1 – the lowest possible.
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Proof. Since I1(T · ϕ) defines the symmetric algebra of I and as a consequence of the 
above discussion, the ideal (I1(T · ϕ), I3(ψ)) ⊂ R[T] is contained in a presentation ideal 
of RR(I) on R[T] and, moreover, I3(ψ) is the homogenous defining ideal of k[I]. We 
must show that the whole ideal (I1(T · ϕ), I3(ψ)) is a prime ideal of codimension 4.

In the other end, consider the rational map P2 ��� P
4 defined by generators of 

I which is birational onto its image. By [10, Theorem 2.4] one has rank(ψ) ≡ 2
(mod I3(ψ)) and moreover, the coordinates of any nonzero homogeneous syzygy of 
ψ modulo I3(ψ) defines the inverse rational map. In particular, these forms are al-
gebraically independent over k. Actually, they will generate an ideal of linear forms 
modulo I3(ψ). From this and from [10, Proposition 2.1] now follows that (I1(T ·ϕ), I3(ψ))
is a presentation ideal of RR(I) on R[T]. For the proof that RR(I) has depth 1 see
[6, Theorem 2.1 (ii)]. �

It is possible to write down the presentation ideal of the Aluffi algebra as well, based 
on the presentation ideal in the above proposition. Although hardly useful at this point, 
we can moreover compute the torsion of the Aluffi algebra, the latter being generated 
by two forms in degree 2.

To understand the underlying geometric content, consider the rational map F :
P

2 ��� P
4 defined by five sufficiently general quadrics q = {q1, q2, q3, q4, q5} ⊂ R. It is 

classically known that the image of this map is a surface obtained as a general projection 
of the 2-Veronese embedding of P2 in P5. Therefore, the integral closure of the homo-
geneous coordinate ring of the image (i.e., the k-subalgebra k[q] ⊂ R up to an obvious 
degree normalization) is the Veronese algebra R(2). Write P ⊂ k[T] for the homogeneous 
defining ideal of the image of F . By geometric considerations, one knows that the homo-
geneous defining ideal of this smooth surface is generated by 7 cubic forms. To subsume 
the geometry under the algebra, one checks that the ideal generated by 5 sufficiently 
general quadrics is syzygetic. Perhaps remarkable is that then the cubic forms can be 
taken to be the minimal generators of the ideal of maximal minors of the well-structured 
5 × 3 matrix described above.

3.2. When is the critical locus a power?

Quite generally, suppose that J ⊂ R is an ideal generated by 2-forms. In this situation, 
the Jacobian matrix Θ has linear entries throughout. If ht (J) ≥ 2 then, as a particular 
case of [8, Example 2.19] (see [9, Proposition 1.5]), knowing that Ir(Θ) is the rth power 
of the irrelevant maximal ideal of R, implies that the pair J ⊂ (J, Ir(Θ)) is Aluffi 
torsion-free. It seemed reasonable to conjecture in [9] that it is always the case that 
Ir(Θ) is m-primary if and only if it coincides with the rth power of m = (x0, . . . , xn) [9, 
Conjecture 2.6]. Unfortunately, this conjecture is not true in all its generality as shown 
in the following example.
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Example 3.2. Consider the 6 points in P3
k, which are written as columns of the following 

matrix: ⎛
⎜⎜⎜⎝

1 0 0 0 1 −1
0 1 0 0 1 2
0 0 1 0 1 3
0 0 0 1 1 1

⎞
⎟⎟⎟⎠

They are in general linear position since all the 4-minors are nonzero. By Theorem 2.3, 
one has

J = (x0x1 − 5x1x3 + 4x2x3, x0x2 − 6x1x3 + 5x2x3, x0x3 − 4x1x3 + 3x2x3, x1x2

− 4x1x3 + 3x2x3).

A computation with [2] yields

• I = (J, x1x
2
3, x2x

2
3, x

3
0, x

3
1, x

3
2, x

3
3)

• m3 ⊂ I

• μ(I3(Θ)) = 16 (hence m3 �= I3(Θ))

Still, since m3 ⊂ I and the inclusion I3(Θ) ⊂ m3 always holds, then I = (J, m3) – 
hence, the pair J ⊂ I is torsion-free by [8, Example 2.19].

Remark 3.3. It may be contended that the above example, although in general linear 
position, is not “general enough”. However, a computation with random coordinates for 
the points yields the same result, so the failure is due to the nature of the given data, 
no matter what sort of stronger general position notion is assumed.

Examining closely the data of the above example, the following might be a more 
realistic question.

Question 3.4. Let J be generated in degree 2 and assume that r := ht (J) > 2. If Ir(Θ)
is m-primary and I := (J, Ir(Θ)) contains at least the pure powers xr

0, . . . , x
r
n, does then 

mr ⊂ I (and hence, I = (J, mr))?

4. Points in Pn

4.1. Points in Pn (n ≥ 3)

In this part we assume that n ≥ 3. Recall the negative sort of result in Example 3.2
for s = n + 3, where it has been seen that the critical ideal In(Θ) is not always a power 
of the irrelevant R+ = m even though the pair J ⊂ (J, In(Θ)) is torsion-free. Clearly, 
the inclusion In(Θ) ⊂ mn always holds as they are both generated in degree n
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Yet, for s = n + 2 one has:

Proposition 4.1. Let Γ be a set of n +2 distinct points in general linear position in Pn with 
n ≥ 3. Let J ⊂ R = k[x0, . . . , xn] be the corresponding ideal of points. Then In(Θ) = mn; 
in particular the pair J ⊂ (J, In(Θ)) is torsion-free.

Proof. By Theorem 2.3, up to a projective change of coordinates J is generated by the 
following quadrics

{xixj − xn−1xn, 0 ≤ i < j ≤ n, (i, j) �= (n− 1, n)}. (5)

Then J is the “canonical” submaximal ideal of quadrics of the square-free Veronese 
Cohen–Macaulay ideal K = (xixj , 0 ≤ i < j ≤ n) (edge ideal of the complete 
(n + 1)-graph). The transposed Jacobian matrix Θ(K)t of K is the well-known Koszul 
matrix of K “without signs”, hence its ideal of u-minors is mu for every u ≤ n.

After applying to Θ(K)t elementary column operations consisting of subtracting the 
last column from the remaining columns, one easily sees that

Θ(K)t =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

Θ(J)t
...
0
xn

xn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

A straightforward calculation now gives the equality In(Θ(J))t = In(Θ(K))t = mn. �
Remark 4.2. (1) An alternative inductive argument would depend on writing

Θ(J)t =

⎡
⎢⎢⎢⎣
x1 x2 · · · xn 0 · · · 0

∗ Θ′

⎤
⎥⎥⎥⎦ ,

where Θ′ is the transposed Jacobian matrix of the ideal of suitable n +1 points in general 
linear position in Pn−1

k viewed in coordinate x1, . . . , xn. But the procedure would work 
as far down as from n = 4 to n = 3. In dimension 3 a direct argument would be required, 
since the statement of the Proposition is false for n = 2.

(2) The ideal J is Gorenstein, pretty much as in the full Veronese case, corresponding 
to the situation of finite colength [6]. It would be interesting to study this class of 
1-dimensional Gorenstein ideals.

We introduce a notion weaker than general linear position:
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Definition 4.3. Let Γ denote a set of s ≥ n + 2 distinct points in Pn. We say that Γ is in 
hyperplane linear position if it admits s − 1 points spanning a hyperplane H ⊂ P

n and 
in general linear position as points of the Pn−1 � H, while the remaining point of Γ lies 
outside H.

Theorem 4.4. Let Γ be a set of n + 2 distinct points in hyperplane linear position in Pn, 
where n ≥ 2. Let J ⊂ R = k[x0, . . . , xn] denote the corresponding ideal of points. Then 
the pair J ⊂ (J, In(Θ)) is torsion-free.

Proof. By a projective change of coordinates one may assume that H : {xn = 0}. Fur-
ther, by identifying H with Pn−1, we may assume that the n + 1 points lying on H
are the coordinate points of H = P

n−1 and the “diagonal unit” point, stacking 0 as 
the nth coordinate of each of these points as point of Pn. In addition, concatenating 
the matrix of the coordinates of these n + 1 points with the vector of coordinates of 
the remaining point and then applying elementary column operations, we may assume 
that the last point is (0 : 0 : · · · : 0 : 1). This gives the matrix of points coordi-
nates

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 1 0
0 1 · · · 0 1 0
...

...
. . .

...
...

...
0 0 · · · 1 1 0
0 0 · · · 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The surprise in this weaker setup is that, even for n = 2 the pair J ⊂ I is torsion-free. 
Indeed, an immediate calculation gives

J = (x1, x2) ∩ (x0, x2) ∩ (x0 − x1, x2) ∩ (x0, x1) = (x0x2, x1x2, x0x1(x0 − x1)).

(Note the exceptional behavior: there is a minimal generator of degree 3.)
Another direct calculation yields I = (x3

0, x
2
0x1, x0x

2
1, x

3
1, x0x2, x1x2, x2

2). Now, a com-
putation with [2] yields that the relation type of I/J on R/J is 2 (note that 
this result is a bit elusive, as a set of minimal generators of I contains one of J , 
yet the ideal of R generated by the complementary subset of minimal generators 
of I has relation type 3). Then, by [8, Corollary 2.17] it suffices to check that 
J ∩ I2 ⊂ JI. An additional elementary computation with [2] yields this inclu-
sion.

Now suppose that n ≥ 3. In this case we show that In(Θ(J)) = mn by a similar 
argument as in the proof of the preceding proposition. For that, we need to know a set 
of minimal generators of J .

Claim: J = (xixj − xn−2xn−1, xixn, 0 ≤ i < j ≤ n − 1).
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(Note that we cannot use Theorem 2.3 automatically since Γ is not in general linear 
position, hence one needs a different approach.)

From the shape of the coordinates of the points, J surely contains the ideal J ′ gener-
ated by these 2-forms. In order to show that J = J ′ we prove that the respective Hilbert 
functions coincide (a debate one could avoid by providing a direct proof that J ′ is a 
saturated ideal of multiplicity (degree) n + 2).

Write Γ = Γ1 ∪ Γ2 where Γ1 is the set of n + 1 points spanning H and Γ2 is the set 
consisting of the unique point not on H. Since Γ1 is in general linear position as points 
up to change of coordinates in Pn−1, then Theorem 2.3 is applicable, hence as in (5) its 
ideal of points is

JΓ1 = (xixj − xn−2xn−1, xn, 0 ≤ i < j ≤ n− 1).

Clearly, JΓ2 = (x0, x1, . . . , xn−1). Since J = JΓ1 ∩ JΓ2 , one has a short exact se-
quence

0 −→ R/J −→ R/JΓ1 ⊕R/JΓ2 −→ R/(JΓ1 , JΓ2) −→ 0.

Direct inspection gives

R/(JΓ1 , JΓ2) � k , R/JΓ1 � k[x0, . . . , xn−1]/(xixj − xn−2xn−1), R/JΓ2 � k[xn].

By the additive property of Hilbert function, we derive the Hilbert function of R/J :

HilbR/J(0) = 1, HilbR/J(1) = n + 1, HilbR/J(t) = n + 2, t ≥ 2.

For the Hilbert function of R/J ′, we compute a Gröbner basis of J ′ in the lex order with 
x0 > x1 > · · · > xn. By a similar argument as in proof on the Theorem 2.3, we can show 
that a Gröbner basis is

{xixj − xn−2xn−1, xixn, x2
n−2xn−1 − xn−2x

2
n−1, 0 ≤ i < j ≤ n− 1}.

The initial ideal of J ′ is generated by {xixj , x2
n−2xn, 0 ≤ i < j ≤ n, i �= n − 2 }. 

The rest is as in the end of the proof of Theorem 2.3, thus showing that J = J ′, as 
claimed.

We now argue that the pair J ⊂ I is Aluffi torsion-free by showing that In(Θ(J)) =
mn, in pretty much the same way as was argued in the proof of Proposition 4.1. Namely, 
we consider the squarefree Veronese “hull” of J :

K = (xixj , 0 ≤ i < j ≤ n) = (xixj , 0 ≤ i < j ≤ n− 1;x0xn, . . . , xn−1xn),

from which the above set of generators of J is obtained by some obvious elementary 
transformations of the generators of K.
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Accordingly, up to the same elementary operations applied to the corresponding 
columns of Θ(K)t, we get

Θ(K)t =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...

Θ(J)t 0
xn−2
xn−1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

A straightforward calculation now gives the equality In(Θ(J))t = In(Θ(K))t = mn, 
where as before the last equality comes from the structure of Θ(K)t as Koszul matrix 
without signs. �
4.2. Points in Pn (n ≥ 4)

Proposition 4.5. Let Γ be a set of n + 3 distinct points in general linear position in Pn
k

with n ≥ 4. Let J ⊂ R = k[x0, . . . , xn] be the defining ideal of Γ and let I = (J, In(Θ))
stand for the Jacobian ideal of J . Then the pair J ⊂ I is Aluffi torsion-free.

Proof. Since Γ is in general linear position, we may assume that n + 1 of them are the 
coordinate points and an (n + 2)nd point is [1 : 1 : . . . : 1]. Let [a0 : . . . : an−1 : 1] denote 
the (n +3)rd point. Note that the general linear position property of points implies that 
an−2 �= an−1.

By Theorem 2.3, the defining ideal of these points is

J = (xixj + α
(n−2)
ij xn−2xn − α

(n−1)
ij xn−1xn ,

0 ≤ i < j ≤ n, (i, j) �= (n− 2, n), (n− 1, n))

where α(n−2)
ij = an−1−aiaj

an−2−an−1
, α(n−1)

ij = aiaj−an−2
an−2−an−1

.
The transposed Jacobian matrix of J has the form

Θ =

⎡
⎢⎢⎢⎣
x1 x2 · · · xn 0 · · · 0

∗ Θ′

⎤
⎥⎥⎥⎦ ,

where Θ′ is the transposed Jacobian matrix of the defining ideal of n +2 points in general 
linear position in Pn−1 with coordinate x1, . . . , xn. Then the result follows by induction 
on n, except when n = 4 and s = 4 + 3 = 7 as in this case Θ′ is the Jacobian matrix of 
n + 2 = 6 points in Pn−1, when the minors of Θ′ do not generate the entire power of m. 
Thus, in this case one needs a direct argument, as follows.
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According to Theorem 2.3, a generating set of J consists of the following polynomials:

x0x1 + α
(2)
01 x2x4 + α

(3)
01 x3x4 , x1x2 + α

(2)
12 x2x4 + α

(3)
12 x3x4

x0x2 + α
(2)
02 x2x4 + α

(3)
02 x3x4 , x1x3 + α

(2)
13 x2x4 + α

(3)
13 x3x4

x0x3 + α
(2)
03 x2x4 + α

(3)
03 x3x4 , x1x4 + α

(2)
14 x2x4 + α

(3)
14 x3x4

x0x4 + α
(2)
04 x2x4 + α

(3)
04 x3x4 , x2x3 + α

(2)
23 x2x4 + α

(3)
23 x3x4.

The Jacobian matrix of J therefore has the form:

Θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x0 α
(2)
01 x4 α

(3)
01 x4 α

(2)
01 x2 + α

(3)
01 x3

x2 0 x0 + α
(2)
02 x4 α

(3)
02 x4 α

(2)
02 x2 + α

(3)
02 x3

x3 0 α
(2)
03 x4 x0 + α

(3)
03 x4 α

(2)
03 x2 + α

(3)
03 x3

x4 0 α
(2)
04 x4 α

(3)
04 x4 x0 + α

(2)
04 x2 + α

(3)
04 x3

0 x2 x1 + α
(2)
12 x4 α

(3)
12 x4 α

(2)
12 x2 + α

(3)
12 x3

0 x3 α
(2)
13 x4 x1 + α

(3)
13 x4 α

(2)
13 x2 + α

(3)
13 x3

0 x4 α
(2)
14 x4 α

(3)
14 x4 x1 + α

(2)
14 x2 + α

(3)
14 x3

0 0 x3 + α
(2)
23 x4 x2 + α

(3)
23 x4 α

(2)
23 x2 + α

(3)
23 x3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the lower right block is the Jacobian matrix of six points in general linear position 
in P3 with coordinates x1, x2, x3, x4. By Example 3.2, (x1, x2, x3, x4)3 ⊆ (Jx0 , I3(Θx0)). 
Then, (x1, x2, x3, x4)4 ⊆ (J, I4(Θ)). By changing the roles of x0 and x1, we get 
(x0, x2, x3, x4)3 ⊆ (Jx1 , I3(Θx1)) and (x0, x2, x3, x4)4 ⊆ (J, I4(Θ)), where Jxi

and 
Θxi

for i = 0, 1, denote the ideal and its Jacobian matrix of six points in coor-
dinates x1, x2, x3, x4 and x0, x2, x3, x4, respectively. By inspection one can see that 
x3

0x1, x2
0x

2
1, x0x

3
1 ∈ (J, I4(Θ)). Therefore, (x0, x1, x2, x3, x4)4 ⊆ (J, I4(Θ)), thus yielding 

I = (J, I4(Θ)) = (J, m4) and hence, J ⊆ I is Aluffi torsion-free. �
We close with the following conjecture and example.

Conjecture 4.6. Let Γ be a set of s = 2n distinct points in general position in Pn with 
n ≥ 4. Let J ⊂ R = k[x0, . . . , xn] be the defining ideal of Γ and let I = (J, In(Θ)) stand 
for the Jacobian ideal of J . Then In(Θ) = mn. In particular, the pair J ⊂ I is Aluffi 
torsion-free.

Note that by Example 3.2 the above conjecture is not valid for the case n = 3. As 
a consequence of this conjecture, using a similar argument as the induction step in the 
proof of the Proposition 4.5, one can deduce the Aluffi torsion freeness of n +4 ≤ s ≤ 2n
points in general linear position in Pn.
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Example 4.7. Consider the 8 points in P4 which are written as columns of the following 
matrix: ⎛

⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 1/2 1/2
0 1 0 0 0 1 1 4
0 0 1 0 0 1 −2 −3
0 0 0 1 0 1 3 2
0 0 0 0 1 1 −1/2 −1

⎞
⎟⎟⎟⎟⎟⎠ .

All 5-minors of this matrix are non-zero thus these points are in general linear position. 
By Theorem 2.3 the ideal J is generated by the following polynomials:

x0 x1 − 4
5x2 x4 − 1

5x3 x4 , x1 x2 − 9
4x1 x4 + 11

10x2 x4 + 3
20x3 x4

x0 x2 − 1
8x1 x4 − 3

20x2 x4 − 29
40x3 x4 , x1 x3 + 1

4x1 x4 − 19
10x2 x4 + 13

20x3 x4

x0 x3 − 3
4x1 x4 − 9

10x2 x4 + 13
20x3 x4 , x2 x3 + 5

4x1 x4 + 13
10x2 x4 − 71

20x3 x4

x0 x4 − 1
4x1 x4 − 2

5x2 x4 − 7
20x3 x4 .

A computation with Macaulay [2] shows that I4(Θ) = (x0, x1, x2.x3, x4)4, where Θ is 
the Jacobian matrix of J .
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