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1. Introduction

A real representation π of a finite group G can be viewed as a group homomorphism 
from G to the orthogonal group O(V ) of a Euclidean space V . Recall the double cover 
ρ : Pin(V ) → O(V ). We say that π is spinorial, provided it lifts to Pin(V ), meaning 
there is a homomorphism π̂ : G → Pin(V ) so that ρ ◦ π̂ = π.

When the image of π lands in SO(V ), the representation is spinorial precisely when 
its second Stiefel-Whitney class w2(π) vanishes. Equivalently, when the associated vector 
bundle over the classifying space BG has a spin structure. (See Section 2.6 of [3], [8], 
and Theorem II.1.7 in [11].) Determining spinoriality of Galois representations also has 
applications in number theory: see [14], [6], and [13].

In this paper we give lifting criteria for representations of the symmetric groups Sn, 
the alternating groups An, and a product Sn × Sn′ of two symmetric groups. Write 
si ∈ Sn for the transposition (i, i +1), in cycle notation. A key result of this paper is the 
following:

Theorem 1.1. Let n ≥ 4.

(1) A representation π of Sn is spinorial iff χπ(1) ≡ χπ(s1s3) mod 8 and χπ(1) −χπ(s1)
is congruent to 0 or 6 mod 8.

(2) A representation π of An is spinorial iff χπ(1) ≡ χπ(s1s3) mod 8.

Combining this with the main result of [9] on character values, one deduces that as 
n → ∞, “100%” of the irreducible representations of Sn are spinorial. (See Corollary 3.6.)

Next, we leverage this result to compute the second Stiefel-Whitney classes for (real) 
representations π of Sn:

w2(π) =
[
χπ(1) − χπ(s1)

4

]
ecup + χπ(1) − χπ(s1s3)

4 w2(πn), (1.1)

where πn is the standard representation of Sn, and ecup ∈ H2(G, Z/2Z) is a certain cup 
product. (See Section 6.3.) Also [·] denotes the greatest integer function.

This formula allows us to compute the second Stiefel-Whitney classes of representa-
tions of Sn×Sn′ through Künneth theory, and therefore to identify spinorial representa-
tions of this product. To state the result, let Π = π�π′ be the external tensor product of 
representations π of Sn and π′ of Sn′ . Let g = 1

2 (χπ(1) − χπ(s1)), the multiplicity of −1
as an eigenvalue of π(s1), and similarly write g′ for the corresponding quantity for π′.

Theorem 1.2. The representation Π of Sn × Sn′ is spinorial iff the restrictions of Π to 
Sn × {1} and {1} × Sn′ are spinorial, and

(deg Π + 1)gg′ ≡ 0 mod 2.
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We now describe the layout of this paper. Section 2 reviews the group Pin(V ) and 
other conventions. The Sn case of Theorem 1.1 is proven in Section 3 by means of 
defining relations for the si. Additionally we note corollaries of Theorem 1.1: primarily 
the aforementioned “100%” result, a connection with skew Young tableau numbers, and 
the important case of Young permutation modules, meaning the induction of the trivial 
character from a Young subgroup of Sn. In particular we demonstrate that the regular 
representation of Sn is spinorial for n ≥ 4.

Representations of the alternating groups are treated in Section 4, again via generators 
and relations. The main result is the An case of Theorem 1.1. We enumerate the spinorial 
irreducible representations of An in Theorem 4.2. Data for spinoriality of irreducible 
representations of Sn and An for small n is presented in Tables 1 and 2 of Section 5.

In Section 6 we review the axioms of Stiefel-Whitney classes of real representations, 
and then deduce the Stiefel-Whitney class of a real representation of Sn. In Section 7
we apply Künneth theory to this formula to compute Stiefel-Whitney classes for real 
representations of Sn × Sn′ . From this it is straightforward to deduce Theorem 1.2.
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2. Notation and preliminaries

2.1. Representations

All representations are on finite-dimensional vector spaces, which are always real, 
except in Section 4, where they may be specified as complex. For a representation (π, V )
of a group G, write ‘detπ’ for the composition det ◦π; it is a linear character of G. Also 
write ‘χπ’ for the character of π. If H ≤ G is a subgroup, write π|H for the restriction 
of π to H. A real representation π : G → GL(V ) can be conjugated to have image in 
O(V ), so we will assume that this is the case. When detπ is trivial, it maps to SO(V ), 
and the spinoriality question is whether it lifts to the double cover Spin(V ) (which we 
review in the next section).

Let sgn : Sn → {±1} be the usual sign character. For G = Sn, we say that π is chiral
provided detπ = sgn and π is achiral provided detπ = 1. Write πn : Sn → GLn(R) for 
the standard representation of Sn by permutation matrices.

2.2. Partitions

If λ is a partition of n we write ‘λ 	 n’ and ‘|λ| = n’. If λ = (λ1, . . . , λ�) with

λ1 ≥ λ2 ≥ · · · ≥ λ� > 0,

write ‘λ + 1’ for the partition (λ1, . . . , λ�, 1) of n + 1.
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2.3. The Pin group

We essentially review [4, Chapter 1.6] for defining the groups Spin(V ) and Pin(V ), 
where V is a Euclidean (i.e., a normed finite-dimensional real vector) space. The Clifford 
algebra C(V ) is the quotient of the tensor algebra T (V ) by the two-sided ideal generated 
by the set

{v ⊗ v + |v|2 : v ∈ V }.

Write C(V )× for its group of units.
We identify V as a subspace of C(V ) through the natural injection i : V → C(V ). 

Write α for the unique involution of the R-algebra C(V ) with the property that α(x) =
−x for x ∈ V . One has

C(V ) = C(V )0 ⊕ C(V )1,

where C(V )0 is the 1-eigenspace of α and C(V )1 is the −1-eigenspace.
Write t for the unique anti-involution of C(V ) with t(x) = x. For x ∈ C(V ), define 

x = t(α(x)); it is again an algebra anti-involution. Define

N : C(V ) → C(V )

by N(x) = xx. Put

ΓV = {x ∈ C(V )× | α(x)V x−1 = V }.

Let ρ : ΓV → GL(V ) be the homomorphism given by v �→ α(x)vx−1. We will repeatedly 
use the fact that if v is a unit vector, then ρ(v) is the reflection determined by v. Write 
‘Pin(V )’ for the kernel of the restriction of N to ΓV . The restriction of ρ to Pin(V ) is 
a double cover of O(V ) with kernel {±1}. The preimage of SO(V ) under ρ is denoted 
‘Spin(V )’. Alternately, Spin(V ) = Pin(V ) ∩ C(V )0.

3. Symmetric groups

3.1. Lifting criteria

Let n ≥ 2. The group Sn is generated by the transpositions si = (i, i + 1) for 1 ≤ i ≤
n − 1, with the following relations:

(1) si
2 = 1, 1 ≤ i ≤ n − 1,

(2) sisk = sksi, when |i − k| > 1,
(3) (sisi+1)3 = 1, 1 ≤ i ≤ n − 2.
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Therefore, defining a homomorphism from Sn to a group G is equivalent to choosing 
elements x1, . . . , xn−1 ∈ G satisfying the same relations. Let us call the relation x2

i = 1
the “first lifting condition”, the relation xixk = xkxi the “second lifting condition”, and 
(xixi+1)3 = 1 the “third lifting condition”. Note that this second condition is vacuous 
for n < 4.

Let π : Sn → O(V ) be a representation of degree d. For each π(si) ∈ O(V ) there are 
±ci ∈ Pin(V ) with ρ(±ci) = π(si), and the question is whether we may choose signs so 
that the xi = ±ci satisfy these lifting conditions.

Let gπ = χπ(1) − χπ(s1)
2 , as in [2]. This is the multiplicity of the eigenvalue −1 of 

π(s1), and the eigenvalue 1 occurs with multiplicity d −gπ. Put ci = u1 · · ·ugπ ∈ Pin(V ), 
where u1, . . . , ugπ is an orthonormal basis of the −1-eigenspace of π(si). Since π(si) is 
the product of the reflections in each uj, the elements ci and −ci are the lifts of π(si). 
One computes that

c2i = (−ci)2 = (−1) 1
2 gπ(gπ+1),

and therefore the first lifting condition is satisfied iff gπ is congruent to 0 or 3 modulo 
4. It does not matter for this whether we choose ci or −ci.

Consider the sequence (c1c2)3, (c2c3)3, . . . ∈ Pin(V ). Since each (π(si)π(si+1))3 = 1, 
this must be a sequence of ±1’s. For the third lifting condition these must each be 1. 
Thus c1 may take either sign, but then the signs for c2, c3, . . . are determined. Moreover 
this does not affect the first lifting condition. Thus:

Proposition 3.1. The first and third lifting conditions hold iff gπ ≡ 0 or 3 mod 4.

Now let |i − k| > 1, and suppose as above that c2i = 1 = c2k = 1. Then the second 
lifting condition holds iff (cick)2 = 1. By conjugating we may assume that i = 1 and 

k = 3. So put hπ = χπ(1) − χπ(s1s3)
2 ; as above the condition is equivalent to hπ ≡ 0, 3

mod 4. However:

Lemma 3.2. The integer hπ is even.

Proof. Let ζ4 be a 4-cycle in Sn. Then ζ2
4 is conjugate to s1s3. Let m be the multiplicity 

of i =
√
−1 as an eigenvalue of π(ζ4). Then hπ, the multiplicity of −1 as an eigenvalue 

of π(s1s3), is 2m. �
The above discussion shows that the following statement holds:

Proposition 3.3. The second lifting condition holds iff hπ is a multiple of 4.

We summarize the above as the following:
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Theorem 3.4. Let n ≥ 4, and π a representation of Sn. The following are equivalent:

(1) The representation π is spinorial.
(2) gπ ≡ 0 or 3 mod 4, and hπ ≡ 0 mod 4.
(3) χπ(1) − χπ(s1) ≡ 0 or 6 mod 8, and χπ(1) ≡ χπ(s1s3) mod 8.

When π is spinorial it has two lifts.

Proof. The first two statements are equivalent by Propositions 3.1 and 3.3. The last two 
statements are equivalent by the definitions of gπ and hπ. The two lifts correspond to 
the choice of sign for c1 in the argument above. �

When π is spinorial, note that gπ ≡ 0 mod 4 iff π is achiral, and gπ ≡ 3 mod 4 iff π
is chiral.

Remark. The two lifts correspond to the two members of H1(Sn, Z/2Z); see Theorem 
II.1.7 of [11].

Corollary 3.5. A representation π of Sn is spinorial iff its restrictions to the cyclic sub-
groups 〈s1〉 and 〈s1s3〉 are both spinorial.

Proof. This follows from Condition (2) of Theorem 3.4. The property that gπ ≡ 0 or 3
mod 4 corresponds to the subgroup 〈s1〉, and the property that hπ ≡ 0 mod 4 corre-
sponds to 〈s1s3〉. �

The irreducible representations of Sn are the Specht modules (σλ, Vλ), indexed by 
partitions of n. (See for instance [10].) Write fλ = fπλ

, and similarly for gλ, hλ. Write 
p(n) for the number of partitions of n.

Corollary 3.6. We have

lim
n→∞

#{λ 	 n | σλ is achiral and spinorial }
p(n) = 1.

In other words, as n → ∞, 100% of irreducible representations of Sn are achiral and 
spinorial.

Proof. According to [9], as n → ∞, 100% of partitions λ of n have

χλ(1) ≡ χλ(s1) ≡ χλ(s1s3) ≡ 0 mod 8.

The conclusion then follows from Theorem 1.1. �
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3.2. Connection with skew Young tableaux

Let μ, λ be partitions for which the Young diagram of λ contains that of μ. The notion 
of standard Young tableaux generalizes to “skew diagrams” λ/μ. Following Section 7.10 
in [15], write fλ/μ for the number of SYT on λ/μ. (If the Young diagram of μ is not 
contained in that of λ, put fλ/μ = 0.)

Proposition 3.7. We have

(1) gλ = fλ/(1,1) and
(2) hλ = 2 · (fλ/(3,1) + fλ/(2,1,1)).

Proof. Let μ 	 k for some k ≤ n, and let μ be the partition of n defined by adding 
(n − k) 1’s, i.e. μ = μ + 1 + · · · + 1︸ ︷︷ ︸

(n−k) times

. Write wμ ∈ Sn be a permutation with cycle type μ. 

According to [15], Exercise 7.62, we have

χλ(wμ) =
∑
ν�k

χν(wμ) · fλ/ν .

Taking μ = (2) gives

χλ(s1) = fλ/(2) − fλ/(1,1),

and taking μ = (1, 1) gives

χλ(1) = fλ/(2) + fλ/(1,1),

so that gλ = fλ/(1,1).
Similarly, taking μ = (2, 2) and using the character table for S4, we compute

χλ(s1s3) = fλ/(4) − fλ/(3,1) + 2fλ/(2,2) − fλ/(2,1,1) + fλ/(1,1,1,1). (3.1)

Taking μ = (1, 1, 1, 1) gives

χλ(1) = fλ/(4) + 3fλ/(3,1) + 2fλ/(2,2) + 3fλ/(2,1,1) + fλ/(1,1,1,1). (3.2)

Combining (3.1) and (3.2) gives the formula for hλ. �
3.3. Young permutation modules

Another important class of representations of Sn are the Young permutation modules, 
which are also indexed by partitions of n. Let λ = (λ1, . . . , λ�) 	 n, and consider the 
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set Pλ of ordered partitions of {1, 2, . . . , n} with shape λ. Thus a member of Pλ is an 
	-tuple (X1, . . . , X�) of disjoint sets with each |Xi| = λi and 

⋃�
i=1 Xi = {1, . . . , n}. Note 

that Pλ has cardinality

(
n

λ1, . . . , λ�

)
. (3.3)

The group Sn acts on Pλ in the obvious way, and we obtain the Young permutation mod-
ule R[Pλ]. This representation space is given by formal linear combinations of elements 
of Pλ, so its degree is given by (3.3).

For example, if λ = (1, . . . , 1) 	 n, then R[Pλ] is the regular representation of Sn. If 
λ = (n −1, 1), then R[Pλ] is the standard representation πn of Sn on Rn. Note that Sn acts 
transitively on Pλ with a stabilizer equal to the “Young subgroup” Sλ = Sλ1 ×· · ·×Sλ�

, 
so we can also view R[Pλ] as the induction from Sλ to Sn of the trivial representation.

The characters of the R[Pλ], though typically reducible, form an important basis of 
the representation ring of Sn. See, for example, Section 2.2 of [10].

Recall that, for a permutation representation π, the character value χπ(g) is the 
number of fixed points of g. Write Θλ for the character χR[Pλ].

From this fixed-point principle we compute

Θλ(s1) =
∑

|λi|≥2

(
n− 2

λi, . . . , λi − 2, . . . , λ�

)
,

since a partition in Pλ is fixed by s1 iff 1 and 2 lie in the same part Xi for some i. 
Similarly, Θλ(s1s3) equals

∑
1≤i<j≤l

|λi|≥2,|λj |≥2

(
n− 4

λ1, . . . , λi − 2, . . . , λj − 2, . . . , λl

)
+

∑
|λk|≥4

(
n− 4

λ1, . . . , λi − 4, . . . , λl

)
.

This is because a partition in Pλ is fixed by s1s3 iff either the elements 1, 2, 3, 4 all lie in 
the same part Xi, or 1, 2 lie in some Xi and 3, 4 lie some other part Xj .

These character values may be used to compute gR[Pλ] and hR[Pλ]. (Compare Lemma 
17 in [2].) For instance if λ = (1, . . . , 1) 	 n, then Θλ(s1) = Θλ(s1s3) = 0, so gR[Pλ] =
hR[Pλ] = n!

2 . Thus the regular representation of Sn is achiral and spinorial.
The standard representation πn corresponds to λ = (n − 1, 1). For this λ we have 

Θλ(s1) = n − 2, so gR[Pλ] = 1 and it follows that πn is aspinorial.
For easy reference, we collect here results about common representations of Sn:

Proposition 3.8. For n ≥ 2 the standard representation πn is achiral and aspinorial, and 
the sign representation is achiral and aspinorial. For n ≥ 4, the regular representation of 
Sn is achiral and spinorial.
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4. Alternating groups

Now we turn to the alternating group An, for n ≥ 4.

4.1. Spinoriality criterion

The group An is generated by the permutations

ui = s1si+1, (i = 1, 2, . . . , n− 2)

with relations:

u3
1 = u2

j = (uj−1uj)3 = 1, (2 ≤ j ≤ n− 2),

(uiuj)2 = 1, (1 ≤ i < j − 1, j ≤ n− 2).

(See for instance [5].)
Note that u1 is a 3-cycle and the other ui are (2, 2)-cycles.

For a real representation (π, V ) of An again put hπ = χπ(1) − χπ(s1s3)
2 . Since this 

is the multiplicity of the eigenvalue −1 of π(s1s3), which has determinant 1, the integer 
hπ is necessarily even.

Theorem 4.1. A real representation (π, V ) of An is spinorial if and only if hπ is a multiple 
of 4. In this case there is a unique lift.

Proof. As in Section 3.1 we must choose ci with ρ(ci) = π(ui) satisfying the same 
relations as the ui. Let c1 be a lift of π(u1). Since ρ(c1)3 = π(u1)3 = 1, we have c31 = ±1. 
This determines the sign of c1.

The uj and uiuj as above, for j > 1, are all conjugate to u2 in An. Therefore all the 
conditions c2j = 1 and (cicj)2 = 1 are equivalent to the condition c22 = 1. As before, this 
is equivalent to hπ being congruent to 0 or 3 mod 4, but since hπ is even, it must be a 
multiple of 4.

Finally, there is a unique choice of signs normalizing c2, . . . , cn−2 so that

(c1c2)3 = (c2c3)3 = . . . = 1. �
Example. If ρ is the regular representation of An (on the group algebra R[An]), then 

hρ = n!
4 , so ρ is spinorial iff n �= 4, 5.

Example. For the standard representation πn of Sn, hπn
= 2, so the restriction of πn to 

An is aspinorial.
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4.2. Real irreducible representations

Let us review the relationship between real and complex irreducible representations of 
a finite group G, following [4]. If (π, V ) is a complex representation of a group G, write 
(πR, VR) for the realization of π, meaning that we simply forget the complex structure 
on V and regard it as a real representation. If moreover (π, V ) is an orthogonal complex 
representation, meaning that it admits a G-invariant symmetric nondegenerate bilinear 
form, then there is a unique real representation (π0, V0), up to isomorphism, so that 
π ∼= π0 ⊗R C.

It is not hard to see that π0 is self-dual iff π is self-dual, and that an orthogonal π is 
spinorial, i.e., lifts to Spin(V ), iff π0 is spinorial, i.e., lifts to Spin(V0).

Every real irreducible representation σ of G is either of the form

(1) σ = π0, for an orthogonal irreducible complex representation π of G, or
(2) σ = πR, for an irreducible complex representation π of G which is not orthogonal.

In the case of G = Sn, all complex representations are orthogonal.

4.3. Real irreducible representations of An

For a partition λ, write λ′ for its conjugate partition. Furthermore write ελ = 1 when 
the number of cells in the Young diagram of λ above the diagonal is even, and ελ = −1
when this number is odd.

For example, let λ = (4, 3, 2, 1). Then λ = λ′, and there are 4 cells above the diagonal, 
shaded in the Young diagram below, so ελ = 1.

Let σλ be the (real) Specht module corresponding to λ, as before. Write πλ = σλ ⊗C

for its complexification, i.e., the complex Specht module corresponding to λ.
If λ �= λ′, then πλ restricts irreducibly to An. When λ = λ′, the restriction of πλ

to An decomposes into a direct sum of two nonisomorphic representations π+
λ and π−

λ . 
Either of π±

λ is the twist of the other by σλ(w) for any odd permutation w. The set of 
πλ with λ �= λ′, together with the π±

λ for λ = λ′, is a complete set of irreducible complex 
representations of An.

For λ = λ′ we have

χ+
λ (s1s3) = χ−

λ (s1s3) = 1
χλ(s1s3). (4.1)
2
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If moreover ελ = 1, then the representations π+
λ and π−

λ are orthogonal. We may then 
define real irreducible representations of An by σ±

λ = (π±
λ )0. However when ελ = −1, 

the representations π±
λ are not orthogonal, and therefore the realizations (π±

λ )R are 
irreducible.

Then

π+
λ ⊕ π−

λ
∼= πλ|An

∼= σ|An
⊗C,

so that

(π+
λ )R ⊕ (π−

λ )R ∼= (σλ|An
⊗C)R

∼= σλ|An
⊕ σλ|An

.

Thus we have isomorphisms of real An-representations:

(π+
λ )R ∼= (π−

λ )R ∼= σλ|An
.

From these considerations and Theorem 4.1 we conclude:

Theorem 4.2. A complete list of real irreducible representations of An is given by

(1) σλ|An
, where either λ �= λ′, or λ = λ′ and ελ = −1, and

(2) σ±
λ , where λ = λ′ and ελ = 1.

In the first case, σλ|An
is spinorial iff χλ(s1s3) ≡ χλ(1) mod 8. In the second case, 

σ+
λ is spinorial iff σ−

λ is spinorial iff χλ(s1s3) ≡ χλ(1) mod 16.

Remark. When λ = λ′ the restriction σλ|An
is necessarily spinorial by (4.1), since all hπ

are even.

5. Tables

We illustrate the theory of this paper by means of two tables. Table 1 contains the 
following information for 2 ≤ n ≤ 6:

(1) Whether the Specht Module σλ is chiral, i.e., whether gλ is odd.
(2) Whether σλ is spinorial, by Theorem 3.4.
(3) Whether the restriction of σλ to An is spinorial, by Theorem 4.2.

Table 2 lists for self-conjugate λ with ελ = 1, whether the constituents σ+
λ and σ−

λ are 
spinorial, following Theorem 4.2. This is done for all such λ with 3 ≤ |λ| ≤ 15.
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Table 1
Spinoriality/chirality of σλ with 2 ≤ |λ| ≤ 6.

λ Chirality 
of σλ

Spinoriality 
of σλ

Spinoriality 
of σλ|An

|λ| = 2
(2) achiral spinorial spinorial
(12) chiral aspinorial spinorial

|λ| = 3
(3) achiral spinorial spinorial
(2, 1) chiral aspinorial spinorial
(13) chiral aspinorial spinorial

|λ| = 4
(4) achiral spinorial spinorial
(3, 1) chiral aspinorial aspinorial
(2, 2) chiral aspinorial spinorial
(2, 12) achiral aspinorial aspinorial
(14) chiral aspinorial spinorial

|λ| = 5
(5) achiral spinorial spinorial
(4, 1) chiral aspinorial aspinorial
(3, 2) achiral aspinorial aspinorial
(3, 12) chiral spinorial spinorial
(22, 1) chiral aspinorial aspinorial
(2, 13) chiral aspinorial aspinorial
(15) chiral aspinorial spinorial

|λ| = 6
(6) achiral spinorial spinorial
(5, 1) chiral aspinorial aspinorial
(4, 2) chiral aspinorial spinorial
(4, 12) achiral aspinorial aspinorial
(32) achiral aspinorial aspinorial
(3, 2, 1) achiral spinorial spinorial
(3, 13) achiral aspinorial aspinorial
(23) chiral aspinorial aspinorial
(22, 12) achiral aspinorial spinorial
(2, 14) achiral aspinorial aspinorial
(16) chiral aspinorial spinorial

Table 2
Spinoriality of σ±

λ with λ = λ′, ελ = 1, and 3 ≤ |λ| ≤ 15.

λ |λ| σ±
λ

(3, 1, 1) 5 aspinorial
(3, 2, 1) 6 spinorial
(5, 14) 9 spinorial
(5, 2, 13) 10 spinorial
(4, 3, 2, 1) 10 spinorial
(4, 3, 3, 1) 11 aspinorial
(7, 16) 13 spinorial
(7, 2, 15) 14 spinorial
(6, 32, 13) 15 spinorial
(5, 4, 3, 2, 1) 15 spinorial
(43, 3) 15 spinorial
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6. Stiefel-Whitney classes

6.1. Basic properties

Let G be a finite group and π a real representation of G. Stiefel-Whitney classes 
wi(π) are defined for 0 ≤ i ≤ deg π as members of the cohomology groups Hi(G) =
Hi(G, Z/2Z). Here Z/2Z is trivial as a G-module. One considers the total Stiefel-
Whitney class in the Z/2Z-cohomology ring:

w(π) = w0(π) + w1(π) + · · · + wd(π) ∈ H∗(G) =
∞⊕
i=0

Hi(G),

where d = deg π.
According to, for example [8], these characteristic classes satisfy the following prop-

erties:

(1) w0(π) = 1.
(2) w1(π) = detπ, regarded as a linear character in H1(G) ∼= Hom(G, {±1}).
(3) If π′ is another real representation, then w(π ⊕ π′) = w(π) ∪ w(π′).
(4) If f : G′ → G is a group homomorphism, then w(π ◦ f) = f∗(w(π)), where f∗ is the 

induced map on cohomology.
(5) Suppose detπ = 1. Then w2(π) = 0 iff π is spinorial.

Note in particular that w(χ) = 1 + χ, if χ is a linear character of G.
The last property generalizes as follows:

Proposition 6.1. A real representation π is spinorial iff w2(π) = w1(π) ∪ w1(π).

We will deduce this proposition from the following lemma.

Lemma 6.2. Let π′ = π ⊕ detπ. Then π is spinorial iff π′ is spinorial.

Proof. Let V ′ be the representation space of π′; say V ′ = V ⊕Rv′ for some unit vector 
v′ perpendicular to V . Write ι : C(V ) → C(V ′) for the canonical injection. Note that 
if x ∈ C(V )0, then ι(x)v′ = v′ · ι(x), and if x ∈ C(V )1, then ι(x)v′ = −v′ · ι(x). Write 
ρ′ : Pin(V ′) → O(V ′) for the usual double cover.

Define ϕ : O(V ) → SO(V ′) by

ϕ(g) = g ⊕ det(g),

so that π′ = ϕ ◦ π. Write ΦV < SO(V ′) for the image of ϕ. The essential problem is to 
construct a lift of ϕ ◦ρ. Since Spin(V ) = Pin(V ) ∩C(V )0, the map ϕ̃ : Pin(V ) → Spin(V ′)
defined by
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ϕ̃(x) =
{
ι(x), if x ∈ Spin(V )
ι(x)v′, if x /∈ Spin(V )

is a group homomorphism. Note that

ρ′ ◦ ϕ̃ = ϕ ◦ ρ. (6.1)

Let us see that ϕ̃ is injective; suppose ϕ̃(x1) = ϕ̃(x2). Clearly if x1 and x2 are both in 
Spin(V ), or both not in Spin(V ), then x1 = x2. Suppose x1 ∈ Spin(V ) but x2 /∈ Spin(V ). 
Then v′ = ι(x−1

2 x1) and in particular v′ ∈ ι(C(V )). But this is impossible by Corollary 
6.7 in Chapter I of [4]. We conclude that ϕ̃ is injective.

Write Φ̃V < Spin(V ′) for the image of ϕ̃; then ϕ̃ is an isomorphism from Pin(V ) onto 
Φ̃V and

(ρ′)−1ΦV = Φ̃V .

If π̂ is a lift of π, then ϕ̃ ◦ π̂ is a lift of π′. Conversely, suppose π̂′ is a lift of π′. Then 
its image lies in Φ̃V , and therefore π̂′ = ϕ̃ ◦ π̂ for some homomorphism π̂ : G → Pin(V ). 
Since

ρ′ ◦ π̂′ = ϕ ◦ π,

it follows that

ϕ ◦ ρ ◦ π̂ = ϕ ◦ π.

Thus π̂ is a lift of π. �
Proof of Proposition 6.1. Note that detπ′ = 1, so π is spinorial iff w2(π′) = 0. But

w(π′) = w(π) ∪ w(detπ)

= (1 + detπ + w2(π) + · · · ) ∪ (1 + detπ)

= 1 + w2(π) + w1(π) ∪ w1(π) + · · · ,

whence the theorem. �
6.2. The group of order 2

Let C be a cyclic group of order 2, and write ‘sgn’ for its nontrivial linear character. 
Then H2(C) ∼= Z/2Z; the nonzero element is ‘sgn∪ sgn’. Let π be the sum of m copies 
of the trivial representation with n copies of sgn. Then
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w(π) = w(sgn) ∪ · · · ∪ w(sgn)

= 1 + n · sgn +
(
n

2

)
· sgn∪ sgn + · · · .

In particular, w2(π) =
(
n
2
)
· sgn∪ sgn. By Proposition 6.1, π is spinorial iff n2 ≡

(
n
2
)

mod 2; equivalently, n ≡ 0 or 3 mod 4.

6.3. Calculation for Sn

Write

ecup = w1(sgn) ∪ w1(sgn) = w2(sgn⊕ sgn) ∈ H2(Sn).

Again write πn for the standard representation of Sn on Rn. From [14, Section 1.5]
we know that ecup and w2(πn) comprise a basis for the Z/2Z-vector space H2(Sn).

Proposition 6.3. The map

Φ : H2(Sn) → H2(〈s1〉) ⊕H2(〈s1s3〉),

given by the two restrictions, is an isomorphism for n ≥ 4.

Proof. Since Φ is a linear map between 2-dimensional Z/2Z-vector spaces, it suffices to 
prove that its rank is 2. Let b1 be the generator of H2(〈s1〉), and b2 be the generator of 
H2(〈s1s3〉).

The restriction of πn to 〈s1〉 decomposes into a trivial (n −1)-dimensional representa-
tion plus one copy of sgn. The restriction to 〈s1s3〉 contains two copies of sgn. Therefore 
Φ(w2(πn)) = (0, b2). Similarly Φ(w2(sgn⊕ sgn)) = Φ(ecup) = (b1, 0). Thus Φ has rank 2, 
as required. �

Thus the second Z/2Z-cohomology of Sn is “detected” by these cyclic subgroups; 
compare Corollary 3.5 above and Theorem VI.1.2 in [1].

Theorem 6.4. For π a real representation of Sn, with n ≥ 4, we have

w2(π) =
[gπ

2

]
ecup + hπ

2 w2(πn)

=
[
χV (1) − χV (s1)

4

]
ecup + χV (1) − χV (s1s3)

4 w2(πn).

Here [·] denotes the greatest integer function.

Proof. Suppose first that π is achiral. Since ecup and w2(πn) form a basis of H2(Sn) we 
must have
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w2(π) = c1ecup + c2w2(πn),

for some c1, c2 ∈ Z/2Z. Thus Φ(w2(π)) = c1b1 + c2b2. By the Stiefel-Whitney class 
properties (4) and (5),

c1 = 0 ⇔ π|〈s1〉 is spinorial ⇔ 4|gπ

and

c2 = 0 ⇔ π|〈s1s3〉 is spinorial ⇔ 4|hπ.

Thus c1 ≡ gπ
2 mod 2 and c2 ≡ hπ

2 mod 2.
If π is chiral, then π′ = π ⊕ sgn is achiral. From the identity w2(π) = w2(π′) + ecup, 

we deduce that

w2(π) = gπ − 1
2 ecup + hπ

2 w2(πn). �
Remark. For n = 2, 3, similar reasoning gives H2(Sn) ∼= H2(〈s1〉) and

w2(π) =
[gπ

2

]
ecup =

[
χV (1) − χV (s1)

4

]
ecup.

Remark. Since the groups H2(An, Z/2Z) have order 1 or 2, computing the Stiefel-
Whitney class of a real representation of An is equivalent to determining its spinoriality, 
which we have already done.

7. Products

Spinoriality for representations of Sn × Sn′ can also be determined by means of 
generators and relations. (See Theorem 5.4.1 in [7].) However we will instead obtain 
a satisfactory criterion by simply feeding our calculation of w2(π) into the machinery of 
Stiefel-Whitney classes.

7.1. External tensor products

Let G, G′ be finite groups, let (π, V ) be a real representation of G, and let (π′, V ′) be 
a real representation of G′. Write π � π′ for the external tensor product representation 
of G ×G′ on V ⊗ V ′. One computes

det(π � π′) = det(π)deg π′ · det(π′)deg π,

and hence

w1(π � π′) = deg π′ · w1(π) + deg π · w1(π′),
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which is an element of

H1(G×G′) ∼= H1(G) ⊕H1(G′).

The famous “splitting principle” (e.g., proceeding as in Problem 7-C of [12]) similarly 
gives

w2(π � π′) = deg π′ · w2(π) +
(

deg π′

2

)
w1(π) ∪ w1(π)

+ (deg π deg π′ − 1)w1(π) ⊗ w1(π′)

+
(

deg π
2

)
w1(π′) ∪ w1(π′) + deg π · w2(π′),

as an element of

H2(G×G′) ∼= H2(G) ⊕
(
H1(G) ⊗H1(G′)

)
⊕H2(G′).

Finally, w2(π � π′) + w1(π � π′) ∪ w1(π � π′) comes out to be

deg π′ · w2(π) +
(

deg π′ + 1
2

)
w1(π) ∪ w1(π) + (deg π deg π′ + 1)w1(π) ⊗ w1(π′)

+
(

dim π + 1
2

)
w1(π′) ∪ w1(π′) + deg π · w2(π′).

Thus π � π′ is spinorial (by Proposition 6.1) iff all of the following vanish:

(1) deg π′ · w2(π) +
(deg π′+1

2
)
w1(π) ∪ w1(π),

(2) (deg π deg π′ + 1)w1(π) ⊗ w1(π′), and
(3)

(deg π+1
2

)
w1(π′) ∪ w1(π′) + deg π · w2(π′).

7.2. Products of symmetric groups

We now prove Theorem 1.2. Let π, π′ be representations of Sn and Sn′ . Write f = fπ, 
f ′ = fπ′ and similarly for g, h, g′ and h′. Let Π = π � π′; all representations of Sn × Sn′

are sums of such representations.

Proof. By Proposition 6.1, Π is spinorial iff

w2(Π) = w1(Π) ∪ w1(Π).

From Theorem 6.4 and (1)-(3) of Section 7.1 we deduce that Π is spinorial iff all of the 
following are even:
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(1) f ′ · h
2 ,

(2) f ′
[g
2

]
+

(
f ′+1

2
)
g,

(3) (ff ′ + 1)gg′,
(4) f · h′

2 , and

(5) f

[
g′

2

]
+
(
f+1

2
)
g′.

Note that if Π is spinorial, then its restriction to Sn×{1}, which amounts to f ′ copies 
of π, is spinorial. From before, this implies that f ′ · h

2 is even, and f ′g is congruent to 0
or 3 mod 4. One can verify this f ′g condition is equivalent to (2) being even. Thus (1), 
(2), (4), and (5) above are all even iff the restrictions of Π to Sn×{1} and {1} ×Sn′ are 
spinorial. Theorem 1.2 follows from this, since ff ′ = deg Π. �
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