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Abstract

We define and study a family of completely prime rank ideals in the universal enveloping algebra
U(gl,). A rank ideal is a noncommutative analogue of a determinantal ideal, the defining ideal for
the closure of the set af x n matrices of fixed rank. We introduce a notion of rank §g;-modules
and determine the rank of simple highest weight modules and of simple finite-dimensional modules.
The main tools are Capelli-type identities and filtered algebra.
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1. Introduction

In this paper we define and study a family of completely prianak idealsin the uni-
versal enveloping algebra(yl,) of the complex Lie algebrg!, of n x n matrices. Rank
ideals are noncommutative analoguedeferminantal idealm the algebra of polynomial
functions onn x n matrices. The definition of rank ideals is motivated by the theory of
reductive dual pairs. The situation considered in this paper corresponds to the irreducible
dual pair of Lie algebraggl,, gl) (cf. [9,23]).

Our starting point is a classical representationggf and Ugl,) by polynomial
coefficient differential operators on the complex vector spegg of k£ x n matrices
(see[24]). Le{E;;: 1< i, j < n} be the standard basis gff, consisting of the matrix units.
The differential operator correspondinggg is thepolarization operato;;, explicitly
given as

k
Dij = Zxri3rj, (1.1)
r=1
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where we denoted by,; the partial derivatived/dx.;. The polarization operators;;
commute with the action of the gro@l on M, by left multiplication. By construction,
the assignmerg;; — D;; defines an embedding of the Lie algebrgl, into the algebra
PD(M,,) of the polynomial coefficient differential operators, aRdis a Lie algebra
homomorphism. Therefore, the map extends canonically to an associative algebra
homomorphisn® : U(gl,) — PD (Mg ).

Definition 1.2. Thekth rank ideal7, < U(gl,) is the kernel of the homomorphisi

It is well known thatR is injective if (and only if)k > n. We describe a natural
generating set for the idedl, when 0< k < n — 1. Let I; be the ideal of the algebra
of polynomial functions om x n matrices generated by the minors of ordet 1, the
kth determinantal idealThe ideally is prime and defines the affine algebraic variety of
matrices whose rank is at mas{see [3]). We prove (Proposition 3.9) that the associated
graded ideal of thé&th rank ideal is theith determinantal ideal, gf, = I;. We can get
a system of generators gf by lifting the minors of ordek + 1 from grWgl,,) to the
noncommutative algebra(gl,). Thus, we need to find the elemerlig; € 7, whose
symbols are ordek + 1 minorsm;; € I. It turns out that the appropriat; ;, which
we callquantum minoref orderk + 1, are given by the following formula:

Eiyjy (k) Eijpk—1) ... Eitjisa 0)
Ei, i, (k) E,i,k—1) ... Ei;.0)

E;; =coldet| 7 e _ R (1.3)
Bip1i(K)  EBigappk =1 ..o Eipy514(0)

Herel andJ arek + 1-term sequences of row and column indicesBnpt) = E;; +aéij,

and coldet is the so-called column determinant (see [11,24] and Definition 2.1). In the
special case wheh=J is an increasing sequence/of- 1 indices between 1 and the
elementsE;; were introduced by A. Capelli. The suBy,1 =, E;; of the principal
guantum minors belongs to the center @fjl)) and appears in the Capelli identity (see [1,
2,11]). M. Nazarov and A. Okounkov introduced a family of noncentral higher Capelli-type
elements of Wg!l,,) depending on a partitionand proved the corresponding higher Capelli
identities (see [20,21]). For = (1¥*1) the Capelli-type elements are the quantum minors
E;s with arbitrary I, J and an appropriate Capelli-type identity shows tRéE;;) = 0.
HenceE;; € Jk, and we obtain the following theorem.

Theorem 1.4. The quantum minorg;; of orderk + 1 generate thé&th rank ideal 7.

The algebra gl,,) is a noncommutative deformation of the commutative algebra of
polynomial functions of: x n matrices. Thus, the theorem may be interpreted as saying
that the rank idealf, and the quantum minors of order- 1 “quantize” the determinantal
ideal I; together with its natural generating set. A noncommutative analogue of the First
Fundamental Theorem of Classical Invariant TheoryGay, due to R. Howe (see [9,10])
asserts that the algebra Gy -invariants inPD (Mg ,) iS generated by the polarization
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operator®;;, and hence isomorphic to(gl,)/ 7. Theorem 1.4 provides explicit defining
relations for this algebra analogous to the Second Fundamental Theorem of Classical
Invariant Theory foiGLy (see [4,10]).

We use rank ideals to introduce the notion of rank for modules over the Lie alggbra
as follows.

Definition 1.5. A gl,,-moduleM has rank at most if its annihilator Anny g,y M contains
thekth rank ideal”,.

The notion of rank fogl,-modules is analogous to thé-rank (orsingular rank for
unitary representations of classical Lie groups defined by R. Howe and J.-S. Li, see [7,16,
17]. In these papers thé-rank was tied with thelual pair correspondenc@®ur notion of
rank reflects the dual pair correspondence algebraicalig |iG') is a reductive dual pair
of real Lie groups with complexified Lie algebrgs, andgl; andM is agl,-module that
occurs in the correspondence, thgnhas rank at most.

We use explicit determinantal formulas for the generators of rank ideals to determine
the rank of simple highest weight modul&sx). Our main result, Theorem 4.6, gives
simple necessary and sufficient conditions fgi) to be of rank at most, expressed in
terms of the highest weight In particular, we determine all finite-dimensional simglg-
modules that have rank at mdstlt turns out that these modules may be parametrized by
pairs of Young tableaux with the combined depth at nto3the exact statement is given in
Theorem 4.11. Theorem 4.6 may also be applied to the description of the primitive ideals
of U(gl,) containing thekth rank ideal (see [22]).

2. Quantum minors

In this section we define the quantum minors iwl)) and discuss their properties.
As in the introduction, for any: € C we letE;;(a) = E;; + ad;; € U(gl,) (& is
the Kronecker delta). For a fixed the assignmenk;; — E;;(a) extends to an algebra

automorphism of gl,,) called thea-twist.

Definition 2.1. Suppose & k <n — 1. Let] andJ be twok + 1-element sequences of
indices between 1 and A quantum minoiE; ; of orderk 4 1 with the row indiced and
the column indiced is an element of the universal enveloping algeb¢gl}) which is the
column determinant of thé + 1) x (k 4+ 1) matrix with the entrieg;, ; (k + 1 —s):

Eiij (k) Eirj (k—1) <. Eil./k+1(o)
Eiojs (k) Eizj (k—1) s Eizjk+1(o)
E;s; = col.det . . . .
Eik+ljl (k) Eik+1j2 k-1 ... Eik+1jk+1(o)
k+1
= Y sgno) [ [ Eippiik+1—5) (2.2)

0ESk+1 s=1
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(the order of the factors in each product is determined by the order of their columns:
first j1, then jp, and so on). Similarly, the row quantum minor is the row determinant
of the (k + 1) x (k + 1) matrix with the entrieg;, ; (r — 1):

Eivit V) Eiij V) s Eil./k+1(o)
E}Y = row.det Eiz'/,l(l) EiZj,Z(l) . Eiz'ikfl(l)
Eik+lj1 (k) Eik+lj2 k) ... Eik+1jk+1 (k)
k+1
= Y sgno) [[Eijpe ¢ — D) (2.3)
o0€Sk+1 r=1

(the order of the factors in each product is determined by the order of the rows).
Remarks.

1. Quantum minors are defined via noncommutative determinants and are clearly
analogous to ordinary matrix minors. However, due to the presence of twists in (2.2)
and (2.3), the quantum minors of order 1 cannot be viewed as subdeterminants
of orderk + 1 of a single matrix. Unlike in the case of the Capelli determinant,
the properties of quantum minors do not follow directly from the general theory of
guantum determinants and quasi-determinants developed by D. Krob, G. Leclerc,
I. Gelfand, V. Retakh and their coauthors (see [5,14]).

2. The row and column quantum minors arise frdifferent matrices. Nevertheless,

E;s =E}' (Proposition 3.10).

3. Quantum minors in the sense of Definition 2.1 are elements of the universal enveloping
algebra Wgl,). Note that in the literature the term “quantum minor” is also used for
certain elements in two other algebras, ¢lu@ntized coordinate ring of x n matrices
and thequantized enveloping algebra of upper triangular matri¢ese [6,15] and
references therein). The definition of the latter elements does not involve twists. It
would be interesting to study analogues of quantum minors in the quantized universal
enveloping algebra aff,, .

We record several properties of quantum minors. Several related statements appear in
the literature (see, for example, [9,12,21]). Our point of view is close to that of Itoh’s paper.

Proposition 2.4. Quantum minors are skew-symmetric in the row and column indices.
Proof. The skew-symmetry in the row indices is an immediate corollary of the defini-
tion (2.2). To establish the skew-symmetry in the column indices, it is enough to consider

the case of twaonsecutiveolumns with the column indicesandm, namely to show that

Eija+1) Eim(a)
Eija+ 1) Em(a)

Eim(a+1) Eij(a)

= —col.det .
Eim(a+1) Elj (a)

col.det (2.5)
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From the commutation relations between the generatogk, afe obtain the identity

Eij(a+1) Eim(a)

Eij(a) Eim(a)
Eja+D) Ema) (2.6)

= row.det ,
Eijj(a+1) Ep@+1

col.det

which shows that each column subdeterminant of (2.2) of order 2 involving these columns
is skew-symmetric inj and m. The skew-symmetry of;; follows by the Laplace
expansion of the column determinant (2.2) in the chosen two consecutive columns.

The statement and the proof of the proposition remain valid for the row quantum minors.
The universal enveloping algebragdl,) is a filtered algebra and its associated graded
algebra grlUgl,) is naturally identified with the algebra of polynomialssiR variables
mij, L<i, j <n, by letting gig;; = m;;. We viewm;; as the coordinate functions on
the spaceM,, , of the square matrices of orderand arrange them into a genericx n
matrix M. For any sequencesandJ of indices between 1 and of the same length,
denote byn;; the determinant of the matrix with the entrieg ;,, where the row indices
i, € I and the column indiceg, € J, 1 <r,s <d. If I andJ are increasing sequences,
myy is the minor ofM with the rows! and the columngd.

Proposition 2.7. Under the identification aboyeéhe symbol of a quantum minor is the
corresponding minargrE; ; = m; . Similarly,gre’%¥ =my.

Proof. The proposition follows immediately from the skew-symmetry of ordinary and
guantum minors and the standard properties of the symbol n@ap.

Lete; ande? be the standard bases®f andC"*. Sete; = e, A+ Aejy,,; € NFten

% _ % * k+1 ~nx
ande) = e} A /\ejk+1e/\ C.

Proposition 2.8. The linear spanS in U(gl,) of the quantum minors of order + 1
is stable under the adjoint action gff, on its universal enveloping algebrd(gl,).
Moreover, the assignmeaj A e’ — E;; extends to gl,-module isomorphism between

ANFLer @ AR e+ andss.

Proof. Propositions 2.4 and 2.7 yield a vector space isomorphism between the linear
span of the minors of order + 1 and S, hence betweef\* ™ ¢ @ A1 ands.

The equivariance of this isomorphism under the actioglpfis established by a direct
computation as in the proof of Theorem 5.1 in [21]1

Proposition 2.9. Each quantum minoE;; and row quantum minog}?" of orderk + 1
belongs to théth rank ideal.
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Proof. Let us denoteD;; = R(E;y), DY = R(E'Y"). We need to prove that these
expressions are identically zero for any- 1-element sequencésandJ. The generalized
Capelli identity [21, Theorem 1.3 and Eq. 1.4] essentially shows that

row
Dry = Z Z SON(O ) Xagiy ) - - - Xapp1iorn) Oarji - - - Qi jrsa- (2.10)

UES]H,]_ ag,...,Ak+1

Here the second summation is ovek a 1-element sequencé of indices between 1
andk. ldentity (2.10) was proved in [21] only whehis an injection(k > n), whereas we

are interested in the opposite case whkehas a non-trivial kernel. Nevertheless, (2.10)
holds in general. As pointed out by the referee, a short proof of the generalized Capelli
identity and hence of (2.10) for arbitrakywas found by A. Molev, see [18]. An easy
modification of the argument in [18] shows that (2.10) also holds With in place of

D'%". The summands in the right-hand side of (2.10) are skew-symmetric with respect to
permutations of the sequeneg . . ., ar+1. Since 1< ay, . . ., ar+1 < k, the right-hand side

of (2.10) is identically zero. O

3. Generatorsof rank ideals

The purpose of this section is to prove that the quantum minors of brger generate
thekth rank ideal7; (Theorem 1.4). Recall that the ided} was defined as the kernel of
a certain homomorphisiR : U(gl,,) — PD(M_,). Both U(gl,) andPD (Mg ) are filtered
algebras, and we define and explicitly compute the corresponding gradedk méaje
establish that gf, = kerR and identify this ideal with théth determinantal idealy.
We then deduce thaf; is generated by the set of quantum minors of okdérl from the
corresponding generation property of determinantal ideals.

For a filtered algebra = UWOJ-‘PA we let grA = @ gr” A be the associated graded
algebra of A and gr:A — grA be the symbol map (see [13,19]). Ldt= U(gl,),

B ="PD(M ) endowed with their standard filtrations.

Proposition 3.1. For any p > 0 we have
R(FPA) S F?B.

Proof. For p = 0 both sides are equal t8. The subspace A is spanned by 1 and
E;j, andF7 A is spanned by-fold products of the elements oflA. SinceR(E;;) is a
quadratic expression in the elemertsandd,; which have degree 1 iR, R(E;;) belongs
to F2B. This establishes the proposition fpr= 1. For generap the subspac®(F? A)
coincides with the linear span pffold products of the elements &(F*A) € F?B. Each
suchp-fold product is contained itF2? B. O

Generalizing the well-known concept of a degree-preserving filtered map, we say that
R is a 2{iltered map Intuitively, we think of R as a map that “doubles the degree.” This
is not quite correct, since the degreeRifz) may be strictly smaller than twice the degree



692 V. Protsak / Journal of Algebra 273 (2004) 686—-699

of a. Nevertheless, the proof of Proposition 3.5 below shows that fonany there exists
a’ € A suchthatR(a’) = R(a) and degRk(a’) = 2deda’).
Proposition 3.1 allows us to introduce the associated graded mRmsffollows. The
map R:grA — grB is the homogeneous degree 2 homomorphism of graded algebras
obtained from restrictions ak to the subspaces in the filtration:

R(gr” A) C gr*’ B, R(9r"a) =gr*” R(a) foranya e FPA.

Let us computeR and its kernel explicitly. Identify gPD(My,,) with the commutative
algebraP (Mg, ® M, ;) of polynomial functions of a pai¢X, Y) of matrices by gk,; =
Xai, Ord4i = via. Herex,; are the coordinate functions aow ,, yi, are the coordinate
functions onM, , 1< a <k, 1<i <n.

Proposition 3.2. The associated graded map is the homomorphism of commutative
algebras dual to the map of algebraic varieties

f : Mk,n ® Mn,k - Mn,n’ (X’ Y) = Xth-

Proof. The mapr written in coordinates is

k
r(X,Y) = (Xth)ij = Zxaiyja =grbh;j, (3.3)
a=1

and gD;; = R(m;;). Thus, the dual map*: P(M, ) — P Mk, ® M, 1) pulls back the
coordinate functiom:;; onM,, , to R(m;;), andr* = R. O

The mapr is the factorization map with respect to a natudl -action onMy_, © M, «
(see [4]). The image of is the set of: x n matrices of rank at most mik, n). Moreover,
this set is closed in Zariski topology. Its defining ideal is called ktte determinantal
ideal I;. Fork > n we havel; = 0. The ideall; is generated by the minors of orde# 1
(see [3]). We have thus obtained the following description of the kernkl of

Proposition 3.4. kerR is thekth determinantal idealy.

Proposition 3.5. The mapR has the property thaterR = gr(kerR).

Proof. The right inclusion is obvious. To prove that Kec grkerR we use descriptions
of imR and imR due to R. Howe. The grou@L; acts onPD(M ) by conjugation.
Let us denote byPD(M; )G the subalgebra of invariants. It consists of the polynomial

coefficient differential operators awy , commuting with the action déL; onM , by left
multiplication. By [9, Theorem 7] we have that

grimR = gr(R(U(g[n))) = (grPD(Mk,n))GLk = P(Mk,n @ Mn,k)GLk- (36)
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Moreover, this algebra is generated by the elem&tis;;), which form a basis in the
homogeneous component of degree 2. The inductive argument of [9] then shows that any
b € R(a) of degree less thanpzbelongs to the linear span gffold productsg < p, of

D;; = R(E;;). In particular,

im R = PD(My,)®H, (3.7)

and this algebra is generated by, 1< i, j <n. If a € kerR is a homogeneous element
of degreep, then there exists € A such thatz = gra, degz = p, and sinceR(a) = 0,
we have de®(a) < 2p. ExpressingR(a) as a linear combination af-fold products of
D;; with ¢ < p, we find thatR (a) = R(a’) for somea’ € A with dega’ < p. We conclude
thata — a’ € kerR and de@ga — a’) = p, whence gfa — a’) = gra = a anda belongs to
grkerR. O

Remark 3.8. The proof shows that iR: A — B is a 2-filtered map of filtered algebras,
then the equality keR = grkerR is equivalent to inR = grim R. This fact is analogous
to a well-known property of degree-preserving filtered maps [19, Theorem D.111.3].

Combining Propositions 3.4 and 3.5, we arrive at the relationship betweéihthenk
ideal 7, = kerR and thekth determinantal ideal.

Proposition 3.9. The associated graded idegi 7, is thekth determinantal ideal.

We are now in a position to prove that the set of quantum minors of érddrgenerates
thekth rank ideal.

Proof of Theorem 1.4. To prove that a system of elements of a filtered algebra generates
a given ideal, it is sufficient to show that their symbols generate the associated graded
ideal. By Proposition 2.9, the quantum min@g; of orderk + 1 belong to thekth rank

ideal 7. Proposition 2.7 asserts that their symbols are ordinary minors of érdet,

which generate théth determinantal ideal;. According to Proposition 3.9, gf, = I.
Therefore, the quantum minors of orde# 1 generatg/;,. O

Proposition 3.10. For any index sequencésand J of lengthk + 1, the corresponding row
and column quantum minors l(gl,,) coincide

Ejjg= E;OJW. (3.11)

Proof. If I or J contains a repeating index then both sides are equal to zero by
Proposition 2.4. The symbol map is injective on the elements of the lowest degfge in
Observe that non-zero minors;; are elements of the lowest degree infgr= Ix.
SinceE;; andE}%" both belong toJ; and have the same symbal;;, we must have
E;j= ESOJW. d

Coroallary 3.12. The rank ideals form a descending filtration bigl,,):
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Proof. Let us expand a quantum mingy; of orderk + 1 in the first column. We see that
E;s is a sum of the products &;, ;, (k) and a quantum minor of ordér By Theorem 1.4
we conclude that the generat&g of the ideal7; belong toJ;_1. Therefore, 7,1 2 Ji.
Fork > n the associated graded ideal @f is 0, hence7, =0. O

4. Rank of highest weight modules

One of the main applications of the rank ideals is a notion of ranlkgfpmodules
introduced in Definition 1.5. Recall thag$,-moduleM has rank at mogtif its annihilator
Annyg,) M contains thekth rank ideal ;. In this section we determine which simple
highest weighigl,,-modulesL (1) have rank at most. This determination relies on the
explicit formulas for the generators ¢f, and proceeds as follows. By Theorem 1.4, the
guantum minors of ordér+ 1 generatg/,. We analyze their action on the highest weight
vector and obtain in Theorem 4.6 the necessary and sufficient conditions on the highest
weightA assuring that a simple highest weight modul@) has rank at most.

Let us fix the choice of Borel and Cartan subalgebrag,pnd the notation concerning
the weights. The diagonal matrices form a Cartan subalgglsragl,, and the upper
triangular matrices form a Borel subalgebac gl,. The nilradicaln of this Borel
subalgebra consists of the upper triangular matrices with zeros on the diagonal and is
spanned by the generatoEs; € gl, with 1 <i < j < n. Let C" be the standara-
dimensional vector space with the bagis| 1 <i < n}. The spac@™* of linear functionals
onf is identified withC” via ¢; (E;;) = §;;. A weightu € h* is represented by antuple
of complex numberg, ..., u, which are its components in the basisA vectorv in a
gl,-moduleM is ahighest weight vectoof weight if v is non-zeroE;;v =0 fori < j
andE;;v = A;v.

Suppose thad! is a highest weight module ovet, with the highest weight vector
v of weightA. Let I = (i1, ..., ik, ir+1) be anincreasingsequence of indices between 1
andn, and let us compute the effect of the principal quantum miggron v. Using the
full expansion ofg;; as a column determinant, we see that

Ejfv= Z sgn(o) ]_[ Eiy i (k +1—5)v. (4.1)

0ESky1 1<s<k+1

We claim that in this sum all the terms with+# id are equal to 0. Indeed, suppose that
o #id and letr be the largest integer between 1 and 1 such that (r) # r. Sinceo

is a bijection andr(s) =s for r + 1< s <k + 1, we haveo (r) < r, henceiy(y < i,.
ThUSyEi(,(.‘)i.‘ =Ejehforr+1<s<k+1 andE,'“(r),', k+1-—r)= iy iy €M Since

v is a highest weight vector, elementstpmultiply v by a constant, and any element of
n annihilatesv. We see that the lagt+ 1 — r terms in the product in (4.1) multiply

by a constant, and the term with=r maps the result to 0, so that the entire product
is 0. Therefore, the sum in (4.1) reducesﬁqgsngrl Ei i, (k + 1 — s)v corresponding to

o = id. We have proved the following proposition.
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Proposition 4.2. Suppose thaiv is a highest weight module with the highest weight
vector v of weightA. Let1 < iy < --- < iy < ix41 < n. Then the principal quantum
minor E;; of order k + 1 multiplies v by the scalar]’[lgsng(MS +k+1—5) =

()"il + k) T ()"ik + 1))"ik+1-

Let us see how the proposition works foe= 1. We setl = (i, j) with i < j and find
that

Ei(1) E;

E;7v = col.det
1 Eji(L Ejj

v =E;(DEjjv—E;i(DE;jv= (A +DAjv. (4.3)

The last equality holds becausés a highest weight vector of weight henceg;; (L)v =
(Eii + Dv=(A; + Dv, Ejjv=Ajv, andE;jv =0.

Let L()) be the simple highest weight,,-module with highest weight. We want to
describe all values of for which L (1) has rank at most. Since any quantum mind; ;
of orderk + 1 belongs to théth rank ideal, the action d&; ; on a module of rank at mokt
is identically zero. In particulag; ;v = O for the highest weight vectar. Proposition 4.2
thus implies a number of necessary conditions on a highest weighth thatZ (1) has
rank at mosk.

Example 4.4. Suppose thaL (1) has rank at most 1. Equation (4.3) shows that for any
i < j we must havéx; + 1)A; = 0. This translates easily into the condition that for some
1< p <nthefirstp — 1 entries ofs are equal to-1 and the last — p entries are equal

to 0. Therefore) must have the form

A=(-1...,—1,2,.0,....0). (4.5)

It turns out that for any. of the form (4.5) the modulé& (1) has rank at most 1. Thus,
the conditions provided by Proposition 4.2 are also sufficient. In fact, for an arbitresy
are going to completely describe the highest weighgsich thatl. (1) has rank at most.

Theorem 4.6. LetA € C" and1 < k < n — 1. Then the following are equivalent

(1) The simple highest weight modulé)) is of rank at mosk.

(2) There exists a sequence of indidgs=0 < i1 <iz < -+ < if <ips1 With igy1 > n
suchthatforany <s <k+1,i5-1 <i <isimpliesA; = —k — 1+s. In other words,
A has the form

A= (—k, ...,k % —k+1,...,—~k+1,%....,—1,...,—1,%0,...,0), (4.7)

where the stars represent the entrieswafiith indicesiy, io, . . ., ik.

(3) The sequencé.1 +n — 1, A2 +n —2,...,1,) contains a subsequence — k — 1,
n—k—2,...,0), the arithmetic progression with the first temn— k — 1 and the
difference—1.
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Proof. To prove that (2) implies (3), let us assume thasatisfies the condition of (2).
Denote by{a;} the sequence; = A; +n — i and by {b;} its subsequence consisting
of the firstn — k terms with indices not equal ta, ip, ..., ix. We claim that{b;} is
the arithmetic progression described in (3). Indeed, supposeithat< i < i, then
M=—k—14s,a,=n—k—14s5—i,anda; =b; with j =i — s + 1. Therefore,
bj=n—k—-1+s—i=n—k—(s—i+1) =n—k— j. Clearly, this argument is
reversible, proving the equivalence of (2) and (3).

Assume that the modul&()) is of rank at most. Denote byv its highest weight
vector. We want to show that has the special form (4.7), establishing the implication
(1) = (2). Letus define inductively a sequence of indiges i1 < --- < ix <igt1: io=0,
is =min{i > i;_1| A; # —k —1+s}. In order for this definition to always work, we declare
that the condition or; holds for alli > n. If in the resulting sequencg,1 > n thena
has the form (4.7). Let us show that the other possibility, namelyithat< n, leads to
a contradiction. Let = (i1, ..., ik, ix+1). By construction); + k +1 — s # 0 for any
1< s <k+ 1, hence the product of these numbers is non-zero. On the other hand, by
Proposition 4.2 this product is exactly the scalar by which the principal quantum minor
E;; of orderk + 1 multiplies the highest weight vecter SinceE;; belongs to theth
rank ideal and does not act by zero o L(1), the moduleL()A) cannot be of rank at
mostk, a contradiction.

In order to prove the converse implicatia?) = (1), for anyA satisfying condition (2)
of the theorem we construct a modulé over the algebra of polynomial coefficient
differential operator®D (M ,) and a vectow in M which is a highest weight of weight
A with respect to the ensuing action gf, on M. Here it is necessary to recall that the
polarization operator®;; span a Lie subalgebrgl, inside PD(M; ), and a module
over PD(My_,) becomes a module ovef, by restriction. Agl,-module arising in this
fashion necessarily has rank at mastLet us see how the existence &f and v with
these properties implies thdt(A) has rank at most (condition (1) of the theorem).
Denote byN € M the gl,,-submodule ofM generated byw. The moduleN is a cyclic
highest weight module of highest weightand admitsL (1) as a quotient. Therefore,
AnnL(A) 2 AnnN 2 AnnM 2 Ji, with all annihilators taken in l,), so thatZ(i)
is of rank at most.

Proposition 4.8. For any1 < i1 < iz < --- < i; there exists a modul#f/ over PD (M )
and a non-zero vectar in M with the following propertiesl <t <k,1<i <n):

() xv=0forl<i<i;
(i) xs0;v=0; +k—r)vfori=i,.

We defer the proof of the proposition, and check that the vacisrindeed a highest
weight vector of weight. with respect to theyl,-action onM. We need to show that
E;jv =0 for anyi < j and thatg;;v = X;v. Suppose that < j. Then for anyr we have
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eitheri <i; or j > i;. Inthe first case;;v = 0, and sox;; 9;;v = 3;;x;;v = 0. In the second
cased;jv =0, hencex;;9;jv = 0. Therefore,

k
Eijv= Zx,ia,jv =0.
=1

To find the weight ofv, we consider the following two cases. Suppose that < i < i;.
If t <stheni > i; andd;;v =0, hencex;;9;;v =0. If r > s theni < i; andx;;v =0, hence
X4 0r;v = (0r;xy; — 1)v = —v. Therefore,

k s—1 k
Eiiv= thiativ = ZO—FZ—U =—(k—s+Dv=2Arv.
=1 =1 t=s

Suppose now that= i;. Then by the preceding argument and property (iiiy of;; 9;; v is
equal to 0,(x; + k — s)v, or —v according to whether < s, t = s, orr > s. Therefore, in
this case we have

k s—1 k
E,'[U:ZX;,’&;,’U:ZO—F(M+k—S)v+ Z — v =A;0.
t=1 t=1 t=s+1

Thus,E;;v = A;v for all i, andv is a highest weight vector of weight To complete the
proof of the theorem, it only remains to prove Proposition 4.8.

Proof of Proposition 4.8. The algebraPD(My ) is a tensor product over 4 ¢ < k,

1 <i < n of its subalgebra{[x;;, 3;;] of differential operators acting on onlgne
variable x;;. The conditions of the proposition involve onfne variable x,; and the
corresponding partial derivative;. We may therefore ledd = @ M;; andv = Q) vy,
where M;; is a module over the subalgeb€ix;;, d;;], andv;; € M;; has the relevant
property (i), (i), or (iii). We have reduced the proof of the proposition to its special
casek =n = 1. Let us omitr andi from the notation, so that = x;;, 9 = 9,;. In case

(ii) we let M = C[x] with the standard action of[x, 9] andv = 1. In case (i) we let

M = C[x] wherex acts byd/dx andd acts by multiplication by—x, andv = 1 (this
module is obtained from the previous one by twisting with the automorphism of the algebra
of polynomial coefficient differential operators that map® 9 andd to —x). In case (iii)

we let M = xPC[x, x~1] with the standard action df[x, 9] andv = x?. The assertion
aboutv is immediate in all three casesO

Remark 4.9. The argument used in the proof of Proposition 4.8 allows one to establish the
following property of rankif M is a gl,-module of rank at mogt and N is a gl,,-module
of rank at most, thenM ® N has rank at most + /.

Letus apply Theorem 4.6 to determination of the finite-dimensional sigiplsodules
that have rank at mogt. By the highest weight theory, a simple highest weight module
L)) is finite-dimensional if and only if is adominant integralveight. Conversely, each
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finite-dimensional simplgl,,-module is isomorphic to a uniqugx) whose highest weight
A is dominant and integral. Therefore, we need to see which dominant integedisfy
the condition (2) or (3) of Theorem 4.6.

A weight 1 is dominantif it is a decreasing sequence; > Ap > --- > A,. It is
integral if »; — A; is an integer for ali and j. Equivalently, the sequend@; +n — 1,
A2 +n—2,...,X,) is strictly decreasing and integral. Then there can be at most one
subsequence of described in condition (3) of Theorem 4.6. Since the subsequence is
an arithmetic progression with differeneel, it must occur inm — k consecutive terms
of L. Suppose that the indices of these terms run from 1 to n — s, wherer and
s are nonnegative integers such tha# s = k. Equating the terms, we arrive at the
conditionA; +n—i=n—k—(G —r),ork;=r—k=—s,forallr +1<i <n-—s.
In addition we musthavie; > --- > A, > —sand—s > 541> - = Ay

Thusa is a sequence of the form

A=dr—s,....,dy —8,—S8,...,—85,—S —¢€5,...,—S —e1)

—(du,...,dr,0,...,0,—e5, ..., —e1) —s(L,1,..., 1), (4.10)

whereD=(d1>--->d, >0) andE = (e1 > --- > e; > 0). Note thatD is a partition
with at mostr parts andE is a partition with at most = k — r parts. Thus, the simple
finite-dimensionafl,,-moduleL (1) is thegl,-moduleo?-£ @ det ~* in the “mixed tensor”
notation (see [10, Section 1.2.8]). If we pass from the partitibrend E to their Young
diagrams then the diagram correspondingliohas at most rows and the diagram
corresponding t&& has at mosk — r rows. We summarize the preceding discussion in
a theorem.

Theorem 4.11. The simple finite-dimensionagl,,-modules of rank at mogt are param-
etrized by triples(r, D, E) consisting of an integer betweerD andk, a Young diagram
D with at most r rows and a Young diagramwith at mostk — r rows. Thegl,,-module
corresponding tar, D, E) is the module? £ @ det —*.

The modules appearing in Theorem 4.11 are well-known in the theory of reductive
dual pairs and theta correspondence. Up to a minor normalization, they are the modules
appearing on th&, side of the theta correspondence for the reductive dualpairU, ;)

(see [8]). Their explicit realizations in the space of polynomial functionspp® My ,,

where the Lie algebral, acts by natural analogues of the polarization operabgrsare
described in [10].
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