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Abstract

We define and study a family of completely prime rank ideals in the universal enveloping a
U(gln). A rank ideal is a noncommutative analogue of a determinantal ideal, the defining ide
the closure of the set ofn× n matrices of fixed rank. We introduce a notion of rank forgln-modules
and determine the rank of simple highest weight modules and of simple finite-dimensional mo
The main tools are Capelli-type identities and filtered algebra.
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1. Introduction

In this paper we define and study a family of completely primerank idealsin the uni-
versal enveloping algebra U(gln) of the complex Lie algebragln of n× n matrices. Rank
ideals are noncommutative analogues ofdeterminantal idealsin the algebra of polynomia
functions onn × n matrices. The definition of rank ideals is motivated by the theor
reductive dual pairs. The situation considered in this paper corresponds to the irred
dual pair of Lie algebras(gln,glk) (cf. [9,23]).

Our starting point is a classical representation ofgln and U(gln) by polynomial
coefficient differential operators on the complex vector spaceMk,n of k × n matrices
(see [24]). Let{Eij : 1 � i, j � n} be the standard basis ofgln consisting of the matrix units
The differential operator corresponding toEij is thepolarization operatorDij , explicitly
given as

Dij =
k∑

r=1

xri∂rj , (1.1)
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where we denoted by∂rj the partial derivative∂/∂xrj . The polarization operatorsDij

commute with the action of the groupGLk onMk,n by left multiplication. By construction
the assignmentEij �→ Dij defines an embeddingR of the Lie algebragln into the algebra
PD(Mk,n) of the polynomial coefficient differential operators, andR is a Lie algebra
homomorphism. Therefore, the mapR extends canonically to an associative alge
homomorphismR : U(gln)→PD(Mk,n).

Definition 1.2. Thekth rank idealJk ⊆ U(gln) is the kernel of the homomorphismR.

It is well known thatR is injective if (and only if) k � n. We describe a natura
generating set for the idealJk when 0� k � n − 1. Let Ik be the ideal of the algebr
of polynomial functions onn × n matrices generated by the minors of orderk + 1, the
kth determinantal ideal. The idealIk is prime and defines the affine algebraic variety
matrices whose rank is at mostk (see [3]). We prove (Proposition 3.9) that the associa
graded ideal of thekth rank ideal is thekth determinantal ideal, grJk = Ik . We can get
a system of generators ofJk by lifting the minors of orderk + 1 from grU(gln) to the
noncommutative algebra U(gln). Thus, we need to find the elementsEIJ ∈ Jk whose
symbols are orderk + 1 minorsmIJ ∈ Ik . It turns out that the appropriateEIJ , which
we callquantum minorsof orderk + 1, are given by the following formula:

EIJ = col.det

∣∣∣∣∣∣∣∣∣∣

Ei1j1(k) Ei1j2(k − 1) . . . Ei1jk+1(0)
Ei2j1(k) Ei2j2(k − 1) . . . Ei2jk+1(0)

...
...

. . .
...

Eik+1j1(k) Eik+1j2(k − 1) . . . Eik+1jk+1(0)

∣∣∣∣∣∣∣∣∣∣

. (1.3)

HereI andJ arek+1-term sequences of row and column indices andEij (a)= Eij +aδij ,
and col.det is the so-called column determinant (see [11,24] and Definition 2.1). I
special case whenI = J is an increasing sequence ofk + 1 indices between 1 andn, the
elementsEII were introduced by A. Capelli. The sumCk+1 = ∑

I EII of the principal
quantum minors belongs to the center of U(gln) and appears in the Capelli identity (see
2,11]). M. Nazarov and A. Okounkov introduced a family of noncentral higher Capelli-
elements of U(gln) depending on a partitionλ and proved the corresponding higher Cap
identities (see [20,21]). Forλ= (1k+1) the Capelli-type elements are the quantum min
EIJ with arbitraryI , J and an appropriate Capelli-type identity shows thatR(EIJ ) = 0.
Hence,EIJ ∈Jk , and we obtain the following theorem.

Theorem 1.4. The quantum minorsEIJ of orderk + 1 generate thekth rank idealJk .

The algebra U(gln) is a noncommutative deformation of the commutative algebr
polynomial functions ofn× n matrices. Thus, the theorem may be interpreted as sa
that the rank idealJk and the quantum minors of orderk+ 1 “quantize” the determinanta
ideal Ik together with its natural generating set. A noncommutative analogue of the
Fundamental Theorem of Classical Invariant Theory forGLk due to R. Howe (see [9,10
asserts that the algebra ofGLk-invariants inPD(Mk,n) is generated by the polarizatio



688 V. Protsak / Journal of Algebra 273 (2004) 686–699

g
assical

ra

[7,16,

r

rmine
es

d by
in
ideals

a

of
operatorsDij , and hence isomorphic to U(gln)/Jk . Theorem 1.4 provides explicit definin
relations for this algebra analogous to the Second Fundamental Theorem of Cl
Invariant Theory forGLk (see [4,10]).

We use rank ideals to introduce the notion of rank for modules over the Lie algebgln
as follows.

Definition 1.5. A gln-moduleM has rank at mostk if its annihilator AnnU(gln) M contains
thekth rank idealJk .

The notion of rank forgln-modules is analogous to theN -rank (orsingular rank) for
unitary representations of classical Lie groups defined by R. Howe and J.-S. Li, see
17]. In these papers theN -rank was tied with thedual pair correspondence.Our notion of
rank reflects the dual pair correspondence algebraically. If(G,G′) is a reductive dual pai
of real Lie groups with complexified Lie algebrasgln andglk andM is agln-module that
occurs in the correspondence, thenM has rank at mostk.

We use explicit determinantal formulas for the generators of rank ideals to dete
the rank of simple highest weight modulesL(λ). Our main result, Theorem 4.6, giv
simple necessary and sufficient conditions forL(λ) to be of rank at mostk, expressed in
terms of the highest weightλ. In particular, we determine all finite-dimensional simplegln-
modules that have rank at mostk. It turns out that these modules may be parametrize
pairs of Young tableaux with the combined depth at mostk. The exact statement is given
Theorem 4.11. Theorem 4.6 may also be applied to the description of the primitive
of U(gln) containing thekth rank ideal (see [22]).

2. Quantum minors

In this section we define the quantum minors in U(gln) and discuss their properties.
As in the introduction, for anya ∈ C we let Eij (a) = Eij + aδij ∈ U(gln) (δij is

the Kronecker delta). For a fixeda the assignmentEij �→ Eij (a) extends to an algebr
automorphism of U(gln) called thea-twist.

Definition 2.1. Suppose 0� k � n− 1. Let I andJ be twok + 1-element sequences
indices between 1 andn. A quantum minorEIJ of orderk + 1 with the row indicesI and
the column indicesJ is an element of the universal enveloping algebra U(gln) which is the
column determinant of the(k + 1)× (k + 1) matrix with the entriesEir js (k + 1− s):

EIJ = col.det

∣∣∣∣∣∣∣∣∣∣

Ei1j1(k) Ei1j2(k − 1) . . . Ei1jk+1(0)
Ei2j1(k) Ei2j2(k − 1) . . . Ei2jk+1(0)

...
...

. . .
...

Eik+1j1(k) Eik+1j2(k − 1) . . . Eik+1jk+1(0)

∣∣∣∣∣∣∣∣∣∣

=
∑

sgn(σ )
k+1∏

Eiσ (r)js (k + 1− s) (2.2)

σ∈Sk+1 s=1
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(the order of the factors in each product is determined by the order of their colu
first j1, then j2, and so on). Similarly, the row quantum minor is the row determin
of the(k + 1)× (k + 1) matrix with the entriesEir js (r − 1):

Erow
IJ = row.det

∣∣∣∣∣∣∣∣∣∣

Ei1j1(0) Ei1j2(0) . . . Ei1jk+1(0)
Ei2j1(1) Ei2j2(1) . . . Ei2jk+1(1)

...
...

. . .
...

Eik+1j1(k) Eik+1j2(k) . . . Eik+1jk+1(k)

∣∣∣∣∣∣∣∣∣∣

=
∑

σ∈Sk+1

sgn(σ )
k+1∏

r=1

Eir jσ(s) (r − 1) (2.3)

(the order of the factors in each product is determined by the order of the rows).

Remarks.

1. Quantum minors are defined via noncommutative determinants and are c
analogous to ordinary matrix minors. However, due to the presence of twists in
and (2.3), the quantum minors of orderk + 1 cannot be viewed as subdetermina
of order k + 1 of a single matrix. Unlike in the case of the Capelli determina
the properties of quantum minors do not follow directly from the general theo
quantum determinants and quasi-determinants developed by D. Krob, G. Le
I. Gelfand, V. Retakh and their coauthors (see [5,14]).

2. The row and column quantum minors arise fromdifferent matrices. Nevertheles
EIJ = Erow

IJ (Proposition 3.10).
3. Quantum minors in the sense of Definition 2.1 are elements of the universal enve

algebra U(gln). Note that in the literature the term “quantum minor” is also used
certain elements in two other algebras, thequantized coordinate ring ofn×n matrices
and thequantized enveloping algebra of upper triangular matrices(see [6,15] and
references therein). The definition of the latter elements does not involve twis
would be interesting to study analogues of quantum minors in the quantized uni
enveloping algebra ofgln.

We record several properties of quantum minors. Several related statements ap
the literature (see, for example, [9,12,21]). Our point of view is close to that of Itoh’s p

Proposition 2.4. Quantum minors are skew-symmetric in the row and column indices

Proof. The skew-symmetry in the row indices is an immediate corollary of the de
tion (2.2). To establish the skew-symmetry in the column indices, it is enough to con
the case of twoconsecutivecolumns with the column indicesj andm, namely to show tha

col.det

∣∣∣∣
Eij (a + 1) Eim(a)
E (a + 1) E (a)

∣∣∣∣ = −col.det

∣∣∣∣
Eim(a + 1) Eij (a)
E (a + 1) E (a)

∣∣∣∣ . (2.5)

lj lm lm lj
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From the commutation relations between the generators ofgln we obtain the identity

col.det

∣∣∣∣
Eij (a + 1) Eim(a)
Elj (a + 1) Elm(a)

∣∣∣∣ = row.det

∣∣∣∣
Eij (a) Eim(a)

Elj (a + 1) Elm(a + 1)

∣∣∣∣ , (2.6)

which shows that each column subdeterminant of (2.2) of order 2 involving these co
is skew-symmetric inj and m. The skew-symmetry ofEIJ follows by the Laplace
expansion of the column determinant (2.2) in the chosen two consecutive columns.✷

The statement and the proof of the proposition remain valid for the row quantum m
The universal enveloping algebra U(gln) is a filtered algebra and its associated gra

algebra grU(gln) is naturally identified with the algebra of polynomials inn2 variables
mij , 1 � i, j � n, by letting grEij = mij . We viewmij as the coordinate functions o
the spaceMn,n of the square matrices of ordern and arrange them into a genericn × n

matrixM. For any sequencesI andJ of indices between 1 andn of the same lengthd ,
denote bymIJ the determinant of the matrix with the entriesmirjs , where the row indice
ir ∈ I and the column indicesjs ∈ J , 1 � r, s � d . If I andJ are increasing sequence
mIJ is the minor ofM with the rowsI and the columnsJ .

Proposition 2.7. Under the identification above, the symbol of a quantum minor is th
corresponding minor: grEIJ =mIJ . Similarly,grErow

IJ =mIJ .

Proof. The proposition follows immediately from the skew-symmetry of ordinary
quantum minors and the standard properties of the symbol map.✷

Let ei ande∗j be the standard bases ofCn andCn∗. SeteI = ei1 ∧ · · · ∧ eik+1 ∈ ∧k+1
Cn

ande∗J = e∗j1 ∧ · · · ∧ e∗jk+1
∈ ∧k+1

Cn∗.

Proposition 2.8. The linear spanS in U(gln) of the quantum minors of orderk + 1
is stable under the adjoint action ofgln on its universal enveloping algebraU(gln).
Moreover, the assignmenteI ∧ e∗J �→ EIJ extends to agln-module isomorphism betwee∧k+1

Cn ⊗ ∧k+1
Cn∗ andS.

Proof. Propositions 2.4 and 2.7 yield a vector space isomorphism between the
span of the minors of orderk + 1 andS, hence between

∧k+1
Cn ⊗ ∧k+1

Cn∗ andS.
The equivariance of this isomorphism under the action ofgln is established by a direc
computation as in the proof of Theorem 5.1 in [21].✷
Proposition 2.9. Each quantum minorEIJ and row quantum minorErow

IJ of order k + 1
belongs to thekth rank ideal.
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Proof. Let us denoteDIJ = R(EIJ ), Drow
IJ = R(Erow

IJ ). We need to prove that thes
expressions are identically zero for anyk+ 1-element sequencesI andJ . The generalized
Capelli identity [21, Theorem 1.3 and Eq. 1.4] essentially shows that

Drow
IJ =

∑

σ∈Sk+1

∑

a1,...,ak+1

sgn(σ )xa1iσ (1) . . . xak+1iσ (k+1)∂a1j1 . . . ∂ak+1jk+1. (2.10)

Here the second summation is over ak + 1-element sequenceA of indices between 1
andk. Identity (2.10) was proved in [21] only whenR is an injection(k � n), whereas we
are interested in the opposite case whenR has a non-trivial kernel. Nevertheless, (2.1
holds in general. As pointed out by the referee, a short proof of the generalized C
identity and hence of (2.10) for arbitraryk was found by A. Molev, see [18]. An eas
modification of the argument in [18] shows that (2.10) also holds withDIJ in place of
Drow
IJ . The summands in the right-hand side of (2.10) are skew-symmetric with resp

permutations of the sequencea1, . . . , ak+1. Since 1� a1, . . . , ak+1 � k, the right-hand side
of (2.10) is identically zero. ✷

3. Generators of rank ideals

The purpose of this section is to prove that the quantum minors of orderk + 1 generate
thekth rank idealJk (Theorem 1.4). Recall that the idealJk was defined as the kernel
a certain homomorphismR : U(gln)→PD(Mk,n). Both U(gln) andPD(Mk,n) are filtered
algebras, and we define and explicitly compute the corresponding graded mapR. We
establish that grJk = kerR and identify this ideal with thekth determinantal idealIk .
We then deduce thatJk is generated by the set of quantum minors of orderk + 1 from the
corresponding generation property of determinantal ideals.

For a filtered algebraA= ⋃
p�0FpA we let grA= ⊕

grp A be the associated grad
algebra ofA and gr :A → grA be the symbol map (see [13,19]). LetA = U(gln),
B = PD(Mk,n) endowed with their standard filtrations.

Proposition 3.1. For anyp � 0 we have

R
(
FpA

) ⊆F2pB.

Proof. For p = 0 both sides are equal toC. The subspaceF1A is spanned by 1 an
Eij , andFpA is spanned byp-fold products of the elements ofF1A. SinceR(Eij ) is a
quadratic expression in the elementsxai and∂aj which have degree 1 inB, R(Eij ) belongs
to F2B. This establishes the proposition forp = 1. For generalp the subspaceR(FpA)

coincides with the linear span ofp-fold products of the elements ofR(F1A)⊆F2B. Each
suchp-fold product is contained inF2pB. ✷

Generalizing the well-known concept of a degree-preserving filtered map, we sa
R is a 2-filtered map. Intuitively, we think ofR as a map that “doubles the degree.” T
is not quite correct, since the degree ofR(a) may be strictly smaller than twice the degr
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of a. Nevertheless, the proof of Proposition 3.5 below shows that for anya ∈A there exists
a′ ∈A such thatR(a′)=R(a) and degR(a′)= 2 deg(a′).

Proposition 3.1 allows us to introduce the associated graded map ofR as follows. The
mapR : grA → grB is the homogeneous degree 2 homomorphism of graded alg
obtained from restrictions ofR to the subspaces in the filtration:

R
(
grp A

) ⊆ gr2p B, R
(
grp a

) = gr2p R(a) for anya ∈ FpA.

Let us computeR and its kernel explicitly. Identify grPD(Mk,n) with the commutative
algebraP(Mk,n ⊕ Mn,k) of polynomial functions of a pair(X,Y ) of matrices by grxai =
xai , gr∂ai = yia . Herexai are the coordinate functions onMk,n, yia are the coordinat
functions onMn,k , 1� a � k, 1� i � n.

Proposition 3.2. The associated graded mapR is the homomorphism of commutati
algebras dual to the map of algebraic varieties

f : Mk,n ⊕ Mn,k → Mn,n, (X,Y ) �→XtY t.

Proof. The mapr written in coordinates is

r(X,Y )ij = (
XtY t)

ij
=

k∑

a=1

xaiyja = grDij , (3.3)

and grDij = R(mij ). Thus, the dual mapr∗ :P(Mn,n) → P(Mk,n ⊕ Mn,k) pulls back the
coordinate functionmij on Mn,n to R(mij ), andr∗ =R. ✷

The mapr is the factorization map with respect to a naturalGLk-action onMk,n ⊕ Mn,k

(see [4]). The image ofr is the set ofn× n matrices of rank at most min(k, n). Moreover,
this set is closed in Zariski topology. Its defining ideal is called thekth determinantal
ideal Ik . Fork � n we haveIk = 0. The idealIk is generated by the minors of orderk + 1
(see [3]). We have thus obtained the following description of the kernel ofR:

Proposition 3.4. kerR is thekth determinantal idealIk .

Proposition 3.5. The mapR has the property thatkerR = gr(kerR).

Proof. The right inclusion is obvious. To prove that kerR ⊆ grkerR we use description
of imR and imR due to R. Howe. The groupGLk acts onPD(Mk,n) by conjugation.
Let us denote byPD(Mk,n)

GLk the subalgebra of invariants. It consists of the polynom
coefficient differential operators onMk,n commuting with the action ofGLk onMk,n by left
multiplication. By [9, Theorem 7] we have that

gr imR = gr
(
R

(
U(gln)

)) = (
grPD(Mk,n)

)GLk =P(Mk,n ⊕ Mn,k)
GLk . (3.6)
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Moreover, this algebra is generated by the elementsR(mij ), which form a basis in the
homogeneous component of degree 2. The inductive argument of [9] then shows th
b ∈ R(a) of degree less than 2p belongs to the linear span ofq-fold products,q < p, of
Dij =R(Eij ). In particular,

imR =PD(Mk,n)
GLk , (3.7)

and this algebra is generated byDij , 1� i, j � n. If a ∈ kerR is a homogeneous eleme
of degreep, then there existsa ∈ A such thata = gra, dega = p, and sinceR(a) = 0,
we have degR(a) < 2p. ExpressingR(a) as a linear combination ofq-fold products of
Dij with q < p, we find thatR(a)=R(a′) for somea′ ∈A with dega′ <p. We conclude
thata − a′ ∈ kerR and deg(a − a′)= p, whence gr(a − a′)= gra = a anda belongs to
grkerR. ✷
Remark 3.8. The proof shows that ifR :A → B is a 2-filtered map of filtered algebra
then the equality kerR = grkerR is equivalent to imR = gr imR. This fact is analogou
to a well-known property of degree-preserving filtered maps [19, Theorem D.III.3].

Combining Propositions 3.4 and 3.5, we arrive at the relationship between thekth rank
idealJk = kerR and thekth determinantal ideal.

Proposition 3.9. The associated graded idealgrJk is thekth determinantal ideal.

We are now in a position to prove that the set of quantum minors of orderk+1 generates
thekth rank ideal.

Proof of Theorem 1.4. To prove that a system of elements of a filtered algebra gene
a given ideal, it is sufficient to show that their symbols generate the associated g
ideal. By Proposition 2.9, the quantum minorsEIJ of orderk + 1 belong to thekth rank
idealJk . Proposition 2.7 asserts that their symbols are ordinary minors of orderk + 1,
which generate thekth determinantal idealIk . According to Proposition 3.9, grJk = Ik .
Therefore, the quantum minors of orderk + 1 generateJk . ✷
Proposition 3.10. For any index sequencesI andJ of lengthk+1, the corresponding row
and column quantum minors inU(gln) coincide:

EIJ = Erow
IJ . (3.11)

Proof. If I or J contains a repeating index then both sides are equal to zer
Proposition 2.4. The symbol map is injective on the elements of the lowest degreeJk .
Observe that non-zero minorsmIJ are elements of the lowest degree in grJk = Ik .
SinceEIJ and Erow

IJ both belong toJk and have the same symbolmIJ , we must have
EIJ = Erow

IJ . ✷
Corollary 3.12. The rank ideals form a descending filtration onU(gln):

U(gln)⊇ J0 ⊇ J1 ⊇ · · · ⊇ Jn = 0.
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Proof. Let us expand a quantum minorEIJ of orderk+ 1 in the first column. We see th
EIJ is a sum of the products ofEir j1(k) and a quantum minor of orderk. By Theorem 1.4
we conclude that the generatorsEIJ of the idealJk belong toJk−1. Therefore,Jk−1 ⊇ Jk .
For k � n the associated graded ideal ofJk is 0, henceJk = 0. ✷

4. Rank of highest weight modules

One of the main applications of the rank ideals is a notion of rank forgln-modules
introduced in Definition 1.5. Recall that agln-moduleM has rank at mostk if its annihilator
AnnU(gln) M contains thekth rank idealJk . In this section we determine which simp
highest weightgln-modulesL(λ) have rank at mostk. This determination relies on th
explicit formulas for the generators ofJk and proceeds as follows. By Theorem 1.4,
quantum minors of orderk+ 1 generateJk . We analyze their action on the highest weig
vector and obtain in Theorem 4.6 the necessary and sufficient conditions on the h
weightλ assuring that a simple highest weight moduleL(λ) has rank at mostk.

Let us fix the choice of Borel and Cartan subalgebras ofgln and the notation concernin
the weights. The diagonal matrices form a Cartan subalgebrah ⊆ gln, and the uppe
triangular matrices form a Borel subalgebrab ⊆ gln. The nilradicaln of this Borel
subalgebra consists of the upper triangular matrices with zeros on the diagonal
spanned by the generatorsEij ∈ gln with 1 � i < j � n. Let Cn be the standardn-
dimensional vector space with the basis{εi | 1� i � n}. The spaceh∗ of linear functionals
on h is identified withCn via εi(Ejj )= δij . A weightµ ∈ h∗ is represented by ann-tuple
of complex numbersµ1, . . . ,µn which are its components in the basisε. A vectorv in a
gln-moduleM is ahighest weight vectorof weightλ if v is non-zero,Eij v = 0 for i < j

andEiiv = λiv.
Suppose thatM is a highest weight module overgln with the highest weight vecto

v of weightλ. Let I = (i1, . . . , ik, ik+1) be anincreasingsequence of indices between
andn, and let us compute the effect of the principal quantum minorEII on v. Using the
full expansion ofEII as a column determinant, we see that

EII v =
∑

σ∈Sk+1

sgn(σ )
∏

1�s�k+1

Eiσ (s)is (k + 1− s)v. (4.1)

We claim that in this sum all the terms withσ �= id are equal to 0. Indeed, suppose t
σ �= id and letr be the largest integer between 1 andk + 1 such thatσ(r) �= r. Sinceσ
is a bijection andσ(s) = s for r + 1 � s � k + 1, we haveσ(r) < r, henceiσ (r) < ir .
Thus,Eiσ (s)is = Eis is ∈ h for r + 1 � s � k + 1 andEiσ (r)ir (k + 1− r)= Eiσ (r)ir ∈ n. Since
v is a highest weight vector, elements ofh multiply v by a constant, and any element
n annihilatesv. We see that the lastk + 1 − r terms in the product in (4.1) multiplyv
by a constant, and the term withs = r maps the result to 0, so that the entire prod
is 0. Therefore, the sum in (4.1) reduces to

∏
1�s�k+1 Eis is (k + 1 − s)v corresponding to

σ = id. We have proved the following proposition.
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Proposition 4.2. Suppose thatM is a highest weight module with the highest wei
vector v of weightλ. Let 1 � i1 < · · · < ik < ik+1 � n. Then the principal quantum
minor EII of order k + 1 multiplies v by the scalar

∏
1�s�k+1(λis + k + 1 − s) =

(λi1 + k) · · · (λik + 1)λik+1 .

Let us see how the proposition works fork = 1. We setI = (i, j) with i < j and find
that

EII v = col.det

∣∣∣∣
Eii (1) Eij
Eji (1) Ejj

∣∣∣∣v = Eii (1)Ejjv − Eji(1)Eij v = (λi + 1)λjv. (4.3)

The last equality holds becausev is a highest weight vector of weightλ, henceEii (1)v =
(Eii + 1)v = (λi + 1)v, Ejj v = λj v, andEij v = 0.

Let L(λ) be the simple highest weightgln-module with highest weightλ. We want to
describe all values ofλ for whichL(λ) has rank at mostk. Since any quantum minorEIJ
of orderk+1 belongs to thekth rank ideal, the action ofEIJ on a module of rank at mostk
is identically zero. In particular,EII v = 0 for the highest weight vectorv. Proposition 4.2
thus implies a number of necessary conditions on a highest weightλ such thatL(λ) has
rank at mostk.

Example 4.4. Suppose thatL(λ) has rank at most 1. Equation (4.3) shows that for
i < j we must have(λi + 1)λj = 0. This translates easily into the condition that for so
1 � p � n the firstp − 1 entries ofλ are equal to−1 and the lastn− p entries are equa
to 0. Therefore,λ must have the form

λ= (−1, . . . ,−1, λp,0, . . . ,0). (4.5)

It turns out that for anyλ of the form (4.5) the moduleL(λ) has rank at most 1. Thu
the conditions provided by Proposition 4.2 are also sufficient. In fact, for an arbitraryk, we
are going to completely describe the highest weightsλ such thatL(λ) has rank at mostk.

Theorem 4.6. Letλ ∈ Cn and1 � k � n− 1. Then the following are equivalent:

(1) The simple highest weight moduleL(λ) is of rank at mostk.
(2) There exists a sequence of indicesi0 = 0< i1 < i2 < · · · < ik < ik+1 with ik+1 > n

such that for any1� s � k+1, is−1< i < is impliesλi = −k−1+ s. In other words,
λ has the form

λ= (−k, . . . ,−k,∗,−k+ 1, . . . ,−k+ 1,∗, . . . ,−1, . . . ,−1,∗,0, . . . ,0), (4.7)

where the stars represent the entries ofλ with indicesi1, i2, . . . , ik.
(3) The sequence(λ1 + n − 1, λ2 + n − 2, . . . , λn) contains a subsequence(n− k − 1,

n − k − 2, . . . ,0), the arithmetic progression with the first termn − k − 1 and the
difference−1.
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Proof. To prove that (2) implies (3), let us assume thatλ satisfies the condition of (2
Denote by{ai} the sequenceai = λi + n − i and by {bj } its subsequence consistin
of the first n − k terms with indices not equal toi1, i2, . . . , ik. We claim that{bj } is
the arithmetic progression described in (3). Indeed, suppose thatis−1 < i < is , then
λi = −k − 1 + s, ai = n − k − 1 + s − i, andai = bj with j = i − s + 1. Therefore,
bj = n − k − 1 + s − i = n − k − (s − i + 1) = n − k − j . Clearly, this argument i
reversible, proving the equivalence of (2) and (3).

Assume that the moduleL(λ) is of rank at mostk. Denote byv its highest weight
vector. We want to show thatλ has the special form (4.7), establishing the implicat
(1)⇒ (2). Let us define inductively a sequence of indicesi0 < i1< · · ·< ik < ik+1: i0 = 0,
is = min{i > is−1 | λi �= −k−1+s}. In order for this definition to always work, we decla
that the condition onλi holds for all i > n. If in the resulting sequenceik+1 > n thenλ
has the form (4.7). Let us show that the other possibility, namely thatik+1 � n, leads to
a contradiction. LetI = (i1, . . . , ik, ik+1). By construction,λis + k + 1 − s �= 0 for any
1 � s � k + 1, hence the product of these numbers is non-zero. On the other ha
Proposition 4.2 this product is exactly the scalar by which the principal quantum m
EII of orderk + 1 multiplies the highest weight vectorv. SinceEII belongs to thekth
rank ideal and does not act by zero onv ∈ L(λ), the moduleL(λ) cannot be of rank a
mostk, a contradiction.

In order to prove the converse implication(2)⇒ (1), for anyλ satisfying condition (2)
of the theorem we construct a moduleM over the algebra of polynomial coefficie
differential operatorsPD(Mk,n) and a vectorv in M which is a highest weight of weigh
λ with respect to the ensuing action ofgln on M. Here it is necessary to recall that t
polarization operatorsDij span a Lie subalgebragln inside PD(Mk,n), and a module
overPD(Mk,n) becomes a module overgln by restriction. Agln-module arising in this
fashion necessarily has rank at mostk. Let us see how the existence ofM and v with
these properties implies thatL(λ) has rank at mostk (condition (1) of the theorem)
Denote byN ⊆ M the gln-submodule ofM generated byv. The moduleN is a cyclic
highest weight module of highest weightλ and admitsL(λ) as a quotient. Therefore
AnnL(λ) ⊇ AnnN ⊇ AnnM ⊇ Jk , with all annihilators taken in U(gln), so thatL(λ)
is of rank at mostk.

Proposition 4.8. For any1 � i1 < i2 < · · ·< ik there exists a moduleM overPD(Mk,n)

and a non-zero vectorv in M with the following properties(1 � t � k,1� i � n):

(i) xtiv = 0 for 1� i < it ;
(ii) ∂tiv =Q for i > it ;
(iii) xti∂tiv = (λi + k − t)v for i = it .

We defer the proof of the proposition, and check that the vectorv is indeed a highes
weight vector of weightλ with respect to thegln-action onM. We need to show tha
Eij v = 0 for anyi < j and thatEiiv = λiv. Suppose thati < j . Then for anyt we have



V. Protsak / Journal of Algebra 273 (2004) 686–699 697

t
cial

t

gebra

h the

ule
h

eitheri < it or j > it . In the first casextiv = 0, and soxti∂tj v = ∂tj xtiv = 0. In the second
case∂tj v = 0, hencexti∂tj v = 0. Therefore,

Eij v =
k∑

t=1

xti∂tj v = 0.

To find the weight ofv, we consider the following two cases. Suppose thatis−1 < i < is .
If t < s theni > it and∂tiv = 0, hencexti∂tiv = 0. If t � s theni < it andxtiv = 0, hence
xti∂tiv = (∂tixti − 1)v = −v. Therefore,

Eiiv =
k∑

t=1

xti∂tiv =
s−1∑

t=1

0+
k∑

t=s
−v = −(k− s + 1)v = λiv.

Suppose now thati = is . Then by the preceding argument and property (iii) ofv, xti∂tiv is
equal to 0,(λi + k − s)v, or −v according to whethert < s, t = s, or t > s. Therefore, in
this case we have

Eiiv =
k∑

t=1

xti∂tiv =
s−1∑

t=1

0+ (λi + k − s)v +
k∑

t=s+1

− v = λiv.

Thus,Eiiv = λiv for all i, andv is a highest weight vector of weightλ. To complete the
proof of the theorem, it only remains to prove Proposition 4.8.✷
Proof of Proposition 4.8. The algebraPD(Mk,n) is a tensor product over 1� t � k,
1 � i � n of its subalgebrasC[xti, ∂ti] of differential operators acting on onlyone
variable xti . The conditions of the proposition involve onlyone variable xti and the
corresponding partial derivative∂ti . We may therefore letM = ⊗

Mti and v = ⊗
vti ,

whereMti is a module over the subalgebraC[xti, ∂ti], and vti ∈ Mti has the relevan
property (i), (ii), or (iii). We have reduced the proof of the proposition to its spe
casek = n = 1. Let us omitt and i from the notation, so thatx = xti , ∂ = ∂ti . In case
(ii) we let M = C[x] with the standard action ofC[x, ∂] and v = 1. In case (i) we le
M = C[x] wherex acts by∂/∂x and ∂ acts by multiplication by−x, andv = 1 (this
module is obtained from the previous one by twisting with the automorphism of the al
of polynomial coefficient differential operators that mapsx to ∂ and∂ to −x). In case (iii)
we letM = xpC[x, x−1] with the standard action ofC[x, ∂] andv = xp . The assertion
aboutv is immediate in all three cases.✷
Remark 4.9. The argument used in the proof of Proposition 4.8 allows one to establis
following property of rank:if M is a gln-module of rank at mostk andN is a gln-module
of rank at mostl, thenM ⊗N has rank at mostk + l.

Let us apply Theorem 4.6 to determination of the finite-dimensional simplegln-modules
that have rank at mostk. By the highest weight theory, a simple highest weight mod
L(λ) is finite-dimensional if and only ifλ is adominant integralweight. Conversely, eac
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finite-dimensional simplegln-module is isomorphic to a uniqueL(λ) whose highest weigh
λ is dominant and integral. Therefore, we need to see which dominant integralλ satisfy
the condition (2) or (3) of Theorem 4.6.

A weight λ is dominant if it is a decreasing sequence:λ1 � λ2 � · · · � λn. It is
integral if λi − λj is an integer for alli andj . Equivalently, the sequence(λ1 + n− 1,
λ2 + n − 2, . . . , λn) is strictly decreasing and integral. Then there can be at mos
subsequence ofλ described in condition (3) of Theorem 4.6. Since the subsequen
an arithmetic progression with difference−1, it must occur inn − k consecutive term
of λ. Suppose that the indices of these terms run fromr + 1 to n − s, wherer and
s are nonnegative integers such thatr + s = k. Equating the terms, we arrive at th
conditionλi + n − i = n − k − (i − r), or λi = r − k = −s, for all r + 1 � i � n − s.
In addition we must haveλ1 � · · · � λr � −s and−s � λn−s+1 � · · · � λn.

Thusλ is a sequence of the form

λ= (d1 − s, . . . , dr − s,−s, . . . ,−s,−s − es, . . . ,−s − e1)

= (d1, . . . , dr,0, . . . ,0,−es, . . . ,−e1)− s(1,1, . . . ,1), (4.10)

whereD = (d1 � · · · � dr � 0) andE = (e1 � · · · � es � 0). Note thatD is a partition
with at mostr parts andE is a partition with at mosts = k − r parts. Thus, the simpl
finite-dimensionalgln-moduleL(λ) is thegln-module1D,E⊗detr−k in the “mixed tensor”
notation (see [10, Section 1.2.8]). If we pass from the partitionsD andE to their Young
diagrams then the diagram corresponding toD has at mostr rows and the diagram
corresponding toE has at mostk − r rows. We summarize the preceding discussion
a theorem.

Theorem 4.11. The simple finite-dimensionalgln-modules of rank at mostk are param-
etrized by triples(r,D,E) consisting of an integerr between0 andk, a Young diagram
D with at most r rows and a Young diagramE with at mostk − r rows. Thegln-module
corresponding to(r,D,E) is the module1D,E ⊗ detr−k .

The modules appearing in Theorem 4.11 are well-known in the theory of redu
dual pairs and theta correspondence. Up to a minor normalization, they are the m
appearing on theUn side of the theta correspondence for the reductive dual pair(Un,Ur,s)

(see [8]). Their explicit realizations in the space of polynomial functions onMr,n ⊕ M∗
s,n,

where the Lie algebragln acts by natural analogues of the polarization operatorsDij , are
described in [10].
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