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1. Introduction

The multiplier ideals J (X, λD) associated to an effective divisor D on an algebraic 
variety X encode subtle information about the singularities of the pair (X, D). They 
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form a chain of OX-ideals J (X, λD), which decrease when λ increases, but remain the 
same after a slight increase of λ. The values of λ where the multiplier ideals change are 
called the jumping numbers of the pair (X, D). These geometric invariants where first 
studied in [3], but appeared earlier in different contexts, in [13], [14], [19] and [20]. The 
smallest jumping number is the log canonical threshold. It has been studied thoroughly 
in e.g. [9] and [15].

The multiplier ideals, and hence the jumping numbers, are computed using a log res-
olution of the pair (X, D), so it is not a surprise that the exceptional divisors play an 
important role. Smith and Thompson [17], and later Tucker [18], studied which excep-
tional divisors in an embedded resolution of (X, D) are ‘relevant’ for the computation of 
jumping numbers, introducing the notion ‘contribution of jumping numbers by excep-
tional divisors’. When C is a curve on a surface X with at most rational singularities, 
they found a geometrical characterization of exceptional divisors contributing jumping 
numbers by looking at the intersections with other components of the total transform of 
C in the minimal resolution of (X, C). They also prove that, if an exceptional divisor E
contributes a jumping number, it will always contribute the number 1 − 1/a, where a is 
the multiplicity of E in the total transform of C. It turns out that, in this dimension, the 
contributing divisors coincide with the ones that are not contracted in the log canonical 
model of (X, D) (see Definition 3.6).

The goal of this paper is to study to what extent these results can be generalized 
to higher dimensional varieties. In particular, we raise three questions, and formulate 
answers to each of them.

The first, and, in our opinion, the most important question, treats the relation between 
the exceptional divisors surviving in the log canonical model and those contributing 
jumping numbers, which was suggested by Smith and Thomspon in [17]. We construct 
an example where an exceptional divisor does not contribute any jumping numbers, but 
survives in the log canonical model.

The second question is whether or not we can make conclusions about contribution 
of jumping numbers by a certain divisor, just by looking at the intersections with the 
other components of the total transform of D in a log resolution. We encounter a big 
difference with the two-dimensional case here. In a log resolution of a curve on a surface 
with at most rational singularities, all exceptional divisors are projective lines, but in 
higher dimensions, there is a wide range of possibilities. We will study some specific cases 
where the intersection configuration contains enough information to decide whether or 
not an exceptional divisor contributes jumping numbers, and show that this does not 
hold in general by constructing a counterexample.

A final question we investigate is whether or not the number 1 − 1/a is always a 
jumping number if E contributes. Here, a is the multiplicity of E in the total transform 
of D. Also here, the answer will be negative.

We start in Section 2 with introducing our basic concepts, such as multiplier ideals, 
jumping numbers and the notion of contribution of jumping numbers. Next, in Section 3, 
we recall some definitions in birational geometry, and prove a contraction criterion for 
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exceptional divisors in the log canonical model. In Section 4, we recall the results of 
Smith and Thompson [17] and Tucker [18] in the two-dimensional case. Also, we present 
some preliminary results in arbitrary dimension, which we use in section 5 to show that 
the results of [17] and [18] still hold in higher dimensions for exceptional divisors that are 
not too complicated, for example exceptional divisors isomorphic to the projective space. 
In Section 6, we show by example that, in general, contribution of jumping numbers 
cannot be seen from the intersection configuration on the exceptional divisor. Finally, in 
Section 7, we give an example of an exceptional divisor that is not contracted in the log 
canonical model, and does not contribute any jumping numbers.
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2. Basic notions

We start with some definitions that will be used throughout this paper.

Definition 2.1. A variety is an integral scheme of finite type over C.

Definition 2.2. A Q-divisor on a variety X is an element of DivX ⊗Z Q. Equivalently, 
a Q-divisor is of the form F =

∑n
i=1 aiFi, where the Fi are irreducible Weil divisors on 

X and the ai ∈ Q. A Q-divisor F is called Q-Cartier if mF is a Cartier divisor for some 
m ∈ Z.

Definition 2.3. If F =
∑

aiFi is a Q-divisor, then the round down of F is �F � :=∑
�ai�Fi.

Definition 2.4. If X is a normal variety and D a Q-divisor on X, then a log resolution of 
(X, D) is a proper, birational morphism π : Y → X, such that

• Y is smooth,
• π−1(D ∪XSing) is a strict normal crossings divisor,
• π defines an isomorphism outside π−1(D ∪XSing).

Definition 2.5. The relative canonical divisor of a birational morphism of smooth varieties 
π : Y → X is

Kπ = KY − π∗KX ,

where KX and KY are the canonical divisors of X and Y , respectively.
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Remark 2.6. Although KY and KX are only defined as divisor classes, we often con-
sider Kπ as an effective divisor, since its divisor class contains a unique effective divisor 
supported on the exceptional locus of π.

Now we are ready to introduce multiplier ideals.

Definition 2.7. Let X be a smooth variety and D an effective divisor on X. Let π : Y → X

be a log resolution of (X, D). If c is a positive rational number, we define the multiplier 
ideal of (X, D) with coefficient c as

J (X, cD) := π∗OY (Kπ − �cπ∗D�).

Note that, since π∗OY (Kπ) = OX , we have J (X, cD) ⊆ OX for all c ∈ Q>0, which 
justifies the name multiplier ideal.

Proposition 2.8 ([4, Proposition 7.5]). The multiplier ideal is independent of the chosen 
log resolution.

From the definition of multiplier ideals, it is easy to see that a small increase of the 
coefficient c does not affect the multiplier ideal. This gives rise to the concept of jumping 
numbers.

Proposition–Definition 2.9. Let D be an effective divisor on a smooth variety X. There 
exists a chain of rational numbers

0 = λ0 < λ1 < λ2 < · · · < λi < λi+1 < . . .

satisfying

• for i ∈ Z≥0 and c ∈ [λi, λi+1), we have J (X, cD) = J (X, λiD),
• for i ∈ Z≥0, J (X, λiD) � J (λi+1D).

The numbers λi, i ≥ 1, are called the jumping numbers of (X, D).

If π : Y → X is a log resolution of (X, D), we can denote π∗D =
∑

i∈I aiEi and 
Kπ =

∑
i∈I kiEi, where Ei, i ∈ I, are the irreducible components of π−1(D). Then it is 

easy to see that the jumping numbers are contained in the set
{
ki + n

ai

∣∣∣∣ i ∈ I, n ∈ Z>0

}
.

The numbers in this set are called the candidate jumping numbers. If E1, . . . , En are 
irreducible components of π−1(D), we say that a candidate jumping number λ is a 
candidate for E =

∑n
i=1 Ei if λai ∈ Z for i = 1, . . . , n. In contrast to multiplier ideals 
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and jumping numbers, the notion of candidate jumping numbers depends on the chosen 
log resolution.

The smallest candidate jumping number however, does not depend on the chosen log 
resolution, and is always a jumping number. It is called the log canonical threshold and 
we denote it by lct(X, D).

Now we list some basic properties. First note that if c ∈ Q>0, we have

J (X, (c + 1)D) = π∗OY (Kπ − �cπ∗D� − π∗D)

= J (X, cD) ⊗OX(−D)

by the projection formula. Therefore, c is a jumping number if and only if c + 1 is a 
jumping number. This is actually a special case of Skoda’s Theorem (see [12, 9.3.24]).

It is also easy to see that if λ is a candidate jumping number for the strict transform 
of one of the components of D, it is always a jumping number. In particular, the positive 
integers are always jumping numbers for the pair (X, D).

The following theorem is a useful tool for proving statements about multiplier ideals.

Theorem 2.10 (Local vanishing, [12, Theorem 9.4.1]). Let D be a divisor on a smooth 
variety X, and π : Y → X a log resolution of (X, D). Then for every c ∈ Q we have

Riπ∗OY (Kπ − �cD�) = 0 for i > 0.

Now we define contribution of jumping numbers by an exceptional divisor. This is a 
notion that indicates which exceptional divisors are responsible for the jumping numbers.

Definition 2.11 ([17, Definition 2.1]). Let D be an effective divisor on a smooth variety X. 
Let E be a reduced exceptional divisor (possibly reducible) in some log resolution π :
Y → X of (X, D), and λ a candidate jumping number for E. We say E contributes λ as 
a jumping number if

J (X,λD) � π∗OY (Kπ − �λπ∗D� + E).

It is easy to see that this notion depends only on the valuations defined by the com-
ponents of E. In particular it is independent of the choice of log resolution.

3. Birational geometry and the log canonical model

Notation 3.1. If π : Y → X is a birational morphism of normal algebraic varieties, and 
D =

∑
aiDi a Q-divisor on X, where the Di are irreducible divisors, then we denote 

D̃ =
∑

aiD̃i, where D̃i is the strict transform of Di for every i.

Let X be a normal variety. Since the singular locus of X has codimension at least 2, 
we can define the canonical divisor class KX by extending the canonical divisor on the 
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non-singular locus of X to all of X. Let D be a Q-divisor on X, such that KX + D is 
Q-Cartier, and consider a log resolution π : Y → X of (X, D) with exceptional prime 
divisors Ei, i ∈ I. If we choose appropriate representatives of KX and KY , then we can 
write

KY + D̃ +
∑
i∈I

Ei = π∗(KX + D) +
∑
i∈I

a(Ei, X,D)Ei

for some a(Ei, X, D) ∈ Q. The number a(Ei, X, D) is called the log discrepancy of Ei

with respect to (X, D). If E is a prime divisor in a log resolution f : Y → X, and E′

is a prime divisor in an other resolution f ′ : Y ′ → X defining the same valuation, then 
a(E, X, D) = a(E′, X, D), so we can say that the discrepancy does not depend on the 
log resolution in which we consider a divisor.

If D =
∑

aiDi, then it will be useful to extend the definition of log discrepancies to 
non-exceptional divisor by putting a(Di, X, D) = 1 − ai for all i and a(F, X, D) = 0 if 
F is a prime divisor on X different from the Di.

Definition 3.2 ([8, Definition 2.34]). Let X be a normal variety and D a divisor on X
such that KX + D is Q-Cartier. We say that (X, D) has log canonical singularities, or 
simply that (X, D) is log canonical if a(E, X, D) ≥ 0 for all exceptional divisors E in all 
log resolutions of (X, D). By [8, Corollary 2.32], this is equivalent to a(Ei, X, D) ≥ 0 for 
all exceptional divisors in a fixed resolution. Also, if (X, D =

∑
aiDi) is log canonical, 

then by [8, Corollary 2.31], ai ≤ 1 for all i.

Definition 3.3 ([8, Definition 2.37]). If (X, D) is as in Definition 3.2, and if D =
∑

aiDi

with 0 < ai ≤ 1 for all i, then we say that (X, D) is dlt or divisorially log terminal
if there is a closed subset Z ⊂ X such that X\Z is smooth, D|X\Z is a simple normal 
crossings divisor, and there exists a log resolution π : Y → X of (X, D) such that π−1(Z)
has pure codimension one and a(E, X, D) > 0 for every irreducible divisor E ⊆ π−1(Z).

Log canonical pairs can also be described using multiplier ideals (see [12, Definition 
9.3.9]).

Proposition 3.4. If D is an effective divisor on a smooth variety X, then (X, D) is log 
canonical if and only if

J (X, (1 − ε)D) = OX for all 0 < ε < 1.

This happens if and only if lct(X, D) ≥ 1.

Proof. If π : Y → X is a log resolution of (X, D), and π∗D =
∑

i∈I aiEi, one can see 
that
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J (X, (1 − ε)D) = π∗OY

(∑
i∈I

�a(Ei, X,D) − 1 + εai
Ei

)
,

and then the statement follows easily. �
Definition 3.5 ([23, Definition 2.4], [6]). If X is a normal variety and D =

∑
aiDi a 

Q-divisor on X, where the Di are distinct prime divisors and 0 < ai ≤ 1, then a dlt 
model of (X, D) is a proper birational morphism φm : Xm → X such that

(1) the pair (Xm, D̃ +Eφm
) is dlt, where Eφm

is the reduced exceptional divisor of φm, 
and

(2) KXm
+ D̃ + Eφm

is φm-nef, i.e., its restriction to any fibre of φm is nef.

If π : Y → X is a log resolution of (X, D) and φm : Xm → X a dlt model, then there is an 
induced birational map φ : Y ��� Xm. We say that Xm is a minimal dlt model of (X, D)
with respect to π if φ−1 contracts no divisors, and a(E, Y, D̃+Eπ) > a(E, Xm, D̃+Eφm

)
for all φ-exceptional divisors E ⊂ Y . Here, Eπ denotes the reduced exceptional divisor 
of π.

Definition 3.6 ([16, Definition 2.1]). If X and D are as in Definition 3.5, then a log 
canonical model of (X, D) is a proper birational morphism φc : Xc → X such that

(1) the pair (Xc, D̃+Eφc
) is log canonical, where Eφc

is the reduced exceptional divisor 
of φc, and

(2) KXc
+ D̃ + Eφc

is φc-ample, i.e., its restriction to any fibre of φc is ample.

Theorem 3.7 ([16, Theorem 1.1, Proposition 2.1], [10, Theorems 1.26, 1.32 and 1.34], 
[6, Lemma 2.4]). If X is a normal variety and D =

∑
aiDi a Q-divisor on X, where the 

Di are distinct prime divisors and 0 < ai ≤ 1, then there exists a unique log canonical 
model of (X, D). A dlt model exists, but is not unique. However, if π : Y → X is a log 
resolution of (X, D), then different minimal dlt models with respect to π are isomorphic 
in codimension one.

If Xm is a dlt model and Xc the log canonical model, then there exists a morphism 
Xm → Xc.

Definition 3.8 (see for example [11]). Let π : Y → X be a morphism of varieties, with 
X affine. If L is a Cartier divisor on Y , OY (L) is the associated invertible sheaf, and 
V ⊆ H0(Y, OY (L)) is a linear subspace, then |V | = P(V ) is a linear series on Y over X. 
If V = H0(Y, OY (L)), then we say |V | is a complete linear series over X associated to L, 
also denoted |L|.

Let |V | be a linear series with V ⊆ H0(Y, OY (L)), E ⊂ Y a subvariety of Y , and 
i : E → Y the inclusion. The restricted linear series over X associated to V , denoted 
|V |E , is P(i∗(V )), where i∗ denotes the morphism H0(Y, OY (L)) → H0(E, i∗OY (L)).
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Remark 3.9. The general definition of a linear series over X is a subsheaf of π∗OY (L)
(see for example [12, Generalization 9.1.17]). However, on affine schemes, quasi-coherent 
sheaves are determined by their global sections. Therefore, this definition coincides with 
the classical definition of a linear series, not considered relative to X. We restrict to the 
affine case here, which is sufficient for us. The definition of the base locus below is also 
the same as the classical definition if X is affine. However, the general definition does 
depend on π.

Definition 3.10. If π : Y → X is a morphism of normal varieties, with X affine, and |V |
is a linear series on Y over X, where V ⊆ H0(Y, OY (L)), then the base locus of |V | over 
X is

B(|V |) =
⋂
s∈V

Supp(div(s)),

where div(s) denotes the divisor of zeroes of s. This equals the closed set cut out by the 
image of

V ⊗OY
OY (−L) → OY .

If L is a Cartier divisor on Y , then the stable base locus of |L| over X is defined as

B(L) =
⋂

k∈Z>0

B(|kL|).

If D is a Q-divisor on Y , then we define B(D) = B(nD), where n ∈ Z>0 such that nD
is integral. This is independent of the choice of n since B(L) = B(nL) for every Cartier 
divisor L and every n ∈ Z>0 (see for example [11, Proposition 2.1.21]).

Definition 3.11. Let π : Y → X be a morphism of algebraic varieties, with X affine. We 
say that a complete linear series |L| on Y over X is big over X if

lim sup
k→∞

h0(F,OY (kL)|F )
kdim F

> 0,

where F is a general non-empty fibre of π.
If E ⊂ Y is a subvariety of Y , and i : E → Y is the embedding, then the restricted 

linear series |L|E is big over X if

lim sup
k→∞

dim im(H0(Y,OY (kL)) → H0(F,OY (kL)|F ))
kdim F

> 0,

where F is a general non-empty fibre of the induced morphism E → X.
If D is a Q-divisor on Y , then we say |D|, resp. |D|E , is big over X if so is |nD|, resp. 

|nD|E , where nD is an integral multiple of D.
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Given a log resolution π : Y → X of (X, D), the following lemma tells us which excep-
tional divisors are contracted in the log canonical model. To the best of our knowledge, 
this result does not appear explicitly in the literature. We think it is of independent in-
terest. A more general statement over a quasi-projective X should hold, but that would 
lead us beyond the terminology and notation of the present paper. Both the statement 
and the outline of the proof were kindly pointed out to us by Christopher Hacon.

Lemma 3.12. Let X be a normal affine variety and D =
∑

aiDi a Q-divisor on X, with 
0 < ai ≤ 1 for all i, such that KX + D is Q-Cartier. Let π : Y → X be a log resolution 
of (X, D). Consider a minimal dlt model Xm of (X, D) with respect to π, and the log 
canonical model Xc of (X, D), in a diagram

Y Xm Xc

X.

φ

π

ψ

πm
πc

Let Δ be the divisor Δ = D̃ +
∑

Ei on Y , where the Ei are the irreducible exceptional 
divisors of π.

Then the divisors contracted by φ are precisely the divisors E contained in B(KY +Δ), 
and the divisors contracted by ψ◦φ are the divisors E such that the restricted linear series 
|KY + Δ|E is not big over X.

Remark 3.13. The condition that E is contained in B(KY +Δ) is equivalent to |k(KY +
Δ)|E = ∅ for all sufficiently divisible k ∈ Z>0. Indeed, both statements are equivalent to 
the vanishing of all sections of the H0(Y, k(KY + Δ)) on E.

Proof. First note that by the proof of Theorem 1.1 in [16], and in particular Lemma 2.8, 
we can assume that (Xm, φ∗Δ) is a good minimal model over (X, D), meaning that 
KXm

+ φ∗Δ is πm-semiample. Then the first part of the statement follows from [6, 
Lemma 2.4]. Indeed, (Y, Δ) is log canonical because it is a log resolution of (X, D), 
hence it is dlt.

Note that if E ⊆ B(KY + Δ), then |KY + Δ|E cannot be big over X. Indeed, if F is 
a fibre of E → X and k ∈ Z>0 is sufficiently divisible, then every section of k(KY + Δ)
vanishes on E and hence on F , so the image of

H0(Y,OY (k(KY + Δ))) → H0(F,OY (k(KY + Δ))|F )

is always zero.
Now let E be a divisor that is not contracted by φ, and denote φ∗E = E′ ⊂ Xm. 

Since by definition π∗(k(KY + Δ)) = πm∗(k(KXm
+ φ∗Δ)) for all sufficiently divisible 

k ∈ Z>0, we know that |KY + Δ|E is big over X if and only if so is |KXm
+ φ∗Δ|E′ .
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Since KXm
+ φ∗Δ is πm-semiample, it follows that KXm

+ φ∗Δ = ψ∗A for 
some πc-ample Q-divisor A on Xc. Indeed, some multiple k(KXm

+ φ∗Δ) is inte-
gral and base-point free, so it is the pullback of the very ample sheaf O(1) in 
ProjX

⊕
n≥0 πm∗OXm

(nk(KXm
+φ∗Δ)), which is precisely Xc (see for example [8, The-

orem 3.52(1)]).
Let F be a general non-empty fibre of the morphism E′ → X. We have the following 

diagram:

F ψF

Xm Xc.

p

i j

ψ

This induces, for any sufficiently divisible k ∈ Z>0, the following diagram:

H0(Xm, kψ∗A) H0(Xc, kA)

H0(F, ki∗ψ∗A) H0(ψF, kj∗A).

ψ∗

i∗ j∗

p∗

Note that j∗ is surjective for k � 0 by Serre vanishing, since the restriction of A to 
ψF is ample. Also, ψ∗ is an isomorphism because ψ∗OXm

= OXc
, using the projection 

formula. Finally, since p is surjective (and in particular dominant), p∗ is injective.
The statement of |ψ∗A|E′ being big over X is equivalent to

lim sup
k→∞

dim i∗(H0(Xm, kψ∗A))
kdim F

> 0.

If E′ is contracted by ψ, i.e., dim(ψF ) < dimF , we have im(i∗) = im(i∗ ◦ ψ∗) =
im(p∗ ◦j∗) ⊆ im(p∗). This implies that the dimension of im(i∗) is at most h0(ψF, kj∗A), 
which can grow with k only as kdim(ψF ). Therefore |ψ∗A|E′ is not big over X.

Otherwise, if E′ is not contracted by ψ, then dimF = dim(ψF ). Since A is ample, 
we can take n big enough such that dimH0(ψF, kj∗nA) ∼ kdim(ψF ) = kdim F . Then, 
because p∗ is injective, it follows that |ψ∗A|E′ is big over X. �

The following result should be well-known. We include the proof for completeness.

Lemma 3.14. Let (X, D) be a normal variety and D =
∑

aiDi a Q-divisor on X, with 
0 < ai ≤ 1 for all i. Let π : Y → X be a log resolution of (X, D) and E a π-exceptional 
prime divisor on Y . Suppose that some Zariski open of E is covered by curves C whose 
classes belong to a fixed ray in the numerical cone of curves, and

(KY + Δ) · C < 0, (resp. (KY + Δ) · C ≤ 0),
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where Δ = D̃ + Eπ. Then E is contracted in a dlt model with respect to π (resp. the log 
canonical model) of (X, D).

Proof. Let φ : Y ��� Xm be a dlt model with respect to π, and ψ : Xm → Xc the 
morphism onto the log canonical model. By for example [7, 1.9] or [2, Remark 2.7], we 
know that ψ∗(KXc

+ ψ∗φ∗Δ) = KXm
+ φ∗Δ. Hence if C is a curve on Xm, we have

(KXc
+ ψ∗φ∗Δ) · ψ∗C = ψ∗(KXc

+ ψ∗φ∗Δ) · C = (KXm
+ φ∗Δ) · C.

Therefore, since KXc
+ ψ∗φ∗Δ is ample over X, C is contracted by ψ if and only if 

(KXm
+ φ∗Δ) · C = 0.

So by running the minimal model program, we only have to check that after a flip or a 
divisorial contraction f : Y ′ ��� Y ′′, either E is contracted, or the transform of E is still 
covered by (KY ′′ +f∗Δ)-negative curves. Indeed, by [8, Lemma 3.38], the discrepancies of 
exceptional divisors over X do not decrease after such a map, and hence the intersection 
with a movable curve cannot increase. �
4. Preliminary results

4.1. The two-dimensional case

When C is a curve on a smooth surface X, and E is an exceptional prime divisor 
in its minimal embedded resolution, then contribution of jumping numbers by E was 
studied by Smith and Thompson in [17], and more generally by Tucker in [18]. We have 
the following result.

Theorem 4.1. Let C be a curve on a smooth surface X, and π : Y → X the minimal 
embedded resolution of (X, C). Let E be an exceptional prime divisor of π, and set 
d = E · E◦, where E◦ = (π∗C)red − E. Then the following are equivalent:

(1) E contributes jumping numbers to the pair (X, C),
(2) E is not contracted in the log canonical model of (X, Cred),
(3) d ≥ 3.

Moreover, in this case, E contributes the jumping number λ = 1 − 1
a , where a is the 

multiplicity of E in π∗C.

The equivalence 1 ⇔ 3 is the main result of [17] (Theorem 3.1). The equivalence 2 ⇔ 3
is well known (see for example [22, Proposition 2.5]). The implication 1 ⇒ 2 holds in 
arbitrary dimension by Corollary 4.6 below.

In the rest of the paper, we study to what extent the other equivalences can be 
generalized. We divide this problem in three questions.
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Let E be an exceptional prime divisor in a log resolution π : Y → X of an effective 
divisor D on a smooth variety X. Write π∗D = aE +

∑
aiEi, where the Ei are the 

irreducible components of π−1(D) different from E.

Question 1. Does E contribute jumping numbers if and only if it is not contracted in the 
log canonical model of (X, Dred)?

Question 2. Can we draw conclusions about contribution by only looking at the intersec-
tion configuration on E with other components of π∗D, i.e., is contribution determined 
by the class of ((π∗D)red −E)|E in PicE?

Question 3. If E contributes jumping numbers, does it always contribute the number 
1 − 1/a?

The answer to Question 3 is negative, as can be seen from the following example.

Example 4.2. Let D be the divisor given by y(yz2 − x2z + x3 + y3)2 = 0 in X = A3. 
Blowing up at the origin first, with exceptional divisor E1, followed by two line blow-ups, 
yields a resolution π : Y → X, with

Kπ = 2E1 + E2 + 2E3, and

π∗D = D̃ + 7E1 + 3E2 + 6E3,

where D̃ = 2D1 +D2 for prime divisors D1 and D2. One sees immediately that 3
7 is the 

log canonical threshold, so it is a jumping number contributed by E1. However, 6
7 is not 

a jumping number by the following argument. The exceptional divisor E1 is a projective 
plane, blown up at two infinitely near points. The Picard group is generated by the class 
of the pullback of a line in P2, say �, the pullback of the first exceptional divisor, say 
e1, and the second exceptional divisor, say e2. Then we have KE1 = −3� + e1 + e2, 
E1|E1 = −�, E2|E1 = e1 − e2, E3|E1 = e2, D1|E1 = 3� − e1 − e2 and D2|E1 = � − e1 − e2. 
So KE1 −

⌊ 6
7π

∗D
⌋
|E1 = −e2, which is a class not containing an effective divisor. Hence, 

by Proposition 4.3 below, 6
7 is not a jumping number contributed by E1. Since E1 is the 

only divisor for which 6
7 is a candidate jumping number, we can even conclude that 6

7 is 
not a jumping number.

Using for example the algorithm of [1], we find that the complete list of jumping 
numbers in (0, 1] is 3

7 , 1
2 , 5

6 and 1, which also yields the result.

4.2. Preliminary results in arbitrary dimension

Now we state some results that will be useful to prove statements about contribution 
of jumping numbers. An important tool is the following proposition, which appears for 
the two-dimensional case in [17], and in the general case, with a similar proof, in [1, 
Proposition 2.12]. We add the proof for completeness.
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Proposition 4.3. Let D be an effective divisor on a smooth variety X, and let E be an 
exceptional divisor in a log resolution π : Y → X of (X, D). Denote by i : E → Y the 
embedding. Let λ ∈ Q>0 be a candidate jumping number for E. Then E contributes λ as 
a jumping number if and only if

π∗i∗i
∗OY (Kπ − �λπ∗D� + E) �= 0.

If π(E) is affine (for example when E contracts to a point), this is equivalent to

H0(E, i∗OY (Kπ − �λπ∗D� + E)) �= 0.

If E is prime, this means that KE−�λπ∗D� |E is equivalent to an effective divisor on E.

Proof. Let λ be a candidate jumping number for E and consider the exact sequence

0 → OY (Kπ − �λπ∗D�) → OY (Kπ − �λπ∗D� + E)

→ i∗i
∗OY (Kπ − �λπ∗D� + E) → 0

of sheaves on Y . Pushing forward through π, we obtain

0 → J (X,λD) → π∗OY (Kπ − �λπ∗D� + E)

→ π∗i∗i
∗OY (Kπ − �λπ∗D� + E) → 0,

where the last term is 0 by local vanishing (Theorem 2.10). So we see that λ is a jumping 
number contributed by E if and only if π∗i∗i

∗OY (Kπ −�λπ∗D�+E) �= 0. If E is prime, 
we have (Kπ + E)|E = KE by adjunction, so the statement follows. �

As a consequence of this proposition, we have the following necessary condition for 
contributing jumping numbers.

Corollary 4.4. In the same setting as Proposition 4.3, suppose E is a prime divisor 
which is contracted to a point, and suppose that a divisor on E is effective if and only if 
it is effective as a Q-divisor. If E contributes some jumping number λ to (X, D), then 
KE + E◦|E is effective and non-zero in PicE, where E◦ = (π∗D)red − E.

Proof. Denote π∗D =
∑

i∈I aiEi + aE, where E and the Ei are different prime divisors. 
If λ is a candidate jumping number for E, then �λπ∗D� = λπ∗D−

∑
i∈I{λai}Ei. Hence, 

(E◦ + �λπ∗D�) |E =
∑

i∈I(1 − {λai})Ei|E since π∗D|E = 0, and this is an effective 
Q-divisor on E, different from the zero divisor, and hence an effective integral divisor.

If E contributes λ as a jumping number, then KE − �λπ∗D� |E is effective in PicE. 
Adding E◦|E + �λπ∗D� |E yields the result. �
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The following theorem states that multiplier ideals can actually be computed using log 
canonical models instead of log resolutions. It is a special case of a theorem by Smith and 
Tucker, who have been so kind to provide the statement and the proof in the appendix 
to this paper (see Theorem A.2).

Theorem 4.5. Let X be a smooth variety and D an effective divisor on X. If φc : Xc → X

is the log canonical model of (X, Dred), and λ ∈ Q>0, then

J (X,λD) = φc∗OXc
(Kφc

− �λφ∗
cD�).

Corollary 4.6. If an exceptional divisor contributes jumping numbers to the pair (X, D), 
not all of its irreducible components can be contracted in the log canonical model.

5. Positive answers in specific situations

The proof of Theorem 4.1 builds on the fact that in the resolution of a curve on 
a smooth surface, every exceptional divisor is isomorphic to P1, and hence has Picard 
group isomorphic to Z. In the higher dimensional case, exceptional divisors can be more 
complicated. Therefore, a straightforward generalization of the proof of Theorem 4.1
is very unlikely. However, if we assume the exceptional divisor to be isomorphic to a 
specific, not too complicated variety, we can recover similar results, and find positive 
answers to our questions.

In the proofs in this section, we will use the results from [21]. These results are stated 
and proved for divisors on affine space, but this is used only to ensure that the pullback 
of a divisor restricted to an exceptional divisor E is trivial in PicE. Therefore, these 
results also hold for principal divisors on smooth varieties, or when E is contracted to a 
point, which will be the setting in our propositions.

Remark 5.1. We have to be careful in generalizing the statement of Theorem 4.1, since a 
minimal resolution does not exist in higher dimensions. Therefore, we will assume in all 
of our statements that the log resolution is obtained by blowing up at centers that are 
either contained in the singular locus of D, or in the intersection of several components 
of the total transform of D. This does not give any limitations, because every pair has 
such a resolution (see [5]).

5.1. Contribution by an exceptional divisor isomorphic to Pn−1

The following proposition is the direct generalization of Theorem 4.1 to arbitrary 
dimensions. It can also be seen as a very special case of Proposition 5.3 below.

Proposition 5.2. Let D be an effective divisor on a smooth n-dimensional variety X, with 
n ≥ 2, and π : Y → X a log resolution of (X, D). Let E be an exceptional divisor of π
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isomorphic to Pn−1, and let d be the total degree in E of the intersections of E with the 
other components of π−1(D). Then the following are equivalent:

(1) E contributes jumping numbers to the pair (X, D),
(2) E is not contracted in the log canonical model of (X, Dred),
(3) d ≥ n + 1.

Moreover, in this case, E contributes the jumping number λ = 1 − 1
a , where a is the 

multiplicity of E in π∗D.

Proof. The implication 1 ⇒ 2 is Corollary 4.6.
Write π∗D =

∑
i∈I aiEi + aE, where {Ei | i ∈ I} are the components of π−1(D)

different from E. If C is a line on E, then (KE +
∑

i∈I Ei|E) · C = d − n. So by 
Lemma 3.14, if d ≤ n, E is contracted in the log canonical model. This proves 2 ⇒ 3.

It remains to prove that E contributes λ as a jumping number if d ≥ n + 1. By 
Proposition 4.3, it suffices to prove that deg(KE −�λπ∗D� |E) ≥ 0, or equivalently, that 
deg(�λπ∗D� |E) ≤ −n.

Let E′
j , j ∈ J , be the irreducible components of the intersections of E with the other 

components of π−1(D). Denote dj = deg(E′
j) for every j ∈ J , so that d =

∑
j∈J dj , and 

for every j ∈ J denote aj = ai, where i ∈ I is the index such that E′
j is a component of 

Ei ∩ E. By [21], we have

deg(aE|E) = −
∑
j∈J

ajdj ,

∑
j∈J

djaj =

⎛
⎝1 +

∑
j∈J

djmj

⎞
⎠ a,

where mj is the number of times that the strict transform of E′
j on E has been used as 

center of a blow-up in the resolution process. This implies that

deg (�λπ∗D� |E) = deg
(∑

i∈I

⌊
ai −

ai
a

⌋
Ei|E + (a− 1)E|E

)

=
∑
j∈J

⌊
aj −

aj
a

⌋
dj + (a− 1) deg(E|E)

= −
∑
j∈J

⌈aj
a

⌉
dj − deg(E|E)

= 1 −
∑
j∈J

(⌈aj
a

⌉
−mj

)
dj .

Now note that our assumptions on the resolution (Remark 5.1) imply that aj > mja for 
every j ∈ J , and hence 

⌈aj

a

⌉
−mj ≥ 1. Therefore, if d ≥ n +1, we have deg(�λπ∗D� |E) ≤

−n. This completes the proof. �
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5.2. Pn−1 blown up at some centers on a hyperplane

Throughout this section, we prove the following proposition.

Proposition 5.3. Let D be an effective divisor on a smooth n-dimensional variety X, with 
n ≥ 2, and π : Y → X a log resolution of (X, D). Let E be an exceptional divisor of 
π isomorphic to Pn−1, blown up at some centers Zl, l ∈ L, all contained in the same 
hyperplane H. Assume that E is created by a point blow-up, and denote dimZl = kl.

Denote by d the total degree of the intersections of E with other components of the 
total transform of D at the moment of the creation of E, and by μl the total multiplicity 
of these components at Zl for every l ∈ L. Then the following are equivalent:

(1) E contributes jumping numbers to the pair (X, D),
(2) E is not contracted in the log canonical model of (X, Dred),
(3) d ≥ n + 1 and d − μl ≥ kl + 2 for every l ∈ L.

Moreover, in this case, E contributes the jumping number λ = 1 − 1
a , where a is the 

multiplicity of E in π∗D.

Remark 5.4. An example of this situation is a projective plane blown up at two points, 
or, more generally, at any number of points on a fixed line.

Note that 1 ⇒ 2 is Corollary 4.6. Before proving this proposition, we introduce some 
notations. Denote π∗D =

∑
i∈I aiEi + aE, where {Ei | i ∈ I} are the components of 

π−1(D) different from E.
The Picard group of E is isomorphic to Z ⊕

⊕
l∈L Z, with generators h, the pullback 

of a hyperplane in Pn−1, and el, l ∈ L, the exceptional divisors of the blow-ups at the Zl.
Let E′

j , j ∈ J , be the irreducible components of the intersections of E with the other 
components of π−1(D).

Since every exceptional divisor on E, created by blowing up at the Zl, is the inter-
section of E with one of the other components of π−1(D) (see [21]), we can view L as 
a subset of J . Then, for j ∈ J ′ := J\L and l ∈ L, we can define dj and μjl so that we 
have the following equalities in PicE:

E′
j = djh−

∑
l∈L

μjlel, and

E′
l = el.

Note that with these notations d =
∑

j∈J ′ dj and μl =
∑

j∈J ′ μjl for all l ∈ L. Also, as 
in the proof of Proposition 5.2, denote aj = ai for every j ∈ J , where i ∈ I is the index 
such that E′

j is a component of Ei ∩ E.
The canonical divisor of E is given by

KE = −nh +
∑

(n− kl − 2)el. (1)

l∈L
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For every l ∈ L, the blow-up at Zl on E arises from a blow-up in the ambient space. 
Denote the center of this blow-up by Cl, such that E ∩ Cl = Zl (at this stage of the 
resolution).

5.2.1. Contraction in the log canonical model
Consider the family of strict transforms or pullbacks of lines C in Pn−1, not intersect-

ing any of the Zl. Then we see by Lemma 3.14 that E is contracted in the log canonical 
model if (KE +

∑
j∈J E′

j) · C ≤ 0, which is equivalent to d ≤ n. (This follows from 
h · C = 1 and el · C = 0 for all l ∈ L.)

Now fix one of the centers Zl and consider the family of strict transforms of lines C in 
Pn−1 intersecting Zl transversally, and none of the other Zl. (If Zl is a point, intersecting 
Zl transversally just means that the line contains Zl.) Then we see that E is contracted in 
the log canonical model if (KE +

∑
j∈J E′

j) ·C ≤ 0, which is equivalent to d −μl ≤ kl +1. 
(This follows from h · C = 1, el · C = 1, and el′ · C = 0 for l′ �= l.) This proves 2 ⇒ 3.

5.2.2. Contribution of jumping numbers
Now we show the implication 3 ⇒ 1, using Proposition 4.3. We have

−�λπ∗D� |E = −(π∗D)|E +
∑
i∈I

⌈ai
a

⌉
Ei|E + E|E

=
∑
i∈I

⌈ai
a

⌉
Ei|E + E|E

=
∑
j∈J

⌈aj
a

⌉
E′

j + E|E

= E|E +
∑
j∈J ′

⌈aj
a

⌉
djh +

∑
l∈L

⎛
⎝⌈al

a

⌉
−
∑
j∈J ′

⌈aj
a

⌉
μjl

⎞
⎠ el. (2)

Moreover, as in the proof of Proposition 5.2, from [21] we have

∑
j∈J ′

djaj =

⎛
⎝1 +

∑
j∈J ′

djmj

⎞
⎠ a, (3)

al =
∑
j∈J ′

μjlaj +

⎛
⎝ml −

∑
j∈J ′

μjlm
(l)
j + δl

⎞
⎠ a for all l ∈ L, and (4)

aE|E = −
∑
j∈J

ajE
′
j = −

⎛
⎝∑

j∈J ′

djaj

⎞
⎠h−

∑
l∈L

⎛
⎝al −

∑
j∈J ′

μjlaj

⎞
⎠ el,
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where mj (respectively m(l)
j ) is the number of times that the strict transform of E′

j on 
E has been used as the center of a blow up after the creation of E (respectively after 
blowing up at Cl), and δl = 1 if Zl = Cl (or equivalently, Cl ⊂ E), and δl = 0 otherwise.

Hence, using (3) and (4) we obtain

E|E = −

⎛
⎝1 +

∑
j∈J ′

djmj

⎞
⎠h−

∑
l∈L

⎛
⎝ml −

∑
j∈J ′

μjlm
(l)
j + δl

⎞
⎠ el (5)

because PicE is torsion free.
Combining (1), (2) and (5), we have

KE − �λπ∗D� |E =

⎛
⎝−n +

∑
j∈J ′

⌈aj
a

⌉
dj −

⎛
⎝1 +

∑
j∈J ′

djmj

⎞
⎠
⎞
⎠h

+
∑
l∈L

⎛
⎝n− kl − 2 +

⌈al
a

⌉
−
∑
j∈J ′

⌈aj
a

⌉
μjl

−

⎛
⎝ml −

∑
j∈J ′

μjlm
(l)
j + δl

⎞
⎠
⎞
⎠ el

=

⎛
⎝−n− 1 +

∑
j∈J ′

(⌈aj
a

⌉
−mj

)
dj

⎞
⎠h

+
∑
l∈L

⎛
⎝n− kl − 2 +

⎡
⎢⎢⎢
∑
j∈J ′

μjlaj
a

⎤
⎥⎥⎥−

∑
j∈J ′

⌈aj
a

⌉
μjl

⎞
⎠ el,

using (4) to rewrite 
⌈
al

a

⌉
.

If H̃ is the strict transform of H, we have H̃ = h −
∑

l∈L el in PicE. Then we obtain

KE − �λπ∗D� |E =

⎛
⎝−n− 1 +

∑
j∈J ′

(⌈aj
a

⌉
−mj

)
dj

⎞
⎠ H̃

+
∑
l∈L

(
−kl − 3 +

∑
l∈L′

(⌈aj
a

⌉
−mj

)
dj

+

⎡
⎢⎢⎢
∑
j∈J ′

μjlaj
a

⎤
⎥⎥⎥−

∑
j∈J ′

⌈aj
a

⌉
μjl

⎞
⎠ el.

So we see that E contributes λ = 1 − 1 as a jumping number if
a
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∑
j∈J ′

(⌈aj
a

⌉
−mj

)
dj ≥ n + 1, and

∑
j∈J ′

(⌈aj
a

⌉
−mj

)
dj ≥ kl + 3 +

∑
j∈J ′

⌈aj
a

⌉
μjl −

⎡
⎢⎢⎢
∑
j∈J ′

μjlaj
a

⎤
⎥⎥⎥ (for all l).

Since aj

a > mj for all j ∈ J ′, we have 
⌈aj

a

⌉
≥ mj+1 and 

⌈∑
j∈J ′

μjlaj

a

⌉
≥
∑

j∈J ′ μjlmj+1
for every l, which implies that λ is a jumping number contributed by E if∑

j∈J ′

dj ≥ n + 1, and

∑
j∈J ′

dj ≥ kl + 2 +
∑
j∈J ′

μjl (for all l),

i.e., if

d ≥ n + 1, and

d− μl ≥ kl + 2 (for all l).

Indeed, if 
∑

j∈J ′ dj ≥ n + 1, then

∑
j∈J ′

(⌈aj
a

⌉
−mj

)
dj ≥

∑
j∈J ′

dj ≥ n + 1,

and if 
∑

j∈J ′(dj − μjl) ≥ kl + 2 for some l ∈ L, then

∑
j∈J ′

(⌈aj
a

⌉
−mj

)
(dj − μjl) ≥

∑
j∈J ′

(dj − μjl) ≥ kl + 2,

and consequently∑
j∈J ′

(⌈aj
a

⌉
−mj

)
dj ≥ kl + 2 +

∑
j∈J ′

⌈aj
a

⌉
μjl −

∑
j∈J ′

μjlmj

≥ kl + 3 +
∑
j∈J ′

⌈aj
a

⌉
μjl −

⎡
⎢⎢⎢
∑
j∈J ′

μjlaj
a

⎤
⎥⎥⎥ .

This finishes the proof of Proposition 5.3.

6. A counterexample to Question 2

If dimX = 3, then besides P2, and P2 blown up at some distinct points on a line, 
the easiest case is when E is an exceptional divisor isomorphic to P2, blown up at two 
infinitely near points.
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So suppose we have such an E. Denote by d the degree of the intersections of E with 
other components of the total transform of D after the moment of its creation, and by μ1
and μ2 the multiplicity of these intersections at the first, respectively the second point.

As in the proof of Proposition 5.3, one can show that E contributes the jumping 
number 1 − 1/a if d ≥ 4, d − μ1 ≥ 2 and 2d − μ1 − μ2 ≥ 5, where a is the multiplicity 
of E in the total transform of D. Also, using Lemma 3.14, E is contracted in the log 
canonical model if d ≤ 3 (if we look at a general line), d − μ1 ≤ 1 (if we consider a line 
through the first point) or 2d −μ1 −μ2 ≤ 3 (if we look at a degree 2 curve through both 
points). Hence, in these cases, E does not contribute any jumping numbers.

In contrast with the previous results, this does not cover all the possibilities. Con-
cretely, the cases where d ≥ 4, d −μ1 ≥ 2 and 2d −μ1−μ2 = 4 are still open. Example 4.2
already shows that the case d = 4, μ1 = μ2 = 2 cannot be classified in one of the two 
options listed above. The following examples show even more: equal intersection config-
urations can lead to different statements about contribution (and contraction in the log 
canonical model). Hence, the answer to Question 2 is negative in general.

Example 6.1. Let D be the divisor given by (xy2 − z2)(x + z) = 0 in X = A3. We can 
construct a log resolution by blowing up at the origin first, with exceptional divisor E1, 
followed by blowing up at the intersection of E1 with the two components of D, with 
exceptional divisor E2, further at the singular line on the strict transform of the first 
component of D, with exceptional divisor E3, and then resolving the tangency of E1
with the strict transform of the first component of D, using two more blow-ups, with 
exceptional divisors E4 and E5. If π : Y → X is the composite of these blow-ups, we 
have

π∗D = D̃ + 3E1 + 6E2 + 2E3 + 4E4 + 8E5,

Kπ = 2E1 + 4E2 + E3 + 3E4 + 6E5.

One can see that E2 is a projective plane, blown up at two infinitely near points. At the 
moment of its creation, the other components of the total transform of D intersect E2
in a curve of degree 2, a line tangent to this curve, and a line intersecting these curves 
transversally. This means we are in the situation d = 4, μ1 = μ2 = 2. One can see 
immediately that 5

6 is the log canonical threshold, contributed as a jumping number by 
E2.

Example 6.2. Now consider the D5-singularity, given by yz2 +x2 − y4 = 0. We construct 
a resolution π : Y → X by blowing up at the origin, with exceptional divisor E1, 
followed by blowing up at the origin of the second chart, with exceptional divisor E2, 
blowing up at the intersection of E1, E2 and the strict transform of D5, with exceptional 
divisor E3, and then twice at the intersection of E1 with the strict transform of D5, with 
exceptional divisors E4 and E5. Then E3 is a projective plane, blown up at two infinitely 
near points, and the intersection configuration is the same as in the previous example. 
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However, since D5 is a log canonical singularity, it has no jumping numbers in (0, 1). 
(This can also be verified using the algorithm of [1].) We can conclude that contribution 
of jumping numbers by an exceptional divisor cannot be decided by only looking at the 
intersection configuration.

Remark 6.3. We can say even more. In Examples 6.1 and 6.2, the exceptional divisors 
we considered are even created in a similar way, i.e., blowing up at a point first, and 
then twice at a line intersecting the divisor transversally.

7. A counterexample to Question 1

Example 7.1. Consider the divisor D =
{
(zy + x2)2 + x3y + xy3 = 0

}
in X = A3. We 

blow up at the origin first, and call the exceptional divisor E0. Then, after four additional 
blow-ups centered in a line, corresponding to the minimal resolution of the singular curve 
D̃ ∩ E0 in E0, we obtain a log resolution π : Y → X. We have

Kπ = 2E0 + E1 + 2E2 + 3E3 + 6E4,

π∗D = D̃ + 4E0 + 2E1 + 4E2 + 5E3 + 10E4,

where D̃ denotes the strict transform of D.
The only candidate jumping numbers for E0 in (0, 1] are 3

4 and 1. Using Proposi-
tion 4.3, one can show that they are not contributed by E0 (similarly as in Example 4.2). 
With for example the algorithm of [1], one can compute that the jumping numbers are in 
fact the numbers in the set 

{ 7
10 ,

9
10 , 1

}
+Z≥0, and then the statement for 3

4 also follows.
We show that E0 is not contracted in the log canonical model using Lemma 3.12. 

Since D ∼ 0 on X, we have π∗D ∼ 0 on Y , and therefore

D̃ ∼ −4E0 − 2E1 − 4E2 − 5E3 − 10E4.

Hence,

Kπ + D̃ +
4∑

i=0
Ei ∼ −E0 −E2 −E3 − 3E4.

If G is the strict transform of a general plane in X through the origin, we have G ∼ −E0. 
Similarly, if F is the strict transform of the divisor {y = 0}, one can compute that

F ∼ −E0 −E1 − 2E2 − 2E3 − 4E4.

Therefore,

Kπ + D̃ +
4∑

Ei ∼Q

1
4G + 3

4F + 3
4E1 + 1

2E2 + 1
2E3.
i=0
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Now, for k ∈ Z>0,

h0(E0, k(G + 3F + 3E1 + 2E2 + 2E3)|E0) ≥ h0(E0, kG|E0) =
(
k + 2
k

)
,

hence 
∣∣∣KY + D̃ +

∑4
i=0 Ei

∣∣∣
E0

is big over X, and E0 is not contracted in the log canonical 
model.

Appendix A. Multiplier ideals from an LC-resolution (by Karen E. Smith1 and Kevin 
Tucker2)

We denote by S a smooth complex variety, and C an effective divisor on S.

Definition A.1. Suppose X is a normal complex variety, f : X → S a proper birational 
morphism, and let Δ = (f∗C)red. Then f : X → S is an LC-resolution of (S, C) if KX+Δ
is Q-Cartier, and for some (equivalently all) dominating log resolutions of (S, C)

X ′
θ

f ′

X
f

S

we have

KX′ + Δ′ ≥ θ∗(KX + Δ)

where Δ′ = (f ′ ∗C)red.

In other words, a proper birational morphism f : X → S is an LC-resolution if and 
only if X is normal, (X, Δ = (f∗C)red) is log canonical pair, and X \ Δ has canonical 
singularities. In practice, one generally restricts to LC-resolutions which are an isomor-
phism outside C (or even where C is singular), so that the last requirement is automatic. 
For more information on the types of singularities involved and a number of related con-
structions, see [10] (particularly Section 1.4).

Theorem A.2. If f : X → S is an LC-resolution of (S, C) and λ ∈ Q>0, then

J (S, λC) = f∗OX(Kf − �λf∗C�) .

In other words, the multiplier ideals of (S, C) can be computed from any LC-resolution.

1 The first author was partially supported by NSF Grant DMS #1501625.
2 The second author was partially supported by NSF Grant DMS #1602070 and a fellowship from the 

Sloan foundation.
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Proof. Choose a dominating resolution f ′ : X ′ → S as above. Let Kf ′ denote the (unique 
exceptionally supported) divisor KX′ − f ′ ∗KS . Since we have

θ∗(Kf ′ − �λf ′ ∗C�) = Kf − �λf∗C� ,

it follows immediately that

J (S, λC) = f∗θ∗OX′(Kf ′ − �λf ′ ∗C�) ⊆ f∗OX(Kf − �λf∗C�) .

For the opposite inclusion, we may assume that S is affine. Suppose ϕ ∈ H0(X, Kf −
�λf∗C�), so that ϕ ∈ K(X) and

div(ϕ) + Kf − �λf∗C� ≥ 0.

Write f∗(λC) = �λf∗(λC)� + {λf∗(λC)}, where {D} denotes the fractional part of a 
divisor D, so that

div(ϕ) + Kf − f∗(λC) + {λf∗(λC)} ≥ 0. (6)

Choose a rational number ε > 0 sufficiently small so that Δ′ − εf ′ ∗(λC) ≥ {λf ′ ∗C}. 
Pushing forward by θ, this also implies Δ − εf∗(λC) ≥ {λf∗C}. Therefore, in light of 
(6),

div(ϕ) − f∗KS + KX + Δ − (1 + ε)f∗(λC) ≥ 0

and hence also (recalling that KX + Δ is Q-Cartier)

div(ϕ ◦ θ) − f ′ ∗KS + θ∗(KX + Δ) − (1 + ε)f ′ ∗(λC) ≥ 0 .

Since X is an LC-resolution, we have KX′ + Δ′ ≥ θ∗(KX + Δ). Thus,

div(ϕ ◦ θ) − f ′ ∗KS + KX′ + Δ′ − (1 + ε)f ′ ∗(λC) ≥ 0

div(ϕ ◦ θ) + Kf ′ − �f ′ ∗(λC)� + (Δ′ − εf ′ ∗(λC) − {λf ′ ∗C}) ≥ 0

Taking the integer part of the left side yields

div(ϕ ◦ θ) + Kf ′ − �f ′ ∗(λC)� ≥ 0 ,

so that ϕ ∈ f ′
∗OX′(Kf ′ − �f ′ ∗(λC)�) = J (S, λC). The proof is complete. �

Remark A.3 (Log canonical models). As a corollary to the established results of the 
log minimal model program, Odaka and Xu [16] have verified the existence of a unique 
LC-resolution flc : Xlc → S so that if Δlc = (f∗

lcC)red then KXlc + Δlc is flc-ample.
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