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1. Introduction

We refer to [3,7,8] for background on £-groups. A unital ¢-group (G,u) is an abelian group G
equipped with a translation-invariant lattice-order and a distinguished order-unit u, i.e., an element
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whose positive integer multiples eventually dominate each element of G. Unital ¢-groups are a re-
cent mathematization of the euclidean magnitudes with an archimedean unit. By [13, Theorem 3.9],
the category U/ of unital ¢-groups is equivalent to the equational class of MV-algebras. Thus, while
the archimedean property of order-units is not definable in first-order logic, I/ is endowed with all
the typical properties of equational classes: in particular, / has free algebras, finitely presented alge-
bras, subalgebras, quotients and products—which in general do not coincide with cartesian products.
Morphisms in U/ are lattice-preserving unit-preserving homomorphisms.

For a geometric investigation of finitely presented unital ¢-groups, in [12] the notion of ba-
sis (see Definition 2.1) was introduced as a purely algebraic counterpart of Schauder bases. In
[12, Theorem 4.5] it is proved that an archimedean unital £-group (G, u) is finitely presented iff it
has a basis. The archimedean condition means that G is isomorphic to an ¢-group of real-valued
functions defined on some set X. In Theorem 3.1 we will prove that the archimedean assumption
can be dropped, thus obtaining a characterization of finitely presented unital £-groups that does not
mention free objects and their universal property.

A unital ¢-group (G, u) is projective if whenever v : (A,a) — (B, b) is a surjective morphism and
¢ : (G,u) — (B,b) is a morphism, there is a morphism 6 : (G, u) — (A, a) such that ¢ = o 6. For
¢-groups, Baker [1] and Beynon [2, Theorem 3.1] (also see [7, Corollary 5.2.2]) gave the following
characterization: An ¢-group G is finitely generated projective iff it is finitely presented. For unital £-groups
the (=)-direction holds. The converse direction fails in general. From Theorem 3.1 it follows that
every finitely generated projective unital £-group has a basis. In Section 4 bases will be used to
construct large classes of projective unital £-groups.

In Theorem 5.3 it is proved that if (G, u) has a basis then its bases provide a direct system of
simplicial groups with 1-1 positive unital homomorphisms, whose limit is (G, u). Thus the Effros-
Handelman-Shen representation theorem [4], Grillet’s theorem [10, 2.1], and Marra’s theorem [11]
have a very simple proof for (G, u).

2. Preliminaries

A lattice-ordered abelian group (£-group) is a structure (G, +, —, 0, Vv, A) such that (G, +, —,0) is
an abelian group, (G, V, A) is a lattice, and x+ (y vVz) =X+ y) V (x + 2z) for all x,y,z€ G. An
order-unit in G is an element u € G with the property that for every g € G there is n € {1,2,3,...}
such that g < nu. A unital ¢-group (G, u) is an £-group G with a distinguished order-unit u. A map
h:(G,u) - (G’,u’) is said to be a unital £-homomorphism if it preserves the lattice as well as the
group structure, and h(u) = u’. By an ideal i of a unital ¢-group (G, u) we mean the kernel of a unital
£-homomorphism of (G, u). We denote by MaxSpec(G, u) (or even, MaxSpecG if there is no danger
of confusion) the set of maximal ideals of (G, u) equipped with the spectral topology [3, §10]: a basis
of closed sets for MaxSpecG is given by sets of the form {p € MaxSpecG | g € p}, where g ranges
over all elements of G. Since G has an order-unit, MaxSpec G is a nonempty compact Hausdorff space
[3, 10.2.2].

Definition 2.1. Let (G, u) be a unital £-group. A basis of (G,u) is a set B={by,...,b,} of elements
# 0 of the positive cone Gt ={g € G | g > 0} such that

(i) B generates G using the group and lattice operations;
(ii) for each k =1,2,... and k-element subset C of B with 0 # Af{b | b € C}, the set {m €
MaxSpec(G) | m 2 B\ C} is homeomorphic to a (k — 1)-simplex;
(iii) there are integers 1 <mj, ..., my such that 2?21 mib; = u.

This is an equivalent simplified reformulation of [12, Definition 4.3]. From (ii)-(iii) it follows that
the multiplicity m; of each b; € BB is uniquely determined.

For each i=1,...,n we let m;: [0, 1]" — R denote the ith coordinate map. The standard basis of
R" is denoted E = {eq, ..., e,}. For any subset S of B we define the simplex 75 C [0, 1]" by

Ts = conv{e;/m; | b; € S}. (1)
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Let k=1,2,...,n. Then by a k-cluster of B we understand a k-element subset C of 53 such that
/\ C # 0. We denote by B the set of all clusters of B. For each C € B>, displaying the complemen-
tary set B\ C as {bj,,...,bj,}, we define the function ac : [0, 1]" — R by

ac=mj, V-V (ac =0incase C =B). (2)

We have the identity

Tc =T Nag ' (0). 3)

For n=1,2,... we let M, denote the unital £-group of all continuous functions f :[0,1]" — R
satisfying: there are (affine) linear polynomials p1, ..., pm with integer coefficients, such that for all
x €[0,1]" there is i € {1,...,m} with f(x) = pi(x). M, is equipped with the pointwise operations
+, —, A, vV of R, and with the constant function 1 as the distinguished order-unit. The characteristic
universal property of M, is as follows:

Proposition 2.2. (See [13, 4.16].) M, is generated by the maps 7; : [0, 1]" — R together with the order-unit 1.
For every unital ¢-group (G, u) and elements g1, ..., gy in the unitinterval [0, u] of G, ifthe set {g1, ..., &n, U}
generates G, then there is a unique unital £-homomorphism  of M, onto G such that v (5r;) = g; for each
i=1,...,n

A unital £-group (G, u) is finitely presented if for some n=1, 2, ..., it is isomorphic to the quotient
of M, by a finitely generated (= singly generated = principal) ideal.

Given f € M, let Zf denote the zeroset of f. More generally, for every ideal j of M, we will write
Zj=({Zg| g €j}. In the particular case when j is maximal, Zj is a singleton (because the functions

in M, separate points [13, 4.17]), and we write Z’j for the unique element of Zj.
For later use we record here a classical result, whose proof follows from the Hion-Hélder theorem
[6, pp. 45-47], [3, 2.6]:

Lemma 2.3. For every unital ¢-group (G, u) and ideal m € MaxSpecG there is exactly one pair (tm, Rym)
where Ry, is a unital £-subgroup of (R, 1), and ty, is a unital £-isomorphism of the quotient (G, u) /m onto Ry,.
Upon identifying (G, u)/m with Ry, every element g/m € (G, u)/m becomes a real number, and we can un-
ambiguously write g/m € R.

Corollary 2.4. For any ideal i of My let MaxSpecs; My, denote the compact set of all maximal ideals of
MaxSpecM,, containing i. Then the map n Zn yields a homeomorphism of MaxSpec; My onto the

compact set Zi C [0, 1]". The inverse of Z is the map x € Zi+> my = {f € M, | f(x) = 0}. Further,
f/m= f(Z(m)) forall f € M, and m € MaxSpecs; € Mp.

Proof. For each x € Zi, my is a maximal ideal of M. Further, for each f €1, from f(x) =0 we get
f e my, whence my 21 and Zmy = x. Let p € MaxSpecs; M. Then Zp C Zi and for every f ep

with f(va) =0 we have p C M2 0 and Zp € Zi. The assumed maximality of p is to the effect
that p = Mz whence Z is a one-one map from MaxSpecs; M;, onto Zi. By definition of spectral

topology, Zisa homeomorphism. An application of Lemma 2.3 completes the proof. O

Corollary 2.5. The quotient map « : M — M /i determines the homeomorphism m— m/i of MaxSpec; My
onto MaxSpec M, /i. The inverse map is given by k ~1(n) = {f € M, | f/i € n} for each n € MaxSpec M, /i.

Proof. The routine proof follows by combining Lemma 2.3 with [3, 2.3.8]. O
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2.1. Rational polyhedra and unimodular triangulations

We refer to the first few chapters of [5] for background in elementary polyhedral topology. By a
rational polyhedron P in R" we understand a finite union of simplexes P =Sy U---US; in R" such
that the coordinates of the vertices of every simplex S; are rational numbers. For every simplicial
complex X the point-set union of the simplexes of X is called the support of ¥ and is denoted | X|;
X is said to be a triangulation of |X|.

For any rational point v € R" the least common denominator of the coordinates of v is called the
denominator of v, denoted den(v). The integer vector ¥ = den(v)(v,1) € Z"*1 is called the homoge-
neous correspondent of v. An m-simplex U = conv(wy, ..., wp) C [0, 1]" is said to be unimodular if it
is rational and the set of integer vectors {Wo,..., Wn} can be extended to a basis of the free abelian
group Z"*1. A simplicial complex is said to be a unimodular triangulation (of its support) if all its
simplexes are unimodular. The homogeneous correspondent of a unimodular triangulation is known
as a regular (or, nonsingular) fan [5].

Proposition 2.6. (See [12, 4.1, 5.1].) For all P C [0, 11" the following are equivalent:

(i) P is arational polyhedron.

(ii) P =|A| for some unimodular triangulation A.
(iii) For some unimodular triangulation V of [0,1]", P=J{Se V| S C P}.
(iv) Forsome f € M, P=Zf.

Lemma 2.7. Let i be an ideal of M. Then the following are equivalent:

(i) iis principal.
(ii) There exists f € isuchthat Zi=Zf.

Proof. For the nontrivial direction, let 0 < f € satisfy Zi = Zf. We must check that, for all 0 <
geMy, geisw dk=1,2,... with g <kf. The («<)-direction follows from f €i. For the (=)-
direction, let A be a rational triangulation of [0, 1] such that both f and g are linear over each
simplex of A. Let {v1,..., vs} be the vertices of A. Since Zf = ZiC Zg, f(v;) =0 implies g(v;) =0.
For each i=1,...,s there is Z > m; > 0 such that m; f(v;) > f(v;). Letting k = max(my, ..., ms), the
desired result follows from the assumed linearity properties of f and g. O

3. Finitely presented unital £-groups and bases

Theorem 3.1. A unital ¢-group (G, u) is finitely presented iff it has a basis.

Proof. The (= )-direction is proved in [12, 5.2]. For the («)-direction, let B ={bq,...,b,} be a basis
of (G, u), with multiplicities my, ..., my. Let ¥ : M — (G, u) be the unique unital ¢-homomorphism
extending the map m; — b;, given by Proposition 2.2. Let i = ker(x). By Definition 2.1(i), ¥ is onto G,

whence (G, u) =M,/i. Let the function a € M, be defined by a = |1 — )_; m;m;|. Then, recalling the
notation of (1),

0<aei, and Za=7g. (4)

As a matter of fact, from Definition 2.1(ii) we have x (}_;mjm;) =Y ;mik (7r;) = >_; m;b; = u. Recall-
ing (2), we next observe

/\ ac €. (5)

CeB



L. Cabrer, D. Mundici / Journal of Algebra 343 (2011) 1-10 5

The result is trivial if B itself is a cluster in B If this is not the case, for each C € B™ let b;. be
an arbitrarily chosen element of B\ C. Let D = {b;. | C € B°}. Then D ¢ *, for otherwise, b;, € D,
which is impossible. Therefore, « (/\ccp= Tic) = Acep= bic =0, i.e., N\cep~ Tic € 1. Since each b;. €
B\ C is arbitrary, the desired result (5) now follows from the distributivity of the underlying lattice
of (G, u).

Let f* e M, be defined by f*=aVv Accp~ac. From (3)-(5) it follows that

0< f*ei and Zf*=Zan U Zac = U 7Tc, (6)
CeB> CeB

whence Z f* > Zi. To prove the converse inclusion, for each cluster K of B we set

apogee(K) = {n € MaxSpecM,,/i |n 2 B\ K}.

For each n € MaxSpecM,/i, letting C, be the cluster of all b € B such that b ¢ n, it follows that
B\ Cn € n, whence n € apogee(Cy). Thus, | Jccp- apogee(C) D MaxSpec My /i. Since the converse
inclusion holds by definition, we have

MaxSpec M, /i = U apogee(C). (7)
CeB™

For each K € B™ we let apogeeR (K) denote the inverse image of apogee(K) under the composition
of the homeomorphisms x + my +— my/i of Corollaries 2.4 and 2.5, where my = {f € M, | f(x) =0}.
In other words,

apogeeg (K) = {x € Zi | my/i € apogee(K)}. (8)
From (6)-(7) we get
|J apogeep(O)=ziczf*= | ] Tc. 9)
CeB™ CeB™
Claim 1. For each C = {b;,, ..., b;,} € B™, apogeeg (C) € 7.

Indeed, by Definition 2.1(iii) we have

apogee(C) = {n € MaxSpecM/i|b/n=0forallb € B\ C}
mﬁbil +---+mibj -1}
Ma

(10)

= {n € MaxSpec M /i =
n

/i

m/i

isomorphic to the same unital £-subgroup of (R, 1). Thus for each f € M, the real numbers rﬁ—//‘l and

% are identical. By Corollaries 2.4 and 2.5, for each n € MaxSpec M, /i we have £—§1 = f(ZV(/cfl(n))),
or equivalently,

By Lemma 2.3, for each m € MaxSpecs; My, both % and its isomorphic copy are canonically

fri

my/i

feo=

forall x € Zi. (11)
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From (8) and (10) it follows that (y1,..., ¥n) € apogeeg (C) if and only if

Miybiy +--- +mibi, _ (Miyyi, +---+mi yi) /i _

mX/l mx/l

1.

Recalling (1) and (11), and writing apogeeg (C) ={(y1,...,yn) € Zi|m;, yi, +---+m; yi, =1} € T,
Claim 1 is settled.

Claim 2. For every C € B™, apogeer (C) = 7¢.

The proof, by induction on the number [ =1, 2, ... of elements of C, closely follows the algebraic
topological argument of [12, Theorem 4.5, Claim 3].

Basis. For a unique j € {1,...,n} we have C = {b;} = {m/i}. By Definition 2.1(ii), apogee(C) contains
exactly one element n. By Lemma 2.3, n is the only maximal ideal of M,/i such that 0 =b/n for all
b #b;. By (10), n is uniquely determined by the condition 1 =m;b;/n = (mjm;/i)/n. Letting z € Zi be
the image of n in apogeeg (C), by (1) and Claim 1 we have z=e;/m;. We conclude that apogeeg (C) =
{ej/mj} = conv{ej/m;} =Tc.

Induction step. Assuming C has [ 41 elements, let us write C = {bj,, ..., b;}. Since every l-element
subset C’ of C is a cluster of B, by induction hypothesis apogeer(C’) = 7¢,. 7¢r is known as a
facet of 7¢. By Claim 1, apogeer(C) is a nonempty subset of 7¢ containing all facets of 7¢. Fur-
ther, apogeer (C) is homeomorphic to an I-simplex, because so is its homeomorphic copy apogee(C),
by Definition 2.1(ii). Observe that 7¢ is contractible (i.e., 7¢ is continuously shrinkable to a point). By
way of contradiction, suppose apogeer (C) is a proper subset of 7¢. Then a routine exercise in alge-
braic topology shows that apogeer (C) is not contractible. Thus apogeer (C) is not homeomorphic to
any I-simplex, a contradiction showing that apogeep (C) = 7¢. Claim 2 is settled.

By Claim 2 and (9) we can write Z f* =|Jc g~ Zc = Zi. By Lemma 2.7, i is the ideal generated
by f*, and (G, u) =M,/i is finitely presented. O

4. A class of projective unital £-groups

Lemma 4.1. Let S = conv(xq, ..., Xx) C [0, 11" be a unimodular (k — 1)-simplex and v € {0, 1}" a vertex of
[0, 1]™. Then for every Y C {x1, ..., x} there is a matrix M € Z"*" and a vector b € Z" such that

v ifxiey,

Mx; +b; = I )

X; otherwise.
Proof. Since S is unimodular, the set {1, ..., X} of homogeneous correspondents of x1, ..., x; can be
extended to a basis {X1, ..., Xk Qk41---.qne1} Of the free abelian group Z"*1. The (n+ 1) x (n+ 1)
matrix D with column vectors X1, ..., Xk, Qkt1. - - - » qnr1 is invertible and D~! € Z(+D*+D  For each
i=1,...,t let c; € Z'"*! be defined by c; = den(x;)(v, 1) if x; € Y, and otherwise ¢; = ;. Let C €
Z0+Dx+1) he the matrix whose columns are given by the vectors c1, ..., Ck, Gkt 15 - - - » Gna1. Since D

and C have the same (n + 1)th row,

» M d
CD™' =
0,...,0 | 1

for some n x n integer matrix M and d € Z". For each i=1,...,k, (CD~ )% = (CD~ V) den(x;)(x;, 1) =
den(x;)(Mx; + d, 1). In conclusion, (CD™1)X; = ¢; = den(x;)(v,1) if x; € Y and (CD™ D% =X =
den(x;)(x;, 1) otherwise. O
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Theorem 4.2. Suppose the unital ¢-group (G, u) has a basis B with /\ B # 0. Suppose at least one of the
multiplicities of 3 is equal to 1. Then (G, u) is projective.

Proof. Let 1 =m; <my < --- <my be the multiplicities of 5. Proposition 2.6 yields a unimodular
triangulation A of [0, 1]" such that the simplex 73 in (1) is a union of simplexes of A, and all vertices
of (every simplex of) A have rational coordinates. We next define the function f: [0, 1]" — [0, 1]" by
stipulating that, for each vertex v of A,

ifveT;
f<v>={v fveTs, (12)
e1 ifveTp

and f is linear over each simplex of A. Then f is a continuous map and f [ 7z is the identity map
on 7p. For any simplex S of A, let 3S denote the set of extremal points of S. Since f is linear over S
and f(v) € 7p for each v € 39S, we have f(S) = f(conv(3S)) = conv(f(dS)) C conv(7g) = 73, whence

£([0,11") = 7. (13)

We have thus shown that fof=f and f is a continuous retraction of [0, 1]" onto 75 which is linear
on each simplex of A.

By Lemma 4.1, the coefficients of each linear piece of f are integers. Therefore, the map
@ : My — M, given by

p(g)=gof (14)

is well defined. It follows straightforwardly that ¢ is a unital £-homomorphism. Since fo f =f then
@ o @ = @. In other words, ¢ is an idempotent endomorphism of M. Stated otherwise, the unital
£-subgroup ¢(M,) of M, is a retraction of M,. Applying now the universal property of M, (Proposi-
tion 2.2) one sees that M, is projective. A routine exercise using the fact that ¢(M,) is a retraction
of M, shows that ¢(Mp) is projective.

To conclude the proof it is enough to show that ¢(M,) is unitally £-isomorphic to (G, u). In
proving the («<)-direction of Theorem 3.1 we have seen that (G, u) is unitally ¢-isomorphic to M,/i,
for some ideal i having following characterization:

izigeMn Zg2 U Tc]z{geMnIZgQTB}-

CeB™

By (13) and (14),
geker(p) & gof=0 <& g(f([0,1]")) ={0}
< g(Ip)={0} & Zg2Tp & gei
Therefore, (G, u) = M,/i = My/ker(p) = ¢(M,), and the proof is complete. O
5. The underlying dimension group of a unital £-group with a basis

In the category P of partially ordered abelian groups with order-unit [8, p. 12] objects are pairs
(G,u), where G is a partially ordered abelian group and u is an order-unit of G. A morphism
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¢ :(G,u) — (H,v) of P is a unital (i.e., unit-preserving) positive (in the sense that ¢(G™) C HT)
homomorphism.

Following [8, p. 47], by a unital simplicial group we understand an object (G, u) of P that is isomor-
phic (in P) to the free abelian group Z" for some integer n > 0 equipped with the product ordering:
(X1,...,xp) =20 iff x; >0, Vi=1,...,n. The order-unit u has the form u = (uy, ..., u,) where each u;
is an integer > 0.

A unital dimension group (G, u) is an object of P such that G = Gt — G™, sums of intervals are
intervals, and for any g € G if kg € G for some 0 < k € Z, then already g € G*. For short, G is
directed, Riesz, and unperforated [8, p. 44]. By Elliott classification theory [4], countable unital dimen-
sion groups are complete classifiers of AF C*-algebras, i.e., the norm limits of ascending sequences of
finite-dimensional C*-algebras, all with the same unit.

Given a unital £-group (G, u) let (G, u)qim denote the underlying group of (G, u) equipped with the
same positive cone G and order-unit u, but forgetting the lattice structure of (G, u). Then (G, u)gim is
a unital dimension group. Thus in particular, every unital simplicial group is a unital dimension group.
Since the properties of directedness, Riesz, and unperforatedness are preserved by direct limits, then
direct limits of unital simplicial groups are unital dimension groups.

The Effros-Handelman-Shen theorem [4], [8, 3.21] (also see Grillet’s theorem [10, 2.1] jointly with
[9, Remark 3.2]) states the converse: for every unital dimension group (G, u) we can write

(G, w) =lim{¢yj: (Z", u;) — (Z", uj)

i,jel}

for some direct system of unital simplicial groups and unital positive homomorphisms in P. For
dimension groups of the form (G, u)4im, with (G, u) a unital £-group, Marra [11] proved that the
maps ¢;; can be assumed to be 1-1.

A further simplification occurs when (G, u) has a basis: as a matter of fact, in Theorem 5.3 below
we will prove that the set of bases of (G, u) is rich enough to provide a direct system of unital
simplicial groups and 1-1 unital homomorphisms such that (G, ut)qim, is the limit of this system in the
category P. To this purpose, given a basis B = {bq, ..., bp} of a unital £-group (G, u), we let grp53 =
Zbq + - -- 4+ Zby, denote the group generated by B in (the underlying group of) G. Similarly, sgr B =
Z»ob1 + - -+ + Z>ob, will denote the semigroup generated by B together with the zero element.

Assuming, as we are doing throughout the rest of this paper, that the elements of B are listed in
some prescribed order, by definition of 3 the n-tuple of multiplicities mg = (my, ..., my) is uniquely
determined by the n-tuple (bq, ..., by).

Proposition 5.1. Let B = {bq, ..., by} be a basis of a unital £-group (G, u). Let Gg = (grp B, sgr BB, u) denote
the group grp BB equipped with the positive cone sgr I3 and with the distinguished order-unit u =) _ m;b;. Let
the simplicial group Zp be defined by Zg = (Z", (Z*)", mg), with the n-tuple mg as the order-unit. Then:

(I) Bis a free generating set of the free abelian group grp B of rank n.
(I Gt NgrpB=sgrB.
(1) The map b; — e; uniquely extends to an isomorphism 3 : grpg = Z".
(IV) vy isin fact an isomorphism (in the category P) of G onto Zpg, whence G is a unital simplicial group,
called the basic group of B; further, B3 is the set of atoms (= minimal positive nonzero elements) of G;
thus if B’ # B is another basis of (G, u) then Gg # G .

Proof. (I) By condition (ii) in the definition of B, no nonzero linear combination of the elements of B
is zero in (the Z-module) G. Since G is torsion-free, B3 is a free generating set in grp 3, and grp B is
free abelian of rank n.

(I) Suppose g € Gt NgrpB3, and write g = Z?:l lib; for suitable integers Iy, ...,I;. Fix now j €
{1,...,n} and let nj be the only maximal ideal of G such that by € n; for all k # j, as given by
condition (ii) in the definition of B. By condition (iii) we have
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iz libi _ ﬂ — l_f
nj nj m;j

s

n
0< Zlibi = 0<
i=1

whence 0 <I; for all j, and g € sgrB. The converse inclusion is trivial.

(IlT) The map b; > e; is a one-one correspondence between the free generating set 3 of grp B and
the free generating set {eq,...,e,} of Z".

(IV) It is easy to see that B is the set of atoms of Gg, and {e1, ..., ey} is the set of atoms of the
simplicial group (Z", (ZT)"). Thus ¥ is an isomorphism of Gz onto (Z", Z1"), and Gz is simplicial.
Trivially, Y3 preserves order-units. So Gg is a unital simplicial group which is isomorphic (in P)
to Zg. The rest is clear. O

Given two bases B’ and B of a unital £-group (G, u) we say that B’ refines B if B C sgr 8. Then
from the above proposition we immediately obtain

Proposition 5.2. Let B’ = (b}, ...,b;,} and B = {b1, ..., bn} be bases of a unital £-group (G, u) such that
B’ refines B. Then for each i =1, ...,n, b; is expressible as a linear combination b; = mq;b} + - - +my;b;,,
for uniquely determined integers my; > 0 (k =1, ...,n’). Further, the rank of the n’ x n matrix Mg whose
entries are the my;, equals n. Finally, the inclusion Gg — Gp/ induces/the unital positive 1-1 homomorphism
o8B - (Y1,.--,¥Yn) €Z" — (21, ...,2y) = M (Y1, ..., Yn) € Z" of (Zg, mp) into (Zp, mp:), and we
have a commutative diagram

inclusion

G — 0 Gy
l% l%, (15)

BB’
(Zp,mp) —— (Zp',mp).

Theorem 5.3. Suppose the unital £-group (G, u) has a basis.

(I) Any two basic groups Gg, Gx of (G, u) are jointly embeddable (by unit preserving, order preserving
inclusions) into some basic group G of (G, u).
(I) There exists a direct system {¢ppp' : (Z, mg) — (Zp, mp')} of unital simplicial groups and unital posi-
tive 1-1 homomorphisms in P, indexed by all pairs B, B’ of bases of (G, u) such that B C sgrB'.
(1) Further, lim{¢gp : (Zg,mp) = (Zp,mp)} = (G, U)dim-

Proof. (I)-(II) By Theorem 3.1, (G, u) is finitely presented, and for some n=1,2,..., and principal
ideal j of My, (G, u) is isomorphic to M, /j. Suppose j is generated by f € M. A variant of [7, 5.2]
shows that M, /j =M, | Zf. A fortiori, (G, u) is archimedean. From [12, 5.4] it follows that B and
F have a joint refinement B’. Direct inspection of that proof shows that B’ is obtained from B by
finitely many applications of the following operation: Replace a 2-cluster {b, c} of a basis A, by the
three elements b A ¢c,b — (b Ac),c — (b A c). The result is a basis A" such that A C sgr.A". Thus
B C sgrB’. From Proposition 5.2 we now obtain (I) and (II). For (IIl), in view of (15) it is sufficient to
prove G = J{grp B | B a basis of (G, u)} and Gt = | J{sgr B | B a basis of (G, u)}. Since G=GT -G,
we need only prove that for every p € G*, (G, u) has a basis B such that p e sgrB. Since (G, u) =
My, [ Zf is archimedean, the proof follows from [12, 54]. O
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