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Abstract

We introduce a partial order on partitions whicarmits an inductive proof on partitions. As an
example of this technique, we reprove the discriminant formula for the generalized Vandermonde
determinant.
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1. A partial order on partitions

A partition of a positive integern is a nonincreasing sequence of positive integers
m1 > --- > m, that sum ton. For a partition ofn other than(1,1,...,1) we define a
uniguepredecessor as follows. Supposénsi, ..., m;) # (1,...,1) is a partition. Letn,
be the last element 1; thus,

(my,...,my)=(mq,...,ms,1,...,1).
The predecessor ai is the partition of lengthr + 1,

m=@ma,....,mey_1,mg—1,1,1,...,1),
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Fig. 1. The partial order oi®s.

obtained fromm by decomposing:; into two terms(m; — 1) + 1. In other words,

m;, forl<i<s-—-1;
mi=1{m,—1, fori=s;
1, fors+1<i<r+1

This relation generatespartial order on the sd®, of all partitions ofn.
If a partition« is a predecessor of a partitigh we say thap is asuccessor of «. The
successors anq, ..., mg,1,1,1,...,1), m; > 1, are
(mq,....mg+1,1,1,...,1) or (mq,...,mg, 2,1, ...,1),

if these are partitions.
This partial order is best illustrated with an example.

Example. Forn =5, the partial order on the set of partitions of 5 is as in Fig. 1.
In Fig. 1 we write

(mi,...,my) =mi+---+my.

The partition(2, 2, 1) has no successors beca@®g3) is not a partition.

2. The generalized Vandermonde deter minant

Givenn distinct numberss, ..., a, the Vandermonde determinant
-1 -2
aj aj .oa1 1

A(a,...,a,) =det

a a eooap 1

is ubiquitous in mathematics. It is computable from the well-known discriminant formula
(see, for example, [1, Chapter Ill, 8.6, p. 99], or [3, §24, Exercice 14, p. 563])

A(al,...,an)zl_[(ai —aj). Q)

i<j
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For a variabler, defineR(x) to be the row vector of length,
R(x) = [x'l_l 72 x 1].

Denote thekth derivative ofR(x) by R® (x). For a positive integet, defineM, (x) to be
the ¢ by n matrix whose first row isR(x) and each row thereafter is the derivative with
respect toc of the preceding row,

R(x)

R'(x)
M(x) = :
R (x)

If a =(as,...,a,)is anr-tuple of distinct real numbers amd= (i1, ..., m,) a partition
of n, the generalized Vandermonde matrix M,,(a) and thegeneralized Vandermonde
determinant D,, (a) are defined to be

Mml(al)
M, (a) = , D,,(a) =detM,, (a).
Mm, (ar)

We say thatm; is the multiplicity of a;. When the multiplicitiesm; are all 1, the
generalized Vandermonde determindnt(a) reduces to the usual Vandermonde deter-
minantA(azs, ..., a,).

Theorem 1[6]. Let a = (ay, . .., a,) bean r-tuple of distinct real numbersand m = (m1,
..., m,) apartition of n. Then

r r mi—1
Dy, (a) = (l_[(_l)mi(mi—l)/Z) (l_[ l_[ (k!)) l_[ (a; _aj)m,-mj.

i=1 i=1 k=1 1<i<j<r
Remarks.

(1) In keeping with the convention that agoluct over the empty set is 1, in case a multi-
plicity m; = 1, define

m;—1
(k) =1.
k=1

Similarly, in case- = 1, define

1<i<j<r

(2) When all the multiplicitiesn; are 1, Theorem 1 reduces to formula (1).
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Theorem 1 has a long history. Muir [5, pp. 178-180] attributes it to Schendel ([6],
article dated 1891, published in 1893), but Muir says of this paper that “in no case is there
any hint of a proof” and that special cases had appeared earlier in the work of Weihrauch
(1889) and Besso (1882). More recent proofs may be found in van der Poorten [7] and
Krattenthaler [4]. Krattenthaler [4] dissses many variants and generalizations of the
Vandermonde determinant and gives extensive references.

The classic Vandermonde determinant occurs naturally in the Lagrange interpolation
problem of finding a polynomiab(z) of degreen — 1 with specified values at distinct
numbersas, ..., a,. The Hermite interpolation problem is the generalization where one
specifies not only the values of the polynomial but also the values of its derivatives up
to orderm; at the pointsq; for i = 1,...,r (see, for example, [2]). The discriminant
formula (Theorem 1) gives a direct proof that the Hermite interpolation problem has a
unigue solution.

3. A réation among Vander monde deter minants

Lemma 2. Let m be the predecessor of the r-tuple
m=@my,...,mg_1,¢£+21,1,...,1).

Thus, m isthe (r + 1)-tuple
m=@mq,...,mg_1,¢,1,1,...,1).

For t #0in R, suppose

a=(ay,...,a5-1, A, dsy41,...,a,) and

a(l‘) :(a17"‘7aS717)"1)"+t1aS+17"'7ar)

have multiplicity vectors m and ni, respectively. Then

9 £

Proof. The Vandermonde matri#,, (a) is obtained fromMy; (a) by replacing the sub-

matrix
My (A)
RO.+1)
by the submatrix/,,1(1). Note that

_[ M) M)
Myt1(0) = |: i| = |:|imt_)0(8/3t)eR()» +t):| . (2)

R(E)()»)
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Since the determinant can be expanded about any row,

Me(3) Me(3)

9 B d
o P(am) = det] o [ =detl o RG. 4 1)
and therefore,
o\ M)
(§> D,,,(a(t)):det (8/8t)eR()»+t) : (3)

By (2) and (3),

ey | My | (AN
D@y =det) oy | =M% (/00 R(+1) ‘fi“a(g) Dir(a®)-

4. Proof of Theorem 1
The proof is by induction on the partial order on the set of partitiorvs. dfhe initial
case(l,1,...,1) corresponds to the usual Vandermonde determinant, for which we know

the theorem holds.
Let ther-tuple

a=(a1,...,a5-1, A, As+1, ..., 0qr)
have multiplicity vector
m=@my,...,me_1,£+1,1,...,1), withe>1
By the induction hypothesis, we assume that the theorem holds for the predétessor
m=@mq,...,mg_1,¢,1,1,...,1).
Takea(t) to be

a(t)=(a1,...,as—1, A, A +1t,a541,...,ar)
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and assign ta(r) the multiplicity vector. By the induction hypothesis,

Diz(a(n) =C- ( [T @- aj)mf"w') (=)

1<i<j<r
i,j#s
x <l_[(ai — 0" (@i — (L +1) )(l_[(k—aﬂ‘mf (4t —ap™ )
i<s s<j
(4)
where
s—1m;—
(l_[( 1) i(mi— 1)/2)( 1)@(@ 1)/2(1_[ l_[ (k!)) l_[(k!)

i=1 k=1

We write this more simply as
D (@) = (-4 f @),

where f () is the obvious function defined by Eq. (4).
By Lemma 2,

Dy (a)_||m< )( D f @)

= lim (=1)%e! f (¢ 1‘3I'm€7l O((2 kt@ €=k
= lim (=D e f () + (=1 zLokZ:O(k)((&) )-f Q)

(product rule for the derivative)

= (=D ! f(0)
=-=nec [ (@—ap™™i]J@—n" SO0 —ay P
1<i<j<r i<s s<j
i, js
s s mj—
— (l_[(_l)mi(mi—l)/z) (l_[ l_[ (k!)) l_[ (a;j — aj)mi'"j
i=1 i=1 k=1 1<i<j<r

(sincemy; = £+ 1 anda; = A).

In this last expression, the prodJd{_, may be replaced by[;_,, since fors+1 <i <r,
the multiplicitym; = 1.
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