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Abstract

Let R be any ring and N = ⊕
i∈I Ni be a direct sum of finitely presented left R-modules Ni . Suppose

that D(N) and D(Ni) are the local duals of N and Ni for each i ∈ I . We prove that the lattice of endosub-
modules of N is anti-isomorphic to the lattices of matrix subgroups of D(N) and of M = ⊕

i∈I D(Ni). As
consequences, N is endoartinian if and only if M (or D(N)) is endonoetherian, and N is endonoetherian if
and only if M (or D(N)) is Σ-pure-injective. We obtain, in particular, that if R is a Krull–Schmidt ring, and
M is an indecomposable pure-injective endonoetherian right R-module which is the source of a left almost
split morphism in Mod(R), then M is endofinite. As an application, a ring R is of finite representation type
if and only if every pure-injective right R-module is endonoetherian.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Modules that are of finite length over their endomorphism rings, also called endofinite mod-
ules, are of significant importance in general module theory and representation theory. Every
endofinite module M , over any ring R, is known to be Σ -pure-injective, hence M is a direct sum
of modules with local endomorphism rings, and the number of isomorphism classes of indecom-
posable summands of M is finite [11]. A ring R is of finite representation type if and only if every
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right R-module is endofinite (see [10,30,35]). Endofinite modules and modules with related en-
doproperties have attracted much attention in recent years, particularly because of their close
relationships with classical notions of module theory, and their special role in the interaction
between finitely generated and infinitely generated modules (see, e.g., [3,4,10,11,14,18,31–33]).

For a left R-module N , with S = EndR N , the local dual of N is defined as the right R-
module D(N) = HomS(NS,CS), where CS is a minimal injective cogenerator of Mod(S). The
local duality was used by Auslander [9] in the construction of almost split sequences over a gen-
eral ring. Moreover, the local duality provides an important tool for passing information from
left modules to right modules, or vice versa (for example, in Herzog’s solution of the pure semi-
simplicity conjecture for PI-rings and quasi-Frobenius rings [25]). If R is an Artin algebra, then
it is well known that the local duality restricted to finitely generated modules coincides with
the usual Morita duality between finitely generated left and right R-modules. For an arbitrary
ring R, Huisgen-Zimmermann and Zimmermann [30] have shown that the lattice of finite matrix
subgroups of a left R-module M is anti-isomorphic to the lattice of finite matrix subgroups of
the local dual D(M) of M .

In this paper, we consider local duals of modules that are direct sums of finitely presented
modules (or more generally, local duals of pure-projective modules), and show that, in this
situation, the above mentioned result of Huisgen-Zimmermann and Zimmermann [30] can be
strengthened. More precisely, we prove that if R is any ring and N = ⊕

i∈I Ni is a direct sum of
finitely presented left R-modules Ni , then the lattice of endosubmodules of N is anti-isomorphic
to the lattices of matrix subgroups of D(N) and of M = ⊕

i∈I D(Ni), where D(N) and D(Ni)

are the local duals of N and Ni for each i ∈ I (Theorem 4.1). As a consequence, we deduce
that, for any ring R, the left R-module N = ⊕

i∈I Ni is endoartinian if and only if the right
R-module M = ⊕

i∈I D(Ni) is endonoetherian (Theorem 4.2). This generalizes a similar state-
ment obtained by Huisgen-Zimmermann and Saorín [31, Proposition L] for Artin algebras, with
a different method. Our arguments also yield, as a by-product, that every finitely presented en-
doartinian left R-module is endofinite, for any ring R. Another consequence is that N = ⊕

i∈I Ni

is endonoetherian if and only if the right R-module M = ⊕
i∈I D(Ni) is Σ -pure-injective (The-

orem 4.3). This may be regarded as a “local version” of the well-known result that a ring R is
right pure semisimple if and only if every pure-projective left R-module is endonoetherian (see
[30,43]). We also discuss the transferring of the finendo and cofinendo properties of modules in
connection with the local duality.

There is another line of research that motivates our work. A classical result asserts that a right
self-injective left noetherian ring R is quasi-Frobenius. A module-theoretic version of this result
is the well-known Teply–Miller theorem [42] stating that, over any ring R, an endonoetherian
injective right R-module is endofinite (see also [1,19]). Endofinite modules need not be injec-
tive, but they are always pure-injective, and it appears to be a natural and interesting question
to study the structure of endonoetherian pure-injective modules. In general, an endonoetherian
pure-injective module need not be endofinite (Example 5.1), and may not have even an indecom-
posable decomposition (Example 5.2; cf. [36]).

Note that the endonoetherian condition occurs naturally also in the context of pure semisimple
rings. As applications of our main results, we first show that if R is a Krull–Schmidt ring and
M is an indecomposable pure-injective endonoetherian right R-module that is the source of a
left almost split morphism in Mod(R), then M is endofinite (Theorem 5.3). Consequently, if
R is a left pure semisimple ring, then an endonoetherian pure-injective right R-module M is
endofinite if and only if M has an indecomposable decomposition. Moreover, if R is not of finite
representation type, then there is an endonoetherian pure-injective right R-module that is not
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endofinite (Corollary 5.7). We also obtain that a ring R is of finite representation type if and only
if every pure-injective right R-module is endonoetherian (Theorem 5.8). This generalizes the
well-known characterization of rings of finite representation type in terms of the endofiniteness
of all right modules, proved in [10,30,35]. Another somewhat surprising consequence is that, if
R is a left pure semisimple hereditary ring, then any direct sum of preinjective left R-modules is
endoartinian (Corollary 5.11).

The paper is organized as follows. In Section 2 we study torsion theories cogenerated or deter-
mined by families of injective modules and finitely generated projective modules, respectively,
over rings with enough idempotents. Section 3 is devoted to matrix subgroups and endosubmod-
ules, and their relationships with certain torsion theories over the functor ring. In Section 4, we
present our main results on transferring endoproperties of modules through the local duality.
Finally, in Section 5, we give applications for endonoetherian pure-injective modules and pure
semisimple rings.

We refer to [1,2,41,44] for ring and module-theoretic background, and for all undefined no-
tions used in the text.

2. Modules over rings with enough idempotents

Throughout this section, A will be a ring with enough idempotents, i.e. A = ⊕
δ∈Δ Aθδ =⊕

δ∈Δ θδA for a family of pairwise orthogonal idempotents {θδ}δ∈Δ in A (see, e.g., [44]). A right
A-module M will always mean a unitary right A-module (i.e., MA = M), and Mod(A) will
denote the category of unitary right A-modules. The ring A is right locally coherent if every
finitely generated submodule of a finitely presented right A-module is finitely presented.

We shall use torsion theories over rings with enough idempotents (see [41, Chapter VI.2, 3],
to which we also refer for the notation on this topic). If A is a ring with enough idempotents, we
represent a hereditary torsion theory of Mod(A) as (T,F), where T and F denote the classes of
torsion and torsion-free modules, respectively. The associated quotient category of Mod(A) will
be denoted as Mod(A,T). The localization functor L : Mod(A) → Mod(A,T) is an exact functor
[41, Theorem X.1.6]. The torsion theory (T,F) is said to be cogenerated by a right A-module
M in case the torsion class T consists of all the modules X such that Hom(X,M) = 0. A torsion
theory is hereditary precisely when it is cogenerated by an injective module. On the other hand,
a projective right A-module P induces a hereditary torsion theory (T,F) where the class T
consists of all the modules X such that Hom(P,X) = 0. We will say that (T,F) is the torsion
theory determined by P .

If X is a unitary right A-module, and L is a submodule of X, we say that L is a saturated
submodule when the quotient module X

L
is torsion-free. Given an arbitrary submodule N of X,

there always exists a smallest saturated submodule L of X such that N ⊆ L. In such case L = Nc

is called the saturation of N in X, and Nc

N
is torsion. We know from [41, Chapter IX.4] that the

lattice of saturated submodules of X is isomorphic to the lattice of subobjects of the localization
L(X) in the quotient category Mod(A,T).

Lemma 2.1. Let A be a ring with enough idempotents and {Ei}i∈I a family of injective right A-
modules. Let E = ⊕

i∈I Ei , U be the injective hull of E, and Q = ∏
i∈I Ei be the direct product

of the Ei . Then the hereditary torsion theory (T,F) cogenerated by U is also cogenerated by
each of the modules Q and E.
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Proof. It is enough to see that the three torsion classes coincide. Since E ⊆ U ⊆ Q, two of the
inclusions are obvious. Then, suppose that X is a right A-module and Hom(X,E) = 0. If we had
Hom(X,Q) �= 0, then Hom(X,Ei) �= 0 for some index i ∈ I . But then Hom(X,E) �= 0, which
gives a contradiction. �

Therefore we have that a direct sum E = ⊕
i∈I Ei of injective right A-modules cogenerates

a hereditary torsion theory. We use this observation in the next lemma. We also introduce the
following notation. For any homomorphism f : X → Y , where X,Y are right A-modules, we
set SX(E,f ) = Hom(Y,E) ◦ f ⊆ Hom(X,E). Moreover, S will be the endomorphism ring of
E and we write SX(E) to denote the set of all left S-submodules of Hom(X,E) of the form
SX(E,f ).

Lemma 2.2. Let A be a ring with enough idempotents, E a direct sum of injective right A-
modules which cogenerates the torsion theory (T,F), and let X be a finitely presented right
A-module. Then there exists an order-inverting bijection between SX(E) and the lattice Sat(X)

of saturated A-submodules of X.

Proof. Note that each SX(E,f ) is an S-submodule of Hom(X,E). We define φ : Sat(X) →
SX(E) by setting φ(K) = Hom( X

K
,E) ⊆ Hom(X,E).

We start by showing that φ(K) ∈ SX(E). Take Y = X
K

and f :X → Y the canonical projec-
tion. Then it is clear that Hom(Y,E) ◦ f = φ(K).

We show next that if K ⊆ X is a saturated submodule, then K is the intersection L of the
kernels of all the homomorphisms g :X → E such that g ∈ φ(K). Suppose it is not, and let
L0 ⊆ L be such that L0

K
is nonzero and finitely generated. Since K is saturated, L0

K
is torsion-

free, and hence there exists some nonzero homomorphism h :L0 → E such that h(K) = 0. But
then h factors through L0

K
which is finitely generated and therefore the image of h is contained in

an injective direct summand of E. Consequently, h can be extended to a homomorphism X → E,
which belongs to φ(K). But this implies that h should be zero on L, which gives a contradiction.

Thus, let K,L be saturated submodules of X. If K ⊆ L, then clearly φ(L) ⊆ φ(K). Sup-
pose now that φ(K) = φ(L). We have seen that K is the intersection of all the kernels of the
homomorphisms in φ(K). So is also L, hence K = L.

Finally, let f :X → Y be any homomorphism and consider SX(E,f ). Let K be the kernel
of f , and take Kc the saturation of K in X. We claim that SX(E,f ) = φ(Kc). One inclusion is
clear, because any homomorphism in SX(E,f ) is zero on K and hence it is zero on Kc . For the
other direction, let g :X → E be zero on Kc . Now, g can be factored through X

K
and the image of

this factorization is inside an injective direct summand of E. This implies that g can be extended
to a homomorphism Y → E, and thus it is factored through f . �

Note that, by the definition of φ above, if K ⊆ X is saturated in X and L ⊆ K is such that K
L

is torsion, then φ(K) = Hom(X
L

,E). If L is finitely generated, then X
L

is finitely presented, and
φ(K) = SX(E,f ) for a homomorphism f :X → Y with Y = X

L
finitely presented. Conversely,

assume that Y is finitely presented and f :X → Y is a homomorphism. If L is the kernel of f , we
know that SX(E,f ) = φ(Lc). If A is right locally coherent, we have that L is finitely generated,
whence Lc is the saturation of a finitely generated submodule. This gives the following result.

Lemma 2.3. Let A be a right locally coherent ring with enough idempotents. Then the bijection
of Lemma 2.2 restricts to a bijection between the saturated submodules K of X such that K = Lc
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for some finitely generated submodule L, and the sets of the form SX(E,f ) with f :X → Y and
Y finitely presented.

We consider now a kind of dual situation to the one above. Again A is a ring with enough
idempotents, and let P = ⊕

j∈J Pj be a direct sum of finitely generated projective right A-
modules Pj . Then P determines a hereditary torsion theory of Mod(A), say (T0,F0). Let B be
the endomorphism ring of P , and consider the subring Bf consisting of all the endomorphisms
α such that α(Pj ) = 0 for almost all j ∈ J . Bf is a ring with enough idempotents.

Lemma 2.4. Let A, P , B and Bf be as above. There is an equivalence Φ of categories
between the quotient category Mod(A,T0) and Mod(Bf ). The equivalence is afforded by
the functor

⊕
j∈J HomA(Pj ,−), in the sense that for any right A-module M , we have that⊕

j∈J HomA(Pj ,M) ∼= Φ(L(M)) in Mod(Bf ), where L(M) is the localization of M . In par-
ticular, if P is finitely generated then the functor HomA(P,−) induces an equivalence between
Mod(A,T0) and Mod(B).

Proof. Let B ′ be the subset of B consisting of all endomorphisms α of P such that α(P ) is
contained in a finite direct sum

⊕
j∈F Pj . B ′ is both a two-sided ideal of B and a ring with

enough idempotents. By [22, Theorem 1.3] (see also [23, Theorem 1.3]), which is also valid
for rings with enough idempotents, the quotient category Mod(A,T0) is equivalent to the quo-
tient category of Mod(B) with respect to the Gabriel filter generated by B ′, and the equivalence
is induced by the functor HomA(P,−). Note that the torsion class of Mod(B) correspond-
ing to this Gabriel filter is formed with those right B-modules L such that L · B ′ = 0. Since
Bf · B ′ = B ′, that torsion class contains precisely the modules L with L · Bf = 0. The functor
HomBf

(Bf ,−) : Mod(Bf ) → Mod(B) is a full and faithful embedding, and hence the functor
(−) ⊗B Bf : Mod(B) → Mod(Bf ) is an exact left adjoint to the above inclusion. By the preced-
ing observation on the torsion class of Mod(B), an application of [41, Theorem X.2.1] shows
that the quotient category of Mod(B) is equivalent to Mod(Bf ), and thus Mod(A,T0) is also
equivalent to Mod(Bf ), via the composed functor HomA(P,−) ⊗B Bf . Finally, note that this
functor is equivalent to HomA(P,−) · Bf

∼= ⊕
j∈J HomA(Pj ,−). �

We may deduce from this a result that corresponds to Lemma 2.2.

Corollary 2.5. Let A, P , B and Bf be as above, with P determining the torsion theory
(T0,F0). For any finitely presented right A-module X, there is an order-preserving bijection
between the lattice Sat(X) of saturated submodules of X and the lattice of Bf -submodules of⊕

j∈J Hom(Pj ,X).

Proof. The first lattice is isomorphic to the lattice of subobjects of the localization L(X) of X in
the quotient category Mod(A,T0), by [41, Corollary IX.4.4]. By Lemma 2.4, this is isomorphic
to the lattice of subobjects of Φ(L(X)) ∼= ⊕

j∈J Hom(Pj ,X) in the category Mod(Bf ). �
We find applications of these lemmas when the torsion theories constructed above are the

same. In that case, the bijections of the preceding results can be combined. Following [12], we
say that a right A-module M is endonoetherian (respectively, endoartinian, endofinite) when
Hom(X,M) is a noetherian (respectively, artinian, of finite length) left module over the endo-
morphism ring of M , for any finitely presented right A-module X.
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We are now ready to prove our first main result on endonoetherian injective modules over a
ring with enough idempotents.

Theorem 2.6. Let A be a ring with enough idempotents, and let E be an injective right A-
module that cogenerates the torsion theory (T,F). Suppose that there exists a finitely generated
projective right A-module P , such that P determines the same torsion theory (T,F). If E is
endonoetherian, then E is endofinite.

Proof. Consider the torsion theory (T,F) of Mod(A) cogenerated by the injective E, and assume
that it is also determined by the finitely generated projective module P . Let Y be any finitely
presented right A-module. Then Hom(Y,E) is noetherian over the endomorphism ring of E. We
want to show that Hom(Y,E) is of finite length over the endomorphism ring of E.

Since Hom(Y,E) has the ascending chain condition on endosubmodules, we have that it has
also the ascending chain condition on the lattice SY (E), as defined in Lemma 2.2. By using
this lemma, we see that the lattice Sat(Y ) of saturated submodules of Y has the descending chain
condition. Then we have that Hom(P,Y ) satisfies the descending chain condition on submodules
over the endomorphism ring of P , by Corollary 2.5. Since this holds for every finitely presented
right A-module Y , we have that Hom(P,P ) is also right artinian. This implies that it is right
noetherian, so that Hom(P,Y ) is of finite length. By using again Corollary 2.5, we infer that the
lattice Sat(Y ) is of finite length.

Then we have a chain of saturated submodules 0 = L0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Lk = Y where the
quotients are simple, in the sense that there are no saturated submodules between two consecutive
terms. We obtain the submodules φ(Lj ) ⊆ Hom(Y,E), which give again a finite chain. Note that
φ(Lj ) = Hom( Y

Lj
,E).

Now the quotients in this chain may be calculated from the exact sequences 0 → Lj+1
Lj

→
Y
Lj

→ Y
Lj+1

→ 0. By applying the Hom(−,E) functor, we see that the quotients of this chain are

isomorphic to Hom(
Lj+1
Lj

,E).

We know that
Lj+1
Lj

is torsion-free, but any of its proper quotients is torsion. Therefore, each

nonzero homomorphism
Lj+1
Lj

→ E is a monomorphism. By the injectivity of E, we deduce that

Hom(
Lj+1
Lj

,E) is simple as a left module over the endomorphism ring of E. This shows that
Hom(Y,E) is of finite length over the endomorphism ring of E and thus E is endofinite. �

We will need the following simple, but quite useful, lemma.

Lemma 2.7. Let A be a ring with enough idempotents, E an injective right A-module with a
simple and essential socle Z, and suppose that Z has a ( finitely generated ) projective cover P .
For any right A-module M , we have that Hom(P,M) = 0 if and only if Hom(M,E) = 0.

Proof. Suppose that Hom(M,E) �= 0. Then there exists a nonzero homomorphism f : M → E,
and the image of f contains Z. Therefore, there exists a submodule M0 ⊆ M so that there is a
nonzero homomorphism M0 → Z. Since this is an epimorphism and P is projective, we get a
homomorphism P → M0 which is nonzero. Therefore Hom(P,M) �= 0.
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For the converse, note that the existence of a nonzero homomorphism g :P → M implies that
there exists an epimorphism Im(g) → Z. By the injectivity of E, we get a nonzero homomor-
phism M → E and Hom(M,E) �= 0. �

The following result gives some sufficient conditions for an endonoetherian injective module
over a ring with enough idempotents to be endofinite.

Theorem 2.8. Let A = ⊕
δ∈Δ Aθδ = ⊕

δ∈Δ θδA be a ring with enough idempotents, and let E be
an endonoetherian injective right A-module with an essential socle X = ⊕

i∈I Xi , where each
Xi is simple. Suppose that each Xi has a ( finitely generated ) projective cover. Assume, moreover,
that for each δ ∈ Δ, there are only finitely many non-isomorphic Xi such that Hom(θδA,E(Xi))

is nonzero. Then E is endofinite.

Proof. First, let N be an indecomposable summand of E. Since the property of being endo-
noetherian is preserved under taking direct summands, N is endonoetherian injective with an
essential simple socle Xi . Then N ∼= E(Xi) for some i ∈ I , and since each Xi has a finitely
generated projective cover Pi , Lemma 2.7 yields that the torsion theory cogenerated by E(Xi) is
also determined by Pi . Hence E(Xi) is endofinite by Theorem 2.6. Thus, each indecomposable
summand of E is endofinite.

Now, we consider the module E in the theorem, and note that each direct summand K of
E contains a simple submodule X, hence K contains an indecomposable summand N (e.g. N

is any injective envelope of X in K). By Zorn’s lemma, E contains a local direct summand
U = ⊕

α∈Ω Uα maximal with respect to the property that each Uα is indecomposable. By the
special case dealt with above, each Uα is endofinite.

Note that each Uα is the injective envelope E(X) of a simple module X, X being isomorphic
to some of the Xi . By hypothesis, for each δ ∈ Δ, there are only finitely many non-isomorphic
modules Uα such that Hom(θδA,Uα) is nonzero. Since {θδA, δ ∈ Δ} is a generating set of finitely
generated projective right A-modules, it follows from [16, Proposition 1.4] that U = ⊕

α∈Ω Uα is
endofinite, hence pure-injective. Note that, being a local direct summand of E, U = ⊕

α∈Ω Uα is
a pure submodule of E. So U splits in E, i.e. E = U ⊕L. If L is nonzero, L contains an indecom-
posable summand, contradicting the maximality of the local direct summand U = ⊕

α∈Ω Uα .
Hence E = U is endofinite in Mod(A). �

Suppose now that A is a semiperfect ring, meaning that every finitely generated right (or left)
R-module has a projective cover (see e.g. [44, 49.10]).

Corollary 2.9. Let A = ⊕
δ∈Δ Aθδ = ⊕

δ∈Δ θδA be a semiperfect ring with enough idempotents,
and let E be an endonoetherian injective right A-module with an essential socle X = ⊕

i∈I Xi ,
where each Xi is simple. Suppose that for each δ ∈ Δ, there are only finitely many non-
isomorphic Xi such that Hom(θδA,E(Xi)) is nonzero. Then E is endofinite.

In particular, if E is the injective hull of a simple right A-module, then E is endofinite.

Proof. The result follows immediately by Theorem 2.8, keeping in mind that each simple right
A-module Xi has a projective cover. �

The following corollary is a version of the Teply–Miller theorem [42] for indecomposable
right modules over left perfect rings with enough idempotents.
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Corollary 2.10. Let R be a left perfect ring with enough idempotents. If E is an indecomposable
injective endonoetherian right R-module, then E is endofinite.

Proof. Since R is left perfect, it implies that R is right semiartinian (see [44, 49.9]), hence in
particular E contains an essential simple submodule. Then apply Corollary 2.9 �
3. Matrix subgroups and torsion theories

We start now with a unital ring R and construct the left functor ring A of R. We take a
module in each of the isomorphism classes of finitely presented left R-modules, giving the family
{Vδ | δ ∈ Δ}. Then the functor ring A consists of the endomorphisms α of V = ⊕

δ∈Δ Vδ such
that α(Vδ) = 0 for almost all δ ∈ Δ. In particular, θμ will denote the endomorphism of V which
is the identity on Vμ and 0 over Vδ if δ �= μ. When Vμ = RR, we write θ = θμ. A is a ring with
enough idempotents which is right locally coherent.

It is well known that − ⊗R V : Mod(R) → Mod(A) defines a full and faithful functor, which
we denote as T . The functor T restricts to an equivalence between Mod(R) and the FP-injective
right A-modules, and T (M) is injective in Mod(A) if and only if M is pure-injective in Mod(R).
Moreover, T preserves direct sums and direct products, preserves and reflects finitely presented
modules, and every finitely presented right A-module embeds in T (X) for some finitely pre-
sented right R-module X. By [12, Lemma 1], T (M) is endofinite in Mod(A) if and only if M

is endofinite in Mod(R), and similarly, T (M) is endonoetherian in Mod(A) if and only if M is
endonoetherian in Mod(R).

We will also use the full and faithful functor

H =
⊕

δ∈Δ

Hom(Vδ,−) : Mod
(
Rop) → Mod

(
Aop).

The functor H restricts to an equivalence between Mod(Rop) and the flat left A-modules and
H(N) is projective in Mod(Aop) if and only if N is pure-projective in Mod(Rop). We refer to [12]
and [44, Chapter 10] for more information on the functor category Mod(A) and the functors T

and H .
We recall here the notion of a (finite) matrix subgroup for a given module M over a unital

ring R.

Definition 3.1. (See [30,45].) Let M be a right R-module. A subgroup L of the Abelian group
M is called a matrix subgroup of M if it is of the form L = Hom(Y,M)(x) = {f (x) | f ∈
Hom(Y,M)}, where Y is a right R-module, and x ∈ Y . If Y is finitely presented, then L is called
a finite matrix subgroup of M .

It is clear that matrix subgroups of a module M are endosubmodules of M , that is, submod-
ules of M viewed as a left EndR M-module. The canonical isomorphism Hom(RR,M) ∼= M is
obviously an isomorphism of left EndR M-modules. Therefore the endosubmodules of M may
be identified with the EndR M-submodules of Hom(RR,M). In particular, the (finite) matrix
subgroups of M correspond, under this identification, with the submodules of Hom(RR,M)

which are of the form Hom(Y,M) ◦ f for any (finitely presented) right R-module Y and any
homomorphism f :R → Y . This gives an equivalent definition for the notion of (finite) matrix
subgroups of M , which we shall use freely in the sequel. We say that the (finite) matrix subgroup
Hom(Y,M) ◦ f is the matrix subgroup determined by f .
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There is a relationship between the matrix subgroups of any pure-injective right R-module M

and the torsion theory (T,F) of Mod(A) cogenerated by the injective module T (M). In a more
general form, this relationship is given in the next result.

Proposition 3.2. Let R be a unital ring, A its left functor ring and M = ⊕
i∈I Mi a direct sum of

pure-injective right R-modules Mi , so that (T,F) is the torsion theory of Mod(A) cogenerated by
T (M) = ⊕

i∈I T (Mi). Then there is a bijective mapping which reverses the inclusions between
the lattice of matrix subgroups of M and the lattice Sat(θA) of saturated submodules of θA.

Furthermore, this bijection restricts to an order-inverting bijection between the finite matrix
subgroups of M and the saturated submodules K of θA such that K = Lc for some finitely
generated submodule L.

Proof. Note first that T (RR) = R ⊗R V ∼= V ∼= θA, so we identify from now on T (RR) as
θA. If f :R → Y is a homomorphism of right R-modules, then we have T (f ) : θA → T (Y ).
As in the previous section, we have the submodule SθA(T (M),T (f )) ⊆ HomA(θA,T (M)),
which is obtained by applying the functor T to all the elements of the matrix subgroup of M

determined by f . Note that, if p : θA → Z is an epimorphism of Mod(A), and u :Z → Y is a
monomorphism, then SθA(T (M),p) = SθA(T (M),u ◦ p), because Z is finitely generated and
T (M) is a direct sum of injective modules. This fact and the property that the functor T is full
and faithful imply that SθA(T (M)) is a lattice isomorphic to the lattice of matrix subgroups of
M . Now, SθA(T (M)) is anti-isomorphic to Sat(θA) by Lemma 2.2. This shows the first assertion
of our proposition.

To prove the second part, we note that, since the right R-module Y is finitely presented if and
only if T (Y ) is finitely presented, the finite matrix subgroups correspond, by applying T , to the
sets of the form SθA(T (M),T (f )) for T (f ) : θA → T (Y ) with T (Y ) finitely presented. Then,
the result follows from Lemma 2.3. �

We deal also in this setting with the torsion theory determined by a projective right A-module.
We start now with a unital ring R and N = ⊕

i∈I Ni will be a direct sum of finitely presented left
R-modules Ni . As before, we denote by A the left functor ring of R, and θ ∈ A is the element
which is the identity on the summand RR, and zero elsewhere. Also, θi ∈ A will denote the
idempotent which is the identity on the module isomorphic to Ni , and zero elsewhere. Then we
set Pi = θiA and P = ⊕

i∈I Pi is a projective right A-module. The class T0 of those right A-
modules X such that Hom(P,X) = 0 gives a hereditary torsion theory of Mod(A), say (T0,F0).
Our next result gives a relationship between this torsion theory and the endosubmodules of N .

Proposition 3.3. Let R be a unital ring and N = ⊕
i∈I Ni a direct sum of finitely presented

left R-modules Ni , with endomorphism ring S = EndR(N). A is the left functor ring of R, and
θ, θi ∈ A are as indicated above. P = ⊕

i∈I θiA determines a hereditary torsion theory (T0,F0)

of Mod(A). Then there is an order-preserving bijection between the submodules of N as a right
S-module and the saturated submodules of θA.

This bijection restricts to a bijection between the finite matrix subgroups of N and the satu-
rated submodules K of θA such that K = Lc for some finitely generated submodule L.

Proof. Let Bf be the ring of the endomorphisms α of P such that α(Pi) = 0 for almost all i ∈ I .
Note that HomR(Ni,Nj ) ∼= θiAθj

∼= HomA(Pj ,Pi). Thus, Bf is isomorphic to the ring of all
the endomorphisms α of N = ⊕

i∈I Ni such that α(Ni) = 0 for almost all i ∈ I . In particular,
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Bf
∼= EndR(N) when the set I is finite. With the obvious identification, we will assume that N

is a unitary right Bf -module.
By applying Corollary 2.5 to the finitely presented module θA, we get that the lattice of

saturated submodules of θA is isomorphic to the lattice of Bf -submodules of
⊕

i∈I Hom(Pi, θA)

and the isomorphism takes K to
⊕

i∈I Hom(Pi,K). Now, we have

Hom(Pi, θA) ∼= θAθi
∼= HomR(R,Ni) ∼= Ni

so that the isomorphism occurs between Sat(θA) and the lattice of Bf -submodules of N .
We show now that the (finitely generated) S-submodules of N are exactly the unitary (and

finitely generated) Bf -submodules of N and the first part of the result follows. First, note that
Bf can be seen as a right ideal of the ring S, that is, Bf S = Bf . Thus, if L = LBf is any
unitary Bf -submodule, then L = LBf S = LS is an S-submodule. It is also clear that if L is
finitely generated as a Bf -submodule, then it is also finitely generated (with the same system of
generators) as a right S-module.

Then, let L be a (finitely generated) S-submodule of N . Now, for each element x ∈ L, we
know that x is inside a finite direct sum of the Ni , from which it follows that it is left invariant by
some element of Bf . Therefore it belongs to LBf and this shows that L = LBf is also a unitary
Bf -submodule. Finally, the above equation Bf S = Bf implies that a finite system of generators
of L as a right S-module is also a generating system as a right Bf -module.

For the second part, suppose that K is a saturated submodule of θA containing a finitely
generated submodule L, such that K

L
is torsion. This implies that K

L
· θi = 0 for each i ∈ I , and

hence the endosubmodule of N corresponding to K will be
⊕

i∈I L · θi . We check that this gives
a finite matrix subgroup.

Since L is finitely generated and the θδA (δ ∈ Δ) form a system of finitely generated projective
generators of Mod(A), there is an epimorphism h :

⊕
δ∈F θδA → L, with F finite. Then h(θδ) =

hδθδ = θhδθδ ∈ L ⊆ θA, and h0 = (θhδθδ)δ∈F defines a homomorphism h0 :R → ⊕
F Vδ . We

claim that the endosubmodule of N corresponding to K (i.e.,
⊕

i∈I L · θi ) is the finite matrix
subgroup determined by this homomorphism h0.

Take any element of the form f · θi with f = θ ·f ∈ L. Since h is an epimorphism, there exist
elements gδ ∈ θδA, so that h(

∑
δ∈F θδgδ) = f θi = ∑

F hδ · θδ · gδ . Therefore f · θi = ∑
F (θhδ ·

θδ) · (θδ · gδ · θi). Each θδ · gδ · θi is a homomorphism Vδ → Ni , and thus f · θi :R → Ni may be
factored through h0 :R → ⊕

F Vδ . So f · θi belongs to the matrix subgroup determined by h0.
Conversely, let us take an element in this finite matrix subgroup, say h0 · f , where

f :
⊕

F Vδ → N . Then there is a finite subset J ⊆ I such that f = ∑
F

∑
J θδfδ,j θj , with

fδ,j :Vδ → Nj . Then h0 · f = ∑
hδθδfδ,j · θj , and belongs to

⊕
i∈I L · θi .

It remains to see that every finite matrix subgroup of N can be put as
⊕

i∈I L · θi for some
finitely generated submodule L of θA. So, take the matrix subgroup determined by f0 :R → Y ,
with Y finitely presented. If we assume that Y ∼= Vδ , then f0 = θf0θδ . This gives a homomor-
phism θδA → θA taking θδ to θf0θδ . Let L be the finitely generated image of this homomor-
phism. The same proof as above shows that the endosubmodule of N corresponding to Lc is the
finite matrix subgroup determined by f0. This completes the proof of the proposition. �
4. Applications to local duality

Throughout this section, we will assume that R is a unital ring. For a left R-module N with its
endomorphism ring S, recall that the local dual of N is defined as the right R-module D(N) =
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HomS(N,C), where C is a minimal injective cogenerator of the category Mod(S) of all right
S-modules. It is well known that the local dual D(N) is a pure-injective right R-module (see,
e.g., [27]). According to [30, Proposition 3], the lattice of finite matrix subgroups of N is anti-
isomorphic to the lattice of finite matrix subgroups of D(N). We refer the reader also to [35] for
a model-theoretic approach to the local duality.

Under the hypotheses that will follow, the bijections of Propositions 3.2 and 3.3 of the preced-
ing section may be combined and applied to local dual modules. Let N = ⊕

i∈I Ni be a direct
sum of finitely presented left R-modules. We will examine relationships between endoproperties
of the left R-module N and the following right R-modules: the local dual D(N) of N , the direct
product

∏
i∈I D(Ni) of the local duals D(Ni), and the direct sum

⊕
i∈I D(Ni) of the local duals

D(Ni).
The following is our main result in this section.

Theorem 4.1. Let R be a ring and N = ⊕
i∈I Ni a direct sum of finitely presented left R-

modules Ni . Let D(N) and D(Ni) be the local duals of N and of Ni , for each i ∈ I . Suppose
that M is any of the following modules:

(a) M = D(N);
(b) M = ∏

i∈I D(Ni);
(c) M = ⊕

i∈I D(Ni).

Then, in each of these cases, the lattice of matrix subgroups of M is anti-isomorphic to the lattice
of endosubmodules of N , and the lattice of finite matrix subgroups of M is anti-isomorphic to
the lattice of finite matrix subgroups of N .

More generally, if Q is any pure-projective left R-module, then the lattice of matrix subgroups
of D(Q) is anti-isomorphic to the lattice of endosubmodules of Q.

Proof. We develop the proof in several steps.
(1) We start by showing that, for any left R-module X, we have T (D(X)) ∼= D(H(X)), where

T and H are the canonical functors described at the beginning of Section 3.
A will be the left functor ring of R, and Vδ , θδ have the same meaning therein. Let us call

Y = D(X). We have

T (Y ) = Y ⊗R V ∼=
⊕

δ∈Δ

HomE(X,C) ⊗R Vδ,

where E is the endomorphism ring of X and C is a minimal injective cogenerator of Mod(E).
The canonical isomorphism shows that

T (Y ) ∼=
⊕

δ∈Δ

HomE

(
HomR(Vδ,X),C

)
.

By the definition of the functor H , we have HomR(Vδ,X) ∼= θδH(X). Therefore T (Y ) ∼=⊕
δ∈Δ HomE(θδH(X),C).
As is implicit above, we may assume that E is also the endomorphism ring of H(X),

since H is full and faithful. According to [17, p. 77], the local dual of H(X) is the right A-
module HomE(H(X),C)A. Since H(X) = ⊕

δ∈Δ θδH(X), we have that HomE(H(X),C) ∼=∏
δ∈Δ HomE(θδH(X),C).
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In order to calculate D(H(X)), i.e., the unitary part of HomE(H(X),C), we observe that
each element of A annihilates on the left almost all the elements θδ . Therefore D(H(X)) is
contained in the direct sum

⊕
δ∈Δ HomE(θδH(X),C) ∼= T (Y ), which is unitary. So we have

T (Y ) = T (D(X)) ∼= D(H(X)).
(2) Again X is any left R-module and D(X) is its local dual. Let (TX,FX) be the torsion

theory of Mod(A) cogenerated by T (D(X)). Then any right A-module L belongs to the torsion
class TX if and only if L ⊗A H(X) = 0.

To see this, we use the isomorphism T (D(X)) ∼= D(H(X)) established in (1). Thus L ∈ TX if
and only if HomA(L,D(H(X))) = 0. But this means precisely HomA(L,HomE(H(X),C)) = 0,
where E is the endomorphism ring of X and C is a minimal injective cogenerator of Mod(E).
This, in turn, is equivalent to the condition HomE(L ⊗A H(X),C) = 0. Since C is an injective
cogenerator, the above condition holds true if and only if L ⊗A H(X) = 0.

(3) We may now prove case (a) of the first part of the theorem. Let N = ⊕
i∈I Ni be a direct

sum of finitely presented left R-modules Ni , and M = D(N). Assume that θ , θi , P , Bf , S have
the same meaning as in Proposition 3.3, i.e. θ ∈ A is the element which is the identity on the
summand RR and zero elsewhere. Also, θi ∈ A will denote the idempotent which is the identity
on Ni and zero elsewhere, and P = ⊕

i∈I θiA, with Bf being the subring of endomorphisms of
P indicated in the proof of Proposition 3.3, and S is the endomorphism ring of N . Then (T0,F0)

is the torsion theory of Mod(A) determined by the projective right R-module P , while (TN,FN)

is the torsion theory cogenerated by T (D(N)), as in step (2). We show that both torsion classes
do coincide.

We know from (2) that L ∈ TN if and only if L ⊗A H(N) = 0. Since H(Ni) ∼= Aθi , we have
that L belongs to that torsion class if and only if L⊗A Aθi

∼= Lθi = 0, for each i ∈ I . On the other
hand, L ∈ T0 if and only if HomA(P,L) = 0. But HomA(P,L) = HomA(

⊕
I θiA,L) ∼= ∏

I Lθi .
Thus L belongs to this torsion class if and only if Lθi = 0 for each i ∈ I . This shows that both
torsion theories coincide.

We now apply this observation along with Proposition 3.3. If we denote as SatN(θA) the lat-
tice of saturated submodules of θA with respect to the torsion theory (TN,FN), then we see that
the map which takes K ∈ SatN(θA) to

⊕
I Kθi is an order-preserving bijection from SatN(θA)

to the lattice of the endosubmodules of N . By applying Proposition 3.2 and the coincidence of
the torsion theories, we obtain that the lattice of the endosubmodules of N is anti-isomorphic to
the lattice of the matrix subgroups of M .

(4) We may prove cases (b) and (c) in an analogous way, by showing that in each case, the
torsion theory of Mod(A) cogenerated by T (M) coincides with the torsion theory determined
by P , so that the assertions follow immediately from Propositions 3.2 and 3.3.

(b) We have N = ⊕
i∈I Ni and M = ∏

i∈I Mi with Mi = D(Ni). By part (a) applied
to Ni , we know that for any right A-module L, one has that Hom(θiA,L) = 0 if and only if
Hom(L,T (Mi)) = 0. It follows from this that the torsion theory determined by P = ⊕

i∈I θiA

is the same as the torsion theory cogenerated by T (M) = ∏
i∈I T (Mi), as it was to be seen.

(c) This follows from (b) and Lemma 2.1.
(5) Suppose now that Q is a pure-projective left R-module. So, there is a left R-module

N = ⊕
I Ni , a direct sum of finitely presented modules Ni , so that Q is isomorphic to a direct

summand of N , i.e., there exists an idempotent element e ∈ S = EndR(N), such that Q ∼= Ne.
Let SatQ(θA) be the lattice of the saturated submodules of θA with respect to the torsion theory
(TQ,FQ). By step (2), a right A-module L belongs to TQ if and only if L ⊗A H(Q) = L ⊗A

H(N)e = 0, and this implies that TN ⊆ TQ. Therefore SatQ(θA) ⊆ SatN(θA).
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We use the bijection between SatN(θA) and the lattice of the S-submodules of N obtained in
step (3). We will show that this bijection induces, by restriction, a bijection between SatQ(θA)

and the lattice of the endosubmodules of Q. This bijection ϕ is defined by taking K ∈ SatQ(θA)

to (
⊕

I Kθi)e.
To see that we obtain indeed a bijection in this way, take L ⊆ K , with L,K ∈ SatN(θA). We

have that
⊕

I Lθi and
⊕

I Kθi are endosubmodules of N . Thus (
⊕

I Lθi)e and (
⊕

I Kθi)e are
endosubmodules of Q. We show that these two endosubmodules of Q are equal if and only if
K/L ∈ TQ.

We have that K/L ∈ TQ if and only if (K/L) ⊗A H(N)e ∼= (
⊕

I (K/L)θi)e = 0. But this
means precisely that (

⊕
I Kθi)e = (

⊕
I Lθi)e. It follows that the images of the above map ϕ

range over all Ze, for all endosubmodules Z of N . This entails that ϕ is a surjection. But it also
implies that if L ⊆ K belong to SatQ(θA) and ϕ(L) = ϕ(K), then L = K . From this, it follows
easily that ϕ is also injective.

Thus we have an order-preserving bijection between SatQ(θA) and the lattice of the endosub-
modules of Q. If we now apply Proposition 3.2 to D(Q), we deduce the last statement of the
theorem. �

We may now relate some endo-chain conditions of modules in connection with the local
duality. See also [30, Corollary 12] for related ideas in the context of Artin algebras.

Theorem 4.2. Let R be a ring, and N = ⊕
i∈I Ni be a direct sum of finitely presented left R-

modules Ni . The following conditions are equivalent:

(a) N is endoartinian.
(b) The local dual D(N) is endonoetherian.
(c) Q = ∏

i∈I D(Ni) is endonoetherian.
(d) M = ⊕

i∈I D(Ni) is endonoetherian.

Moreover, under any of these conditions, the modules Ni are all endofinite.
More generally, if N is any pure-projective left R-module, then N is endoartinian if and only

if D(N) is endonoetherian.

Proof. If N is endoartinian, then by the anti-isomorphism of Theorem 4.1, each of the mod-
ules D(N),Q,M has the ascending chain condition (ACC) on matrix subgroups. Since finitely
generated endosubmodules of any module are matrix subgroups (see [28]), it follows that the
modules D(N), Q, M have the ACC on finitely generated endosubmodules, hence they are en-
donoetherian. So the endoartinian property for N implies any of the other conditions.

Conversely, if any of the modules D(N), Q, M is endonoetherian, or equivalently, the ACC
on matrix subgroups holds, then Theorem 4.1 implies that the other two modules also have the
same property, and N has the DCC on endosubmodules, i.e. N is endoartinian.

To get the assertion on the summands Ni , let T : Mod(R) → Mod(A) be the canonical full
and faithful functor. For each i ∈ I , θi ∈ A denotes the idempotent which is the identity on Ni

and zero elsewhere. Note that each Ni has a local endomorphism ring, so by [17, Lemma 2.3]
we have that Ei = T (D(Ni)) is the injective hull of a simple right A-module X and θiA is a
projective cover of X in Mod(A). Then Ei is an endonoetherian injective right A-module that
satisfies the hypotheses of Theorem 2.8, thus Ei is endofinite, implying that D(Ni) is endofinite,
hence Ni is endofinite.
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The last part of the statement is proved in exactly the same form as (a) ⇔ (b) above. �
Recall that a module M is Σ -pure-injective if every direct sum of copies of M is pure-

injective. By Zimmermann [45], a module M is Σ -pure-injective if and only if M satisfies the
descending chain condition (DCC) on (finite) matrix subgroups. We obtain the following dual
result to the previous one.

Theorem 4.3. Let R be a ring, and N = ⊕
i∈I Ni be a direct sum of finitely presented left R-

modules Ni . Then the following conditions are equivalent:

(a) N is endonoetherian.
(b) D(N) is Σ -pure-injective.
(c) Q = ∏

i∈I D(Ni) is Σ -pure-injective.
(d) M = ⊕

i∈I D(Ni) is Σ -pure-injective.

More generally, if N is any pure-projective left R-module, then N is endonoetherian if and only
if D(N) is Σ -pure-injective.

Proof. Suppose first that (a) holds, i.e. N is endonoetherian. Then Theorem 4.1 implies that
the modules D(N), Q and M satisfy the DCC on matrix subgroups, hence they are Σ -pure-
injective, so (a) implies (b)–(d). Now suppose that (b) holds, i.e. D(N) is Σ -pure-injective. It
follows then that D(N) has the DCC on matrix subgroups, thus an application of Theorem 4.1
gives that N is endonoetherian, and Q and M have the DCC on matrix subgroups, thus they
are Σ -pure-injective, proving (a), (c) and (d), respectively. The cases when (c) or (d) holds are
proved similarly.

The last assertion is proved in exactly the same form as (a) ⇔ (b) above. �
We proceed with some consequences of our results. The first corollary may be regarded as a

module-theoretic version of the classical Hopkins–Levitzki theorem.

Corollary 4.4. Let R be a ring, and N be any finitely presented endoartinian left R-module.
Then N is endofinite.

Proof. This follows directly from Theorem 4.2. �
The following corollary strengthens Theorem 4.2 in case each finitely presented left R-module

Ni has a finitely presented local dual D(Ni).

Corollary 4.5. Let R be a ring, and N = ⊕
i∈I Ni a direct sum of finitely presented left R-

modules. Suppose further that the local dual D(Ni) is finitely presented for each i ∈ I . Then the
following conditions are equivalent:

(a) N is Σ -pure-injective.
(b) N is endoartinian.
(c) M = ⊕

i∈I D(Ni) is endonoetherian.

Moreover, in this case, the modules Ni are all endofinite.
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Proof. (a) ⇒ (c). Suppose that (a) holds. For each i ∈ I , we have that Ni is (Σ -)pure-
injective, and since D(Ni) is finitely presented, it follows by Zimmermann [47, Lemma 5] that
D(D(Ni)) ∼= Ni . Because N is Σ -pure-injective and N ∼= ⊕

i∈I D(D(Ni)), Theorem 4.3 ((d)
⇒ (a)) yields that M = ⊕

i∈I D(Ni) is endonoetherian.
(c) ⇒ (b). This was proven in Theorem 4.2.
(b) ⇒ (a). This is immediate, because if N is endoartinian, then N has the DCC on matrix

subgroups, implying that N is Σ -pure-injective.
That each Ni is endofinite was also proven in Theorem 4.2. �
We note the following special case of Corollary 4.5 that might be of independent interest. This

is also a generalization of [17, Proposition 3.18] in the unital ring case, that was proved using a
different method.

Corollary 4.6. Let R be a ring, and N a finitely presented Σ -pure-injective left R-module. If the
local dual D(N) is finitely presented as a right R-module, then N is endofinite.

Let R be an Artin algebra, with center C, and D :R-mod → mod-R is the usual Morita duality
between finitely generated left and right R-modules, i.e. D = HomC(−,E) where E is the C-
injective envelope of C/J (C). It is well known that if RX is a finitely generated left R-module,
then D(X) coincides with the local dual of X. As a consequence of Corollary 4.5, we rediscover
the following result, due to Huisgen-Zimmermann and Saorín [31].

Corollary 4.7. (See [31, Proposition L].) Let R be an Artin algebra, and D :R-mod → mod-R
the usual Morita duality. If N = ⊕

i∈I Ni is a direct sum of finitely generated left R-modules,
then the following conditions are equivalent:

(a) N is Σ -pure-injective.
(b) N is endoartinian.
(c) M = ⊕

i∈I D(Ni) is endonoetherian.

In the final part of this section, we study finendo and cofinendo modules in connection also
to the local duality. Following [19], a right (or left) R-module M is called finendo if M is fi-
nitely generated as a module over its endomorphism ring. Dually, we say that an R-module N is
cofinendo if N is finitely cogenerated as a module over its endomorphism ring. Rings over which
right modules are finendo or cofinendo were recently discussed in [15].

Proposition 4.8. Let R be a ring, and N = ⊕
i∈I Ni be a direct sum of finitely presented left

R-modules. Let Mi = D(Ni) be the local dual of Ni and M = ⊕
i∈I Mi . Then M is cofinendo

if and only if N is finendo and N/Rad(NS) is a semisimple right S-module, where S is the
endomorphism ring of N .

Proof. By definition, M is cofinendo if and only if the lattice of endosubmodules of M is finitely
cogenerated in the following sense: it contains a finite set of minimal elements Z1, . . . ,Zk with
their sum Z, so that the following condition holds:

• Any nonzero element of the lattice has a nonzero intersection with Z.



N.V. Dung, J.L. García / Journal of Algebra 316 (2007) 368–391 383
We know that all finitely generated endosubmodules of M are matrix subgroups. Z and the
Zi are finitely generated, and hence they are also matrix subgroups of M , hence the lattice of the
matrix subgroups of M is finitely cogenerated in the above sense if the lattice of endosubmodules
of M is finitely cogenerated. Conversely, if the lattice of matrix subgroups of M has a finite set of
minimal elements with the above property, then these minimal elements are necessarily simple
endosubmodules of M , and this property still holds for the lattice of endosubmodules of M ,
which is thus finitely cogenerated.

By Theorem 4.1, M is cofinendo if and only if the lattice of endosubmodules of N satisfies the
dual property. Hence there exist maximal endosubmodules of N , say L1, . . . ,Lk with intersection
L and with the property:

• The sum of L and any proper endosubmodule of N is again proper.

This means that the endoradical Rad(NS) of N is superfluous in N and is a finite intersection
of maximal endosubmodules. This, in turn, is equivalent to the fact that Rad(NS) is superfluous
in N and N/Rad(NS) is finitely generated and semisimple over S. By [2, Theorem 10.4], we
have that this property holds if and only if NS is finitely generated and semisimple modulo its
radical. �
Proposition 4.9. Let R be a ring, and N = ⊕

i∈I Ni be a direct sum of finitely presented left
R-modules each with a local endomorphism ring. Let Mi = D(Ni) be the local dual of Ni and
M = ⊕

i∈I Mi . If M is finendo, then N is cofinendo.

Proof. Let A, T (M), θA be as in Proposition 3.2. Our hypothesis entails that HomA(θA,T (M))

is finitely generated over the endomorphism ring of T (M). This means that there exists a ho-
momorphism α : θA → T (M)k such that every homomorphism θA → T (M) can be factored
through α.

Let t be the torsion radical corresponding to the torsion theory (T,F) cogenerated by T (M).
Thus t(θA) is the intersection of the kernels of all the homomorphisms θA → T (M), as seen
in the proof of Lemma 2.2. The hypothesis shows that t(θA) is the intersection of K1, . . . ,Ks ,
where each Ki is the kernel of one of the homomorphisms θA → T (M) induced by α.

Therefore θA
t(θA)

is isomorphic to a finitely generated submodule of T (M)k . Now, T (M) =
⊕

i∈I T (Mi), and thus θA
t(θA)

is isomorphic to a finitely generated submodule of a finite sum of

the T (Mi). By [17, Lemma 2.3], each T (Mi) has a simple and essential socle, so that θA
t(θA)

has
also a finitely generated and essential socle.

Thus θA
t(θA)

contains a finite family of simples, L1, . . . ,Lr , which are necessarily torsion-free,

and whose sum is essential. Suppose that for each i = 1, . . . , r , we have Li = Yi

t (θA)
. Then let

Zi = Y c
i , the saturation of Yi in θA. Zi is a minimal (nonzero) element of the lattice of saturated

submodules of θA, and the join in this lattice of those minimal elements is essential.
We remark that the proof of Theorem 4.1 shows that the torsion theory (T,F) is precisely

the torsion theory (T0,F0) of Proposition 3.3. Now, by this same proposition we have that the
lattice of endosubmodules of N is isomorphic to the lattice of saturated submodules of θA.
This implies that N contains a finite set of minimal (hence, simple) endosubmodules whose sum
is essential in N . Therefore, N has an essential and finitely generated endosocle, that is, N is
finitely cogenerated, as a module over its endomorphism ring. �
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The converse of this last result also holds when we assume the additional condition that the
left functor ring A of R is right semiartinian. This happens, for example, when the ring R is left
pure semisimple (see Section 5 for further discussions on these rings).

Proposition 4.10. Let R be a ring, and N = ⊕
i∈I Ni be a direct sum of indecomposable finitely

presented left R-modules. Let Mi = D(Ni) be the local dual of Ni and M = ⊕
i∈I Mi . Suppose

moreover that the left functor ring A of R is right semiartinian. If N is cofinendo, then M is
finendo.

Proof. By hypothesis, the lattice of endosubmodules of N is finitely cogenerated. We use again
the torsion theory (T0,F0) of Proposition 3.3, and so we have that the lattice of saturated sub-
modules of θA is also finitely cogenerated. This lattice is isomorphic to the lattice of saturated
submodules of θA

t(θA)
. Therefore there is a finite number of independent minimal saturated sub-

modules, say K1, . . . ,Ks of θA
t(θA)

, such that their join is essential in that lattice. Note that this
join is the saturation Kc of the direct sum K = ⊕s

i=1 Ki .
Since any submodule of a torsion-free module is essential in its saturation, we deduce that K

is essential in θA
t(θA)

. Now, A is right semiartinian. Hence each Ki contains a simple submodule
Li , and the minimality of Ki implies that Li is essential in Ki , so that L = ⊕s

i=1 Li is the
essential socle of K and of θA

t(θA)
.

Again by the proof of Theorem 4.1, the torsion theory (T0,F0) is cogenerated by T (M). Then
each Li , being torsion-free, is isomorphic to a submodule of T (M) and L can be embedded as
a submodule of T (M)s . Since L is finitely generated and T (M) is a direct sum of injective
modules, the embedding L → T (M)s can be extended to a homomorphism θA

t(θA)
→ T (M)s ,

which is necessarily a monomorphism. This defines a homomorphism f : θA → T (M)s whose
kernel is precisely t(θA). Thus any homomorphism θA → T (M) can be factored through f and
it follows that the homomorphisms fi generate Hom(θA,T (M)) over the endomorphism ring of
T (M). This shows that M is finendo, taking into account the isomorphism Hom(θA,T (M)) ∼=
Hom(R,M). �
5. Endonoetherian pure-injective modules and pure semisimple rings

Throughout this section, R will be a unital ring. In view of the Teply–Miller theorem [42]
on endonoetherian injective modules, it is natural to ask if every endonoetherian pure-injective
right module over a ring R is always endofinite. It is known that every Σ -pure-injective endo-
noetherian module over any ring is endofinite (see [11, Proposition 4.1], [33, Lemma 4.3]). Since
any countable pure-injective module is Σ -pure-injective (see [46, Proposition 3]), it follows that
any countable pure-injective endonoetherian module over any ring is endofinite. However, the
following example shows that the Teply–Miller theorem does not extend from injective modules
to pure-injective modules, in general.

Example 5.1. Let R = K[[X1, . . . ,Xn]] be the power series ring over a field K , then R is a com-
mutative noetherian linearly compact ring, thus R is endonoetherian pure-injective as a module
over itself, but R is not even semiprimary, so R is not artinian (see [28, Proposition 1]). Hence R

as a right module over itself is an endonoetherian pure-injective module which is not endofinite.
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It is well known that any endofinite module is a direct sum of indecomposable submodules
with local endomorphism rings [11]. One may ask if the same is true for endonoetherian pure-
injective modules. Puninskaya and Toffalori [36] have recently constructed an example of an
endonoetherian pure-injective module M over the ring Z of integers such that M is not a direct
sum of indecomposable modules.

The following is another example of an endonoetherian pure-injective module, over an Artin
algebra, that admits no indecomposable decompositions.

Example 5.2. Let R be an Artin algebra, and N = ⊕
i∈I Ni be an infinite direct sum of non-

isomorphic finitely generated indecomposable left R-modules such that N is Σ -pure-injective.
(For example, R is a hereditary tame Artin algebra of infinite representation type, and N =⊕

i∈I Ni is the direct sum of all non-isomorphic preinjective left R-modules; see Lenzing [34,
4.6]). Let D :R-mod → mod-R be the standard Morita duality between finitely generated left
and right R-modules. Then M = ⊕

i∈I D(Ni) and Q = ∏
i∈I D(Ni) are both endonoetherian as

right R-modules (see [30, Corollary 12]; cf. Theorem 4.2). Moreover Q is pure-injective because
each D(Ni) is pure-injective. Let E(M) be a pure-injective envelope of M in Q, then E(M) is
a direct summand of Q, hence E(M) is endonoetherian pure-injective. Suppose that E(M) has
an indecomposable decomposition E(M) = ⊕

j∈J Lj . Since E(M) is pure-injective, it has the
exchange property [29, Theorem 11, Example 2, p. 431], so the family {Lj }j∈J is locally semi-
T-nilpotent (see [29, Corollary 6]), and because E(M) is endonoetherian, it follows from [31,
Theorem F] that there are only finitely many non-isomorphic modules among the modules Lj .
Each D(Ni), being a pure-injective pure submodule of E(M), is a direct summand of E(M),
and by the Krull–Schmidt–Azumaya theorem, each D(Ni) is isomorphic to some Lj . It follows
that there are only finitely many non-isomorphic modules among the modules D(Ni), giving a
contradiction. Therefore E(M) has no indecomposable decompositions.

Our next result gives a sufficient condition for an indecomposable pure-injective endo-
noetherian module over a Krull–Schmidt ring to be endofinite. Recall that a ring R is Krull–
Schmidt if every finitely presented right (or left) R-module is a direct sum of modules with
local endomorphism rings. Following [8], a left almost split morphism in Mod(R) is a mor-
phism f :M → N of the category Mod(R), with M indecomposable, such that f is not a split
monomorphism and for every morphism g :M → X in Mod(R) that is not a split monomor-
phism, there exists h :N → X such that h ◦ f = g. In this case, we say that M is the source of a
left almost split morphism in Mod(R). We define similarly the concepts of (the source of) a left
almost split morphism in the category mod(R) (or mod(Rop)) of finitely presented right (or left)
R-modules.

Theorem 5.3. Let R be a Krull–Schmidt ring, and suppose that M is an indecomposable pure-
injective endonoetherian right R-module which is the source of a left almost split morphism in
Mod(R). Then M is endofinite.

Proof. Let A be the left functor ring of R, and let T : Mod(R) → Mod(A) be the canonical full
and faithful functor (see Section 3). Then A is a semiperfect ring with enough idempotents (see,
e.g., [25]). Moreover, E = T (M) is an indecomposable injective endonoetherian right A-module.
Since M is the source of a left almost split morphism in Mod(R), it follows by [11, Theorem 2.3]
that E is the injective envelope of a simple right A-module. By Corollary 2.9, E is an endofinite
right A-module. It follows that M is an endofinite right R-module. �
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Recall that a ring R is called left pure semisimple if every left R-module is a direct sum of
finitely generated modules (see, e.g., [20,38,39]). It is well known that left and right pure semi-
simple rings are precisely the rings of finite representation type, i.e. artinian rings with finitely
many isomorphism classes of finitely generated indecomposable left and right modules (see [7,
21,37]). However it has been a long-standing open problem, known as the pure semisimplicity
conjecture, whether left pure semisimple rings are also right pure semisimple (see, e.g., [27,40]
for historical surveys). It is thus of interest to have a better understanding of the category of right
modules over a left pure semisimple ring. It is known that a ring R is left pure semisimple if
and only if every pure-projective right R-module is endonoetherian, if and only if every right R-
module has the ACC on finite matrix subgroups (see [30, Theorems 6 and 9], [43, Theorem 3.1]).
Moreover, a left pure semisimple ring R is representation-infinite if and only if there is a generic
right R-module M , i.e. M is non-finitely presented indecomposable endofinite (see [17, Corol-
lary 3.20]). We will consider endonoetherian pure-injective right modules M over a left pure
semisimple ring R, and examine necessary and sufficient conditions for such modules M to be
endofinite.

First, we note the following useful lemma.

Lemma 5.4. Let R be a left pure semisimple ring, and M be any nonzero pure-injective right
R-module. Then M contains an indecomposable summand which is the source of a left almost
split morphism in Mod(R).

Proof. Again, let T : Mod(R) → Mod(A) be the canonical full and faithful functor. Since R is
left pure semisimple, the left functor ring A of R is left perfect, hence A is right semiartinian (see,
e.g., [44, 49.9]), so E = T (M) is an injective module in Mod(A) with a simple submodule X.
Let E(X) be an injective envelope of X in E, then there is a nonzero indecomposable summand
K of M such that T (K) ∼= E(X). By [11, Theorem 2.3], K is the source of a left almost split
morphism in Mod(R). �

We obtain the following immediate consequence.

Corollary 5.5. Let R be a left pure semisimple ring, and M be any indecomposable pure-injective
endonoetherian right R-module. Then M is endofinite.

Proof. Since M is indecomposable pure-injective, Lemma 5.4 shows that M is the source of a
left almost split morphism in Mod(R). Because M is furthermore endonoetherian, Theorem 5.3
yields that M is endofinite. �

The next result describes an arbitrary pure-injective right module M over a left pure semisim-
ple ring R.

Proposition 5.6. Let R be a left pure semisimple ring, and M be any pure-injective right R-
module. Then the following statements hold:

(a) M is the pure-injective envelope of a direct sum of indecomposable pure-injective modules⊕
i∈I Mi , where Mi

∼= D(Ni), Ni is an indecomposable finitely generated left R-module,
for each i ∈ I .
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(b) The lattice of matrix subgroups of M is anti-isomorphic to the lattice of endosubmodules of
N = ⊕

i∈I Ni .
(c) M is endonoetherian if and only if

⊕
i∈I Mi is endonoetherian. In this case each module Mi

is endofinite.

Proof. (a) Note that, by Lemma 5.4, any nonzero direct summand of M contains an indecom-
posable summand. Consider the non-empty set A of all local direct summands U = ⊕

α∈Ω Uα

of M with each Uα indecomposable (i.e., each finite subsum of
⊕

α∈Ω Uα is a summand of M).

By Zorn’s lemma, M contains a maximal local direct summand K = ⊕
i∈I Mi in A. Then K is a

pure submodule of M . Let E = E(K) be a pure-injective envelope of K in M , then M = E ⊕ L

for some submodule L, and if L is nonzero, L must contain an indecomposable summand, which
is a contradiction to the maximality of the local direct summand K = ⊕

i∈I Mi . Thus L = 0,
yielding that M = E is the pure-injective envelope of K . By Lemma 5.4, each indecomposable
pure-injective module Mi is the source of a left almost split morphism in Mod(R). It follows, by
Krause [32, Theorem 3.1, Proposition 4.2], that Mi

∼= D(Ni), for some indecomposable finitely
generated left R-module Ni , proving (a).

(b) Let N = ⊕
i∈I Ni and K = ⊕

i∈I Mi , then by applying Theorem 4.1, there is an anti-
isomorphism between the lattice of matrix subgroups of K and the lattice of endosubmodules
of N . Now, if A is the left functor ring of R, and T : Mod(R) → Mod(A) is the canonical full
and faithful functor, then it follows from Lemma 2.1 that T (M) and T (K) cogenerate the same
hereditary torsion theory in Mod(A). Then Proposition 3.2 shows that the lattices of matrix sub-
groups of M and of K = ⊕

i∈I Mi are isomorphic. Hence we can conclude, by Theorem 4.1,
that the lattice of matrix subgroups of M is anti-isomorphic to the lattice of endosubmodules of
N = ⊕

i∈I Ni .
(c) Since the endonoetherian property of a module is equivalent to the ACC on matrix sub-

groups, the first assertion of (c) follows immediately from the fact, shown in the proof of (b),
that M and K = ⊕

i∈I Mi have isomorphic lattices of matrix subgroups. Moreover, if M is
endonoetherian, then each Mi is indecomposable pure-injective endonoetherian, hence Mi is
endofinite by Corollary 5.5. �

We obtain now necessary and sufficient conditions for an endonoetherian pure-injective right
module over a left pure semisimple ring to be endofinite.

Corollary 5.7. Let R be a left pure semisimple ring, and M be any endonoetherian pure-injective
right R-module. Then the following conditions are equivalent:

(a) M has an indecomposable decomposition.
(b) M contains only finitely many non-isomorphic indecomposable summands.
(c) M is endofinite.

Moreover, if R is not of finite representation type, then there exists an endonoetherian pure-
injective right R-module M that is not endofinite.

Proof. (a) ⇒ (b). Suppose that (a) holds, i.e. M = ⊕
i∈I Mi is an indecomposable decomposi-

tion of M . Since M is pure-injective, it has the exchange property, so the family {Mi} is locally
semi-T-nilpotent (see [29]). As M is endonoetherian, [31, Theorem F] yields that there are only
finitely many non-isomorphic modules among the modules Mi . By the Krull–Schmidt–Azumaya
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theorem, each indecomposable summand of M is isomorphic to some Mi , hence we get that M

contains only finitely many non-isomorphic indecomposable summands.
(b) ⇒ (c). Suppose that (b) holds. By Proposition 5.6, M is the pure-injective envelope of

a direct sum U = ⊕
α∈Ω Uα of indecomposable endofinite modules Uα . Since there are only

finitely many non-isomorphic modules among the modules Uα , it follows that U is endofinite
[11, Proposition 4.5], so in particular U is pure-injective, thus U = M , proving that M is endofi-
nite.

(c) ⇒ (a). This was proved in [11, Proposition 4.5].
Finally, assume that R is not of finite representation type, and let {Mi | i ∈ I } be any infinite

family of non-isomorphic finitely presented indecomposable right R-modules. As R is left pure
semisimple, the pure-projective right R-module

⊕
i∈I Mi is endonoetherian [30, Theorem 9],

hence it follows from Proposition 5.6(c) that the pure-injective envelope M of
⊕

i∈I Mi is endo-
noetherian. If M is endofinite, M contains only finitely many non-isomorphic indecomposable
summands [11], which is a contradiction because each module Mi is an indecomposable sum-
mand of M . Thus M is not endofinite, completing our proof. �

Our next application is a characterization of rings of finite representation type in terms of
endonoetherian modules. This might be regarded as a generalization of a result, due to Prest [35],
Huisgen-Zimmermann and Zimmermann [30] and Crawley-Boevey [10], stating that a ring R is
of finite representation type if and only if every right R-module is endofinite.

Theorem 5.8. A ring R is of finite representation type if and only if every pure-injective right
R-module is endonoetherian.

Proof. The “only if” part is clear. For the “if” part, suppose that every pure-injective right R-
module is endonoetherian. Let N be any left R-module, and let M = D(N) be the local dual
of N . Then M is a pure-injective right R-module, so M is endonoetherian by hypothesis. In
particular, M has the ACC on finite matrix subgroups. On the other hand, by [30, Proposition 3],
there is an anti-isomorphism between the lattices of finite matrix subgroups of N and of M . It
follows that N has the DCC on finite matrix subgroups, so N is Σ -pure-injective [45]. Since
this holds for every left R-module N , this implies that R is left pure semisimple. Now, let X

be any finitely generated indecomposable left R-module, then its local dual Y = D(X) is an
indecomposable pure-injective right R-module. By hypothesis, Y is endonoetherian, hence by
Corollary 5.5, Y is endofinite, implying that X is endofinite. It follows that every finitely gener-
ated indecomposable left R-module is endofinite, hence R is of finite representation type by [18,
Theorem 4.1]. �

Our next result shows that the finite representation type of a Krull–Schmidt ring R is deter-
mined by the endonoetherian property of a single right R-module.

Proposition 5.9. Let R be a Krull–Schmidt ring, and let {Ni | i ∈ I } be a complete family of all
non-isomorphic finitely presented indecomposable left R-modules. Let Mi = D(Ni) be the local
dual of Ni (i ∈ I ), and let M = ⊕

i∈I Mi . Then R is of finite representation type if and only if
the right R-module M is endonoetherian.

Proof. If R is of finite representation type then it is well known that every right R-module
is endofinite. Conversely, suppose that the right R-module M = ⊕

i∈I D(Ni) is endonoetherian.
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First we show that R is a left pure semisimple ring. Set N = ⊕
i∈I Ni . By Theorem 4.2, it follows

that N is endoartinian, hence in particular N is Σ -pure-injective, so that any direct sum of copies
of N is pure-injective. Let {Lj | j ∈ J } be any family of finitely presented indecomposable left R-
modules. Then the direct sum L = ⊕

j∈J Lj is a direct summand of a direct sum of copies of N ,
implying that L is pure-injective. Then L has the exchange property [29], and there does not exist
an infinite sequence of non-isomorphisms {fn :Ljn → Ljn+1}∞n=1, with distinct jn in J , such that
the composition fn ◦ fn−1 ◦ · · · ◦ f1 is nonzero for any positive integer n (see [29, Corollary 6]).
As is well known, this shows that R is left pure semisimple (see, e.g., [25, Lemma 3.2]).

Note also that each local dual D(Ni) of Ni is an indecomposable pure-injective endo-
noetherian right R-module. Then D(Ni) is endofinite by Corollary 5.5, yielding that Ni is also
endofinite. Thus every finitely generated indecomposable left R-module is endofinite, so we get
that R is of finite representation type by [18, Theorem 4.1]. �

Using our results on the local duality of Section 4, we can now shed some new light on the
endo-structure of left modules over a left pure semisimple ring.

Proposition 5.10. Let R be a left pure semisimple ring.

(a) If N is any left R-module, and D(N) is the local dual of N , then there is an anti-isomorphism
between the lattice of endosubmodules of N and the lattice of matrix subgroups of D(N).

(b) Suppose that {Ni | i ∈ I } is a family of finitely generated indecomposable left R-modules
such that each Ni is the source of a left almost split morphism in mod(Rop). Then the left
R-module N = ⊕

i∈I Ni is endoartinian.

Proof. (a) This follows immediately from Theorem 4.1 and the well-known facts that the left
pure semisimple ring R is left artinian, and every left R-module is a direct sum of finitely pre-
sented left R-modules.

(b) For a finitely generated indecomposable left R-module Ni , since Ni is the source of a
left almost split morphism in mod(Rop), it follows from [17, Proposition 2.5] that Mi = D(Ni)

contains a finitely presented indecomposable pure submodule Xi , and since R is left pure semi-
simple, Xi is endofinite (see [24]; cf. [13, Lemma 3.7]), hence pure-injective. Thus Xi is a direct
summand of Mi , and since Mi = D(Ni) is indecomposable, we get that Xi = Mi , implying
that Mi is finitely presented (cf. also [32, Theorem 3.1]). Let M = ⊕

i∈I Mi , then M is a pure-
projective right R-module, and so M is endonoetherian (see [30, Theorem 9]). By Theorem 4.2,
we get that the left R-module N = ⊕

i∈I Ni is endoartinian. �
Recall that, for a left artinian hereditary ring R, a finitely generated indecomposable left R-

module M is called preinjective if there are only finitely many pairwise non-isomorphic finitely
generated indecomposable left R-modules X such that HomR(M,X) = 0 (see, e.g., [39]). Note
that, over hereditary rings, this notion coincides with that of a preinjective left R-module, defined
for any left pure semisimple ring R in [26]. Preinjective left R-modules have played an important
role in the study of left pure semisimple rings (see, e.g., [5,14,26,40]). Our next result adds an
interesting feature on the endo-structure of direct sums of these modules.

Corollary 5.11. Let R be a left pure semisimple hereditary ring. Let N = ⊕
i∈I Ni be a direct

sum of preinjective left R-modules. Then N is endoartinian.
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Proof. Let Ni be a preinjective left R-module. Because R is left pure semisimple hereditary,
it follows from [6, Proposition 8.2] that Ni is the source of a left almost split morphism in
mod(Rop). Now Theorem 5.10(b) yields that N = ⊕

i∈I Ni is endoartinian. �
We conclude the paper with an observation, and some related questions that might be of

interest. Let R be a left pure semisimple ring and M a Σ -pure-injective right R-module, then
M is endofinite. Indeed, we know by [30, Theorem 6] that any right R-module has the ACC on
finite matrix subgroups, so if M is Σ -pure-injective, it has the DCC on finite matrix subgroups
[45], hence M is endofinite by [11, Proposition 4.1].

It is natural to ask if the converse of this statement also holds. We formalize this as the fol-
lowing question.

Question 1. Let R be a left artinian ring, and suppose that every Σ -pure-injective right R-module
is endofinite. Is R left pure semisimple?

If R is an Artin algebra, then by Auslander’s theorem [8], R is left pure semisimple if and
only if R is of finite representation type. Thus the above question has the following equivalent
form.

Question 2. Let R be an Artin algebra, and suppose that every Σ -pure-injective right R-module
is endofinite. Is R of finite representation type?

Question 2 has a positive answer if R is a hereditary tame Artin algebra. Indeed, let M be the
direct sum of all non-isomorphic preinjective right R-modules. Then it is well known (see [34,
4.6]) that M is Σ -pure-injective, hence M is endofinite by hypothesis, so there are finitely many
non-isomorphic preinjective right R-modules, implying that R is finite representation type.
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