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Let G be an �-group (which is short for “lattice-ordered abelian
group”). Baker and Beynon proved that G is finitely presented iff it
is finitely generated and projective. In the category U of unital �-
groups, those �-groups having a distinguished order-unit u, only
the (⇐)-direction holds in general. We show that a unital �-
group (G, u) is finitely presented iff it has a basis. A large class
of projectives is constructed from bases having special properties.
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1. Introduction

We refer to [3,7,8] for background on �-groups. A unital �-group (G, u) is an abelian group G
equipped with a translation-invariant lattice-order and a distinguished order-unit u, i.e., an element
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whose positive integer multiples eventually dominate each element of G . Unital �-groups are a re-
cent mathematization of the euclidean magnitudes with an archimedean unit. By [13, Theorem 3.9],
the category U of unital �-groups is equivalent to the equational class of MV-algebras. Thus, while
the archimedean property of order-units is not definable in first-order logic, U is endowed with all
the typical properties of equational classes: in particular, U has free algebras, finitely presented alge-
bras, subalgebras, quotients and products—which in general do not coincide with cartesian products.
Morphisms in U are lattice-preserving unit-preserving homomorphisms.

For a geometric investigation of finitely presented unital �-groups, in [12] the notion of ba-
sis (see Definition 2.1) was introduced as a purely algebraic counterpart of Schauder bases. In
[12, Theorem 4.5] it is proved that an archimedean unital �-group (G, u) is finitely presented iff it
has a basis. The archimedean condition means that G is isomorphic to an �-group of real-valued
functions defined on some set X . In Theorem 3.1 we will prove that the archimedean assumption
can be dropped, thus obtaining a characterization of finitely presented unital �-groups that does not
mention free objects and their universal property.

A unital �-group (G, u) is projective if whenever ψ : (A,a) → (B,b) is a surjective morphism and
φ : (G, u) → (B,b) is a morphism, there is a morphism θ : (G, u) → (A,a) such that φ = ψ ◦ θ . For
�-groups, Baker [1] and Beynon [2, Theorem 3.1] (also see [7, Corollary 5.2.2]) gave the following
characterization: An �-group G is finitely generated projective iff it is finitely presented. For unital �-groups
the (⇒)-direction holds. The converse direction fails in general. From Theorem 3.1 it follows that
every finitely generated projective unital �-group has a basis. In Section 4 bases will be used to
construct large classes of projective unital �-groups.

In Theorem 5.3 it is proved that if (G, u) has a basis then its bases provide a direct system of
simplicial groups with 1–1 positive unital homomorphisms, whose limit is (G, u). Thus the Effros–
Handelman–Shen representation theorem [4], Grillet’s theorem [10, 2.1], and Marra’s theorem [11]
have a very simple proof for (G, u).

2. Preliminaries

A lattice-ordered abelian group (�-group) is a structure (G,+,−,0,∨,∧) such that (G,+,−,0) is
an abelian group, (G,∨,∧) is a lattice, and x + (y ∨ z) = (x + y) ∨ (x + z) for all x, y, z ∈ G . An
order-unit in G is an element u ∈ G with the property that for every g ∈ G there is n ∈ {1,2,3, . . .}
such that g � nu. A unital �-group (G, u) is an �-group G with a distinguished order-unit u. A map
h : (G, u) → (G ′, u′) is said to be a unital �-homomorphism if it preserves the lattice as well as the
group structure, and h(u) = u′ . By an ideal i of a unital �-group (G, u) we mean the kernel of a unital
�-homomorphism of (G, u). We denote by MaxSpec(G, u) (or even, MaxSpec G if there is no danger
of confusion) the set of maximal ideals of (G, u) equipped with the spectral topology [3, §10]: a basis
of closed sets for MaxSpec G is given by sets of the form {p ∈ MaxSpec G | g ∈ p}, where g ranges
over all elements of G . Since G has an order-unit, MaxSpec G is a nonempty compact Hausdorff space
[3, 10.2.2].

Definition 2.1. Let (G, u) be a unital �-group. A basis of (G, u) is a set B = {b1, . . . ,bn} of elements
�= 0 of the positive cone G+ = {g ∈ G | g � 0} such that

(i) B generates G using the group and lattice operations;
(ii) for each k = 1,2, . . . and k-element subset C of B with 0 �= ∧{b | b ∈ C}, the set {m ∈

MaxSpec(G) | m ⊇ B \ C} is homeomorphic to a (k − 1)-simplex;
(iii) there are integers 1 � m1, . . . ,mn such that

∑n
i=1 mibi = u.

This is an equivalent simplified reformulation of [12, Definition 4.3]. From (ii)–(iii) it follows that
the multiplicity mi of each bi ∈ B is uniquely determined.

For each i = 1, . . . ,n we let πi : [0,1]n → R denote the ith coordinate map. The standard basis of
R

n is denoted E = {e1, . . . , en}. For any subset S of B we define the simplex T S ⊆ [0,1]n by

T S = conv{ei/mi | bi ∈ S}. (1)
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Let k = 1,2, . . . ,n. Then by a k-cluster of B we understand a k-element subset C of B such that∧
C �= 0. We denote by B�� the set of all clusters of B. For each C ∈ B�� , displaying the complemen-

tary set B \ C as {b j1 , . . . ,b js }, we define the function aC : [0,1]n → R by

aC = π j1 ∨ · · · ∨ π js (aC = 0 in case C = B). (2)

We have the identity

TC = T B ∩ a−1
C (0). (3)

For n = 1,2, . . . we let Mn denote the unital �-group of all continuous functions f : [0,1]n → R

satisfying: there are (affine) linear polynomials p1, . . . , pm with integer coefficients, such that for all
x ∈ [0,1]n there is i ∈ {1, . . . ,m} with f (x) = pi(x). Mn is equipped with the pointwise operations
+,−,∧,∨ of R, and with the constant function 1 as the distinguished order-unit. The characteristic
universal property of Mn is as follows:

Proposition 2.2. (See [13, 4.16].) Mn is generated by the maps πi : [0,1]n → R together with the order-unit 1.
For every unital �-group (G, u) and elements g1, . . . , gn in the unit interval [0, u] of G, if the set {g1, . . . , gn, u}
generates G, then there is a unique unital �-homomorphism ψ of Mn onto G such that ψ(πi) = gi for each
i = 1, . . . ,n.

A unital �-group (G, u) is finitely presented if for some n = 1,2, . . . , it is isomorphic to the quotient
of Mn by a finitely generated (= singly generated = principal) ideal.

Given f ∈ Mn let Z f denote the zeroset of f . More generally, for every ideal j of Mn we will write
Zj = ⋂{Z g | g ∈ j}. In the particular case when j is maximal, Zj is a singleton (because the functions
in Mn separate points [13, 4.17]), and we write Žj for the unique element of Zj.

For later use we record here a classical result, whose proof follows from the Hion–Hölder theorem
[6, pp. 45–47], [3, 2.6]:

Lemma 2.3. For every unital �-group (G, u) and ideal m ∈ MaxSpec G there is exactly one pair (ιm, Rm)

where Rm is a unital �-subgroup of (R,1), and ιm is a unital �-isomorphism of the quotient (G, u)/m onto Rm .
Upon identifying (G, u)/m with Rm every element g/m ∈ (G, u)/m becomes a real number, and we can un-
ambiguously write g/m ∈ R.

Corollary 2.4. For any ideal i of Mn let MaxSpec⊇i Mn denote the compact set of all maximal ideals of

MaxSpecMn containing i. Then the map n �→ Žn yields a homeomorphism of MaxSpec⊇i Mn onto the

compact set Zi ⊆ [0,1]n. The inverse of Ž is the map x ∈ Zi �→ mx = { f ∈ Mn | f (x) = 0}. Further,
f /m = f (Ž(m)) for all f ∈ Mn and m ∈ MaxSpec⊇i ∈ Mn.

Proof. For each x ∈ Zi, mx is a maximal ideal of Mn. Further, for each f ∈ i, from f (x) = 0 we get
f ∈ mx, whence mx ⊇ i and Žmx = x. Let p ∈ MaxSpec⊇i Mn. Then Zp ⊆ Zi and for every f ∈ p

with f (Žp) = 0 we have p ⊆ mŽ(p)
and Žp ∈ Zi. The assumed maximality of p is to the effect

that p = mŽ(p)
, whence Ž is a one–one map from MaxSpec⊇i Mn onto Zi. By definition of spectral

topology, Ž is a homeomorphism. An application of Lemma 2.3 completes the proof. �
Corollary 2.5. The quotient map κ : Mn→Mn/i determines the homeomorphism m �→m/i of MaxSpec⊇i Mn

onto MaxSpecMn/i. The inverse map is given by κ−1(n) = { f ∈ Mn | f /i ∈ n} for each n ∈ MaxSpecMn/i.

Proof. The routine proof follows by combining Lemma 2.3 with [3, 2.3.8]. �
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2.1. Rational polyhedra and unimodular triangulations

We refer to the first few chapters of [5] for background in elementary polyhedral topology. By a
rational polyhedron P in R

n we understand a finite union of simplexes P = S1 ∪ · · · ∪ St in R
n such

that the coordinates of the vertices of every simplex Si are rational numbers. For every simplicial
complex Σ the point-set union of the simplexes of Σ is called the support of Σ and is denoted |Σ |;
Σ is said to be a triangulation of |Σ |.

For any rational point v ∈ R
n the least common denominator of the coordinates of v is called the

denominator of v , denoted den(v). The integer vector ṽ = den(v)(v,1) ∈ Z
n+1 is called the homoge-

neous correspondent of v . An m-simplex U = conv(w0, . . . , wm) ⊆ [0,1]n is said to be unimodular if it
is rational and the set of integer vectors {w̃0, . . . , w̃m} can be extended to a basis of the free abelian
group Z

n+1. A simplicial complex is said to be a unimodular triangulation (of its support) if all its
simplexes are unimodular. The homogeneous correspondent of a unimodular triangulation is known
as a regular (or, nonsingular) fan [5].

Proposition 2.6. (See [12, 4.1, 5.1].) For all P ⊆ [0,1]n the following are equivalent:

(i) P is a rational polyhedron.
(ii) P = |
| for some unimodular triangulation 
.

(iii) For some unimodular triangulation ∇ of [0,1]n, P = ⋃{S ∈ ∇ | S ⊆ P }.
(iv) For some f ∈ Mn, P = Z f .

Lemma 2.7. Let i be an ideal of Mn. Then the following are equivalent:

(i) i is principal.
(ii) There exists f ∈ i such that Zi = Z f .

Proof. For the nontrivial direction, let 0 � f ∈ i satisfy Zi = Z f . We must check that, for all 0 �
g ∈ Mn, g ∈ i ⇔ ∃k = 1,2, . . . with g � kf . The (⇐)-direction follows from f ∈ i. For the (⇒)-
direction, let Λ be a rational triangulation of [0,1]n such that both f and g are linear over each
simplex of Λ. Let {v1, . . . , vs} be the vertices of Λ. Since Z f = Zi ⊆ Z g , f (vi) = 0 implies g(vi) = 0.
For each i = 1, . . . , s there is Z � mi > 0 such that mi f (vi) � f (vi). Letting k = max(m1, . . . ,ms), the
desired result follows from the assumed linearity properties of f and g . �
3. Finitely presented unital �-groups and bases

Theorem 3.1. A unital �-group (G, u) is finitely presented iff it has a basis.

Proof. The (⇒)-direction is proved in [12, 5.2]. For the (⇐)-direction, let B = {b1, . . . ,bn} be a basis
of (G, u), with multiplicities m1, . . . ,mn . Let κ : Mn → (G, u) be the unique unital �-homomorphism
extending the map πi �→ bi, given by Proposition 2.2. Let i = ker(κ). By Definition 2.1(i), κ is onto G ,
whence (G, u) ∼= Mn/i. Let the function a ∈ Mn be defined by a = |1 − ∑

i miπi |. Then, recalling the
notation of (1),

0 � a ∈ i, and Za = T B. (4)

As a matter of fact, from Definition 2.1(ii) we have κ(
∑

i miπi) = ∑
i miκ(πi) = ∑

i mibi = u. Recall-
ing (2), we next observe

∧
��

aC ∈ i. (5)

C∈B
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The result is trivial if B itself is a cluster in B�� . If this is not the case, for each C ∈ B�� let biC be
an arbitrarily chosen element of B \ C . Let D = {biC | C ∈ B��}. Then D /∈ B�� , for otherwise, biD ∈ D ,
which is impossible. Therefore, κ(

∧
C∈B�� πiC ) = ∧

C∈B�� biC = 0, i.e.,
∧

C∈B�� πiC ∈ i. Since each biC ∈
B \ C is arbitrary, the desired result (5) now follows from the distributivity of the underlying lattice
of (G, u).

Let f ∗ ∈ Mn be defined by f ∗ = a ∨ ∧
C∈B�� aC . From (3)–(5) it follows that

0 � f ∗ ∈ i and Z f ∗ = Za ∩
⋃

C∈B��
ZaC =

⋃
C∈B��

TC , (6)

whence Z f ∗ ⊇ Zi. To prove the converse inclusion, for each cluster K of B we set

apogee(K ) = {n ∈ MaxSpec Mn/i | n ⊇ B \ K }.

For each n ∈ MaxSpecMn/i, letting Cn be the cluster of all b ∈ B such that b /∈ n, it follows that
B \ Cn ⊆ n, whence n ∈ apogee(Cn). Thus,

⋃
C∈B�� apogee(C) ⊇ MaxSpecMn/i. Since the converse

inclusion holds by definition, we have

MaxSpec Mn/i =
⋃

C∈B��
apogee(C). (7)

For each K ∈ B�� we let apogeeR(K ) denote the inverse image of apogee(K ) under the composition
of the homeomorphisms x �→ mx �→ mx/i of Corollaries 2.4 and 2.5, where mx = { f ∈ Mn | f (x) = 0}.
In other words,

apogeeR(K ) = {
x ∈ Zi

∣∣ mx/i ∈ apogee(K )
}
. (8)

From (6)–(7) we get

⋃
C∈B��

apogeeR(C) = Zi ⊆ Z f ∗ =
⋃

C∈B��
TC . (9)

Claim 1. For each C = {bi1 , . . . ,bit } ∈ B�� , apogeeR(C) ⊆ TC .

Indeed, by Definition 2.1(iii) we have

apogee(C) = {n ∈ MaxSpec Mn/i | b/n = 0 for all b ∈ B \ C}

=
{
n ∈ MaxSpecMn/i

∣∣∣ mi1 bi1 + · · · + mit bit

n
= 1

}
. (10)

By Lemma 2.3, for each m ∈ MaxSpec⊇i Mn , both Mn
m

and its isomorphic copy Mn/i
m/i

are canonically

isomorphic to the same unital �-subgroup of (R,1). Thus for each f ∈ Mn the real numbers f /i
m/i

and
f
m

are identical. By Corollaries 2.4 and 2.5, for each n ∈ MaxSpecMn/i we have f /i
n/i

= f (Ž(κ−1(n))),

or equivalently,

f (x) = f /i

mx/i
for all x ∈ Zi. (11)
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From (8) and (10) it follows that (y1, . . . , yn) ∈ apogeeR(C) if and only if

mi1 bi1 + · · · + mit bit

mx/i
= (mi1 yi1 + · · · + mit yit )/i

mx/i
= 1.

Recalling (1) and (11), and writing apogeeR(C) = {(y1, . . . , yn) ∈ Zi | mi1 yi1 + · · · + mit yit = 1} ⊆ TC ,

Claim 1 is settled.

Claim 2. For every C ∈ B�� , apogeeR(C) = TC .

The proof, by induction on the number l = 1,2, . . . of elements of C , closely follows the algebraic
topological argument of [12, Theorem 4.5, Claim 3].

Basis. For a unique j ∈ {1, . . . ,n} we have C = {b j} = {π j/i}. By Definition 2.1(ii), apogee(C) contains
exactly one element n. By Lemma 2.3, n is the only maximal ideal of Mn/i such that 0 = b/n for all
b �= b j . By (10), n is uniquely determined by the condition 1 = m jb j/n = (m jπ j/i)/n. Letting z ∈ Zi be
the image of n in apogeeR(C), by (1) and Claim 1 we have z = e j/m j . We conclude that apogeeR(C) =
{e j/m j} = conv{e j/m j} = TC .

Induction step. Assuming C has l + 1 elements, let us write C = {bi0 , . . . ,bil }. Since every l-element
subset C ′ of C is a cluster of B, by induction hypothesis apogeeR(C ′) = TC ′ . TC ′ is known as a
facet of TC . By Claim 1, apogeeR(C) is a nonempty subset of TC containing all facets of TC . Fur-
ther, apogeeR(C) is homeomorphic to an l-simplex, because so is its homeomorphic copy apogee(C),
by Definition 2.1(ii). Observe that TC is contractible (i.e., TC is continuously shrinkable to a point). By
way of contradiction, suppose apogeeR(C) is a proper subset of TC . Then a routine exercise in alge-
braic topology shows that apogeeR(C) is not contractible. Thus apogeeR(C) is not homeomorphic to
any l-simplex, a contradiction showing that apogeeR(C) = TC . Claim 2 is settled.

By Claim 2 and (9) we can write Z f ∗ = ⋃
C∈B�� TC = Zi. By Lemma 2.7, i is the ideal generated

by f ∗ , and (G, u) ∼= Mn/i is finitely presented. �
4. A class of projective unital �-groups

Lemma 4.1. Let S = conv(x1, . . . , xk) ⊆ [0,1]n be a unimodular (k − 1)-simplex and v ∈ {0,1}n a vertex of
[0,1]n. Then for every Y ⊆ {x1, . . . , xk} there is a matrix M ∈ Z

n×n and a vector b ∈ Z
n such that

Mxi + bi =
{

v if xi ∈ Y ,

xi otherwise.

Proof. Since S is unimodular, the set {x̃1, . . . , x̃k} of homogeneous correspondents of x1, . . . , xk can be
extended to a basis {x̃1, . . . , x̃k,qk+1, . . . ,qn+1} of the free abelian group Z

n+1. The (n + 1) × (n + 1)

matrix D with column vectors x̃1, . . . , x̃k,qk+1, . . . ,qn+1 is invertible and D−1 ∈ Z
(n+1)×(n+1). For each

i = 1, . . . , t let ci ∈ Z
n+1 be defined by ci = den(xi)(v,1) if xi ∈ Y , and otherwise ci = x̃i . Let C ∈

Z
(n+1)×(n+1) be the matrix whose columns are given by the vectors c1, . . . , ck,qk+1, . . . ,qn+1. Since D

and C have the same (n + 1)th row,

C D−1 =
(

M d

0, . . . ,0 1

)

for some n ×n integer matrix M and d ∈ Z
n . For each i = 1, . . . ,k, (C D−1)x̃i = (C D−1)den(xi)(xi,1) =

den(xi)(Mxi + d,1). In conclusion, (C D−1)x̃i = ci = den(xi)(v,1) if xi ∈ Y and (C D−1)x̃i = x̃k =
den(xi)(xi,1) otherwise. �
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Theorem 4.2. Suppose the unital �-group (G, u) has a basis B with
∧

B �= 0. Suppose at least one of the
multiplicities of B is equal to 1. Then (G, u) is projective.

Proof. Let 1 = m1 � m2 � · · · � mn be the multiplicities of B. Proposition 2.6 yields a unimodular
triangulation 
 of [0,1]n such that the simplex T B in (1) is a union of simplexes of 
, and all vertices
of (every simplex of) 
 have rational coordinates. We next define the function f : [0,1]n → [0,1]n by
stipulating that, for each vertex v of 
,

f(v) =
{

v if v ∈ T B,

e1 if v /∈ T B
(12)

and f is linear over each simplex of 
. Then f is a continuous map and f � T B is the identity map
on T B. For any simplex S of 
, let ∂ S denote the set of extremal points of S . Since f is linear over S
and f(v) ∈ T B for each v ∈ ∂ S , we have f(S) = f(conv(∂ S)) = conv(f(∂ S)) ⊆ conv(T B) = T B, whence

f
([0,1]n) = T B. (13)

We have thus shown that f ◦ f = f and f is a continuous retraction of [0,1]n onto T B which is linear
on each simplex of 
.

By Lemma 4.1, the coefficients of each linear piece of f are integers. Therefore, the map
ϕ : Mn → Mn given by

ϕ(g) = g ◦ f (14)

is well defined. It follows straightforwardly that ϕ is a unital �-homomorphism. Since f ◦ f = f then
ϕ ◦ ϕ = ϕ. In other words, ϕ is an idempotent endomorphism of Mn . Stated otherwise, the unital
�-subgroup ϕ(Mn) of Mn is a retraction of Mn . Applying now the universal property of Mn (Proposi-
tion 2.2) one sees that Mn is projective. A routine exercise using the fact that ϕ(Mn) is a retraction
of Mn shows that ϕ(Mn) is projective.

To conclude the proof it is enough to show that ϕ(Mn) is unitally �-isomorphic to (G, u). In
proving the (⇐)-direction of Theorem 3.1 we have seen that (G, u) is unitally �-isomorphic to Mn/i,
for some ideal i having following characterization:

i =
{

g ∈ Mn

∣∣∣ Z g ⊇
⋃

C∈B��
TC

}
= {g ∈ Mn | Z g ⊇ T B}.

By (13) and (14),

g ∈ ker(ϕ) ⇔ g ◦ f = 0 ⇔ g
(
f
([0,1]n)) = {0}

⇔ g(T B) = {0} ⇔ Z g ⊇ T B ⇔ g ∈ i.

Therefore, (G, u) ∼= Mn/i = Mn/ker(ϕ) ∼= ϕ(Mn), and the proof is complete. �
5. The underlying dimension group of a unital �-group with a basis

In the category P of partially ordered abelian groups with order-unit [8, p. 12] objects are pairs
(G, u), where G is a partially ordered abelian group and u is an order-unit of G . A morphism
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φ : (G, u) → (H, v) of P is a unital (i.e., unit-preserving) positive (in the sense that φ(G+) ⊆ H+)
homomorphism.

Following [8, p. 47], by a unital simplicial group we understand an object (G, u) of P that is isomor-
phic (in P ) to the free abelian group Z

n for some integer n > 0 equipped with the product ordering:
(x1, . . . , xn) � 0 iff xi � 0, ∀i = 1, . . . ,n. The order-unit u has the form u = (u1, . . . , un) where each ui

is an integer > 0.
A unital dimension group (G, u) is an object of P such that G = G+ − G+ , sums of intervals are

intervals, and for any g ∈ G if kg ∈ G+ for some 0 < k ∈ Z, then already g ∈ G+. For short, G is
directed, Riesz, and unperforated [8, p. 44]. By Elliott classification theory [4], countable unital dimen-
sion groups are complete classifiers of AF C∗-algebras, i.e., the norm limits of ascending sequences of
finite-dimensional C∗-algebras, all with the same unit.

Given a unital �-group (G, u) let (G, u)dim denote the underlying group of (G, u) equipped with the
same positive cone G+ and order-unit u, but forgetting the lattice structure of (G, u). Then (G, u)dim is
a unital dimension group. Thus in particular, every unital simplicial group is a unital dimension group.
Since the properties of directedness, Riesz, and unperforatedness are preserved by direct limits, then
direct limits of unital simplicial groups are unital dimension groups.

The Effros–Handelman–Shen theorem [4], [8, 3.21] (also see Grillet’s theorem [10, 2.1] jointly with
[9, Remark 3.2]) states the converse: for every unital dimension group (G, u) we can write

(G, u) ∼= lim
{
φi j:

(
Z

ni , ui
) → (

Z
n j , u j

) ∣∣ i, j ∈ I
}

for some direct system of unital simplicial groups and unital positive homomorphisms in P . For
dimension groups of the form (G, u)dim, with (G, u) a unital �-group, Marra [11] proved that the
maps φi j can be assumed to be 1–1.

A further simplification occurs when (G, u) has a basis: as a matter of fact, in Theorem 5.3 below
we will prove that the set of bases of (G, u) is rich enough to provide a direct system of unital
simplicial groups and 1–1 unital homomorphisms such that (G, u)dim is the limit of this system in the
category P . To this purpose, given a basis B = {b1, . . . ,bn} of a unital �-group (G, u), we let grp B =
Zb1 + · · · + Zbn denote the group generated by B in (the underlying group of) G . Similarly, sgr B =
Z�0b1 + · · · + Z�0bn will denote the semigroup generated by B together with the zero element.

Assuming, as we are doing throughout the rest of this paper, that the elements of B are listed in
some prescribed order, by definition of B the n-tuple of multiplicities mB = (m1, . . . ,mn) is uniquely
determined by the n-tuple (b1, . . . ,bn).

Proposition 5.1. Let B = {b1, . . . ,bn} be a basis of a unital �-group (G, u). Let G B = (grp B, sgr B, u) denote
the group grp B equipped with the positive cone sgr B and with the distinguished order-unit u = ∑

mibi . Let
the simplicial group ZB be defined by ZB = (Zn, (Z+)n,mB), with the n-tuple mB as the order-unit. Then:

(I) B is a free generating set of the free abelian group grp B of rank n.
(II) G+ ∩ grp B = sgr B.

(III) The map bi �→ ei uniquely extends to an isomorphism ψB : grpB ∼= Z
n.

(IV) ψB is in fact an isomorphism (in the category P ) of G B onto ZB , whence G B is a unital simplicial group,
called the basic group of B; further, B is the set of atoms (= minimal positive nonzero elements) of G B ;
thus if B′ �= B is another basis of (G, u) then G B �= G B′ .

Proof. (I) By condition (ii) in the definition of B, no nonzero linear combination of the elements of B
is zero in (the Z-module) G . Since G is torsion-free, B is a free generating set in grp B, and grp B is
free abelian of rank n.

(II) Suppose g ∈ G+ ∩ grp B, and write g = ∑n
i=1 libi for suitable integers l1, . . . , ln . Fix now j ∈

{1, . . . ,n} and let n j be the only maximal ideal of G such that bk ∈ n j for all k �= j, as given by
condition (ii) in the definition of B. By condition (iii) we have
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0 �
n∑

i=1

libi ⇒ 0 �
∑n

i=1 libi

n j
= l jb j

n j
= l j

m j
,

whence 0 � l j for all j, and g ∈ sgr B. The converse inclusion is trivial.
(III) The map bi �→ ei is a one–one correspondence between the free generating set B of grp B and

the free generating set {e1, . . . , en} of Z
n .

(IV) It is easy to see that B is the set of atoms of G B , and {e1, . . . , en} is the set of atoms of the
simplicial group (Zn, (Z+)n). Thus ψB is an isomorphism of G B onto (Zn,Z

+n
), and G B is simplicial.

Trivially, ψB preserves order-units. So G B is a unital simplicial group which is isomorphic (in P )
to ZB. The rest is clear. �

Given two bases B′ and B of a unital �-group (G, u) we say that B′ refines B if B ⊆ sgr B′. Then
from the above proposition we immediately obtain

Proposition 5.2. Let B′ = {b′
1, . . . ,b′

n′ } and B = {b1, . . . ,bn} be bases of a unital �-group (G, u) such that
B′ refines B. Then for each i = 1, . . . ,n, bi is expressible as a linear combination bi = m1ib′

1 + · · · + mn′ ib′
n′ ,

for uniquely determined integers mki � 0 (k = 1, . . . ,n′). Further, the rank of the n′ × n matrix MB B′ whose
entries are the mki , equals n. Finally, the inclusion G B → G B′ induces the unital positive 1–1 homomorphism
φB B′ : (y1, . . . , yn) ∈ Z

n �→ (z1, . . . , zn′ ) = MB B′(y1, . . . , yn) ∈ Z
n′

of (ZB,mB) into (ZB′ ,mB′), and we
have a commutative diagram

G B
inclusion

ψB

G B′

ψB′

(ZB,mB)
φB B′

(ZB′ ,mB′).

(15)

Theorem 5.3. Suppose the unital �-group (G, u) has a basis.

(I) Any two basic groups G B, G F of (G, u) are jointly embeddable (by unit preserving, order preserving
inclusions) into some basic group G B′ of (G, u).

(II) There exists a direct system {φB B′ : (ZB,mB) → (ZB′ ,mB′)} of unital simplicial groups and unital posi-
tive 1–1 homomorphisms in P , indexed by all pairs B, B′ of bases of (G, u) such that B ⊆ sgr B′ .

(III) Further, lim{φB B′ : (ZB,mB) → (ZB′ ,mB′)} ∼= (G, u)dim.

Proof. (I)–(II) By Theorem 3.1, (G, u) is finitely presented, and for some n = 1,2, . . . , and principal
ideal j of Mn, (G, u) is isomorphic to Mn/j. Suppose j is generated by f ∈ Mn . A variant of [7, 5.2]
shows that Mn/j ∼= Mn � Z f . A fortiori, (G, u) is archimedean. From [12, 5.4] it follows that B and
F have a joint refinement B′ . Direct inspection of that proof shows that B′ is obtained from B by
finitely many applications of the following operation: Replace a 2-cluster {b, c} of a basis A, by the
three elements b ∧ c,b − (b ∧ c), c − (b ∧ c). The result is a basis A′ such that A ⊆ sgr A′. Thus
B ⊆ sgr B′ . From Proposition 5.2 we now obtain (I) and (II). For (III), in view of (15) it is sufficient to
prove G = ⋃{grp B | B a basis of (G, u)} and G+ = ⋃{sgr B | B a basis of (G, u)}. Since G = G+ − G+,

we need only prove that for every p ∈ G+, (G, u) has a basis B such that p ∈ sgr B. Since (G, u) ∼=
Mn � Z f is archimedean, the proof follows from [12, 5.4]. �
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