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Introduction

The most convenient way to explain what we mean by the factorization problem of an algebraic
structure is to consider a concrete example. Chronologically speaking, the first problem of this type
was studied for groups, see for instance [Mai,Ore,Za,Sz,Tak]. Let G be a group. Let H and K denote
two subgroups of G . One says that G factorizes through H and K if G = H K and H ∩ K = 1. Therefore,
the factorization problem for groups means to find necessary and sufficient conditions which ensure
that G factorizes through the given subgroups H and K . Note that, if G factorizes through H and
K then the multiplication induces a canonical bijective map ϕ : H × K → G, which can be used to
transport the group structure of G on the Cartesian product of H and K . We shall call the resulting
group structure the bicrossed product of H and K , and we shall denote it by H � K . The identity
element of H � K is (1,1), and its group law is uniquely determined by the ‘twisting’ map

R : K × H → H × K , R(k,h) := ϕ−1(kh).

Obviously, R is induced by a couple of functions � : K × H → H and � : K × H → K such that R(k,h) =
(k � h,k � h). Using this notation the multiplication on H � K can be written as

(h,k) · (h′,k′) = (
h
(
k � h′), (k � h′)k′).

The group axioms easily imply that (H, K ,�,�) is a matched pair of groups, in the sense of [Tak].
Conversely, any bicrossed product H � K factorizes through H and K . In conclusion, a group G fac-
torizes through H and K if and only if it is isomorphic to the bicrossed product H � K associated to
a certain matched pair (H, K ,�,�).

Similar ‘products’ are known in the literature for many other algebraic structures. In [Be], for a dis-
tributive law λ : G ◦ F → F ◦ G between two monads, Jon Beck defined a monad structure on F ◦ G,

which can be regarded as a sort of bicrossed product of F and G with respect to the twisting natural
transformation λ.

The twisted tensor product of two K-algebras A and B with respect to a K-linear twisting map
R : B ⊗K A → A ⊗K B was investigated for instance in [Ma1,Tam,CSV,CIMZ,LPoV,JLPvO]. It is the analo-
gous in the category of associative and unital algebras of the bicrossed product of groups. The classical
tensor product of two algebras, the graded tensor product of two graded algebras, skew algebras,
smash products, Ore extensions, generalized quaternion algebras, quantum affine spaces and quantum
tori are all examples of twisted tensor products.

Another class of examples, including the Drinfeld double and the double crossed product of
a matched pair of bialgebras, comes from the theory of Hopf algebras, see [Ma2]. Some of these
constructions have been generalized for bialgebras in monoidal categories [BD] and bimonads [BV].

Enriched categories have been playing an increasingly important role not only in Algebra, but also
in Algebraic Topology and Mathematical Physics, for instance. They generalize usual categories, linear
categories, Hopf module categories and Hopf comodule categories. Monoids, algebras, coalgebras and
bialgebras may be regarded as enriched categories with one object.

Our aim in this paper is to ‘categorify’ the factorization problem, i.e. to answer the question when
an enriched category factorizes through a couple of enriched subcategories. Finding a solution at this
level of generality would allow us to approach in an unifying way all factorization problems that
we have already mentioned. Moreover, it would also provide a general method for producing new
non-trivial examples of enriched categories.

In order to define factorizable enriched categories, we need some notation. Let C be a small en-
riched category over a monoidal category (M,⊗,1). Let S denote the set of objects in C . For the
hom-objects in C we use the notation xC y . The composition of morphisms and the identity mor-
phisms in C are defined by the maps xc y

z : xC y ⊗ yCz → xCz and 1x : 1 → xCx , respectively. For
details, the reader is referred to the next section. We assume that A and B are two enriched sub-
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categories of C . The inclusion functor α : A → C is given by a family { xαy}x,y∈S of morphisms in M ,
where xαy : x A y → xC y . If β is the inclusion of B in C , then for x, y and u in S we define

xϕ
u
y : x Au ⊗ u B y → xC y, xϕ

y
z = xcu

y ◦ ( xαu ⊗ uβy).

Assuming that all S-indexed families of objects in M have a coproduct it follows that the maps
{ xϕ

u
y }u∈S yield a unique morphism

xϕy :
⊕
u∈S

x Au ⊗ u B y → xC y .

We say that C factorizes through A and B if and only if all xϕy are invertible. An enriched category
C is called factorizable if it factorizes through A and B , for some A and B .

In Theorem 2.3, our first main result, under the additional assumption that the tensor product on
M is distributive over the direct sum, we show that to every M-category C that factorizes through
A and B corresponds a twisting system between B and A, that is a family R := { x R y

z }x,y,z∈S of
morphisms

x R y
z : x B y ⊗ y Az →

⊕
u∈S

x Au ⊗ u Bz

which are compatible with the composition and identity maps in A and B in a certain sense.
Trying to associate to a twisting system R := { x R y

z }x,y,z∈S an M-category we encountered some
difficulties due to the fact that, in general, the image of x R y

z is too big. Consequently, in this paper we
focus on the particular class of twisting systems for which there is a function | · · · | : S × S × S → S
such that the image of x R y

z is included into x A|xyz| ⊗ |xyz|Bz, for every x, y, z ∈ S . These twisting
systems are characterized in Proposition 2.5. A more precise description of them is given in Corol-
lary 2.7, provided that M satisfies an additional condition (†), see §2.6. A similar result is obtained in
Corollary 2.9 for a linear monoidal category.

In this way we are led in §2.10 to the definition of simple twisting systems. For such a twisting
system R between B and A, in Theorem 2.14 we construct an M-category A ⊗R B which factorizes
through A and B . Since it generalizes the twisted tensor product of algebras, A ⊗R B will be called
the twisted tensor product of A and B .

In the third section we consider the case when M is the monoidal category of coalgebras in
a braided category M ′ . In this setting, we prove that there is an one-to-one correspondence between
simple twisting systems and matched pair of enriched categories, see §3.6 for the definition of the
latter notion. We shall refer to the twisted tensor product of a matched pair as the bicrossed product.
By construction, the bicrossed product is a category enriched over M ′ , but we prove that it is enriched
over M as well.

More examples of twisted tensor products of enriched categories are given in the last part of the
paper. By definition, usual categories are enriched over Set, the category of sets. Actually, they are en-
riched over the monoidal category of coalgebras in Set. Hence, simple twisting systems and matched
pairs are equivalent notions for usual categories. Moreover, if A and B are thin categories (that is
their hom-sets contain at most one morphism), then we show that any twisting system between B
and A is simple, so it corresponds to a uniquely determined matched pair of categories. We use this
result to investigate the twisting systems between two posets.

Our results may be applied to algebras in a monoidal category M , which are enriched categories
with one object. Therefore, we are also able to recover all bicrossed product constructions that we
discussed at the beginning of this introduction.

Finally, we prove that the bicrossed product of two groupoids is also a groupoid, and we give an
example of factorizable groupoid with two objects.
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1. Preliminaries and notation

Mainly for fixing the notation and the terminology, in this section we recall the definition of
enriched categories, and then we give some example that are useful for our work.

1.1. Monoidal categories. Throughout this paper (M,⊗,1,a, l, r) will denote a monoidal category with
associativity constraints aX,Y ,Z : (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z) and unit constraints lX : 1 ⊗ X → X and
rX : X ⊗ 1 → X . The class of objects of M will be denoted by M0. Mac Lane’s Coherence Theorem
states that given two parenthesized tensor products of some objects X1, . . . , Xn in M (with possible
arbitrary insertions of the unit object 1) there is a unique morphism between them that can be
written as a composition of associativity and unit constraints, and their inverses. Consequently, all
these parenthesized tensor products can be identified coherently, and the parenthesis, associativity
constraints and unit constraints may be omitted in computations. Henceforth, we shall always ignore
them. The identity morphism of an object X in M will be denoted by the same symbol X .

By definition, the tensor product is a functor. In particular, for any morphisms f ′ : X ′ → Y ′′ and
f ′′ : X ′′ → Y ′′ in M the following equations hold(

f ′ ⊗ Y ′′) ◦ (
X ′ ⊗ f ′′) = f ′ ⊗ f ′′ = (

Y ′ ⊗ f ′′) ◦ (
f ′ ⊗ X ′′). (1)

If the coproduct of a family {Xi}i∈I of objects in M exists, then it will be denoted as a pair
(
⊕

i∈I Xi, {σi}i∈I ), where the maps σi : Xi → ⊕
i∈I Xi are the canonical inclusions.

1.2. The opposite monoidal category. If (M,⊗,1,a, l, r) is a monoidal category, then one con-
structs the monoidal category (Mo,⊗o,1o,ao, lo, ro) as follows. By definition, Mo and M share the
same objects and identity morphisms. On the other hand, for two objects X, Y in M , one takes
HomMo (X, Y ) := HomM (Y , X). The composition of morphisms in Mo

• : HomMo (Y , Z) × HomMo (X, Y ) → HomMo (X, Z)

is defined by the formula f • g := g ◦ f , for any f : Z → Y and g : Y → X in M . The monoidal
structure is defined by X ⊗o Y = X ⊗ Y and 1o = 1. The associativity and unit constraints in Mo are
given by ao

X,Y ,Z = a−1
X,Y ,Z , lo = l−1

X and ro = r−1
X . If, in addition M is braided monoidal, with braiding

χX,Y : X ⊗ Y → Y ⊗ X then Mo is also braided, with respect to the braiding χo defined by χo
X,Y :=

(χX,Y )−1.

Definition 1.3. Let S be a set. We say that a monoidal category M is S-distributive if every S-indexed
family of objects in M has a coproduct, and the tensor product is distributive to the left and to
the right over any such coproduct. More precisely, M is S-distributive if for any family {Xi}i∈S the
coproduct (

⊕
i∈S Xi, {σi}i∈S) exists and, for an arbitrary object X ,

(
X ⊗

( ⊕
i∈S

Xi

)
, {X ⊗ σi}i∈S

)
and

(( ⊕
i∈S

Xi

)
⊗ X, {σi ⊗ X}i∈S

)

are the coproducts of {X ⊗ Xi}i∈S and {Xi ⊗ X}i∈S , respectively. Note that all monoidal categories are
S-distributive, provided that S is a singleton (i.e. the cardinal of S is 1).

1.4. Enriched categories. An enriched category C over (M,⊗,1), or an M-category for short, consists
of:

(1) A class of objects, that we denote by C0. If C0 is a set we say that C is small.
(2) A hom-object xC y in M , for each x and y in C0. It plays the same role as HomC (y, x), the set of

morphisms from y to x in an ordinary category C .



420 A. Bârdeş, D. Ştefan / Journal of Algebra 348 (2011) 416–445
Fig. 1. The definition of enriched categories.

(3) A morphism xc y
z : xC y ⊗ y Cz → xCz , for all x, y and z in C0.

(4) A morphism 1x : 1 → xCx , for all x in C0.

By definition one assumes that the diagrams in Fig. 1 are commutative, for all x, y, z and t in C0. The
commutativity of the square means that the composition of morphisms in C , defined by { xc y

z }z,y,z∈C0 ,
is associative. We shall say that 1x is the identity morphism of x ∈ C0.

An M-functor α : C → C ′ is a couple (α0, { xαy}x,y∈C0 ), where α0 : C0 → C ′
0 is a function and

xαy : xC y → x′ C ′
y′ is a morphism in M for any x, y ∈ C0, where for simplicity we denoted α0(u)

by u′ , for any u ∈ C0. By definition, α0 and xαy must satisfy the following conditions

xαx ◦ 1C
x = 1D

x′ and x′dy′
z′ ◦ ( xαy ⊗ yαz) = xαz ◦ xc y

z .

1.5. To work easier with tensor products of hom-objects in M-categories we introduce some new
notation. Let S be a set and for every i = 1, . . . ,n + 1 we pick up a family { x Xi

y}x,y∈S of objects in

M . If x1, . . . , xn+1 ∈ S then the tensor product x0 X1
x1

⊗ x1 X2
x2

⊗ · · ·⊗ xn−1 Xn
xn

⊗ xn Xn+1
xn+1

will be denoted

by x0 X1
x1

X2
x2

· · · xn Xn+1
xn+1

. Assuming that M is S-distributive and fixing x0 and xn+1, one can construct
inductively the iterated coproduct

x0 X1
x1

· · · xn−1 Xn
xn

Xn+1
xn+1

:=
⊕
x1∈S

· · ·
⊕
xn∈S

x0 X1
x1

· · · xn−1 Xn
xn

Xn+1
xn+1

. (2)

It is not difficult to see that this object is a coproduct of { x0 X1
x1

· · · xn Xn+1
xn+1

}(x1,...,xn)∈Sn . Moreover, as
a consequence of the fact that the tensor product is distributive over the direct sum, we have

x0 X1
x1

· · · xn−1 Xn
xn

Xn+1
xn+1

∼=
⊕
x1∈S

· · ·
⊕
xn∈S

x0 X1
xπ(1)

X2
xπ(2)

· · · xπ(n)
Xn+1

xn+1
(3)

for any permutation π of the set {1,2, . . . ,n}. The inclusion of x0 X1
x1

· · · xn Xn+1
xn+1

into the coproduct
defined in (2) is also inductively constructed as the composition of the following two arrows

x0 X1
x1

⊗ x1 X1
x2

· · · xn Xn+1
xn+1

−→ x0 X1
x1

⊗ x1 X1
x2

· · · xn Xn+1
xn+1

↪→
⊕
x1∈S

x 0 X1
x1

⊗ x1 X1
x2

· · · xn Xn+1
xn+1

,

where the first morphism is the tensor product between the identity of x0 X1
x1

and the inclusion of

x1 X1
x2

· · · xn Xn+1
xn+1

into x1 X1
x2

· · · xn Xn+1
xn+1

. Clearly, for every xn+1 ∈ S ,

x0 X1
x1

· · · xn−1 Xn
xn

Xn+1
xn+1

:=
⊕
x0∈S

x0 X1
x1

· · · xn−1 Xn
xn

Xn+1
xn+1

is the coproduct of { x0 X1
x1

· · · xn Xn+1
xn+1

}(x0,x1,...,xn)∈Sn . The objects x0 X1
x1

· · · xn−1 Xn
xn

Xn+1
xn+1

and

x0 X1
x · · · xn−1 Xn

x Xn+1
x are analogously defined.
1 n n+1
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A similar notation will be used for morphisms. Let us suppose that xα
i
y is a morphism in M with

source x Xi
y and target xY i

y , where x, y ∈ S and i ∈ {1, . . . ,n + 1}. We set

x1α
1
x2

α2
x3

· · · xnα
n+1
xn+1

:= x0α
1
x1

⊗ · · · ⊗ xnα
n+1
xn+1

.

By the universal property of coproducts, { x0α
1
x1

· · · xnα
n+1
xn+1

}(x1···xn)∈Sn induces a unique map x0α
1
x1

· · ·
xn−1α

n−1
xn

αn
xn+1

that commutes with the inclusions. In a similar way one constructs

x0α
1
x1

· · · xn−1α
n
xn

αn+1
xn+1

, x0α
1
x1

· · · xn−1α
n
xn

αn+1
xn+1

and x0α
1
x1

· · · xn−1α
n
xn

αn+1
xn+1

.

To make the above notation clearer, let us have a look at some examples. Let A and B be two M-
categories such that A0 = B0 = S . Recall that the hom-objects in A and B are denoted by x A y and
x B y . Hence, x A y = ⊕

x∈S x A y . We also have x A y Bz At = x A y ⊗ y Bz ⊗ z At and

x A y Bz At =
⊕
y∈S

⊕
z∈S

x A y Bz At ∼=
⊕
z∈S

⊕
y∈S

x A y Bz At ∼=
⊕
y,z∈S

x A y Bz At .

Since we have agreed to use the same notation for an object and its identity map, we can write
x B yαz Atβu instead of Idx B y ⊗ yαz ⊗ Id z At ⊗ tβu , for any morphisms yαz and tβu in M . The maps

xay
z : x A y Az −→ x Az and xay

z : x A y Az −→ x Az are induced by the composition in A, that is by
the set { xay

z }z∈S . For example, the former map is uniquely defined such that its restriction to
x A y Az and σx,z ◦ xay

z coincide for all x ∈ S , where σx,z is the inclusion of x Az into x Az . Similarly,

xay
z : x A y Az −→ x Az is the unique map whose restriction to x A y Az is xay

z , for all y ∈ S .
For more details on enriched categories the reader is referred to [Ke]. We end this section giving

some examples of enriched categories.

1.6. The category Set. The category of sets is monoidal with respect to the Cartesian product. The
unit object is a fixed singleton set, say {∅}. The coproduct in Set is the disjoint union. Since the
disjoint union and the Cartesian product commute, Set is S-distributive for any set S . Clearly, a Set-
category is an ordinary category. If C is such a category, then an element f ∈ xC y will be thought of
as a morphism from y to x, and it will be denoted by f : y → x, as usual. In this case we shall say
that y (respectively x) is the domain or the source (respectively the codomain or the target) of f . The
same notation and terminology will be used for arbitrary M-categories, whose objects are sets.

1.7. The category KKK-Mod. Let K be a commutative ring. The category of K-modules is monoidal
with respect to the tensor product of K-modules. The unit object is K, regarded as a K-module. This
monoidal category is S-distributive for any S . By definition, a K-linear category is an enriched category
over K-Mod.

1.8. The category Λ-Mod-Λ. Let Λ be a K-algebra and let Λ-Mod-Λ denote the category of left
(or right) modules over Λ ⊗K Λo , where Λo is the opposite algebra of Λ. Thus, M is an object in
Λ-Mod-Λ if, and only if, it is a left and a right Λ-module and these structures are compatible in the
sense that

a · m = m · a and (x · m) · y = x · (m · y)

for all a ∈ K, x, y ∈ Λ and m ∈ M . A morphism in Λ-Mod-Λ is a map of left and right Λ-modules.
The category of Λ-bimodules is monoidal with respect to (−) ⊗Λ (−). The unit object in Λ-Mod-Λ
is Λ, regarded as a Λ-bimodule. This monoidal category also is S-distributive for any S .
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1.9. The category H -Mod. Let H be a bialgebra over a commutative ring K. The category of left H-
modules is monoidal with respect to (−) ⊗K (−). If M and N are H-modules, then the H-action on
M ⊗ N is given by

h · m ⊗ n =
∑

h(1) · m ⊗ h(2) · n.

In the above equation we used the Σ-notation �(h) = ∑
h(1) ⊗ h(2) . The unit object is K, which is

an H-module with the trivial action, induced by the counit of H . This category is S-distributive, for
any S . An enriched category over H-Mod is called H-module category.

1.10. The category Comod-H . Dually, the category of right H-comodules is monoidal with respect to
(−) ⊗K (−). The coaction on and M ⊗K N is defined by

ρ(m ⊗ n) =
∑

m〈0〉 ⊗ n〈0〉 ⊗ m〈1〉n〈1〉,

where ρ(m) = ∑
m〈0〉 ⊗ n〈0〉 , and a similar Σ-notation was used for ρ(n). This category is S-

distributive, for any set S . By definition, an H-comodule category is an enriched category over
Comod-H .

1.11. The category [A, A]. Let A be a small category, and let [A, A] denote the category of all endo-
functors of A. Therefore, the objects in [A, A] are functors F : A → A, while the set F [A, A]G contains
all natural transformations μ : G → F . The composition in this category is the composition of natu-
ral transformations. The category [A, A] is monoidal with respect to the composition of functors. If
μ : F → G and μ′ : F ′ → G ′ are natural transformations, then the natural transformations μF ′ and
Gμ′ are given by

μF ′ : F ◦ F ′ → G ◦ G ′,
(
μF ′)

x := μF ′(x),

Gμ′ : G ◦ F ′ → G ◦ G ′,
(
Gμ′)

x := G
(
μ′

x

)
.

We can now define the tensor product of μ and μ′ by

μ ⊗ μ′ := Gμ′ ◦ μF ′ = μG ′ ◦ Fμ′.

Even if A is S-distributive, [A, A] may not have this property. In spite of the fact that, by as-
sumption, any S-indexed family in [A, A] has a coproduct, in general this does not commute with
the composition of functors. Nevertheless, as we have already noticed, [A, A] is S-distributive if
|S| = 1.

This remark will allow us to apply our main results to an [A, A]-category C with one object x.
Hence F := xCx is an endofunctor of A, and the composition and the identity morphisms in C are
uniquely defined by natural transformations

μ : F ◦ F → F and ι : IdA → F .

The commutativity of the diagrams in Fig. 1 is equivalent in this case with the fact that (F ,μ, ι) is a
monad, see [Be] for the definition of monads. In conclusion, monads are in one-to-one correspondence
to [A, A]-categories with one object.

1.12. The category Opmon(M). Let (M,⊗,1) be a monoidal category. An opmonoidal functor is
a triple (F , δ, ε) that consists of
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Fig. 2. The definition of opmonoidal functors.

(1) A functor F : M → M .
(2) A natural transformation δ := {δx,y}(x,y)∈M0×M0 , with δx,y : F (x ⊗ y) → F (x) ⊗ F (y).
(3) A map ε : F (1) → 1 in M .

In addition, the transformations δ and ε are assumed to render commutative the diagrams in Fig. 2.
An opmonoidal transformation α : (F , δ, ε) → (F ′, δ′, ε′) is a natural map α : F → F ′ such that, for
arbitrary objects x and y in M ,

(αx ⊗ αy) ◦ δx,y = δ′
x,y ◦ αx⊗y and ε′ ◦ α1 = ε.

Obviously the composition of two opmonoidal transformations is opmonoidal, and the identity of
an opmonoidal functor is an opmonoidal transformation. The resulting category will be denoted by
Opmon(M). For two opmonoidal functors (F , δ, ε) and (F ′, δ′, ε′) one defines

(F , δ, ε) ⊗ (
F ′, δ′, ε′) := (

F ◦ F ′, δF ′,F ′ ◦ F
(
δ′), ε ◦ F

(
ε′)),

where δF ′,F ′ = {δF ′(x),F ′(y)}x,y∈M0 . On the other hand, if μ : F → G and μ′′ → G ′ are opmonoidal
transformations, then μ ⊗ μ′ := μG ′ ◦ Fμ′ is opmonoidal too. One can see easily that ⊗ defines
a monoidal structure on Opmon(M) with unit object (IdM , {Idx⊗y}x,y∈M0 , Id1).

1.13. The categories Alg(M) and Coalg(M). Let (M,⊗,1,χ) be a braided monoidal category with
braiding χ := {χx,y}(x,y)∈M0×M0 , where χx,y : x ⊗ y → y ⊗ x. The category Alg(M) of all algebras in
M is monoidal too. Recall that an algebra in M is an M-category with one object. As in §1.11, such
a category is uniquely determined by an object X in M and two morphisms m : X ⊗ X → X (the
multiplication) and u : 1 → X (the unit). The commutativity of the diagrams in Fig. 1 means that the
algebra is associative and unital. If (X,m, u) and (X ′,m′, u′) are algebras in M , then X ⊗ X ′ is an
algebra in M with multiplication

(
m ⊗ m′) ◦ (

X ⊗ χX ′,X ⊗ X ′) : (X ⊗ X ′) ⊗ (
X ⊗ X ′) → X ⊗ X ′

and unit u ⊗ u′ : 1 → X ⊗ X ′ .
The monoidal category Coalg(M) of coalgebras in M can be defined in a similar way. Alternatively,

one may take Coalg(M) := Alg(Mo)o . Note that the monoidal category of coalgebras in M and the
monoidal category of algebras in Mo are opposite each other.

It is not hard to see that Coalg(M) is S-distributive, provided that M is so.

2. Factorizable M-categories and twisting systems

In this section we define factorizable M-categories and twisting systems. We shall prove that to
every factorizable system corresponds a certain twisting system. Under a mild extra assumption on
the monoidal category M , we shall also produce enriched categories using a special class of twisting
systems that we call simple.
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Fig. 3. The definition of twisting systems.

Throughout this section S denotes a fixed set. We assume that all M-categories that we work with
are small, and that their set of objects is S .

2.1. Factorizable M-categories. Let C be a small enriched category over (M,⊗,1). We assume that
M is S-distributive. Suppose that A and B are M-subcategories of C . Note that, by assumption, A0 =
B0 = C0 = S . For x, y and u in S we define

xϕ
u
y : x A u B y → xC y, xϕ

u
y := xcu

y ◦ xαuβy, (4)

where α : A → C and β : B → C denote the corresponding inclusion M-functors. By the universal
property of coproducts, for every x and y in S , there is xϕy : x Au B y → xC y such that

xϕy ◦ xσ
u
y = xϕ

u
y , (5)

where xσ
u
y is the canonical inclusion of x Au B y into x Au B y . Note that by the universal property of

coproducts xϕy = xcu
y ◦ xαuβy , as we have xαuβy ◦ xσ

u
y = xτ

u
y ◦ xαuβy and xcu

y ◦ xτ
u
y = xcu

y , where
xτ

u
y denotes the inclusion of xCu C y into xCu C y .
We shall say that C factorizes through A and B if xϕy is an isomorphism, for all x and y in S . By

definition, an M-category C is factorizable if it factorizes through A and B , where A and B are certain
M-subcategories of C .

2.2. The twisting system associated to a factorizable M-category. Let C be an enriched category over
a monoidal category (M,⊗,1). We assume that M is S-distributive. The family R := { x R y

z }x,y,z∈S

of morphisms x R y
z : x B y Az → x Au B y is called a twisting system if the four diagrams in Fig. 3 are

commutative for all x, y, z and t in S .
Let us briefly explain the notation that we used in these diagrams. As a general rule, we omit

all subscripts and superscripts denoting elements in S , and which are attached to a morphism. The
symbol ⊗ is also omitted. For example, a and 1A (respectively b and 1B ) stand for the suitable com-
position maps and identity morphisms in A (respectively B). The identity morphism of an object
in M is denoted by I . Thus, by Ia : x B y Az At → x B y At we mean x B y ⊗ yaz

t . On the other hand,
aI : x Av Au Bt → x Au Bt is a shorthand notation for xav

u Bt , which in turn is the unique map induced
by { xσ

u
t ◦ xav

u Bt}u,v∈S . We shall keep the foregoing notation in all diagrams that we shall work with.
We claim that to every factorizable M-category C corresponds a certain twisting system. By defi-

nition, the map xϕy constructed in (5) is invertible for all x and y in S . Let xψy denote the inverse of
xϕy . For x, y and z in S , we can now define

x R y
z : x B y Az → x Au Bz, x R y

z := xψz ◦ xc y
z ◦ xβyαz. (6)

Theorem 2.3. If C is a factorizable enriched category over an S-distributive monoidal category M , then the
maps in (6) define a twisting system.
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Proof. Let us first prove that the first diagram in Fig. 3 is commutative. We fix x, y, z and t in S , and
we consider the following diagram.

Since the tensor product in a monoidal category is a functor, that is in view of (1), we have

xC yCuβt ◦ xβyαu Bt = xβyαuβt, (7)

for any u in S . Hence by the universal property of the coproduct and the construction of the maps
xC y Cuβt , xβyαu Bt and xβyαuβt we deduce that the relation which is obtained by replacing u with u
in (7) holds true. This means that the square (A) is commutative. Proceeding similarly one shows that
(B) is commutative as well. Furthermore, xcv

u Ct , xαvβuβt and xψu Bt are induced by { xcv
u ⊗ u Ct}u∈S ,

{ xαvβu ⊗ uβt}u∈S and { xψu ⊗ u Bt}u∈S , respectively. Hence their composite λ := xcv
u Ct ◦ xαvβuβt ◦

xψu Bt is induced by {λu}u∈S , where

λu = (
xcv

u ⊗ uCt
) ◦ ( xαvβu ⊗ uβt) ◦ ( xψu ⊗ u Bt) = (

xcv
u ◦ xαvβu ◦ xψu

) ⊗ uβt

= ( xϕu ◦ xψu) ⊗ uβt .

Since xψu is the inverse of xϕu it follows that λu = xCuβt , for every u ∈ S . In conclusion

xcv
u Ct ◦ xαvβuβt ◦ xψu Bt = xCuβt,

so (C) is a commutative square. Since β is an M-functor it follows that { xCv cu
t ◦ xα vβuβt}u,v∈S and

{ xα vβt ◦ x Avbu
t }u,v∈S are equal. Therefore these families induce the same morphism, that is

xCv cu
t ◦ xα vβuβt = xα vβt ◦ x Avbu

t .

Hence (D) is commutative too. Since the composition of morphisms in C is associative, we have

xcv
t ◦ xCv cu

t = xcu
t ◦ xcv

u Ct and xc y
t ◦ xC ycu

t = xcu
t ◦ xc y

u Ct .

These equations imply that (E) and (F) are commutative. Summarizing, we have just proved that all
diagrams (A)–(F) are commutative. By diagram chasing it results that the outer square is commutative
as well, that is

xϕt ◦ x Avbu
t ◦ x R y Bt = xc y

t ◦ xβyϕt .
u
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Left composing and right composing both sides of this equation by xψt and x B y Rz
t , respectively, yield

x Avbu
t ◦ x R y

u bt ◦ x B y Rz
t = xψt ◦ xc y

t ◦ xβyϕt ◦ x B y Rz
t

= xψt ◦ xc y
t ◦ xβyϕt ◦ x B yψt ◦ x B ycz

t ◦ x B yβzαt

= xψt ◦ xc y
t ◦ xC ycz

t ◦ xβyβzαt,

where for the second and third relations we used the definition of y Rz
t and that yϕt and yψt are

inverses each other. On the other hand, the definition of x Rz
t , the fact that β is a functor and associa-

tivity of the composition in C imply the following sequence of identities

x Rz
t ◦ xby

z At = xψt ◦ xcz
t ◦ xβzαt ◦ xby

z At

= xψt ◦ xcz
t ◦ xc y

z Ct ◦ xβyβzαt

= xψt ◦ xc y
t ◦ xC ycz

t ◦ xβyβzat .

In conclusion, the first diagram in Fig. 3 is commutative. Taking into account the definition of x Rx
y ,

the identity xβx ◦ 1B
x = 1x and the compatibility relation between the composition and the identity

morphisms in an enriched category, we get the following sequence of equations

xϕy ◦ x Rx
y ◦ 1B

x A y = xϕy ◦ xψy ◦ xcx
y ◦ xβxαy ◦ 1B

x A y = xcx
y ◦ 1xαy = xαy .

Analogously, using the definition of xϕy and the properties of identity morphisms, we get

xϕy ◦ xσ
y
y ◦ x A y1B

y = xϕ
y
y ◦ x A y1B

y = xc y
y ◦ xαyβy ◦ x A y1B

y = xc y
y ◦ xαy1y = xαy .

Since xϕy is an isomorphisms, in view of the above computations, it follows that the third diagram is
commutative as well. One can prove in a similar way that the remaining two diagrams in Fig. 3 are
commutative. �
2.4. We have noticed in the introduction that to every twisting system of groups (or, equivalently,
every matched pair of groups) one associates a factorizable group. Trying to prove a similar result for
a twisting system R between the M-categories B and A we have encountered some difficulties due
to the fact that, in general, the image of the map

x R y
z : x B y Az →

⊕
u∈S

x Au Bz

is not included into a summand x Au Bz , for some u ∈ S that depends on x, y and z. For this reason,
in this paper we shall investigate only those twisting systems for which there are a function | · · · | :
S3 → S and the maps x R̃ y

z : x B y Az → x A|xyz|Bz such that

x R y
z = xσ

|xyz|
z ◦ x R̃ y

z , (8)

for all x, y, z,∈ S . For them we shall use the notation (R̃, | · · · |).

Proposition 2.5. Let M be a monoidal category which is S-distributive. Let | · · · | : S3 → S and { x R̃ y
z }x,y,z∈S

be a function and a set of maps as above. The family { x R y
z }x,y,z∈S defined by (8) is a twisting system if and

only if, for any x, y, z, t ∈ S, the following relations hold:
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xσ
|xy|yzt||
t ◦ x A|xy|yzt||b|yzt|

t ◦ x R̃ y
|yzt|Bt ◦ x B y R̃z

t = xσ
|xzt|
t ◦ x R̃ z

t ◦ xby
z At, (9)

xσ
|xyz|zt||
t ◦ xa|xyz|

||xyz|zt|Bt ◦ x A|xyz| R̃ z
t ◦ x R̃ y

z At = xσ
|xyt|
t ◦ x R̃ y

t ◦ x B yaz
t , (10)

xσ
|xxy|
y ◦ x R̃x

y ◦ (
1B

x ⊗ x A y
) = xσ

y
y ◦ (

x A y ⊗ 1B
y

)
, (11)

xσ
|xyy|
y ◦ x R̃ y

y ◦ (
x B y ⊗ 1A

y

) = xσ
x
y ◦ (

1A
x ⊗ x B y

)
. (12)

Proof. We claim that { x R̃ y
z }x,y,z∈S satisfy (9) if and only if { x R y

z }x,y,z∈S render commutative the first
diagram in Fig. 3. Indeed, let us consider the following diagram.

The squares (B) and (C) are commutative by the definition of x R y
u : x B y Au → x Av Bu and vbu

t :
v Bu Bt → v Bt . Hence the hexagon (A) is commutative if and only if the outer square is commuta-
tive. This proves our claim as (A) and the outer square in Fig. 3 are commutative if and only if (9)
holds and the first diagram in Fig. 3 is commutative, respectively. Similarly one shows that the com-
mutativity of the second diagram from Fig. 3 is equivalent to (10). On the other hand, obviously,
the third and fourth diagrams in Fig. 3 are commutative if and only if (11) and (12) hold, so the
proposition is proved. �

The inclusion maps make difficult to handle Eqs. (9)–(12). In some cases we can remove these
morphisms by imposing more conditions on the map | · · · | or on the monoidal category M .

2.6. The assumption (†). Let M be a monoidal category which is S-distributive. We shall say that M
satisfies the hypothesis (†) if for any coproduct (

⊕
i∈S Xi, {σi}i∈S) in M and any morphisms f ′ : X →

Xi′ and f ′′ : X → Xi′′ such that σi′ ◦ f ′ = σi′′ ◦ f ′′ , then either X is an initial object ∅ in M , or f ′ = f ′′
and i′ = i′′ .

The prototype for the class of monoidal categories that satisfy the condition (†) is Set. Indeed, let
{Xi}i∈S be a family of sets, and let σi denote the inclusion of Xi into the disjoint union

∐
i∈S Xi . We

assume that f ′ : X → Xi′ and f ′′ : X → Xi′′ are functions such that X in not the empty set, the initial
object of Set, and σi′ ◦ f ′ = σi′′ ◦ f ′′ . Then in view of the computation

(
i′, f ′(x)

) = (
σi′ ◦ f ′)(x) = (

σi′′ ◦ f ′′)(x) = (
i′′, f ′′(x)

)
it follows that f ′ = f ′′ and i′ = i′′ .

Corollary 2.7. Let M be an S-distributive monoidal category. Let A and B be two M-categories such that
A0 = B0 = S. Given a function | · · · | : S3 → S and the maps { x R̃ y

z }x,y,z∈S as in §2.4, let us consider the
following four conditions:
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(i) If x B y Bz At is not an initial object, then |xy|yzt|| = |xzt| and

x A|xzt|b|yzt|
t ◦ x R̃ y

|yzt|Bt ◦ x B y R̃z
t = x R̃ z

t ◦ xby
z At; (13)

(ii) If x B y Az At is not an initial object, then ||xyz|zt| = |xyt| and

xa|xyz|
|xyt| Bt ◦ x A|xyz| R̃ z

t ◦ x R̃ y
z At = x R̃ y

t ◦ x B yaz
t ; (14)

(iii) If x A y is not an initial object, then |xxy| = y and

x R̃x
y ◦ (

1B
x ⊗ x A y

) = x A y ⊗ 1B
y ; (15)

(iv) If x B y is not an initial object, then |xyy| = x and

x R̃ y
y ◦ (

x B y ⊗ 1A
y

) = 1A
x ⊗ x B y . (16)

The above conditions imply the relations (9)–(12). Under the additional assumption that M satisfies the
hypothesis (†), the reversed implication holds as well.

Proof. Let us prove that the condition (i) implies the relation (9). In the case when x B y Bz At = ∅
this is clear, as both sides of (9) are morphisms from an initial object to x Au Bt . Let us suppose
that x B y Bz At �= ∅. By composing both sides of (13) with xσ

|xy|yzt||
t = xσ

|xzt|
t we get the equation (9).

Similarly, the conditions (ii), (iii) and (iv) imply the relations (10), (11) and (12), respectively.
Let us assume that M satisfies the hypothesis (†). We claim that (9) implies (i). If x B y B z At is

not an initial object we take f ′ and f ′′ to be the left-hand side and the right-hand side of (13),
respectively. We also set i′ := |xy|yzt|| and i′′ := |xzt|. In view of (†), it follows that f ′ = f ′′ and
i′ = i′′ , so our claim has been proved. We conclude the proof in the same way. �
2.8. KKK-linear monoidal categories. Recall that M is K-linear if its hom-sets are K-modules, and both
the composition and the tensor product of morphisms are K-bilinear maps. For instance, K-Mod,
H-Mod, Comod-H and Λ-Mod-Λ are S-distributive linear monoidal categories, for any set S .

Note that the (†) condition fail in a K-linear monoidal category M . Indeed let us pick up an
object X , which is not an initial object, and a coproduct (

⊕
i∈S Xi, {σi}i∈S) in M . If f ′ : X → Xi′ and

f ′′ : X → Xi′′ are the zero morphisms, then of course σi′ ◦ f ′ = σi′′ ◦ f ′′ , but neither i′ = i′′ nor f ′ = f ′′ ,
in general.

Nevertheless, the relations (9)–(12) can also be simplified if M is a linear monoidal category. For
any coproduct (

⊕
i∈S Xi, {σi}i∈S) in M and every i ∈ S , there is a map πi : ⊕

i∈S Xi → Xi such that
πi ◦ σi = Xi and πi ◦ σ j = 0, provided that j �= i. Hence, supposing that f ′ : X → Xi′ and f ′′ : X → Xi′′
are morphisms such that σi′ ◦ f ′ = σi′′ ◦ f ′′ , we must have either i′ = i′′ and f ′ = f ′′ , or i′ �= i′′ and
f ′ = 0 = f ′′ .

Using the above property of linear monoidal categories, and proceeding as in the proof of the
previous corollary, we get the following result.

Corollary 2.9. Let M be an S-distributive K-linear monoidal category. If A and B are M-categories, then the
relations (9)–(12) are equivalent to the following conditions:

(i) If |xy|yzt|| = |xzt| then the relation (13) holds; otherwise, each side of this identity has to be the zero
map;

(ii) If ||xyz|zt| = |xyt|, then the relation (14) holds; otherwise, each side of this identity has to be the zero
map;

(iii) If |xxy| = y, then the relation (15) holds; otherwise, each side of this identity has to be the zero map;
(iv) If |xyy| = x, then the relation (16) holds; otherwise, each side of this identity has to be the zero map.
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2.10. Simple twisting systems. The proper context for constructing an enriched category A ⊗R B out
of a special type of twisting system R is provided by Corollary 2.7.

By definition, the couple (R̃, | · · · |) is a simple twisting system between B and A if the function
| · · · | : S3 → S and the maps { x R̃ y

z }x,y,z∈S as in §2.4 satisfy the conditions (i)–(iv) in Corollary 2.7. As
a part of the definition, we also assume that x A|xyz|Bz is not an initial object whenever x B y Az is not
so.

The latter technical assumption will be used to prove the associativity of the composition in
A ⊗R B , our categorical version of the twisted tensor product of two algebras, which we are going
to define in the next subsection. Note that for Set this condition is superfluous (if the source of x R̃ y

z
is not empty, then its target cannot be the empty set).

For a simple twisting system (R̃, | · · · |) we define the maps x R y
z using the relation (8). By Corol-

lary 2.7 and Proposition 2.5 it follows that R := { x R y
z }x,y,z∈S is a twisting system.

2.11. The category A ⊗R B . For a simple twisting system (R̃, | · · · |) we set

(A ⊗R B)0 := S and x(A ⊗R B)y :=
⊕
u∈S

x Au ⊗ u B y = x Au B y .

Let us fix three elements x, y and z in S . By definition x Au B y Av̄ Bz := ⊕
u,v∈S x Au B y Av Bz , and

x Au B y Av Bz ∼= x Au B y ⊗ y Av Bz

as M is S-distributive. Via this identification, the canonical inclusion of x Au B y Av Bz into the co-
product x Au B y Av Bz corresponds to xσ

u
y σ v

z = xσ
u
y ⊗ yσ

v
z . Thus, there is a unique morphism xc y

z :
x Au B y Av Bz → x Au Bz such that

xc y
z ◦ xσ

u
y σ v

z = xσ
|uyv|
z ◦ xa|uyv|bz ◦ x Au R̃ y

v Bz,

for all u, v ∈ S . Finally, we set 1x := xσ
x
x ◦ (1A

x ⊗ 1B
x ), and we define

xαy := xσ
y
y ◦ (

x A y ⊗ 1B
y

)
and xβy := xσ

x
y ◦ (

1A
x ⊗ x B y

)
.

2.12. Domains. To show that the above data define an enriched monoidal category A ⊗R B we need
an extra hypothesis on M . By definition, a monoidal category M is a domain in the case when the
tensor product of two objects is an initial object if and only if at least one of them is an initial object.
By convention, a monoidal category that has no initial objects is a domain as well.

Obviously Set is a domain. If K is a field, then K-Mod is a domain. Keeping the assumption on
K, the categories H-Mod and Comod-H are domains, as their tensor product is induced by that one
of K-Mod. On the other hand, if K is not a field, then K-Mod and Λ-Mod-Λ are not necessarily
domains. For instance, Z-Mod ∼= Z-Mod-Z is not a domain.

Lemma 2.13. Let M be an S-distributive monoidal domain. Let (R̃, | · · · |) denote a simple twisting system
between B and A.

(1) If x Au B y Av Bz Aw Bt �= ∅ then |uyq| = |pvq| = |pzw|, where p = |uyv| and q = |vzw|.
(2) In the following diagram all squares are well defined and commutative.
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Proof. Since M is a domain it follows that any subfactor of x Au B y Av Bz Aw Bt is not an initial object.
In particular v Bz Aw �= ∅. Thus, by the definition of simple twisting systems, v Aq B w is not an initial
object. In conclusion, v Aq and q B w are not initial objects in M . Since u B y Av �= ∅ it follows that
u B y Av Aq �= ∅. In view of the definition of simple twisting systems (the second condition) we deduce
that |pvq| = |uyq|. The other relation can be proved in a similar way.

Let f and g denote the following two morphisms

f := x Auap
|pvq|Bq Bt ◦ x Au Ap R̃ v

q Bt ◦ x Au R̃ y
v Aq Bt and g := x Au R̃ y

q Bt ◦ x Au B yav
q Bt .

The target of f is x Au A|pvq|Bq Bt , while the codomain of g is x Au A|uyq|Bq Bt . These two objects may
be different for some elements x, u, t, p and q in S . Thus, in general, it does not make sense to speak
about the square (R). On the other hand, we have seen that |uyq| = |pvq|, if p = |uyv| and q = |vzw|.
Hence (R) is well defined for these values of p and q. Furthermore, since u B y Av Aq �= ∅, by definition
of simple twisting systems we have

uap
|pvq|Bq ◦ u Ap R̃ v

q ◦ u R̃ y
v Aq = u R̃ y

q ◦ u B yav
q . (17)

By tensoring both sides of the above relation with x Au on the left and with q Bt on the right we get
that f = g , i.e. (R) is commutative. Analogously, one shows that (L) is well defined and commutative.
All other squares are well defined by construction, their arrows targeting to the right objects. The
squares (F) are commutative since the tensor product is a functor. The remaining squares (A) are
commutative by associativity. �
Theorem 2.14. Let M be an S-distributive monoidal domain. If (R̃, | · · · |) is a simple twisting system, then the
data in §2.11 define an M-category A ⊗R B that factorizes through A and B .

Proof. Let us assume that x Au B y Av Bz Aw Bt �= ∅. In view of the previous lemma, the outer square in
the diagram from Lemma 2.13(2) is commutative. It follows that

xc y
t ◦ x Au B ycz

t ◦ xσ
u
y σ v

z σ w
t = xcz

t ◦ xc y
z Aw Bt ◦ xσ

u
y σ v

z σ w
t .

If x Au B y Av Bz Aw Bt = ∅ this identity obviously holds. Since x Au B y Av Bz Aw Bt is the coproduct of
{ x Au B y Av Bz Aw Bt}u,v,w∈S , with the canonical inclusions { xσ

u
y σ v

z σ w
t }u,v,w∈S , we deduce that the

composition in A ⊗R B is associative.
We apply the same strategy to show that 1x := xσ

x
x ◦ (1A

x ⊗ 1B
x ) is a left identity map of x, that

is we have xcx
y ◦ (1x ⊗ x Au B y) = x Au B y for any y. By the universal property of coproducts and the

definition of the composition in A ⊗R B , it is enough to prove that

xσ
|xxu|
y ◦ xax|xxu|bu

y ◦ x Ax R̃x
u B y ◦ (

1A
x ⊗ 1B

x ⊗ x Au B y
) = xσ

u
y , (18)
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for all u ∈ S . If x Au is an initial object we have nothing to prove, as the domains of the sides of the
above equation are also initial objects (recall that x Au B y = ∅ if x Au = ∅). Let us suppose that x Au is
not an initial object. Then by the definition of simple twisting systems (the third condition) we get
|xxu| = u and

xσ
|xxu|
y ◦ xax|xxu|bu

y ◦ x Ax R̃x
u B y ◦ (

1A
x ⊗ 1B

x ⊗ x Au B y
) = xσ

u
y ◦ xax

ubu
y ◦ (

1A
x ⊗ x Au ⊗ 1B

u ⊗ u B y
)
.

Thus Eq. (18) immediately follows by the fact 1A
x and 1B

u are the identity morphisms of x and u. The
fact that 1x is a right identity map of x can be proved analogously.

We now claim that { xαy}x,y∈S is an M-functor. Taking into account the definition of α and xc y
z

we must prove that

xσ
|yyz|
z ◦ xax|yyz|az

z ◦ x A y R̃ y
z Az ◦ (

x A y ⊗ 1A
y ⊗ y Az ⊗ 1A

z

) = xσ
z
z ◦ (

xay
z ⊗ 1A

z

)
, (19)

for all x, y and z in S . Once again, if y Az = ∅ we have nothing to prove. In the other case, one can
proceed as in the proof of (18) to get this equation. Similarly, β is an M-functor.

It remains to prove the fact that A ⊗R B factorizes through A and B . As a matter of fact, for this
enriched category, we shall show that xϕy is the identity map of x(A ⊗R B)y , for all x and y in S .
Recall that xϕy is the unique map such that xϕy ◦ xσ

u
y = xcu

y ◦ xαuβy , for all u ∈ S . Hence to conclude
the proof of the theorem it is enough to obtain the following relation

xσ
|uuu|
y ◦ xau|uuu|bu

y ◦ x Au R̃u
u B y ◦ (

x Au ⊗ 1B
u ⊗ 1A

u ⊗ u Bz
) = xσ

u
y , (20)

for all u ∈ S . We may suppose that x Au is not initial object. Thus |uuu| = u and we can take x = u
and y = u in (16). Hence, using the same reasoning as in the proof of (18), we deduce the required
identity. �
Corollary 2.15. Let A and B be enriched categories over an S-distributive monoidal category M . Let us suppose
that for all x, y, z and t in S the function | · · · | : S3 → S satisfies the equations

∣∣xy|yzt|∣∣ = |xzt|, ∣∣|xyz|zt
∣∣ = |xyt|, |xxy| = y and |xyy| = x. (21)

If { x R̃ y
z }x,y,z∈S is a family of maps which satisfies the identities (13)–(16) for all x, y, z and t in S, then the

data in §2.11 define an M-category A ⊗R B that factorizes through A and B .

Proof. Let x, y, u, v , z, w and t be arbitrary elements in S . By using the first two identities in (21) we
get |uyq| = |pvq| = |pzw|, where p = |uyv| and q = |vzw|. Hence the first statement in Lemma 2.13
is true. In particular, the squares (R) and (L) in the diagram from Lemma 2.13(2) are well defined.
On the other hand, under the assumptions of the corollary, the relation (17) hold. Therefore we can
continue as in the proof of the second part of Lemma 2.13 to show that (R) is commutative. Similarly,
(L) is commutative too. It follows that the outer square of is commutative too. By the universal prop-
erty of the coproduct we deduce that the composition is associative, see the first paragraph of the
proof of Theorem 2.14.

Furthermore, the relations in (21) together with the identities (13)–(16) imply Eqs. (18), (19) and
(20). Proceeding as in the proof of Theorem 2.14 we conclude that A ⊗R B is an M-category that
factorizes through A and B . �
Remark 2.16. Throughout this remark we assume that M is a T -distributive monoidal category, where
T is an arbitrary set. In other words, any family of objects in M has a coproduct and the tensor prod-
uct is distributive over all coproducts. It was noticed in [RW, §2.1 and §2.2] that, for such a monoidal
category M , one can define a bicategory M-mat as follows.
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By construction, its 0-cells are arbitrary sets. If I and J are two sets, then the 1-cells in M-mat
from I to J are the J × I-indexed families of objects in M . A 2-cell with source {X ji}( j,i)∈ J×I and
target {Y ji}( j,i)∈ J×I is a family { f ji}( j,i)∈ J×I of morphisms f ji : X ji → Y ji . The composition of the
1-cells {Xkj}(k, j)∈K× J and {Y ji}( j,i)∈ J×I is the family {Zki}(k,i)∈K×I , where

Zki :=
⊕
j∈ J

Xkj ⊗ Y ji .

The vertical composition in M-mat of { f ji}( j,i)∈ J×I and {g ji}( j,i)∈ J×I makes sense if and only if the
source of f ji and the target of g ji are equal for all i and j. If it exists, then it is defined by

{ f ji}( j,i)∈ J×I • {g ji}( j,i)∈ J×I = { f ji ◦ g ji}( j,i)∈ J×I .

Let { f ji}( j,i)∈ J×I and { f ′
kj}(k, j)∈K× J be 2-cells such that f ji : X ji → Y ji and f ′

kj : X ′
kj → Y ′

kj . By
the universal property of coproducts, for each (k, i) ∈ K × I , there exists a unique morphism
hki : ⊕

j∈ J X ′
kj ⊗ X ji → ⊕

j∈ J Y ′
kj ⊗ Y ji whose restriction to X ′

kj⊗ X ji is f ′
kj⊗ f ji . By definition, the

horizontal composition of { f ′
kj}(k, j)∈K× J and { f ji}( j,i)∈ J×I is the family {hki}(k,i)∈K×I . The identity 1-

cells and 2-cells in M-mat are the obvious ones.
As pointed out in [RW], a monad on a set S in M-mat is an M-category with the set of objects

S , and conversely. In particular, given two M-categories with the same set of objects, one may speak
about distributive laws between the corresponding monads in M-mat . In our terminology, they are
precisely the twisting systems. In view of [RW, §3.1], factorizable enriched categories generalize strict
factorization systems.

In conclusion, the Theorem 2.3 may be regarded as a version of [RW, Proposition 3.3] for enriched
categories. For a simple twisting system (R̃, | · · · |) between B and A, the enriched category A ⊗R B
that we constructed in Theorem 2.14 can also be described in terms of monads. Let ρ : B ◦ A → A ◦ B
denote the distributive law associated to (R̃, | · · · |), where (A,mA,1A) and (B,mB ,1B) are the monads
in M-mat corresponding to A and B, respectively. By the general theory of monads in a bicategory,
it follows that A ◦ B is a monad in M-mat with respect to the multiplication and the unit given by
the formulae:

m := (mA ◦ mB) • (IdA ◦ ρ ◦ IdB) and 1 := 1A ◦ 1B .

It is not difficult to show that A ⊗R B is the M-category associated to (A ◦ B,m,1).
By replacing Set-mat with a suitable bicategory, one obtains similar results for other algebraic

structures, such as PROs and PROPs; see [La]. We also would like to note that distributive laws be-
tween pseudomonads are investigated in [Mar].

We are indebted to the referee for pointing the papers [La,Mar,RW] out to us.

3. Matched pairs of enriched categories

Throughout this section (M ′,⊗,1,χ) denote a braided category and we take M to be the
monoidal category Coalg(M ′). Our aim is to characterize simple twisting systems between two cate-
gories that are enriched over M . We start by investigating some properties of the morphisms in M .
For the moment, we impose no conditions on M ′ .

A slightly more general version of the following lemma is stated in [La, Proposition 3.2]. For the
sake of completeness we include a proof of it.

Lemma 3.1. Let (C,�C , εC ), (D1,�D1 , εD1 ) and (D2,�D2 , εD2 ) be coalgebras in M ′ . Let f : C → D1 ⊗ D2
be a morphism of coalgebras. Then f1 := (D1 ⊗ εD2 ) ◦ f and f2 := (εD1 ⊗ D2) ◦ f are coalgebra morphisms
and the following relations hold:
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( f1 ⊗ f2) ◦ �C = f , (22)

( f2 ⊗ f1) ◦ �C = χD1,D2 ◦ ( f1 ⊗ f2) ◦ �C . (23)

Conversely, let f1 : C → D1 and f2 : C → D2 be coalgebra morphisms such that (23) holds. Then f :=
( f1 ⊗ f2) ◦ �C is a coalgebra map such that

(D1 ⊗ εD2) ◦ f = f1 and (εD1 ⊗ D2) ◦ f = f2. (24)

Proof. Let us assume that f : C → D1 ⊗ D2 is a coalgebra morphism. Let εi := εDi , for i = 1,2. Clearly,
D1 ⊗ εD2 and εD1 ⊗ D2 are coalgebra morphisms. In conclusion f1 and f2 are morphisms in M . On
the other hand, as f is a morphism in M we have

(D1 ⊗ χD1,D2 ⊗ D2) ◦ (�D1 ⊗ �D2) ◦ f = ( f ⊗ f ) ◦ �C . (25)

Hence, using the definition of f1 and f2, the relation (25), the fact that the braiding is a natural
transformation and the compatibility relation between the comultiplication and the counit we get

( f1 ⊗ f2) ◦ �C = (D1 ⊗ ε2 ⊗ ε1 ⊗ D2) ◦ ( f ⊗ f ) ◦ �C

= [
D1 ⊗ (

(ε2 ⊗ ε1) ◦ χD1, D2 ⊗ D2
) ◦ (�D1 ⊗ �D2)

] ◦ f

= (D1 ⊗ ε1 ⊗ ε2 ⊗ D2) ◦ (�D1 ⊗ �D2) ◦ f = f .

By applying ε1 ⊗ D2 ⊗ D1 ⊗ ε2 to (25) and using once again the compatibility between the comulti-
plication and the counit we obtain

( f2 ⊗ f1) ◦ �C = (ε1 ⊗ D2 ⊗ D1 ⊗ ε2) ◦ ( f ⊗ f ) ◦ �C

= (ε1 ⊗ D2 ⊗ D1 ⊗ ε2) ◦ (D1 ⊗ χD1,D2 ⊗ D2) ◦ (�D1 ⊗ �D2) ◦ f

= χD1,D2 ◦ (ε1 ⊗ D1 ⊗ D2 ⊗ ε2) ◦ (�D1 ⊗ �D2) ◦ f = χD1,D2 ◦ f .

Conversely, let us assume that f1 : C → D1 and f2 : C → D2 are morphisms in M such that (23) holds.
Let f := ( f1 ⊗ f2)◦ �C . By the definition of the comultiplication on D1 ⊗ D2 and the fact that f1 and
f2 are morphisms in M, we get

�D1⊗D2 ◦ f = (D1 ⊗ χD1,D2 ⊗ D2) ◦ (�D1 ⊗ �D2) ◦ ( f1 ⊗ f2) ◦ �C

= (D1 ⊗ χD1,D2 ⊗ D2) ◦ ( f1 ⊗ f1 ⊗ f2 ⊗ f2) ◦ (�C ⊗ �C ) ◦ �C .

Taking into account (23) and the fact that the comultiplication is coassociative, it follows that

�D1⊗D2 ◦ f = [
f1 ⊗ (

χD1,D2 ◦ ( f1 ⊗ f2) ◦ �C
) ⊗ f2

] ◦ (C ⊗ �C ) ◦ �C

= [
f1 ⊗ (

( f2 ⊗ f1) ◦ �C
) ⊗ f2

] ◦ (C ⊗ �C ) ◦ �C

= [(
( f1 ⊗ f2) ◦ �C

) ⊗ (
( f1 ⊗ f2) ◦ �C

)] ◦ �C = ( f ⊗ f ) ◦ �C .

The formula that defines f together with εi ◦ f i = εC yield

(ε1 ⊗ ε2) ◦ f = (ε1 ◦ f1 ⊗ ε2 ◦ f2) ◦ �C = (εC ⊗ εC ) ◦ �C = εC .

Thus f is a morphism of coalgebras, so the lemma is proved. The equations in (24) are obvious, as
εi ◦ f i = εC . �
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Remark 3.2. Let f ′, f ′′ : C → D1 ⊗ D2 be coalgebra morphisms. By the preceding lemma, f ′ and f ′′
are equal if and only if

(ε1 ⊗ D2) ◦ f ′ = (ε1 ⊗ D2) ◦ f ′′ and (D1 ⊗ ε2) ◦ f ′ = (D1 ⊗ ε2) ◦ f ′′.

3.3. The morphisms x�y
z and x�y

z . Let A and B denote two M-categories whose objects are the
elements of a set S . The hom-objects of A and B are coalgebras, which will be denoted by
( x A y, x�

A
y , xε

A
y ) and ( x B y, x�

B
y , xε

B
y ). By definition, the composition and the identity maps in A

and B are coalgebra morphisms. Note that the comultiplication of x B y Az is given by

�x B y Az = ( x B y ⊗ χx B y ,y Az ⊗ y Az) ◦ x�
B
y�A

z .

Let | · · · | : S3 → S be a function and let R̃ denote an S3-indexed family of coalgebra morphisms
x R̃ y

z : x B y Az → x A|xyz|Bz . We define x�y
z : x B y Az → x A|xyz| and x�y

z : x B y Az → |xyz|Bz by

x�y
z := x A|xyz|εB

z ◦ x R̃ y
z and x�y

z := (
xε

A|xyz|Bz
) ◦ x R̃ y

z . (26)

In view of Lemma 3.1, x�y
z and x�y

z are coalgebra morphisms and they satisfy the relations

(
x �y

z ⊗ x�y
z
) ◦ �x B y Az = x R̃ y

z , (27)(
x �y

z ⊗ x�y
z
) ◦ �x B y Az = χx A|xyz|,|xyz| Bz ◦ (

x �y
z ⊗ x�y

z
) ◦ �x B y Az . (28)

Conversely, if one starts with � := { x�y
z }x,y,z∈S and � := { x�y

z }x,y,z∈S , two families of coalgebra maps
that satisfy (28), then by formula (27) we get the set R̃ := { x R̃ y

z }x,y,z∈S whose elements are coalgebra
maps, cf. Lemma 3.1. Therefore, there is an one-to-one correspondence between the couples (�,�)

and the sets R̃ as above. Our goal is to characterize those couples (�,�) that corresponds to a simple
twisting system in M ′ .

Lemma 3.4. The statements below are true.

(1) If |xy|yzt|| = |xzt| then the relation (13) is equivalent to the following equations:

x �z
t ◦ xby

z At = |xzt|b|yzt|
t ◦ x�y

|yzt|Bt ◦ (
x B y ⊗ y �z

t ⊗ y�z
t

) ◦ ( x B y ⊗ � y Bz At ), (29)

x �z
t ◦ xby

z At = x �y
|yzt| ◦ x B y �z

t . (30)

(2) If |xyz|zt|| = |xyt| then the relation (14) is equivalent to the following equations:

x �y
t ◦ x B yaz

t = xa|xyz|
|xyt| ◦ x A|xyz| �z

t ◦ (
x �y

z ⊗ x �y
z ⊗ z At

) ◦ (�x B y Az ⊗ z At), (31)

x �y
t ◦ x B yaz

t = |xyz| �z
t ◦ x �y

z At . (32)

(3) If |xyy| = x then the relation (15) is equivalent to the following equations:

x �x
y ◦(1B

x ⊗ x A y
) = xε

A
y ⊗ 1B

y , (33)

x �x
y ◦(1B

x ⊗ x A y
) = x A y . (34)
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(4) If |xxy| = y then the relation (16) is equivalent to the following equations:

x �y
y ◦( x B y ⊗ 1A

y

) = x B y, (35)

x �y
y ◦( x B y ⊗ 1A

y

) = 1A
x ⊗ xε

B
y . (36)

Proof. In order to prove the first statement we apply the Remark 3.2 to

f ′ := x R̃ z
t ◦ xby

z At and f ′′ := x A|xzt|b|yzt|
t ◦ x R̃ y

|yzt|Bt ◦ x B y R̃z
t .

Note that f ′′ is well defined and its target is x A|xzt|Bt , since the codomain of x R̃ y
|yzt|Bt ◦ x B y R̃z

t is

x A|xy|yzt||Bt and |xy|yzt|| = |xzt|. Clearly, f ′ and f ′′ are coalgebra morphisms, since the composite
and the tensor product of two morphisms in M remain in M . An easy computation, based on Eq. (27)
and the formulae of x�y

z and x�y
z , yields us

xε
A|xzt|Bt ◦ f ′ = x �z

t ◦ xby
z At,

x A|xzt|εB
t ◦ f ′ = x �z

t ◦ xby
z At,

xε
A|xzt|Bt ◦ f ′′ = |xzt|b|yzt|

t ◦ x �y
|yzt| Bt ◦ (

x B y ⊗ y �z
t ⊗ y�z

t

) ◦ ( x B y ⊗ �y Bz At ).

Taking into account that xby
z is a coalgebra morphism and using the definition of x�y

z we get

x A|xzt|εB
t ◦ f ′′ = x A|xzt|εB|yzt| ◦ x R̃ y

|yzt| ◦
(

x B y ⊗ (
y A|yzt|εB

t ◦ y R̃z
t

)) = x �y
|yzt| ◦ x B y �z

t .

In view of the Remark 3.2, we have f ′ = f ′′ if and only if

x A|xzt|εB
t ◦ f ′ = x A|xzt|εB

t ◦ f ′′ and xε
A|xzt|Bt ◦ f ′ = xε

A|xzt|Bt ◦ f ′′.

Thus, if |xy|yzt|| = |xzt|, then (13) is equivalent to (29) together with (30). We omit the proof of the
second statement, being similar.

To prove the third part of the lemma we reiterate the above reasoning. We now take f ′ and f ′′ to
be the coalgebra morphisms

f ′ := x R̃x
y ◦ (

1B
x ⊗ x A y

)
and f ′′ := x A y ⊗ 1B

y .

Since |xxy| = y both f ′and f ′′ target in x A y B y . It is easy to see that (33) together with (34) are
equivalent to (15). Similarly, one shows that the fourth statement is true. �
Theorem 3.5. We keep the notation and the assumptions from §3.3. The set R̃ is a simple twisting system in
M ′ if and only if the families � and � satisfy the following conditions:

(i) If x B y Az is not an initial object then x A|xyz|Bz is not an initial object as well.
(ii) If x B y Bz At is not an initial object in M ′ , then |xy|yzt|| = |xzt| and Eqs. (29) and (30) hold.

(iii) If x B y Az At is not an initial object in M ′ , then ||xyz|zt| = |xyz| and Eqs. (31) and (32) hold.
(iv) If x A y is not an initial object in M ′ , then |xxy| = y and Eqs. (33) and (34) hold.
(v) If x B y is not an initial object in M ′ , then |xyy| = x and Eqs. (35) and (36) hold.

Proof. The condition (i) is a part of the definition of simple twisting systems. If x B y Bz At is not an
initial object in M ′ then we may assume that |xy|yzt|| = |xzt|. Thus, by Lemma 3.4, the relation (13)
and Eqs. (29) and (30) are equivalent. To conclude the proof we proceed in a similar way. �
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3.6. Matched pairs and the bicrossed product. Let � :={ x�y
z }x,y,z∈S and � := { x�y

z }x,y,z∈S be two
families of maps as in §3.3. We shall say that the quintuple (A, B,�,�, | · · · |) is a matched pair of M-
categories if and only if � and � satisfy the conditions (i)–(v) from the above theorem. For a matched
pair (A, B,�,�, | · · · |) we have just seen that (R̃, | · · · |) is a simple twisting system in M ′ , where
R̃ := { x R̃ y

z }x,y,z∈S is the set of coalgebra morphisms which are defined by the formula (27). Hence,
supposing that M ′ is an S-distributive domain, we may construct the twisted tensor product A ⊗R B ,
which is an enriched category over M ′ . We shall call it the bicrossed product of (A, B,�,�, | · · · |) and
we shall denote it by A � B .

Proposition 3.7. The bicrossed product of a matched pair (A, B,�,�, | · · · |) is enriched over the monoidal
category M := Coalg(M ′).

Proof. Let {Ci}i∈i be a family of coalgebras in M ′ . Let us assume that the underlying family of objects
has a coproduct C := ⊕

x∈S Ci in M ′ . Let {σi}i∈I by the set of canonical inclusions into C . There are
unique maps � : C → C ⊗ C and ε : C → 1 such that

� ◦ σi = (σi ⊗ σi) ◦ �i and ε ◦ σi = εi,

for all i ∈ I , where �i and εi are the comultiplication and the counit of Ci . It is easy to see that
(C,�,ε) is a coalgebra in M ′ . Note that, by the construction of the coalgebra structure on C , the
inclusion σi is a coalgebra map, for any i ∈ I . Furthermore, let f i : Ci → D be a coalgebra morphism
for every i ∈ I . By the universal property of the coproduct there is a unique map f : C → D in M ′
such that f ◦ σi = f i , for all i ∈ I . It is not difficult to see that f is a morphism of coalgebras, so
(C, {σi}i∈I ) is the coproduct of {Ci}i∈I in M .

In particular, x Au B y = ⊕
u∈S x Au B y has a unique coalgebra structure such that the inclusion xσ

u
z :

x Au B y → x Au B y is a coalgebra map, for all x, y and u in S . Recall that for the construction of the
composition map xc y

z : x Au B y Av Bz → x Aw Bz one applies the universal property of the coproduct to
{ fu,v}u,v∈S2 , where

fu,v = xσ
|uyv|
z ◦ xa|uyv|bz ◦ x Au R̃ y

v Bz.

Since A and B are M-categories and u R̃ y
v is a coalgebra map, in view of the foregoing remarks,

it follows that xc y
z is a morphism in M , for all x, y, z ∈ S . The identity map of x in A � B is the

coalgebra map xσ
x
x ◦ (1A

x ⊗ 1B
x ). In conclusion, A � B is enriched over M . �

4. Examples

In this section we give some examples of (simple) twisting systems. We start by considering the
case of Set-categories, that is usual categories.

4.1. Simple twisting systems of enriched categories over Set . The category Set is a braided monoidal
category with respect to the cartesian product, its unit object being {∅}. Clearly, the empty set is the
initial object in Set, and this category is an S-distributive domain, for any set S . We have already
noticed that the (†) hypothesis holds in Set.

Let C be an enriched category over Set. Thus, by definition, C is a category in the usual sense, that
is xC y is a set for all x, y ∈ S . An element in xC y is regarded as a function from y to x.

It is easy to see that a given set X can be seen in a unique way as a coalgebra in Set. As a matter
of fact the comultiplication and the counit of this coalgebra are given by the diagonal map � : X →
X × X and the constant map ε : X → {∅},

�(x) = x ⊗ x and ε(x) = ∅.
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Obviously, any function f : X → Y is morphism of coalgebras in Set. Consequently, any category C
may be seen as an enriched category over Coalg(Set),

Our aim is to describe the simple twisting systems between two categories B and A. In view of
the foregoing discussion and of our results in the previous section, for any simple twisting system
R := { x R̃ y

z }x,y,z∈S there is a unique matched pair (A, B,�,�, | · · · |), and conversely. These structures
are related each other by the formulae (26) and (27).

Since A is an usual category, the composition of morphisms will be denoted in the traditional way
g ◦ g′ , for any g ∈ x A y and g′ ∈ y Az (recall that the domain and the codomain of g are y and x,
respectively). The same notation will be used for B . On the other hand, for any f ∈ x B y and g ∈ y Az
we shall write

f � g := x � y
z ( f , g) and f � g = x�y

z ( f , g).

Since the comultiplication in this case is always the diagonal map, and the counit is the constant map
to {∅}, the conditions of Theorem 3.5 and the following ones are equivalent.

(i) If x B y Az is not empty then x A|xyz|Bz is not empty as well.
(ii) For any ( f , f ′, g) ∈ x B y Bz At we have |xy|yzt|| = |xzt|, and

(
f ◦ f ′) � g = f � (

f ′ � g
)

and
(

f ◦ f ′) � g = [
f � (

f ′ � g
)] ◦ (

f ′ � g
)
.

(iii) For any ( f , g, g′) ∈ x B y A z At we have ||xyz|zt| = |xyt|, and

f � (
g ◦ g′) = ( f � g) � g′ and f � (

g ◦ g′) = ( f � g) ◦ [( f � g) � g′].
(iv) For any g ∈ x A y we have |xxy| = y, and

1B
x � g = g and 1B

x � g = 1B
y .

(v) For any f ∈ x B y we have |xyy| = x, and

f � 1A
y = 1B

x and f � 1A
y = f .

In this case the bicrossed product A � B is the category whose hom-sets are given by

x(A � B)y =
∐
u∈S

x Au B y .

The identity of x in A � B is (1A
x ,1B

x ). For (g, f ) ∈ x Au B y and (g′, f ′) ∈ y A v Bz we have

(g, f ) ◦ (
g′, f ′) = (

g ◦ (
f � g′), ( f � g′) ◦ f ′).

Remark 4.2. R. Resebrugh and R.J. Wood showed that every twisting systems between two Set-
categories B and A is completely determined by a left action � of B on A and a right action �
of A on B . More precisely, given a twisting system R = { x R y

z }x,y,z∈S and the morphisms f ∈ x B y and
g ∈ y Az , then x R y

z ( f , g) is an element in x Au Bz , where u is a certain element of S . Hence, there are
unique morphisms f � g ∈ x Au and f � g ∈ u Bz such that

x R y
z (g, f ) = ( f � g, f � g).

The actions � and � must satisfy several compatibility conditions, which are similar to those that
appear in the above characterization of simple twisting systems. For details the reader is referred to
the second section of [RW].
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4.3. The bicrossed product of two groupoids. We now assume that (A, B,�,�,|· · ·|) is a matched
pair of groupoids. Recall that a groupoid is a category whose morphisms are invertible. We claim
that A � B is also a groupoid. Indeed, as in the case of monoids, one can show that a category is a
groupoid if and only if every morphism is right invertible (or left invertible). Since

x(A � B)y =
∐
u∈S

x Au B y,

it is enough to prove that (g, f ) is right invertible, where g ∈ x Au and f ∈ u B y are arbitrary mor-
phisms. Therefore, we are looking for a pair (g′, f ′) ∈ y Av × v Bx such that

g ◦ (
f � g′) = 1A

x and
(

f � g′) ◦ f ′ = 1B
x .

Since g is an invertible morphism in x Au we get that f � g′ = g−1 ∈ u Ax . Since f is invertible too,

g′ = 1A
y � g′ = (

f −1 ◦ f
) � g′ = f −1 � (

f � g′) = f −1 � g−1.

As g′ ∈ y Av and f −1 � g−1 ∈ y A|yux| we must have v = |yux|. Thus we can now take

f ′ = [
f � (

f −1 � g−1)]−1 ∈ |yux|Bx.

4.4. The smash product category. We take M to be the monoidal category K-Mod, where K is a com-
mutative ring. Hence in this case we work with K-linear categories. Let H be a K-bialgebra. We define
an enriched category H over K-Mod by setting x Hx = H and x H y = 0, for x �= y. The composition of
morphisms in H is given by the multiplication in H and the identity of x is the unit of H . For the
comultiplication of H we shall use the Σ-notation

�(h) =
∑

h(1) ⊗ h(2).

Let A denote an H-module category, i.e. a category enriched in H-Mod. Thus H acts on x A y , for any
x, y ∈ S , and the composition and the identity maps in A are H-linear morphisms. Obviously, A is
a K-linear category. Our aim is to associate to A a simple twisting system R = { x R̃ y

z }x,y,z∈S . First we
define | · · · | : S3 → S by |xyz| = z. Then, using the actions · : H ⊗ x Az → x Az , we define

x R̃x
z : H ⊗ x Az → x Az ⊗ H, x R̃x

z(h ⊗ f ) =
∑

h(1) · f ⊗ h(2).

For x �= y we take x R̃ y
z = 0. It is easy to see that R is a simple twisting system of K-linear categories.

Clearly K-Mod is S-distributive, for any set S . If K is a field then K-Mod is a domain, so in this case
the twisted tensor product of A and H with respect to R makes sense, cf. Theorem 2.14. It is called
the smash product of A by H , and it is denoted by A#H . By definition, x(A#H)y = x A y ⊗ H and

( f ⊗ h) ◦ (
f ′ ⊗ h′) =

∑
f ◦ (

h(1) · f ′) ⊗ h(2)h
′, (37)

for any f ∈ x A y , f ′ ∈ y Az and h,h′ ∈ H .

4.5. The semidirect product. Let A be a category. Let us suppose that (B, ·,1) is a monoid that acts
to the left on each x A y via

� : B × x A y → x A y .
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We define the category B so that x Bx = B and x B y = ∅, for x �= y. The composition of morphisms is
given by the multiplication in B . To this data we associate a matched pair (A, B, |· · ·|,�,�), setting
f � g = f for any ( f , g) ∈ x Bx A y , and defining the function | · · · | : S3 → S by |xyz| = z. Note that
if x �= y then x B y Az is empty, so x�y

z and x�y
z coincide with the empty function. One shows that

(A, B,�,�, |· · ·|) is a matched pair if and only if for any (g, g′) ∈ x A y Az and f ∈ B

f � (
g ◦ g′) = ( f � g) ◦ (

f � g′),
f � 1A

x = 1A
x .

The corresponding bicrossed product will be denoted in this case by A � B . If |S| = 1 then A can be
identified with a monoid and A � B is the usual semidirect product of two monoids. For this reason
we shall call A � B the semidirect product of A with B . Note that x(A � B)y = x A y × B . For any
f , f ′ ∈ B and (g, g′) ∈ x A y Az , the composition of morphisms in A � B is given by

(g, f ) ◦ (
g′, f ′) = (

g ◦ (
f � g′), f ◦ f ′).

4.6. Twisting systems between algebras in M . We now consider a twisting system R between two M-
categories B and A with the property that S = {x0}. Obviously, M is S-distributive. We shall use the
notation A = x0 Ax0 and B = x0 Bx0 . The composition map a := x0 ax0

x0 and 1A := 1A
x0

define an algebra
structure on A. A similar notation will be used for the algebra corresponding to the M-category B .
Let R be a morphism from B ⊗ A to A ⊗ B .

Since x0σ
x0
x0 is the identity map of B ⊗ A, by Proposition 2.5, we deduce that x0 Rx0

x0 = R defines
a twisting system between B and A if and only if R satisfies the relations (13)–(16) with respect to
the unique map | · · · | : S3 → S . In turn, they are equivalent to the following identities

R ◦ (b ⊗ A) = (A ⊗ b) ◦ (R ⊗ B) ◦ (B ⊗ R), (38)

R ◦ (B ⊗ a) = (a ⊗ B) ◦ (A ⊗ R) ◦ (R ⊗ A), (39)

R ◦ (
1B ⊗ A

) = A ⊗ 1B , (40)

R ◦ (B ⊗ 1A) = 1A ⊗ B. (41)

In conclusion, in the case when |S| = 1, to give a twisting system between B and A is equivalent to
give a twisting map between the algebras B and A, that is a morphism R which satisfies (38)–(41).

By applying Corollary 2.15 to a twisting map R : B ⊗ A → A ⊗ B (viewed as a twisting system
between two M-categories with one object) we get the twisted tensor algebra A ⊗R B . The unit of this
algebra is 1A ⊗ 1B and its multiplication is given by

m = (a ⊗ b) ◦ (A ⊗ R ⊗ B).

Note that, in view of the foregoing remarks, an algebra C in M factorizes through A and B if and only
if it is isomorphic to a twisted tensor algebra A ⊗R B , for a certain twisting map R .

An algebra in the monoidal category K-Mod is by definition an associative and unital K-algebra.
Twisted tensor K-algebras were investigated for instance in [Ma1,Tam,CSV,CIMZ,LPoV,JLPvO].

Coalgebras over a field K are algebras in the monoidal category (K-Mod)o . Hence a twisting map
between two coalgebras (A,�A, εA) and (B,�B , εB) is a K-linear map

R : A ⊗K B → B ⊗K A
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which satisfies the equations that are obtained from (38)–(41) by making the substitutions a := �A ,
b := �B , 1A := εA and 1B := εB , and reversing the order of the factors with respect to the composition
in M . For example (38) should be replaced with

(�B ⊗K A) ◦ R = (B ⊗K R) ◦ (R ⊗K B) ◦ (A ⊗K �B).

Obviously A ⊗R B is the K-coalgebra (A ⊗K B,�,ε), where ε := εA⊗ εB and

� = (A ⊗ R ⊗ B) ◦ (�A ⊗K �B).

An algebra in Λ-Mod-Λ is called a Λ-ring. Specializing M to Λ-Mod-Λ we find the definition of
the twisted tensor Λ-ring. Dually, Λ-corings are algebras in (Λ-Mod-Λ)o . Thus in this particular case
we are led to the construction of the twisted tensor Λ-coring.

By definition a monad on a category A is an algebra in [A, A]. If (F ,μF , ιF ) and (G,μG , ιG) are
monads in M , then a natural transformation

λ : G ◦ F → F ◦ G

satisfies the relations (38)–(41) if and only if λ is a distributive law, cf. [Be]. Let F 2 := F ◦ F . For every
distributive law λ we get a monad (F ◦ G,μ, ι), where ι := ιF G ◦ ιG = F ιG ◦ ιF and

μ := μF G ◦ F 2μG ◦ FλG = FμG ◦ μF G2 ◦ FλG.

Distributive laws between comonads can be defined similarly, or working in [A, A]o .
Finally, twisting maps in Opmon(M) have been considered in [BV]. In [BV] the authors define

a bimonad in M as an algebra in Opmon(M). Hence a twisting map between two bimonads is an
opmonoidal distributive law between the underlying monads. For any opmonoidal distributive law λ

between the bimonads G and F , there is a canonical bimonad structure on the endofunctor F ◦ G . See
[BV, Section 4] for details.

4.7. Matched pairs of algebras in Coalg(M ′). Let M denote the category of coalgebras in a braided
monoidal category (M ′,⊗,1,χ). By definition, a bialgebra in M ′ is an algebra in M . We fix two bial-
gebras (A,a,1A,�A, εA) and (A,b,1B ,�B , εB) in M ′ and take R : B ⊗ A → A ⊗ B to be a morphism
in M . By Lemma 3.1, there are the coalgebra maps � : B ⊗ A → A and � : B ⊗ A → B such that

R = (� ⊗ �) ◦ �B⊗A and χA,B ◦ (� ⊗ �) ◦ �B⊗A = (� ⊗ �) ◦ �B⊗A . (42)

We have seen that R is a twisting map in M if and only if it satisfies the relations (38)–(41). In view
of Lemma 3.4, these equations are equivalent to the fact that (A,�) is a left B-module and (B,�) is
a right A-module such that the following identities hold:

� ◦ (b ⊗ A) = b ◦ (� ⊗ B) ◦ (B ⊗ � ⊗ �) ◦ (B ⊗ �B⊗A), (43)

� ◦ (B ⊗ a) = a ◦ (A ⊗ �) ◦ (� ⊗ � ⊗ A) ◦ (�B⊗A ⊗ A), (44)

� ◦ (1B ⊗ A) = εA ⊗ 1B , (45)

� ◦ (B ⊗ 1A) = 1A ⊗ εB . (46)

By definition, a matched pair of bialgebras in M ′ consists of a left B-action (A,�) and a right A-action
(B,�) in M such that the second equation in (42) and the relations (43)–(46) hold. For a matched
pair of bialgebras we shall use the notation (A, B,�,�).

Summarizing, there is an one to-one-correspondence between twisting maps of bialgebras in M ′
and matched pairs of bialgebras in M ′ . If (A, B,�,�) is a matched pair of bialgebras and R is the
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corresponding twisting map, then A ⊗R B will be called the bicrossed product of the bialgebras A and
B , and it will be denoted by A � B . Note that A � B is an algebra in M . Thus the bicrossed product
of A and B is a bialgebra in M ′ . The unit of this bialgebra is 1A ⊗ 1B and the multiplication is given
by

m = (a ⊗ b) ◦ (A ⊗ � ⊗ � ⊗ B) ◦ (A ⊗ �B⊗A ⊗ B).

As a coalgebra A � B is the tensor product coalgebra of A and B . We also conclude that a bialgebra
C in M ′ factorizes through the sub-bialgebras A and B if and only if C ∼= A � B .

As a first application, let us take M ′ to be the category of sets, which is braided with respect to
the braiding given by (X, Y ) �→ (Y , X) and ( f , g) �→ (g, f ), for any sets X, Y and any functions f , g .
We have already noticed that there is a unique coalgebra structure on a given set X

�(x) = (x, x), ε(x) = ∅,

where ∅ denotes the empty set; recall that the unit object in Set is {∅}. Hence an ordinary monoid,
i.e. an algebra in Set, has a natural bialgebra structure in this braided category. Moreover any twisting
map R : B × A → A × B between two monoids (A, ·,1A) and (B, ·,1B) is a twisting map of bialgebras
in Set. Let (A, B,�,�) be the corresponding matched pair. One easily shows that the second condition
in (42) is always true. By notation, the functions � and � map ( f , g) ∈ B × A to f � g and f � g ,
respectively. Hence Eqs. (43)–(46) are equivalent to the following ones:

(
f · f ′) � g = [

f � (
f ′ � g

)] · ( f ′ � g
)
,

f � (
g · g′) = ( f � g) · [( f � g) � g′],

1B � g = 1B and f � 1A = 1A .

Since R( f , g) = ( f � g, f � g) the product of the monoid A � B is defined by the formula

(g, f ) · (g′, f ′) = (
g
(

f � g′), ( f � g′) f ′).
In conclusion, a monoid C factorizes through A and B if and only if C ∼= A � B .

We have seen that the bicrossed product of two groupoids is a groupoid. Thus, if A and B are
groups, then A � B is a group as well. This result was proved by Takeuchi who introduced the
matched pairs of groups in [Tak].

We now consider the braided category K-Mod, whose braiding is the usual flip map. An algebra
in M , the monoidal category of K-coalgebras, is a bialgebra over the ring K, and conversely. Proceed-
ing as in the previous case, one shows that a twisting map R : B ⊗K A → A ⊗K B of bialgebras is
uniquely determined by the coalgebra maps � : B ⊗K A → A and � : B ⊗K A → B via the formula

R( f ⊗ g) =
∑

( f(1) � g(1)) ⊗ ( f(2) � g(2)).

Using the Σ-notation, the second equation in (42) is true if and only if

∑
( f(1) � g(1)) ⊗ ( f(2) � g(2)) =

∑
( f(2) � g(2)) ⊗ ( f(1) � g(1)),

for any f ∈ B and g ∈ A. On the other hand, Eqs. (43)–(46) hold if and only if
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(
gg′) � f =

∑[
g � (

g′
(1) � f(1)

)](
g′
(2) � f(2)

)
,

g � (
f f ′) =

∑
(g(1) � f(1))

[
(g(2) � f(2)) � f ′],

f � 1A = εB( f )1A,

1B � g = εA(g)1B ,

for any f , f ′ ∈ B and any g, g′ ∈ A. Thus, we rediscover the definition of matched pairs of bialgebras
and the formula for the multiplication of the double cross product, see [Ma2, Theorem 7.2.2]. Namely,

( f ⊗ g)
(

f ′ ⊗ g′) =
∑

f
(

g(1) � f ′
(1)

) ⊗ (
g(2) � f ′

(2)

)
g′.

4.8. Twisting systems between thin categories. Our aim now is to investigate the twisting systems
between two thin categories B and A. Recall that a category is thin if there is at most one morphism
between any couple of objects. Thus, for any x and y in S we have that either x A y = { x g y} or x A y is
the empty set. Clearly, if x A y = { x g y} and y Az = {y gz} then x g y ◦ y gz = x gz . The identity morphism
of x is x gx . Similarly, if x B y is not empty then x B y = { x f y}.

We fix a twisting system R between B and A. It is defined by a family of maps

x R y
z : x B y × y Az →

∐
u∈S

Au Bz

that render commutative the diagrams in Fig. 3. We claim that R is simple. We need a function
| · · · | : S3 → S such that the image of x R y

z is included into x A|xyz|Bz for all (x, y, z) ∈ S3. Let T ⊆ S3

denote the set of all triples such that x B y Az = x B y × y Az is not empty. Of course, if (x, y, z) is
not in T then x R y

z is the empty function, so we can take |xyz| to be an arbitrary element in S . For
(x, y, z) ∈ T there exists |xyz| ∈ S such that

x R y
z ( x f y, y gz) = ( x g|xyz|, |xyz| f z). (47)

Hence x R y
z is a function from x B y Az to x A|xyz|Bz . Note that x A|xyz|Bz is not empty in this case. For

any (x, y, z) ∈ S3 we set x R̃ y
z := x R y

z . By Proposition 2.5 and Corollary 2.7 it follows that R is simple.
We would like now to rewrite the conditions from the definition of simple twisting systems in an
equivalent form, that only involves properties of T and | · · · |. For instance let us show that the first
condition from Corollary 2.7 is equivalent to:

(i) If (y, z, t) ∈ T and (x, y, |yzt|) ∈ T then |xy|yzt|| = |xzt|.

Indeed, if x B y Bz At is not empty then y Bz At �= ∅, so (y, z, t) ∈ T . We have already noticed that
y A|yzt|Bt is not empty, provided that y Bz At is so. Since x B y and y A|yzt| are not empty it follows
that x B y A|yzt| has the same property, that is (x, y, |yzt|) ∈ T . Therefore, if x B y Bz At is not empty then
(y, z, t) ∈ T and (x, y, |yzt|) ∈ T . It is easy to see that the reversed implication is also true. Thus it
remains to prove that Eq. (13) holds in the case when x B y Bz At is not empty. But this is obvious,

as x Rz
t ◦ xby

z At and ( x A|xy|yzt||b|yzt|
t ) ◦ x R y

|yzt|Bt ◦ x B y Rz
t have the same source x B y Bz At and the same

target x A|xzt|Bt = x A|xy|xyz||Bt . Both sets are singletons, so the above two morphisms must be equal.
Proceeding in a similar way, we can prove that the other three conditions from Corollary 2.7 are

respectively equivalent to:

(ii) If (x, y, z) ∈ T and (|xyz|, z, t) ∈ T then ||xyz|zt| = |xyt|.
(iii) If (x, x, y) ∈ T then |xxy| = y.
(iv) If (x, y, y) ∈ T then |xyy| = x.
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The last condition in the definition of simple twisting systems is equivalent to:

(v) If (x, y, z) ∈ T then x A|xyz|Bz is not empty.

Hence for a twisting system R the function | · · · | satisfies the above five conditions. Conversely,
let | · · · | : S3 → S denote a function such that the above five conditions hold. Let x R y

z be the empty
function, if (x, y, z) is not in T . Otherwise we define x R y

z by the formula (47). In view of the foregoing
remarks it is not difficult to see that R := { x R y

z }x,y,z∈S is a simple twisting system.
Clearly two functions | · · · | and | · · · |′ induce the same twisting system if and only if their restric-

tion to T are equal. Summarizing, we have just proved the theorem below.

Theorem 4.9. Let A and B be thin categories. Let T denote the set of all triples (x, y, z) ∈ S3 such that x B y Az

is not empty. If R is a twisting system between B and A then there exists a function | · · · | : S3 → S such that
the conditions (i)–(v) from the previous subsection hold, and conversely. Two functions | · · · | and | · · · |′ induce
the same twisting system R if and only if their restriction to T are equal.

4.10. The twisted tensor product of thin categories. Let R be a twisting system between two thin
categories B and A. By the preceding theorem, R is simple and there are T and |···| : S3 → S such
that the conditions (i)–(v) hold. In particular, the twisted tensor product of these categories exists. By
definition, we have x(A ⊗R B)y = ∐

u∈S( x Au × u Bz). We can identify this set with

x S y := {u ∈ S | x Au B y �= ∅}.

For u ∈ x S y and v ∈ y Sz we have (u, y, v) ∈ T . Thus u R y
v ( u f y, y gv) = ( u g|uyv|, |uyv| f v), so the com-

position in A ⊗R B is given by

( x gu, u f y) ◦ ( y gv , v f z) = ( x gu ◦ u g|uyv|, |uyv| f v ◦ v f z) = ( x g|uyv|, |uyv| f z).

Let C(S, T , | · · · |) be the category whose objects are the elements of S . By definition, the hom-set
xC(S, T , | · · · |)y is x S y , the identity map of x ∈ S is x itself and the composition is given by

◦ : x S y × y Sz → x Sz, u ◦ v = |uyv|.

Therefore, we have just proved that A ⊗R B and C(S, T , | · · · |) are isomorphic.

Remark 4.11. Let C be a small category. Let S denote the set of objects in C . The category C factorizes
through two thin categories if and only if there are T ⊆ S and | · · · | : S3 → S as in the previous
subsection such that C is isomorphic to C(S, T , | · · · |).

4.12. Twisting systems between posets. Any poset is a thin category, so we can apply Theorem 4.9 to
characterize a twisting system R between two posets B := (S,�) and A := (S,�). In this setting the
corresponding set T contains all (x, y, z) ∈ S3 such that x � y and y � z. For simplicity, we shall write
this condition as x � y � z. A similar notation will be used for arbitrarily long sequences of elements
in S . For instance, x � y � z � t � u means that x � y, y � z, z � t and t � u. The function |· · ·| must
satisfies the following conditions:

(i) If x � y � z then x � |xyz| � z.
(ii) If x � y � z � t then |xy|yzt|| = |xzt|.

(iii) If x � y � z � t then ||xyz|zt| = |xyt|.
(iv) If x � y then |xxy| = y.
(v) If x � y then |xyy| = x.
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In the case when the posets � and � are identical, an example of function |· · ·| : S3 → S that
satisfies the above conditions is given by |xyz| = z, if y �= z, and |xyz| = x, otherwise.

4.13. Example of twisting map between two groupoids. Let A be a groupoid with two objects, S =
{1,2}. The hom-sets of A are the following:

1 A2 = {u}, 2 A1 = {
u−1}, 1 A1 = {Id1}, 2 A2 = {Id2}.

Note that A is thin. We set B := A and we take R to be a twisting system between B and A. By
Theorem 4.9 there are T and |· · ·| : S3 → S that satisfies the conditions (i)–(v) in §4.8. Since all sets
x B y Az = x B y × y Az are nonempty it follows that T = S . Thus |xxy| = y and |xyy| = x, for all x, y ∈ S .
There are two triples (x, y, z) ∈ S3 such that x �= y and y �= z, namely (1,2,1) and (2,1,2). Hence we
have to compute |121| and |212|. If we assume that |121| = 1, then

1 = |221| = ∣∣21|121|∣∣ = |211| = 2,

so we get a contradiction. Thus |121| = 2, and proceeding in a similar way one proves that |212| = 1.
It is easy to check that |· · ·| satisfies the required conditions, so there is only one twisting map R
between A and itself. Since A is a groupoid, the corresponding bicrossed product C := A � A is
a groupoid as well, see Subsection 4.3. By definition,

1C1 =
∐

x∈{1,2}
1 Ax × x A1 = {

(Id1, Id1),
(
u, u−1)}.

Analogously one shows that

1C2 = {
(Id1, u), (u, Id2)

}
, 2C1 = {(

Id2, u−1), (u−1, Id1
)}

and 2C2 = {
(Id2, Id2),

(
u−1, u

)}
.

By construction of the twisting map R we get 1 R2
1(u, u−1) ∈ 1 A|121| × |121| A1 = {(u, u−1)}. The other

maps x R y
z can be determined analogously. The complete structure of this groupoid is given in the

picture below, where we used the notation f := (u, u−1) and g := (Id1, u).

Note that f 2 = Id1 and g−1 = (Id2, u−1). Now we can say easily which arrow corresponds to a given
morphism in C , as in each home-set we have identified at least one element.
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