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1. INTRODUCTION

We analyze the structure of all ideals constructed by taking the first par-
tial derivatives of a trilinear form whose coefficients satisfy a kind of weak
genericity property.

Here is the set-up: let K be a field and let R be the polynomial ring over
K in the three sets of indeterminates X1; : : : ;Xn, Y1; : : : ; Ym, Z1; : : : ; Zp.
We will assume throughout that n ≥ m ≥ p. Let

A = ∑
1≤i≤n
1≤j≤m
1≤k≤p

aijkXiYjZk

be a trilinear form in R, and let JA denote the ideal of R generated by all
the partial derivatives of A.
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A question that arises from the theory of hyperdeterminants (see [GKZ,
p. 445]) is the following: What can be said about the ideal JA? A reason
for this question emerges, among other things, from results which show that
information on the depth of JA and, more finely, on the primary decom-
position of JA, is linked to information on the hyperdeterminant of A (see
[BW]). The difficulty with hyperdeterminants, whose definition makes sense
only when n ≤ m+p− 1, is that there is no explicit formula for them. How-
ever, when n = m + p − 1, the hyperdeterminants are better understood.
The first author, together with Boffi and Bruns, analyzed in [BBG] the
minimal primes of JA when the entries in A satisfy a specific combinatorial
structure; more precisely, A is taken to be a “non-degenerate diagonal tri-
linear form of boundary type,” namely, n = m+ p− 1 and aijk 6= 0 if and
only if i = j + k− 1. In that paper the authors also ask if it is possible to
relax in any way these assumptions [BBG, Remark 1.17].

We provide an answer to this question in the present work: the structure
described in [BBG] holds in a much larger context; see Theorems 4.10 and
4.11. We determine the minimal components and the radical of JA, and
moreover, when n = m+ p− 1, we give an explicit criterion for when the
hyperdeterminant of A vanishes (Proposition 3.13).

The critical idea in this paper which enables these generalizations is the
new concept of a trilinear form in general position. We develop and ana-
lyze the properties of such trilinear forms in Section 3. Whereas the proofs
in [BBG] relied on the combinatorial structure of the aijk, our concept of
the generic trilinear form enables us to relax quite a few of the assump-
tions from [BBG] and still simplify the proofs and yield some extra results.
Moreover, our generalizations are in some sense “natural,” as, for example,
when n = m+ p− 1, the trilinear forms in general position correspond ex-
actly to those three-dimensional arrays for which the hyperdeterminant is
non-zero (see Proposition 3.13).

The organization of the paper is as follows: in Section 2 we introduce
the notation and define trilinear forms in general position (see Definition
2.2). In Section 3 we show that, when K is algebraically closed, the class of
matrices in general position is very large and that it includes those treated
in [BBG] (see Corollary 3.12 and Proposition 3.13). We prove, in fact, that
there is a Zariski-open subset U of Knmp such that if �aijk� ∈ U , then the
corresponding A is in general position (see Proposition 3.14). The key idea
of this part of the paper is that the notion of trilinear form in general
position is related to the concept of the 1-generic matrix introduced by
Eisenbud in [E2]. More precisely, we give a wider definition of 1-genericity
(see Definition 3.1), and we use it to prove some equivalent and simpler
formulations of general position (see Theorem 3.11). In this part of the
work we exploit the interplay among the three matrices of linear forms
obtained by taking appropriate second partial derivatives of A. When the



412 guerrieri and swanson

underlying field is algebraically closed, A is in general position if and only
if any one (equivalently: each one) of these matrices is 1-generic.

In Section 4 we find the minimal primes of JA for the trilinear forms in
general position. These resuls are analogous to those in [BBG]. However,
our proofs use the genericity abstraction rather than the prescribed combi-
natorial structure of the coefficients of the trilinear form. In Section 5 we
go beyond [BBG] and explicitly describe the radical and the minimal com-
ponents of JA (see Theorems 5.1 and 5.2). Furthermore, in Section 6 we
give explicit primary decompositions in the case that p = 2 (see Theorems
6.5 and 6.7), and we discuss some properties of the embedded components
in general.

We thank Winfried Bruns and Wolfram Decker for the conversations re-
garding this material and for their primary decomposition calculations on
the symbolic computer program Singular [GPS]. Wolfram Decker wrote a
shortcut primary decomposition library for Singular for us that sped up
some computations. We also thank David Eisenbud for the discussions re-
garding 1-genericity and adjoints of matrices of linear forms. The first au-
thor also thanks Purdue University and New Mexico State University for
the hospitality during the period in which this work has been written, the
Advanced Fellowships Programme from NATO/CNR (Italy), and the Pro-
getto MURST – Geometria Algebrica, Algebra Commutativa ed Algebra
Computazionale (Italy) for partial support. The second author thanks Pur-
due University, Mathematical Sciences Research Institute, and the National
Science Foundation for partial support and hospitality. We also thank the
referee for very useful comments.

2. NOTATION

Throughout we use the trilinear form A described in the introduction
with n ≥ m ≥ p ≥ 1. If one of the n +m + p variables does not appear
in A, we may without loss of generality reduce the number of variables,
as this makes the problem in principle simpler to solve. Moreover, to pre-
vent degenerate cases we also assume that even after any linear change of
variables separately among the three groups of variables, all the variables
appear. In particular, this restricts n to be at most mp, as A is a homoge-
neous linear polynomial in the n variables Xi with coefficients taken from
the mp-dimensional vector space of all products YjZk.

Throughout X denotes the p by m matrix whose ijth entry is the second
partial derivative AYjZi

. Similarly, Y is the p by n matrix whose ijth entry
is AXjZi

, and Z is the m by n matrix whose ijth entry is AXjYi
. In con-

trast, X;Y; and Z denote �X1; : : : ;Xn�; �Y1; : : : ; Ym�, and �Z1; : : : ; Zp�,
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respectively. Depending on the context, these stand for either the ideal or
the row vector.

Similarly, AX stands for either the ideal or the vector �AX1
; : : : ;AXn

�.
AY and AZ are defined similarly. Note that AX , as a vector, is equal to the
product of the vector Z = �Z1; : : : ; Zp� with the matrix Y , namely, AX =
ZY . Also, AX = YZ. Similarly, AY = ZX = XZT and AZ = XYT =
YXT .

For any matrix M and any integer q ≥ 0, Iq�M� stands for the ideal
generated by the q by q minors of M .

With this notation, the ideal AX equals I1�ZY � = I1�YZ�, AY equals
I1�ZX� = I1�XZT �, and AZ = I1�XYT � = I1�YXT �.

Lemma 2.1. ZIp�X� ⊆ AY , ZIp�Y � ⊆ AX and YIm�Z� ⊆ AX .

Proof. Let X ′ be a p × p submatrix of X. Then ZIp�X ′� =
I1�ZX ′adj X ′� ⊆ I1�ZX ′� ⊆ I1�ZX�. As X ′ was arbitrary, ZIp�X� ⊆ AY

follows.
The other inclusions are proved analogously.

An analysis of the proofs in [BBG] shows that in order to obtain explicitly
the minimal components of JA one needs the following key conditions:

1. n ≥ m ≥ p and n ≥ m+ p− 1,

2. Ip�X� has height m− p+ 1 (maximal possible),

3. Ip�Y � has height m (maximal possible),

4. for all l = 1; : : : ; p, the localization of AY at �1; Zl; Z2
l ; Z

3
l ; : : :�

is a prime ideal of height m,

5. T−1
Z �AX� = T−1

Z �Y �, where TZ = K�Z1; : : : ; Zp� \ �0�.
The above conditions identify a class of trilinear forms. For the sake of

clarity we give a name to this class as follows:

Definition 2.2. A trilinear form A and its coefficients aijk are said to be
in general position when the five conditions above are satisfied.

Throughout we assume that A is in general position in this sense.
There are two conditions similar to the last one, which are satis-

fied for every trilinear form in general position. Namely, let TX =
K�X1; : : : ;Xn� \ �0� and TY = K�Y1; : : : ; Ym� \ �0�. Certainly T−1

X �AY � ⊆
T−1
X �Z�. As Ip�X� is a non-zero ideal in K�X1; : : : ;Xn�, by Lemma 2.1

then also T−1
X �Z� ⊆ T−1

X �AY �. Thus T−1
X �AY � = T−1

X �Z�. Similarly,
T−1
Y �AX� = T−1

Y �Z�.
Of course, whenever Im�Z� is a nonzero ideal, condition 5 of general

position follows from Lemma 2.1.
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In the next section we prove some equivalent formulations of general
position. In particular, if the underlying field is algebraically closed, we
prove that the first and the third conditions imply all the others. We also
prove that there are many trilinear forms in general position.

3. TRILINEAR FORMS IN GENERAL POSITION
AND 1-GENERIC MATRICES

Definition 3.1 Let W1; : : : ;Ws be indeterminates over a field K. The
term linear form in K�W1; : : : ;Ws� means a homogeneous polynomial of
degree 1. Let M be a q by r matrix whose entries are linear forms in
K�W1; : : : ;Ws�. We say that M is 1-generic if for any invertible row opera-
tion on M , the entries of each row generate an ideal of height min�r; s�.

Eisenbud [E2, p. 547] defined 1-generic only when s ≥ q + r − 1, and in
that case his definition and ours agree. The simplest example of a matrix
which is 1-generic in our sense but not in Eisenbud’s is the 1 by r matrix
�W1 · · · Ws 0 · · · 0 �, where s < r, and more examples are given later
in this paper.

It is easy to see that 1-genericity is unaffected by invertible row or column
operations, and that when s ≥ q + r − 1, it is also unaffected by taking
transposes.

Many matrices are 1-generic, but here is a large class of matrices which
are not:

Lemma 3.2. Let K be an algebraically closed field, W1; : : : ;Ws indetermi-
nates over it, and M a q by s matrix whose entries are linear forms in the Wi.
If q > 1, M is not 1-generic.

Proof. If the entries of the first row generate a proper subideal of
�W1; : : : ;Ws�, we are done, so we may assume instead that �M11; : : : ;M1s�
= �W1; : : : ;Ws�, where Mij is, naturally, the ijth entry of M . Thus every en-
try of the second row can be written as a linear combination of the M1i.
Namely, for all i = 1; : : : ; s, one has M2i =

∑s

j=1
aijM1j for some aij ∈ K.

Let α be an element of K and consider Row 2 + αRow 1. The entries of
this linear combination of the two rows can be written as

�M21 + αM11 · · ·M2s + αM1s�

= �M11 · · ·M1s�


a11 + α a21 · · · as1

a12 a22 + α · · · as2

: : :

a1s a2s · · · ass + α

 :
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Note that the determinant of the square matrix appearing above is a monic
polynomial in α of degree s ≥ 1. As K is algebraically closed, there exists an
α ∈ K which is a zero of the determinant. This means that for this choice
of α, the entries of Row 2 + αRow 1 do not generate an ideal of height s,
so that M is not 1-generic.

We prove in the next two lemmas that when a matrix is 1-generic, the
ideal generated by its maximal minors is “large.”

Lemma 3.3. Assume that K is algebraically closed. If M is a 1-generic q
by r matrix in s variables W1; : : : ;Ws and s ≥ q+ r − 1, q ≤ r, then the height
of Iq�M� is r − q+ 1.

Proof. As M is 1-generic and s ≥ q+ r − 1, then M is 1-generic also in
Eisenbud’s sense. Then it follows by [E1, Exercise A2.19, part b, p. 605] or
[E2, Proposition 1.3] that the height of the ideal Iq�M� is r − q+ 1.

Under some conditions the height of Iq�M� is the determining factor of
1-genericity:

Lemma 3.4. Assume that K is algebraically closed and that W is a q by r
matrix whose entries are linear forms in the variables W1; : : : ;Ws. Assume that
s; q ≤ r. Then W is 1-generic if and only if the height of Iq�W � is maximal
possible, namely s. Also, W is 1-generic if and only if the radical of Iq�W � is
�W1; : : : ;Ws�.

Proof. If Iq�W � has height s, then as Iq�W � is contained in the ideal
generated by the entries of any non-trivial linear combination of the rows
of W ; those entries have to generate an ideal of height at least s. As the
entries are all linear forms in W1; : : : ;Ws, this proves that W is 1-generic.

Now assume that W is 1-generic. Since W is a matrix of linear forms,
by [E1, Exercise A2.19, part a, p. 605],

√
Iq�W � is the intersection of a

collection of ideals each of which is generated by the entries of a non-trivial
linear combination of the rows of W . By assumption on 1-genericity of W ,
each of these ideals has height min�s; r� = s and is generated by the linear
forms in K�W1; : : : ;Ws�. Thus each of these ideals equals �W1; : : : ;Ws�, and
so does their intersection

√
Iq�W �. Thus both

√
Iq�W � and Iq�W � have

height s and
√
Iq�W � equals �W1; : : : ;Ws�.

Finally, if
√
Iq�W � = �W1; : : : ;Ws�, its height is s so that W is 1-generic.

This immediately applies to our matrices Y and Z:
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Lemma 3.5. Assume that K is algebraically closed, and that n ≥ m +
p − 1. Then Y is 1-generic if and only if the height of Ip�Y � is m, and that
is true if and only if the radical of Ip�Y � is �Y1; : : : ; Ym�. Also, Z is 1-
generic if and only if the height of Im�Z� is p, and that holds if and only if√
Im�Z� = �Z1; : : : ; Zp�.
The field K needs to be algebraically closed. This was already pointed

out in [E2, p. 548]. Here is a quick counterexample to the lemma if we
omit the assumption that K be algebraically closed: let K = �, let Y1; Y2
be variables over F , and let Y be the 2 by 3 matrix

Y =
[
Y1 Y2 0

Y2 Y1 + Y2 0

]
:

Each of the two rows of Y generates �Y1; Y2�, and for every b ∈ �, the
entries of (row 1) + b (row 2) generate

�Y1 + bY2; Y2 + bY1 + bY2� = �Y1 + bY2; Y2�1− b2 + b��:
As there is no rational number b for which 1 − b2 + b = 0, this last ideal
also has height 2. Thus every generalized row generates an ideal of height
exactly 2; yet I2�Y � is principal, so it cannot have height 2. Thus this Y is
not 1-generic.

The 1-genericity of any one among X, Y , or Z implies the 1-genericity
of the others, and even more is true:

Proposition 3.6. If n ≥ m+ p− 1, the following are equivalent (without
any assumption on the field K):

(i) X is 1-generic.
(ii) The transpose of X is 1-generic.

(iii) Y is 1-generic.
(iv) Z is 1-generic.

Proof. As n ≥ m+ p− 1, X is 1-generic if and only if it is 1-generic in
Eisenbud’s sense [E1, E2]. But a matrix is 1-generic in Eisenbud’s sense if
and only if its tranpose is 1-generic in Eisenbud’s sense. This proves that
the first two statements are equivalent.

The proof that the first and the third statements are equivalent is essen-
tially the same as the proof of the equivalence of statements (ii) and (iv).
We explicitly only prove here that if X is 1-generic, so is Y . The converse
has a completely analogous proof.

Assume that Y is not 1-generic. First observe that an invertible row op-
eration on Y corresponds naturally to a linear change of variables among
Z1; : : : ; Zp, and thus to an identical invertible row operation on X. Thus
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without loss of generality we may assume, if Y is not 1-generic, that the en-
tries of the first row of Y generate an ideal L of height strictly smaller than
m. Let the entries i1; : : : ; im−1 generate L. Let i′1; : : : ; i

′
n−m+1 be such that

�i1; : : : ; im−1; i
′
1; : : : ; i

′
n−m+1� is the set �1; : : : ; n�. Then the assumption is

that there exist elements dl′l in K with 1 ≤ l′ ≤ n−m+ 1 and 1 ≤ l ≤ m− 1
such that

il′ th entry of the first row of Y =∑
j

ail′ j1Yj

=
m−1∑
l=1

dl′l�lth entry of the first row of Y �

=
m−1∑
l=1

dl′l

(∑
j

ailj1Yj

)
:

Comparing the coefficients of the variable Yj on both sides we get that, for
each index j = 1; : : : ;m,

ail′ j1 =
m−1∑
l=1

dl′lailj1:

Now consider the ideal generated by the entries of the first row of X. For
every j = 1; : : : ;m, we have

∑
i

aij1Xi =
m−1∑
l=1

ailj1Xil
+
n−m+1∑
l′=1

ai′
l′ j1
Xi′

l′

=
m−1∑
l=1

ailj1Xil
+
n−m+1∑
l′=1

(
m−1∑
l=1

dl′lailj1

)
Xi′

l′

=
m−1∑
l=1

ailj1

(
Xil
+
n−m+1∑
l′=1

dl′lXi′
l′

)
:

In conclusion({∑
i

aij1Xi: l = 1; : : : ;m− 1

})

⊆
({
Xil
+
n−m+1∑
l′=1

dl′lXi′
l′
: l = 1; : : : ;m− 1

})

which is an ideal of height m− 1. Thus X is not 1-generic.
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Remark 3.7 David Eisenbud pointed out another proof of this propo-
sition: X is 1-generic if and only if each generalized row of X gives an
injective map from Km to the space of linear forms in K�X1; : : : ;Xn�, with
the jth basis element mapping to the jth entry of this generalized row.
Also, Y is 1-generic if and only if each generalized row of Y gives an sur-
jective map from Kn to the space of linear forms in K�Y1; : : : ; Ym�, with
the ith basis element mapping to the ith entry of this generalized row. But
the matrices X and Y are adjoints of each other in the sense of Eisenbud
and Popescu [EP], with a generalized row of X corresponding to the anal-
ogous generalized row of Y , so that by the duality between injectivity and
surjectivity between adjoints, X is 1-generic if and only if Y is.

The large number of the Xi make it so that X is 1-generic if and only if
its transpose is. The analogous statement is false for Y . For example, let

Y =
[
Y1 Y2 0

0 Y1 Y2

]
:

Then Y is 1-generic but its transpose is not, as, say, the entries of the first
column of Y generate an ideal of height strictly smaller than 2.

By the last proposition, we know that for this Y , both X and Z are
1-generic matrices. We calculate them

A = �Z1Z2�
[
Y1 Y2 0

0 Y1 Y2

]
X1

X2

X3


= �X1Y1Z1 +X2Y1Z2 +X2Y2Z1 +X3Y2Z2�;

so that

X =
[
X1 X2

X2 X3

]
; Z =

[
Z1 Z2 0

0 Z1 Z2

]
:

Thus Z is also 1-generic, but its transpose is not.

Corollary 3.8. Let Y be a 1-generic matrix and TZ=K�Z1; : : : ; Zp�
\ �0�. Then T−1

Z �AX� = T−1
Z �Y �.

Proof. Certainly T−1
Z �AX� ⊆ T−1

Z �Y �. As Y is 1-generic, so is Z. By
Lemma 3.5 then Im�Z� contains an element of TZ . Thus by Lemma 2.1,
YIm�Z� ⊂ AX , so that T−1

Z �AX� = T−1
Z �Y �.

Lemma 3.9. Let X be a 1-generic matrix, TZ = K�Z1; : : : ; Zp� \ �0�, and
let T̂Z be a multiplicatively closed subset generated by the homogeneous linear
polynomials in K�Z1; : : : ; Zp�. Then T−1

Z �AY � and T̂−1
Z �AY � are prime ideals

of height m.
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Proof. T−1
Z �AY � is generated by m elements each of which is a linear

form in X1; : : : ;Xn with coefficients in the field T−1
Z K�Z1; : : : ; Zp�. Thus

T−1
Z �AY � = T−1

Z �ZX� is prime ideal which by 1-genericity of X has height
m. Let Xi1

; : : : ;Xim
be the generators of this ideal. By elementary linear

algebra, all the other Xi are expressible as linear combinations of the Xij

with coefficients in T̂−1
Z K�Z�, so that T̂−1

Z �AY � = T̂−1
Z �Xi1

; : : : ;Xim
�. And

that is of course a prime ideal of height m.

In fact, T−1�AY � is a prime ideal of height m for an even smaller multi-
plicatively closed subset T of TZ :

Lemma 3.10. Assume that X is 1-generic, that K is algebraically closed,
and let l be an integer between 1 and p. Let T be the multiplicatively closed set
�1; Zl; Z2

l ; Z
3
l ; : : :�. Then in the localization T−1R, T−1AY is a prime ideal

of height m.

Proof. We proceed by induction p. First let p = 1. Then the ideal
T−1�AY � is generated by the entries of the 1 by m matrix X. This ideal
has height m by 1-genericity of X, and is a prime ideal as it is generated
by linear forms.

Now let p > 1. Suppose that the height of T−1�AY � is strictly less than m
or that T−1�AY � has two distinct prime ideals minimal over it. As T ⊆ T̂Z
and T̂−1

Z �AY � is a prime of height m, there exists a prime ideal Q in R,
minimal over �AY �, such that Zl 6∈ Q and T̂Z ∩Q is non-empty. As Q is a
prime ideal and every element of T̂Z is a product of linear forms, we may
assume that there exists a linear form f2 in T̂Z ∩Q. Necessarily f2 and Zl
are not multiples of each other. Thus there exist linear forms f3; : : : ; fp in
K�Z1; : : : ; Zp� and an invertible p by p matrix M with entries in K such
that Z = �Zl; f2; : : : ; fp�M . Thus

AY = ZX = �Zl; f2; : : : ; fp�MX:
Note that MX is still 1-generic. Let X ′ be the submatrix of MX con-
sisting of all but the second row. X ′ is 1-generic, so by induction on
p, the m entries of �Zl; f3; : : : ; fp�X ′ generate an ideal of height m in
T−1K�X1; : : : ;Xn; Y1; : : : ; Ym;Zl; f3; : : : ; fp�. But Q ⊇ �AY � + �f2� =
I1��Zl; f3; : : : ; fp�X ′� + �f2�, which has height at least m + 1. This con-
tradicts the assumption that Q was minimal over an m-generated ideal.
Thus the height of T−1�AY � is exactly m and its radical is a prime ideal.
Thus T−1�AY � is generated by a regular sequence, so it has no embed-
ded primes. Hence as a further localization of T−1�AY � is a prime, so is
T−1�AY �.

The next result summarizes all the information we have about the in-
teraction between the concepts of general position and 1-genericity. It also
underlines the interplay and the properties of the matrices X, Y , and Z.



420 guerrieri and swanson

Theorem 3.11. Let n ≥ m + p − 1 and n ≥ m ≥ p. Let K be an alge-
braically closed field. Then the following are equivalent:

(i) X is a 1-generic matrix.
(ii) The transpose of X is a 1-generic matrix.

(iii) Y is a 1-generic matrix.
(iv) Ip�Y � has height m.
(v) The radical of Ip�Y � is �Y1; : : : ; Ym�.

(vi) Z is a 1-generic matrix.
(vii) Im�Z� has height p.

(viii) The radical of Im�Z� is �Z1; : : : ; Zp�.
(ix) A is a trilinear form in general position.

Proof. Proposition 3.6 proves that (i), (ii), (iii), and (vi) are equivalent.
Lemma 3.5 proves that (iii), (iv), and (v) are equivalent and also that (vi),
(vii), and (viii) are equivalent. Thus the first eight statements are equivalent.

By the third condition of general position, (ix) implies (iv). Finally, Lem-
mas 3.3, 3.5, 3.8, and 3.10 prove that the first eight statements imply the
last one.

This theorem shows that perhaps one should define general position by
a simpler formulation such as statement (iv). However, for the proofs in
the following it is more convenient if we keep referring to the conditions
of general position in its original definition, Definition 2. Moreover, the
equivalences in the theorem only hold when K is algebraically closed, but
we do not use an algebraically closed field throughout the paper.

In the rest of this section we prove that there are many trilinear forms
in general position. First of all, all the examples in [BBG] are in general
position:

Corollary 3.12. Assume that K is algebraically closed, that n = m +
p − 1, and that aijk 6= 0 if and only if i = j + k − 1. Then the aijk are in
general position.

Proof. Remark 1.3 in [BBG] says that Ip�Y � = �Y1; : : : ; Ym�p. Thus
the height of Ip�Y � is m and the conclusion follows from the previous
proposition.

The trilinear forms analyzed in [BBG] describe a particular class of three-
dimensional arrays with non-zero hyperdeterminant. Much more is true for
the trilinear forms in general position:

Proposition 3.13. Let K be an algebraically closed field. When n = m+
p− 1, A is in general position if and only if the three-dimensional array iden-
tified by its coefficients has non-zero hyperdeterminant.
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Proof. In [GKZ, Theorem 3.1, p. 458] it is shown that the hyperdeter-
minant of the three-dimensional array identified by the coefficients of a
trilinear form A, with n = m + p − 1, is zero if and only if the system of
multilinear equations

AX1
�Y;Z� = · · · = AXn

�Y;Z� = 0

has a non-trivial solution.
We show that A is in general position if and only if AX1

�a; b� = · · · =
AXn
�a; b� = 0 if and only if a and b are both 0, (here a ∈ Km and b ∈ Kp).

By Theorem 3.11, A is in general position if and only if the corresponding
matrix X is 1-generic. Since n = m+ p− 1 this happens if and only if X is
1-generic in Eisenbud’s sense (see [E1, p. 604, E2, p. 547]). In other words
taking any two non-zero vectors in Km and Kp, say a and b,

bXat =
n∑
i=1

(
m∑
j=1

p∑
k=1

aijkajbk

)
Xi

is different from zero. Naturally this is equivalent to saying that
∑n
i=1

AXi
�a; b�Xi 6= 0, and we conclude that A is in general position if and only

if given any two non-zero vectors a and b, there is an index i for which
AXi
�a; b� is different from zero, as desired.

Clearly this means that when n = m + p − 1, the coefficients of the
trilinear forms in general position vary in a Zariski-open subset U of Knmp.
As shown below, this statement remains true in the case n > m+ p− 1:

Proposition 3.14. Let K be an algebraically closed field. There exists a
non-empty Zariski-open subset U of Knmp such that if �aijk� ∈ U , then the
corresponding A is in general position.

Proof. We will prove that whenever �aijk� ∈ U , then Ip�Y � =
�Y1; : : : ; Ym�p.

Let Aijk, i = 1; : : : ; n, j = 1; : : : ;m, and k = 1; : : : ; p be indeterminates
over K�Y1; : : : ; Ym�. Let Ŷ be the “generalized” version of Y ; namely, let
it be a p by n matrix whose kith entry is

∑
j AijkYj . Let M1; : : : ;M�np� be

all the p by p submatrices of Ŷ and let F1; : : : ; F�m+p−1
p � be a generating

set for Yp. Note that for all l, detMl ∈ YpK�Aijk; Yj� and that there exist
sij ∈ K�Aijk� such that

detMi =
∑
j

sijFj:

Let S be the
(n
p

)
by
(m+p−1

p

)
matrix whose ijth entry is sij . By the assumption

that n ≥ m+ p− 1 it follows that
(
n
p

) ≥ (m+p−1
p

)
.
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Now, after some specialization Aijk 7→ aijk ∈ K, Ip�Y � = �Y1; : : : ; Ym�p
if and only if some

(
m+p−1
p

)
by

(
m+p−1
p

)
minor of S is non-zero (after

the same specialization). Thus it suffices to determine that the ideal I in
K�Aijk� generated by the maximal minors of S is non-zero. Then U is the
non-empty set of all points on which I does not vanish. This ideal I is
non-zero if and only if there exist examples of aijk for which Ip�Y � equals
�Y1; : : : ; Ym�p. If n = m + p − 1, all cases in [BBG] (see Remark 1.3 in
[BBG]) satisfy the condition. If, however, n > m + p − 1, we make up
examples as follows: into the first m + p − 1 columns of Y we place an
example from [BBG], and place zeros in the rest of the columns.

In conclusion, the trilinear forms in general position represent a much
wider class than that described in [BBG]: they include the catalecticant,
generic, generic symmetric, and a lot more kinds of matrices.

4. THE MINIMAL PRIMES OF JA

We determine explicitly all the minimal primes of JA for A in general
position. Several proofs of this section employ ideas of [BBG]. However,
our results are more general, and proofs often simpler.

In this section the underlying field does not need to be algebraically
closed.

Proposition 4.1. Let A be a trilinear form such that the height of Ip�Y �
is m. If Q is a prime ideal containing JA, then Q contains either the ideal
�Z1; : : : ; Zp;AZ�, or the ideal �Y1; : : : ; Ym;AY � + Ip�X�.

Proof. If �Z1; : : : ; Zp� ⊆ Q, certainly �Z1; : : : ; Zp;AZ� ⊆ Q.
Now suppose that not all the Zi lie in Q. By Lemma 2.1 we conclude

that Ip�Y � and Ip�X� are contained in Q. By Lemma 3.5, �Y1; : : : ; Ym� ⊆√
Ip�Y �, so that �Y1; : : : ; Ym� ⊆ Q. Thus Q contains AY (by definition), all

the Yi, and Ip�X�.
Thus by the definition of general position:

Corollary 4.2. Let A be a trilinear form in general position. If Q is a
prime ideal containing JA, then Q contains either the ideal �Z1; : : : ; Zp;AZ�,
or the ideal �Y1; : : : ; Ym;AY � + Ip�X�.

To find the minimal primes of JA one needs, as in [BBG], to use some
techniques from the theory of symmetric algebras. We recall that if M is a
free module over R of rank g, then the symmetric algebra S�M� is just the
polynomial ring in g indeterminates over R: S�M� ∼= R�T1; : : : ; Tg �. If M

has a presentation F
�cij�−→ G −→ M −→ 0 with F and G free of ranks f
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and g, respectively, then S�M� is isomorphic to R�T1; : : : ; Tg�/I, where I
is generated by the f elements

∑g
j=1 cjiTj; 1 ≤ i ≤ f .

Proposition 4.3. If the height of Ip�Y � is m and m > p, then
�Z1; : : : ; Zp;AZ� is a minimal prime ideal of JA of height 2p.

Proof. By Proposition 4.1 it suffices to prove that �Z1; : : : ; Zp;AZ� is a
prime ideal of height 2p. For that it suffices to prove that AZ is a prime
ideal of height p.

Let S be the ring K�Y1; : : : ; Ym�. Consider the map from Sp to Sn given
by the transpose YT of Y . Then as Ip�Y � has height and grade m ≥ 1, by
the Buchsbaum–Eisenbud criterion for exactness [BE], YT is injective. Let

N be the cokernel. Then 0 −→ Sp
YT−→ Sn −→ N −→ 0 is exact, so that

the symmetric algebra S�N� of N can be represented as

S�N� = K�X1; : : : ;Xn; Y1; : : : ; Ym�
�AZ1

; : : : ;AZp
� :

For all t between 1 and p, grade �It�YT �� ≥ grade �Ip�Y ��, which by as-
sumption is m ≥ p + 1. Thus one may use [H, Theorem 1.1] to conclude
that S�N� is a Cohen–Macaulay domain of dimension m + n − p. Hence
�AZ�S is a prime ideal of height p, which proves the proposition.

Our next step is to show that under some assumptions, the ideal
�Y1; : : : ; Ym� +AY + Ip�X� is perfect. Of course, it is enough to show that
AY + Ip�X� is perfect.

Lemma 4.4. Assume that A is in general position, or equivalently, that X
is 1-generic. Then the height of I1�ZX�: Z is at least m. Also, the height of
Ip�X� + I1�ZX� is at least m.

Proof. As Ip�X� + I1�ZX� ⊆ �I1�ZX�: Z�, it suffices to prove that the
height of Ip�X� + I1�ZX� is at least m.

Let Q be a prime ideal in K�X1; : : : ;Xn;Z1; : : : ; Zp� containing
Ip�X� + I1�ZX�. If Q contains all the Zk, then �Z1; : : : ; Zp� + Ip�X� ⊆ Q.
Since A is in general position we have ht Ip�X� = m − p + 1 and we de-
duce that ht Q ≥ ht ��Z1; : : : ; Zp� + Ip�X�� ≥ p+m− p+ 1 = m+ 1.

If Q does not contain all the Zk, then again ht Q ≥ m because A is in
general position and satisfies condition 4 of Definition 2.2.

Remark 4.5 There always exists a minimal prime ideal Q of Ip�X� +
I1�ZX� which does not contain all the Zk. This is so for otherwise
�Z1; : : : ; Zp� ⊆

√
Ip�X� + I1�ZX� ⊆ �X1; : : : ;Xn�, which is a contradic-

tion. So let Q be a minimal prime not containing some Zk. Then after
localization at Zk, the ideals Ip�X� + I1�ZX�, I1�ZX�: �Z1; : : : ; Zp�, and
I1�ZX� are all equal. As I1�ZX� is generated by m elements, then after
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localization at Zk the ideal Ip�X� + I1�ZX� has height at most m. Thus
with hypotheses in the lemma, the height of Ip�X� + I1�ZX� is exactly m.

Proposition 4.6. Let X be a 1-generic matrix, or equivalently, let A be a
trilinear form in general position. Then Ip�X� + I1�ZX� is a perfect ideal of
height m.

Proof. Let U be a p by n matrix of indeterminates Uij , and S the
polynomial ring generated over K by all the Uij and all the Zi. Let I =
�Z1; : : : ; Zp�S, A = I1�ZU� ⊆ I and J = I1�ZU�: S�Z1; : : : ; Zp�.

By the initial assumption that all the variables appear even after a
linear change of variables, we get that I1�X� = �X1; : : : ;Xn�. As X
is a p by m matrix, there are exactly mp − n linearly independent
linear relations f̃1; : : : ; f̃mp−n among the entries of X. The f̃l are lin-
ear forms in K�X1; : : : ;Xn�. For each l = 1; : : : ;mp − n, let fl be
the linear form obtained from f̃l by replacing each ijth entry of X
by Uij . Then f1; : : : ; fmp−n is a regular sequence on S and S/I. Also,
S/�f1; : : : ; fmp−n� ∼= K�X1; : : : ;Xn;Z1; : : : ; Zp�, and the image of U
modulo �f1; : : : ; fmp−n� is X.

Let ′ denote images modulo �f1; : : : ; fmp−n�.
By Lemma 4.4, ht �A′: I ′� = ht �I1�ZX�: Z� ≥ m.
By a result of Bruns et al. [BKM, Proposition 4.2], the ideal J has height

m, and S/J is a Cohen–Macaulay ring. If we knew that I ′P = A′P for every
prime ideal P containing I ′ with ht P ≤ m, we could conclude by using a
result of Huneke and Ulrich [HU, Proposition 4.2, ii)]. So we now verify
I ′P = A′P .

Since I ′ = �Z1; : : : ; Zp�S and A′ = I1�ZX�, it is enough to show that
�Z1; : : : ; Zp�P ⊆ I1�ZX�P for every prime ideal P containing �Z1; : : : ; Zp�
and of height ≤ m. Clearly Ip�X� is not contained in P; otherwise P would
contain the ideal �Z1; : : : ; Zp� + Ip�X� which by the generic assumption
has height ≥ m+ 1. Thus Ip�X� 6⊆ P . Then ZIp�X� ⊆ I1�ZX� implies that
�Z1; : : : ; Zp�P ⊆ I1�ZX�P . Hence we can indeed apply the Huneke–Ulrich
result to finish the proof.

Proposition 4.7. Assume that A is in general position. Then the ideal

�Y1; : : : ; Ym;AY � + Ip�X�
is a perfect prime of height 2m, hence a minimal prime ideal of JA.

Proof. By Corollary 4.2 it suffices to prove that �Y1; : : : ; Ym;AY � +
Ip�X� is a perfect prime of height 2m. For that it suffices to prove that
AY + Ip�X� = Ip�X� + I1�ZX� is a perfect prime of height m. As perfec-
tion and the height were already proved in Proposition 4.6, it suffices to
prove that Ip�X� + I1�ZX� is a prime.
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First we prove that Z1 is a regular element modulo Ip�X� + I1�ZX�. By
perfection it suffices to prove that the height of Ip�X� + I1�ZX� + �Z1�
is at least m + 1. Set Z̃ = �Z2; : : : ; Zp� and let X̃ be the submatrix of X
without the first row. Then

Ip�X� + I1�ZX� + �Z1� = I1�Z̃X̃� + Ip�X� + �Z1�:

Let Q be a prime ideal minimal over this ideal. If Q contains �Z2; : : : ; Zp�,
then Q contains Z1; : : : ; Zp and Ip�X�. Then by genericity, the height of
Q is at least m + 1. If instead Q does not contain �Z2; : : : ; Zp�, then as
Z̃Ip−1�X̃� ⊆ I1�Z̃X̃� ⊆ Q, we get that Ip−1�X̃� ⊆ Q, so that Q contains
Ip−1�X̃� + I1�Z̃X̃� + �Z1�. By Proposition 4.6, Ip−1�X̃� + I1�Z̃X̃� + �Z1�
has height at least m+ 1, so that ht Q ≥ m+ 1.

This proves that Z1 is a regular element modulo Ip�X� + I1�ZX�.
By Lemma 2.1, in the localization at �1; Z1; Z

2
1 ; Z

3
1; : : :�, the ideals

Ip�X� + I1�ZX�; I1�ZX�, and AY are all the same ideal, and by generic-
ity this ideal is a prime of height m. But Z1 is a regular element modulo
Ip�X� + I1�ZX�, so that even before localization, Ip�X� + I1�ZX� is a
prime ideal of height m.

Corollary 4.8. If A is in general position, then Ip�X� is a prime ideal
in F�X�. Its height is m− p+ 1.

Proof. As Ip�X� =
(�Y1; : : : ; Ym;AY � + Ip�X�

) ∩ F�X�, the first part
follows from the proposition above. The height part follows by the defini-
tion of general position.

When K is algebraically closed, this amounts to saying that if X is 1-
generic, then Ip�X� is a prime ideal of height m − p + 1, as was already
proved in [Ke, E2, p. 542].

Theorem 4.9. Assume that A is in general position, and that m > p.
Then the minimal primes of JA are �Z1; : : : ; Zp;AZ� and �Y1; : : : ; Ym;AY �
+ Ip�X�.

Proof. Use Propositions 4.1, 4.3, and 4.7.

If p = m, it follows by symmetry from Proposition 4.7 that

�Y1; : : : ; Ym;AY � + Ip�X� and �Z1; : : : ; Zp;AZ� + Ip�X�

are both minimal prime ideals of JA. Here Ip�X� = �det�X��. Note that
Y · det�X� ⊆ I1�YX� = AZ but neither Y nor det�X� lies in AZ . Thus
neither AZ nor �Z1; : : : ; Zp;AZ� are prime ideals.
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Theorem 4.10. Assume that A is in general position and that m = p.
Then the minimal primes of JA are

�Z1; : : : ; Zp;AZ� + Ip�X�; �Y1; : : : ; Ym;AY � + Ip�X�; and

�Y1; : : : ; Ym;Z1; : : : ; Zp�:
Proof. There are no inclusion relations among the listed three ideals. By

the observation above, the first two ideals are minimal primes. If Q is any
other minimal prime, it follows from Proposition 4.1 and symmetry that Q
must contain both �Y1; : : : ; Ym;AY � and �Z1; : : : ; Zp;AZ�. Hence Q must
contain �Y1; : : : ; Ym;Z1; : : : ; Zp�. As the latter ideal is prime and contains
JA, it is minimal over JA.

Proposition 4.11. Assume that A is in general position and that n ≥
m − p + 1. Then ht JA = 2p. If m = p, all the minimal primes have the
same height.

Proof. First let m > p. By Proposition 4.3, ht �Z;AZ� = 2p, and by
Proposition 4.7, the height of the other minimal prime ideal, namely, the
ideal �Y;AY � + Ip�X�, is 2m > 2p.

If m = p, then by Remark 4, ht �Y;AY ; Ip�X�� = 2m and ht �Z;AZ;
Ip�X�� = 2p. Hence ht �Y;AY ; Ip�X�� = ht �Z;AZ; Ip�X�� = m + p =
ht �Y;Z�.

Note that in this section we only used the first four conditions of Defini-
tion 2.2.

5. MINIMAL COMPONENTS AND THE RADICAL OF JA

In this section again the underlying field does not need to be algebraically
closed. The minimal components and the radical of JA are straightforward
to compute when A is in general position.

Theorem 5.1. Let A be in general position and let P be a prime ideal
minimal over JA. Then the P-primary component of JA is P .

Proof. First assume that P =�Z1; : : : ; Zp;AZ�. Let TY =K�Y1; : : : ; Ym�
\ �0�. By the remark after Definition 2.2, T−1

Y �AX� = T−1
Y �Z�. As TY has no

elements in common with P , then also �AX�P = �Z�P . Thus the P-primary
component contains Z; hence it is equal to P .

Now assume that P = �Y1; : : : ; Ym;AY � + Ip�X�. Since A is in general
position, T−1

Z �AX� = T−1
Z �Y �, where TZ = K�Z1; : : : ; Zp� \ �0�. As TZ has

no elements in common with P , then also �JA�P contains Y . Moreover, by
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Lemma 2.1, �JA�P also contains Ip�X�. Thus again the P-primary compo-
nent equals to P .

Finally, let P = �Y1; : : : ; Ym;Z1; : : : ; Zp�. Since T−1
X �AY � = T−1

X �Z�,
where TX = K�X1; : : : ;Xn� \ �0�, then Z lies in the P-primary compo-
nent. But in this case m = p, so by symmetry also Y lies in the P-primary
component.

Theorem 5.2. If A is a trilinear form in general position,√
JA = JA + Y Z:

Proof. First assume that m > p. Then√
JA = �Z;AZ� ∩

(�Y;AY � + Ip�X�
)

= AZ + Z ∩
(�Y;AY � + Ip�X�

)
= AZ +AY + Z ∩

(
Y + Ip�X�

)
= AZ +AY + Z�Y + Ip�X�� (by multi-homogeneity)

= AZ +AY + Y Z (by Lemma 2.1)

= JA + Y Z:

Similarly, if m = p,√
JA =

(�Y;AY � + Ip�X�
) ∩ (�Z;AZ� + Ip�X�

) ∩ �Y;Z�
= ((�Y;AY � + Ip�X�

) ∩ (�Z;AZ� + Ip�X�
)) ∩ �Y;Z�

= (Ip�X� +AY + Y ∩
(�Z;AZ� + Ip�X�

)) ∩ �Y;Z�
= (Ip�X� +AY +AZ + Y ∩

(
Z + Ip�X�

)) ∩ �Y;Z�
= �Y;Z� · Ip�X� +AY +AZ + Y ·

(
Z + Ip�X�

)
:

By Lemma 2.1, Z · Ip�X� is contained in AY , and as m = p, by symmetry
also Y · Ip�X� is contained in AZ . Thus this radical also simplifies to JA +
Y Z.

If Y ·Z ⊆ JA, then of course we have found a primary decomposition of
JA. Note that if mp > n, then Y · Z 6⊆ AX and Y · Z 6⊆ JA, so there exist
embedded primes.
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6. ABOUT THE EMBEDDED COMPONENTS OF JA

We find the embedded components in the case that p = 2 and K is alge-
braically closed. Not all the embedded components are equal—for example,
they depend on n and m.

We also discuss the embedded components in cases when p > 2, and
raise some questions.

Proposition 6.1. Assume that A is in general position. Then

JA =
√
JA ∩

(
JA + Ip�X� + Ip�Y � + Im�Z�

)
:

Thus every embedded component of JA contains
(
JA + Ip�X� + Ip�Y � +

Im�Z�
)
.

Proof. By Lemma 2.1 and multihomogeneity,√
JA ∩

(
JA + Ip�X� + Ip�Y � + Im�Z�

)
= JA + Y · Z ∩

(
JA + Ip�X� + Ip�Y � + Im�Z�

)
⊆ JA + YAY + ZAZ + Y · ZIp�X� + ZIp�Y � + YIm�Z�:

Thus, JA =
√
JA ∩

(
JA + Ip�X� + Ip�Y � + Im�Z�

)
, as wanted.

As A is in general position, the radical Ip�X� + Y + Z of JA + Ip�X�
+ Ip�Y � + Im�Z� is a prime ideal by Lemma 4.8. However, JA + Ip�X�
+ Ip�Y � + Im�Z� is in general not primary to this prime. In fact, as shown
in [BBG] and in [BG], there are cases of trilinear forms in general position
where the maximal irrelevant ideal is an associated prime, so that for those
the ideal JA + Ip�X� + Ip�Y � + Im�Z� could not be primary to the non-
maximal ideal Ip�X� + Y + Z.

To simplify notation, we next introduce several admissible changes of
variables, admissible in the sense that the primary decompositions stay the
same. We admit linear changes of variables among the Xi, the Yj , and
the Zk separately. Such a change is an automorphism of K�X;Y;Z� and
it maps isomorphically the Jacobian ideal JA to the corresponding new
Jacobian ideal JA. Thus the primary decomposition of JA is unaffected by
these changes.

Some specific changes we can use are as follows:

1. renaming of the Xi, in other words, a linear change of variables
among the Xi;

2. elementary row operation on X: this corresponds to a linear
change of variables among the Zk and an elementary row operation on Y ;

3. elementary column operation on X: this corresponds to a linear
change of variables among the Yj and an elementary row operation on Z.
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Note that none of these changes affects the 1-genericity of X, and so by
Proposition 3.6 it also does not affect the 1-genericity of Y and Z.

When p = 2, by Eisenbud [E2, Theorem 5.1 (iii)] these admissible
changes transform X into the scrollar space form M�a1; : : : ; ad� with
a1 ≥ a2 ≥ · · · ≥ ad ≥ 1,

∑
i ai = n, d = n−m. Explicitly, X has the form[

X1 X2 · · · Xa1−1

X2 X3 · · · Xa1

∣∣∣∣Xa1+1 · · · Xa1+a2−1

Xa1+2 · · · Xa1+a2

∣∣∣∣
· · ·
∣∣∣∣Xa1+···+ad−1+1 · · · Xa1+···+ad−1

Xa1+···+ad−1+2 · · · Xa1+···+ad

]
:

For example, when n = m+ 1 (smallest possible),

X =M�m+ 1� =
[
X1 X2 · · · Xm−1 Xm

X2 X3 · · · Xm Xm+1

]
;

and when n > m + 1, X is a juxtaposition of d = n − m such matrices,
with no overlaps among the variables in these submatrices. We will use the
name scroll to indicate a single block of M�a1; : : : ; ad�.

We will calculate the primary decomposition of JA when p = 2. We
first explicitly do the case m = p = 2 separately for the sake of clarity.
Here, n ≥ m + p − 1 = 3, and as every variable Xi is used, necessarily
4 = mp ≥ n.

Theorem 6.2. Let m = p = 2. If n = 4, JA has no embedded compo-
nents. If n = 3, an irredundant primary decomposition is

JA =
(�Y;AY � + I2�X�

) ∩ (�Z;AZ� + I2�X�
)

∩ �Y;Z� ∩ �X;AX; I2�Y �; I2�Z��:

Proof. In case n = 4, after renaming the Xi, the matrix X is

X =
[
X1 X2

X3 X4

]
:

It is easy to check that in this case, AX = Y ·Z, so that JA has no embedded
components, and so Theorem 5.2 calculates the primary decomposition of
JA.

Now suppose instead that n = 3. The first three ideals in the inter-
section in the statement of the theorem are the minimal primes and
�X;AX; I2�Y �; I2�Z�� is the claimed unique embedded component.
Clearly it is primary to the maximal homogeneous ideal.
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We know that d = n−m = 1, so that

X =M�3� =
[
X1 X2

X2 X3

]
:

Since A = X1Y1Z1 +X2Y1Z2 +X2Y2Z1 +X3Y2Z2, we explicitly obtain

AX1
= Y1Z1

AX2
= Y1Z2 + Y2Z1

AX3
= Y2Z2

AY1
= X1Z1 +X2Z2

AY2
= X2Z1 +X3Z2

AZ1
= X1Y1 +X2Y2

AZ2
= X2Y1 +X3Y2

We have Y1Z2 6∈ JA, but

X1Y1Z2 = Z2
∂A

∂Z1
−X2

∂A

∂X3
;

X2Y1Z2 = Z2
∂A

∂Z2
−X3

∂A

∂X3
;

X3Y1Z2 = X3
∂A

∂X2
− Z1

∂A

∂Z2
−X2

∂A

∂X1
:

Thus X · �Y1Z2� ⊆ JA. As Y · Z = AX + �Y1Z2�, this means that X · Y ·
Z ⊆ JA; hence

JA ⊆
√
JA ∩ �X + I2�Y � + I2�Z� +AX�

= JA + Y · Z ∩ �X + I2�Y � + I2�Z� +AX�
⊆ JA + Y · Z ·X + ZI2�Y � + YI2�Z� +AX

⊆ JA;

which was to be proved.

Thus the primary decompositions depend on n.
Before we start the general p = 2 case, we renumber the variables Yj

to be

Y1; Y2; : : : ; Ya1−1; Ya1+1; : : : ; Ya1+a2−1; : : : ;

Ya1+a2+···+ad−1+1; : : : ; Ya1+a2+···+ad−1:

Thus the subscripts of the Yj correspond to the subscripts of the variables
Xi in the first row of the scrollar matrix X =M�a1; : : : ; ad�.
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Lemma 6.3. With notation as above, let Xi appear in the hth column of
a scroll, and let Xj appear in the kth column, first row, of a possibly different
scroll. If h ≥ k− 1, then XiYjZ ⊆ JA.

Proof. We first reduce to showing that XiYjZ2 ∈ JA. If Xj is the
first variable in its scroll (appearing in the top left corner of that
scroll), then YjZ1 = AXj

∈ JA. Since Xj is in the first row of its
scroll, it is not the last variable there, so AXj

= YjZ1 + Yj−1Z2. Thus
XiYjZ1 = XiAXj

−XiYj−1Z2. Thus in order to finish the proof, it suffices
to prove that XiYjZ2 ∈ JA.

If Xj is in the last column of its scroll, then AXj+1
= YjZ2. So we may

assume that Xj is not in the last column of its scroll. If Xi is not the last
variable in its block, then

XiYjZ2 = XiAXj+1
− Yj+1AYi

+Xi+1Yj+1Z2;

so that it suffices to prove that Xi+1Yj+1Z2 lies in JA. Notice that in this
step we increased by one the indices of both Xi and Yj . This means that we
increased the column numbers of Xi and Xj by one, or if Xi was already
in the last column, then we made the new Xi the last variable in its scroll.

As h ≥ k − 1, we have thus reduced the proof to showing that XiYjZ2
lies in JA, where Xi is the last variable in its scroll and Xj does not lie
in the last column of its scroll in X. If Xj is the first variable in its scroll,
then whenever Xi is not the first variable in its scroll, XiYjZ2 = YjAYi−1

−
Xi−1AXj

, and we are done. So we may assume that Xj is not the first
variable in its scroll. But then

XiYjZ2 = YjAYi−1
−Xi−1AXj

+Xi−1Yj−1Z2;

which is the reverse operation of what we just did: here we shift back the
indices of the columns. Now, as h ≥ k, this procedure ensures that, in at
most k− 1 steps, the Xj gets pushed into the first entry of its scroll, whence
XiYjZ2 lies in JA.

Corollary 6.4. With notation as above, assume that ah ≥ ak − 2. Then
for all Xi taken from the scroll corresponding to ah and all Yj such that Xj

is from a scroll corresponding to ak,

XiYjZ ⊆ JA:
Proof. As in the proof of the lemma, it suffices to prove that XiYjZ2

lies in JA, where Xj does not lie in the last column of its scroll and Xi is
the last variable in its block. But then by the reduction of indices procedure
as at the end of the previous proof, Xj reduces to the first variable in its
scroll in at most ak − 2 ≤ ah steps, whence XiYjZ2 ∈ JA.
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Theorem 6.5. Suppose that p = 2, n < 2p, and X = M�a1; : : : ; ad�
with a1; : : : ; ad ∈ �a; a+ 1; a+ 2� for some integer a. Then JA has exactly one
embedded prime, namely, the maximal homogeneous ideal. As the embedded
component one can take JA + �X1; : : : ;Xn� + I2�Y � + Im�Z�.

Proof. By the previous corollary, X Y Z ⊆ JA. Then

JA = �JA + Y Z� ∩ �JA + I2�Y � + Im�Z� +X�;
so that the only embedded prime is the homogeneous maximal ideal, with
the displayed embedded component.

Remark 6.6. This gives precisely the primary decomposition in the case
p = 2 and n = m+ 1, since in that case there is only one scroll in X.

In the next result we tackle the general p = 2 case. The ideas of the
proof are similar to the ideas of the proof of Lemma 6.3, however, the two
proofs accomplish slightly different things.

Theorem 6.7. Let p = 2, m and n arbitrary. If n = 2m, JA has no em-
bedded components. When instead n < 2m, then JA has only one embedded
component, and that one is primary to the maximal homogeneous ideal. The
embedded component may be taken to be

JA + �X1; : : : ;Xn�m−1 + I2�Y � + Im�Z�:
Proof. The first statement holds by the remark after Theorem 5.2.
We use the notation of the previous few results. It is easy to see that it

suffices to prove that every Xi1
· · ·Xim−1

YjZk lies in JA. As in the proof of
Lemma 6.3, it suffices to prove this for k = 2.

If Xj is in the last column of its scroll, then AXj+1
= YjZ2. So we may

assume that Xj is not in the last column of its scroll. If for some s, say
s = 1, Xis

is not the last variable in its block, then

Xi1
· · ·Xim−1

YjZ2

= Xi1
· · ·Xim−1

AXj+1
−Xi2

· · ·Xim−1
Yj+1AYi1

+Xi1+1Xi2
· · ·Xim−1

Yj+1Z2;

so that it suffices to prove that Xi1+1Xi2
· · ·Xim−1

Yj+1Z2 lies in JA. By raising
the indices more if necessary we have thus reduced the proof to showing
that Xi1

Xi2
· · ·Xim−1

YjZ2 lies in JA, where all Xis
are the last variables in

their scroll and where Xj does not lie in the last column of its scroll in X.
If Xj is the first variable in its scroll, then

Xi1
· · ·Xim−1

YjZ2 = Xi2
· · ·Xim−1

YjAYi1−1
−Xi2

· · ·Xim−1
Xi1−1AXj

;
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and we are done. So we may assume that Xj is not the first variable in its
scroll. But then

Xi1
· · ·Xim−1

YjZ2

= Xi2
· · ·Xim−1

YjAYi1−1
−Xi2

· · ·Xim−1
Xi1−1AXj

+Xi2
· · ·Xim−1

Xi1−1Yj−1Z2;

so it suffices to prove that Xi2
· · ·Xim−1

Xi1−1Yj−1Z2 lies in JA. We can play
“reduce the indices game” on the is as long as possible. Now, as Yj is
not the last variable in its scroll and there are m variables Yk, the index
reduction procedure ensures that, in some step, we arrive at an element of
the form Xi1

· · ·Xim−1
YjZ2, where Xj is the first variable in its scroll but

some Xis
is not. But then Xis

YjZ2 = YjAYis−1
−Xis−1AXj

, and so we are
done.

The class of Jacobian ideals of trilinear forms considered in [BBG] always
had the maximal irrelevant ideal as an associated prime. Theorems 6.5 and
6.7 are further evidence of this behavior. We do not know if the same holds
more generally for arbitrary n ≥ m ≥ p:

Question 6.8. Is the maximal irrelevant ideal an associated prime
whenever K is algebraically closed and A is a trilinear form in general
position?

We now briefly discuss the general case n ≥ m ≥ p. The main reason for
lack of positive results for p ≥ 3 is that there is unfortunately no natural
description of p by m 1-generic matrices. Unlike in the p = 2 case, for
larger p a trilinear form in general position need not be of the form studied
in [BBG] with all coefficients equal to 1. In fact, when p = m = 3, n = 5,
then for

A = �Z1 Z2 Z3 �


X1 X2 X3

X2 X3 X4

2X3 X4 X5



Y1

Y2

Y3

 ;
I2�X� + �Y;Z� is not a prime ideal, whereas for

A = �Z1 Z2 Z3 �


X1 X2 X3

X2 X3 X4

X3 X4 X5


Y1
Y2
Y3

 ;
I2�X� + �Y;Z� is a prime ideal associated to JA. Thus X for the first A
is not equivalent via admissible changes to the second X. This shows that
when p = 3, the primary decompositions are much more difficult to get at
than when p = 2.
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Note that both of the trilinear forms above are of the form studied in
[BBG], but the second one is symmetric and the first one is not.

With the help of the computer algebra system Singular [GPS] we have
calculated primary decompositions for several cases when m = p = 3. If

X =


X1 X2 X3

X2 X3 X4

X3 X4 X5

 or X =


X1 X2 X3

X2 X4 X5

X3 X5 X2

 ;
and a few other symmetric matrices, Singular returns �X;Y;Z� and JA +
I2�X� + �Y;Z� as the embedded primes. In general, Singular finishes the
primary decomposition calculation for symmetric matrices within a day via
its Gianni et al. [GTZ] algorithm and within half an hour via its Shimoyama
and Yokoyama [SY] algorithm. For non-symmetric 1-generic 3 by 3 matri-
ces, however, we have not gotten a single primary decomposition via Sin-
gular.
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