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Abstract

We introduce a partial order on partitions which permits an inductive proof on partitions. As a
example of this technique, we reprove the discriminant formula for the generalized Vander
determinant.
 2003 Elsevier Inc. All rights reserved.
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1. A partial order on partitions

A partition of a positive integern is a nonincreasing sequence of positive integ
m1 � · · · � mr that sum ton. For a partition ofn other than(1,1, . . . ,1) we define a
uniquepredecessor as follows. Suppose(m1, . . . ,mr) �= (1, . . . ,1) is a partition. Letms

be the last element> 1; thus,

(m1, . . . ,mr) = (m1, . . . ,ms,1, . . . ,1).

The predecessor ofm is the partition of lengthr + 1,

m̃ = (m1, . . . ,ms−1,ms − 1,1,1, . . . ,1),
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ula
1+ 1+ 1+ 1+ 1
↓

2+ 1+ 1+ 1
↙

3+ 1+ 1
↘
2+ 2+ 1

↙ ↘
4+ 1 3+ 2

↓
5

Fig. 1. The partial order onP5.

obtained fromm by decomposingms into two terms(ms − 1) + 1. In other words,

m̃i =
{

mi, for 1 � i � s − 1;
ms − 1, for i = s;
1, for s + 1 � i � r + 1.

This relation generatesa partial order on the setPn of all partitions ofn.
If a partitionα is a predecessor of a partitionβ , we say thatβ is asuccessor of α. The

successors of(m1, . . . ,ms,1,1,1, . . . ,1), ms > 1, are

(m1, . . . ,ms + 1,1,1, . . . ,1) or (m1, . . . ,ms,2,1, . . . ,1),

if these are partitions.
This partial order is best illustrated with an example.

Example. Forn = 5, the partial order on the set of partitions of 5 is as in Fig. 1.
In Fig. 1 we write

(m1, . . . ,mr) = m1 + · · · + mr.

The partition(2,2,1) has no successors because(2,3) is not a partition.

2. The generalized Vandermonde determinant

Givenn distinct numbersa1, . . . , an the Vandermonde determinant

∆(a1, . . . , an) = det

an−1
1 an−2

1 . . . a1 1
...

...
...

...

an−1
n an−2

n . . . an 1


is ubiquitous in mathematics. It is computable from the well-known discriminant form
(see, for example, [1, Chapter III, §8.6, p. 99], or [3, §24, Exercice 14, p. 563])

∆(a1, . . . , an) =
∏

(ai − aj ). (1)

i<j
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For a variablex, defineR(x) to be the row vector of lengthn,

R(x) = [
xn−1 xn−2 . . . x 1

]
.

Denote thekth derivative ofR(x) by R(k)(x). For a positive integer�, defineM�(x) to be
the � by n matrix whose first row isR(x) and each row thereafter is the derivative w
respect tox of the preceding row,

M�(x) =


R(x)

R′(x)
...

R(�−1)(x)

 .

If a = (a1, . . . , ar ) is anr-tuple of distinct real numbers andm = (m1, . . . ,mr) a partition
of n, the generalized Vandermonde matrix Mm(a) and thegeneralized Vandermonde
determinant Dm(a) are defined to be

Mm(a) =
Mm1(a1)

...

Mmr (ar)

 , Dm(a) = detMm(a).

We say thatmi is the multiplicity of ai . When the multiplicitiesmi are all 1, the
generalized Vandermonde determinantDm(a) reduces to the usual Vandermonde de
minant∆(a1, . . . , an).

Theorem 1 [6]. Let a = (a1, . . . , ar ) be an r-tuple of distinct real numbers and m = (m1,

. . . ,mr) a partition of n. Then

Dm(a) =
(

r∏
i=1

(−1)mi(mi−1)/2

)(
r∏

i=1

mi−1∏
k=1

(k!)
) ∏

1�i<j�r

(ai − aj )
mimj .

Remarks.

(1) In keeping with the convention that a product over the empty set is 1, in case a mu
plicity mi = 1, define

mi−1∏
k=1

(k!) = 1.

Similarly, in caser = 1, define∏
1�i<j�r

(ai − aj )
mimj = 1.

(2) When all the multiplicitiesmi are 1, Theorem 1 reduces to formula (1).
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Theorem 1 has a long history. Muir [5, pp. 178–180] attributes it to Schendel
article dated 1891, published in 1893), but Muir says of this paper that “in no case is
any hint of a proof” and that special cases had appeared earlier in the work of Weih
(1889) and Besso (1882). More recent proofs may be found in van der Poorten [
Krattenthaler [4]. Krattenthaler [4] discusses many variants and generalizations of
Vandermonde determinant and gives extensive references.

The classic Vandermonde determinant occurs naturally in the Lagrange interpo
problem of finding a polynomialp(z) of degreen − 1 with specified values atn distinct
numbersa1, . . . , an. The Hermite interpolation problem is the generalization where
specifies not only the values of the polynomial but also the values of its derivativ
to ordermi at the pointsai for i = 1, . . . , r (see, for example, [2]). The discrimina
formula (Theorem 1) gives a direct proof that the Hermite interpolation problem h
unique solution.

3. A relation among Vandermonde determinants

Lemma 2. Let m̃ be the predecessor of the r-tuple

m = (m1, . . . ,ms−1, � + 1,1, . . . ,1).

Thus, m̃ is the (r + 1)-tuple

m̃ = (m1, . . . ,ms−1, �,1,1, . . . ,1).

For t �= 0 in R, suppose

a = (a1, . . . , as−1, λ, as+1, . . . , ar ) and

ã(t) = (a1, . . . , as−1, λ,λ + t, as+1, . . . , ar )

have multiplicity vectors m and m̃, respectively. Then

Dm(a) = lim
t→0

(
∂

∂t

)�

Dm̃

(
ã(t)

)
.

Proof. The Vandermonde matrixMm(a) is obtained fromMm̃(ã) by replacing the sub
matrix [

M�(λ)

R(λ + t)

]
by the submatrixM�+1(λ). Note that

M�+1(λ) =
[

M�(λ)

R(�)(λ)

]
=

[
M�(λ)

lim (∂/∂t)�R(λ + t)

]
. (2)
t→0
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Since the determinant can be expanded about any row,

∂

∂t
Dm̃

(
ã(t)

) = ∂

∂t
det


...

M�(λ)

R(λ + t)
...

 = det


...

M�(λ)

(∂/∂t)R(λ + t)
...


and therefore,

(
∂

∂t

)�

Dm̃

(
ã(t)

) = det


...

M�(λ)

(∂/∂t)�R(λ + t)
...

 . (3)

By (2) and (3),

Dm(a) = det


...

M�(λ)

R(�)(λ)
...

 = lim
t→0

det


...

M�(λ)

(∂/∂t)�R(λ + t)
...

 = lim
t→0

(
∂

∂t

)�

Dm̃

(
ã(t)

)
.

�

4. Proof of Theorem 1

The proof is by induction on the partial order on the set of partitions ofn. The initial
case(1,1, . . . ,1) corresponds to the usual Vandermonde determinant, for which we
the theorem holds.

Let ther-tuple

a = (a1, . . . , as−1, λ, as+1, . . . , ar)

have multiplicity vector

m = (m1, . . . ,ms−1, � + 1,1, . . . ,1), with � � 1.

By the induction hypothesis, we assume that the theorem holds for the predecessorm̃ of m:

m̃ = (m1, . . . ,ms−1, �,1,1, . . . ,1).

Takeã(t) to be

ã(t) = (a1, . . . , as−1, λ,λ + t, as+1, . . . , ar )
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and assign tõa(t) the multiplicity vectorm̃. By the induction hypothesis,

Dm̃

(
ã(t)

) = C ·
( ∏

1�i<j�r
i,j �=s

(ai − aj )
mimj

)
· (λ − (λ + t)

)�

×
(∏

i<s

(ai − λ)mi�
(
ai − (λ + t)

)mi

)( ∏
s<j

(λ − aj )
�mj (λ + t − aj )

mj

)
,

(4)

where

C =
(

s−1∏
i=1

(−1)mi(mi−1)/2

)
(−1)�(�−1)/2

(
s−1∏
i=1

mi−1∏
k=1

(k!)
)

�−1∏
k=1

(k!).

We write this more simply as

Dm̃

(
ã(t)

) = (−1)�t�f (t),

wheref (t) is the obvious function defined by Eq. (4).
By Lemma 2,

Dm(a) = lim
t→0

(
∂

∂t

)�

(−1)�t�f (t)

= lim
t→0

(−1)��!f (t) + (−1)� lim
t→0

�−1∑
k=0

(
�

k

)((
∂

∂t

)k

t�
)

· f (�−k)(t)

(product rule for the derivative)

= (−1)��!f (0)

= (−1)��!C
∏

1�i<j�r
i,j �=s

(ai − aj )
mimj

∏
i<s

(ai − λ)mi(�+1)
∏
s<j

(λ − aj )
(�+1)mj

=
(

s∏
i=1

(−1)mi(mi−1)/2

)(
s∏

i=1

mi−1∏
k=1

(k!)
) ∏

1�i<j�r

(ai − aj )
mimj

(sincems = � + 1 andas = λ).

In this last expression, the product
∏s

i=1 may be replaced by
∏r

i=1, since fors +1 � i � r,
the multiplicitymi = 1.
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