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erated by two elements of a free associative algebra over an arbi-
trary field.
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1. Introduction and the main result

Let An = K 〈x1, . . . , xn〉 be the free associative algebra of rank n over a field K , B a subalgebra of An

generated by two elements in An\K .
Based on Bergman’s Lemma on radicals [5] that if the leading monomial of an element in

a Malcev–Neumann (power series) algebra [1–3,9] over a field of characteristic 0 has n−th roots,
then so does the element itself, Makar-Limanov and Yu [10] gave a sharp lower degree bound for
nonconstant elements in B when the characteristic of K is zero.
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However, in the case of positive characteristic, the lemma on radical is not true, which can be
shown by the following simple example that x2 + x has no square roots in the Malcev–Neumann
(power series) algebra F ((x1, . . . , xn)) in free case over a field F of characteristic 2. Therefore, the
method in [10] is no longer applicable.

In this paper, based on Bergman’s Lemma on centralizers [5], we generalize the degree estimate
in [10] for any characteristic.

Theorem 1.1. Let An = K 〈x1, . . . , xk〉 be a free associative algebra over a field K and let f , g ∈ An be alge-
braically independent elements over F . Suppose the leading monomials v( f ) and v(g) are algebraically depen-
dent over K , and, neither deg( f ) divides deg(g) nor deg(g) divides deg( f ). Then for any P (x, y) ∈ K 〈x, y〉\K ,

deg
(

P ( f , g)
)
� wdeg( f ),deg(g)

(
P (x, y)

) deg([ f , g])
deg( f ) + deg(g)

.

Theorem 1.1 has found important applications for attacking the lifting problem [7] and the stable
tameness problem [8].

2. Proof of the main result

First we introduce some terminologies. Let K be a field of characteristic r (zero or prime), An the
free associative algebra generated by X = {x1, . . . , xn} over K where n � 2, and F = 〈X〉 be the free
group generated by X . By a group order, we mean that it is a total order of the group as a set,
and coincides to the operation of the group as well; namely, if a group G has a group order, then
G is totally ordered as a set, and to any a,b, c ∈ G , if a > b, we always have ca > cb and ac > bc.
Since it is possible to equip F a group order which is an extension of the partial order of the to-
tal degree [3], namely if deg(a(x1, . . . , xn)) > deg(b(x1, . . . , xn)) where a(x1, . . . , xn),b(x1, . . . , xn) ∈ F ,
then a(x1, . . . , xn) > b(x1, . . . , xn), K ((F )) forms a Malcev–Neumann algebra [1,2,9] under this order.
Any element f ∈ An can be viewed as an element of K ((F )). Let the leading term (namely the
least element in the support) of f be c · h with c ∈ K ∗ and h ∈ F , we denote h by v( f ) and c
by c( f ). For the degree functions, let deg be the total degree, or homogeneous degree, of a polyno-
mial in K ((F )) and degxi

be the partial degree relative to xi . Here we will restate the definition of
weighted degree of a polynomial which has been defined in [5,6] just for convenience. The weighted
degree wk1,...,kn (m(x1, . . . , xn)) of a monomial m is equal to

∑n
i=1 ki · degxi

(m), and for a polynomial
p(x1, . . . , xn), wk1,...,kn (p) = max{wk1,...,kn (m) | m ∈ supp(p)}. Obviously we have deg(m) = w1,...,1(m)

and degxi
(m) = w0,...,0,1,0,...,0 where 1 is the i−th coordinate.

Let f , g ∈ An be algebraically independent where v( f ) and v(g) are algebraically dependent but
deg( f ) � deg(g), deg(g) � deg( f ), and we assume that deg(g) = n > m = deg( f ).

Crucial to the proof of Theorem 1.1 is the following Bergman’s Lemma on centralizers [5,6].

Lemma 2.1 (On centralizers). Let R be a commutative ring, S an ordered semigroup (the group order), and an
element of R((S)) with invertible leading term auu. (Thus, u is invertible in S, and au in R.) Then there exists
an element f with leading term 1, such that the element c = f −1af (which clearly also has leading term auu)
has support entirely in the centralizer of u in S.

Now we re-present the proof of lemma on centralizers in [5,6] for self-contain-ness of this paper
as the journal that [5,6] appeared is not well circulated.

Proof. Clearly, we may assume without loss of generality that au = 1.
Let ∞ be a symbol outside of S with the property ∀s ∈ S , s < ∞, and let S ′ = S ∪ {∞}. Of course

S ′ is a totally ordered set. By ‘the leading term of r ∈ R((S)) is αt ’, we mean that if r = 0, then t = ∞
and α is undefined. To each pair x, y ∈ S ′ , the intervals of different types are defined as follows:
[x, y] = {s ∈ S ′ | x � s � y}; (x, y] = {s ∈ S ′ | x < s � y}; [x, y) = {x ∈ S ′ | x � s < y}; (x, y) = {s ∈ S ′ |
x < s < y}.
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For s, t ∈ S , s being invertible, we define t
s = max{ts−1, s−1t}. We also define ∞

s = ∞. Easy to get
that x > y implies x

s >
y
s .

Let X be the set of all three-tuples (t,b, e) where t ∈ (u,∞], b ∈ R((S)) with v(b) = u, c(b) = 1
and supp(b) ⊆ [u, t) ∩ Cu(S), and e is an element with leading term 1 and support in [1, t

u ) such
that v(ebe−1 − a) = t , c(ebe−1 − a) = α (here we mean that if ebe−1 − a = 0, then t = ∞, and if not,
α ∈ R − {0}).

Now establish a partial order on X : (t,b, e) < (t′,b′, e′) if and only if t < t′ , supp(b′ − b) ⊆ [t, t′)
and supp(e′ − e) ⊆ [ t

u , t′
u ) (here notice that surely t

u < t′
u as being proved). The last two conditions

say that b′ , e′ “extend” b and e.
X is nonempty since (v(a − u), u,1) ∈ X . Hence, to each ascending chain {(tl,bl, el) | l ∈ N+}, we

just ‘piece together’ bl and el as b and e, and let t = v(ebe−1 − a) (obviously here t � tl for each l),
and then (t,b, e) becomes the upper bound of the chain. Hence, according to Zorn’s Lemma, X has a
maximal one.

We now prove that if t < ∞, (t,b, e) can not be a maximal element. If not, let (t,b, e) with t < ∞
be a maximal element, and we have three cases.

Case 1. tu−1 > u−1t . Then t
u = tu−1. Let e′ = e − αtu−1, and hence e′−1 = e−1 + αtu−1 +

o(tu−1) where o(tu−1) means that it is an element of R((S)) each of whose support is greater
that tu−1. Let b′ = b, and t′ = v(e′b′e′−1 − a). Since (e − αtu−1)b(e−1 + αtu−1 + o(tu−1)) − a =
(ebe−1 − a) + αebtu−1 + ebo(tu−1) − αtu−1be−1 − α2tu−1btu−1 − αtu−1bo(tu−1), and v(αebtu−1) =
utu−1 > t , v(ebo(tu−1)) > utu−1 > t , v(−α2tu−1btu−1) = tu−1utu−1 = t2u−1 > t (notice that t > u),
v(−αtu−1bo(tu−1)) > tu−1utu−1 > t , v((ebe−1 −a)−αtu−1be−1) = v((αt +o(t))−αtu−1u +o(t)) > t ,
as well as v((ebe−1 − a) + αebtu−1 + ebo(tu−1) − αtu−1be−1 − α2tu−1btu−1 − αtu−1bo(tu−1)) �
max{v((ebe−1 − a) − αtu−1be−1), v(αebtu−1), v(ebo(tu−1)), v(−α2tu−1btu−1), v(−αtu−1bo(tu−1))},
t′ > t . It means that (t′,b′, e′) > (t,b, e) which contradicts to (t,b, e) being maximal.

Case 2. tu−1 < u−1t . Similar to case 1, we just let e′ = e − αu−1t , b′ = b, and v(e′b′e′−1 − a) > t .
Case 3. tu−1 = u−1t . Then t commutes with u, so we can let e′ = e, b′ = b − αt , and hence

e′b′e′−1 − a = e(b − αt)e−1 − a = (ebe−1 − a) − αete−1. Since ebe−1 − a = αt + o(t), v(αete−1) = t ,
v((ebe−1 − a) − αete−1) > t , namely t′ > t which contradicts to (t,b, e) being maximal.

Therefore, there must exist some (t,b, e) such that t = ∞, namely ebe−1 = a, or e−1ae = b. �
Let us give an example in K ((F )) to understand Bergman’s Lemma on centralizers and its proof.

Here we will use the opposite definition of “well-ordered” on F , namely each subset has a greatest
element.

Example 2.2. In F we assume x > y and xy · (x2)−1 < (x2)−1 · xy (of course xy · (x2)−1 > (x2)−1 · xy
is also feasible since they are both extended total orders of the partial order of degree) and let a =
x2 + xy. By Bergman’s method, we establish the approximation starting from (xy, x2,1)(b = v(a),

t = v(a − v(a)), e = 1). Then e′ = e + xy · (x2)−1 = 1 + xy · (x2)−1 and (e′)−1 = e−1 − xy · (x2)−1 +
O (xy · (x2)−1) = 1 − xy · (x2)−1 + O (xy · (x2)−1) where O (xy · (x2)−1) means all the monomials behind
are all less than xy · (x2)−1. b′ = b = x2, and since e′b′(e′)−1 = (1 + xy · (x2)−1)x2(1 − xy · (x2)−1 +
O (xy · (x2)−1)), it is easy to get that v(e′b′(e′)−1 − a) = x2 · xy · (x2)−1 since x > y, namely t′ =
x2 · xy · (x2)−1.

After k steps, we get the three-tuple (tk,bk, ek). Now we claim that to all the t′
i s, if ti �= ∞, then

deg(ti) = 2, and all the e′
i s are homogeneous of degree 0 and bi = x2 all the way. For k = 1, we see

t1 = x2 · xy · (x2)−1, e1 = 1 + xy · (x2)−1, b1 = x2 and it satisfies. Assume that it is correct for k = n − 1.
If tn−1 = ∞, then en−1bn−1e−1

n−1 = a, and we prove it. If not, since tn−1 is a monomial of degree 2
however it is less than x2, so it can not commute with x2 (by Bergman [4], the centralizer of any
element of K 〈x1, . . . , xn〉\K is a polynomial algebra in one variable over K ). Hence bn = bn−1 = x2,
en = en−1 + αtn · x−2/αx−2 · tn , and the new term of en will always has degree 0. Then en is also
homogeneous of degree 0 and so is e−1

n . Obviously enbne−1
n is homogeneous of degree 2 and since a is

homogeneous of degree 2, enbne−1
n − a is homogeneous of degree 2 or equal to 0, namely deg(tn) = 2

or tn = ∞.
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It means that after finite steps of the algorithm, we always get eae−1 = x2 + t where deg(t) = 2,
or we get eae−1 = x2. Now we consider the subset S of three-tuples (t,b, e) defined in the proof of
lemma on centralizers where e being homogeneous of degree 0 and b = x2. Since a is homogeneous of
degree 2, t is also of degree 2 or ∞. Then, by preserving the order introduced by Bergman on S , if t is
not ∞, we can always construct an ‘extension’ of b and e such that (t′,b′, e′) ∈ S is greater. However,
by the ‘piece together’, we will always get a maximal element, and hence we get the maximal element
with t = ∞, namely there exists an e which is homogeneous of degree 0 such that eae−1 = x2.

Remark 2.3. The steps in the proof of Bergman is to construct a ‘better approximative’ element to the
maximal element instead of calculating the maximal three-tuple.

According to the discussion in the example above, we obtain

Proposition 2.4. If an element a ∈ K ((F )) is homogeneous, then there exists some e ∈ K ((F )) with leading
term 1 which is homogeneous of degree 0 such that eae−1 = c(a)v(a).

Then according to lemma on centralizers, there exists some t ∈ K ((F )) with c(t)v(t) = 1 such
that the support of t f t−1 is in C F (v( f )). Let v( f ) = hq where h is the generator of C F (h), and then
t f t−1 = ∑q

i=−∞ aihi with ai ∈ K . Let f ′ = t f t−1, g′ = tgt−1, and we have the following

Lemma 2.5. For any P (x, y) ∈ K 〈x, y〉, P ( f ′, g′) = t P ( f , g)t−1 .

Proof. Let P (x, y) = ∑m
i=0

∑n
j=0 aij xi y j for some nonnegative integers i and j where aij ∈ K . Then

P
(

f ′, g′) =
m∑

i=0

n∑
j=0

aij f ′ i g′ j =
m∑

i=0

n∑
j=0

aij
(
t f t−1)i(

tgt−1) j

=
m∑

i=0

n∑
j=0

aijt f i g jt−1 = t

(
m∑

i=0

n∑
j=0

aij f i g j

)
t−1 = t P ( f , g)t−1. �

Since v(t) = 1, deg(P ( f , g)) = deg(P ( f ′, g′)) where the degree function is the homogeneous de-
gree of K ((F )). So we can just do degree estimate for P ( f ′, g′).

Two elements of An are called algebraically independent over K if they generate a subalge-
bra of rank two. If v( f ) and v(g) are algebraically independent, then for all P (x, y) ∈ K 〈x, y〉\K ,
deg(P ( f , g)) = wdeg( f ),deg(g)(P (x, y)), so we may assume without loss of generality that v( f ) and
v(g) are algebraically dependent. However, if deg( f ) | deg(g) or deg(g) | deg( f ), then deg( f )+deg(g)

can be reduced by some automorphism, so we also assume deg( f ) � deg(g) as well as deg(g) � deg( f ).
We assume that f and g are algebraically independent over K but v( f ) and v(g) are not. Hence since
v( f ′) = v( f ) and v(g′) = v(g), f ′ and g′ are algebraically independent but v( f ′) and v(g′) are al-
gebraically dependent. Then since h generates its own centralizer in An , v(g′) = hp for some positive
integer p. Let g′ = hp + g′

1 where v(g′
1) < hp , and if v(g′

1) and h are dependent, then v(g′
1) = hp1 for

some integer p1 which is less than p. This can be done inductively.

Lemma 2.6 (On steps). The above process will stop after a finite number of steps.

Proof. After k steps, let g′ = ∑k
i=1 aihmi + g′

k . Obviously deg([ f ′, g′]) = deg([ f ′, g′
k]) � deg( f ′) +

deg(g′
k), so deg(g′

k) � deg([ f ′, g′]) − deg( f ′) = deg([ f , g]) − deg( f ). Here notice that deg(h) > 0, so
after each step, if possible, the deg(g′

i) decreases by at least 1 which means after at most

deg(g) − (
deg

([ f , g]) − deg( f )
) = deg( f g) − deg

([ f , g])
steps, the process will stop. �



96 Y.-C. Li, J.-T. Yu / Journal of Algebra 362 (2012) 92–98
Hence, after a finite number of steps we get g′ = ∑p
i=p−k aihi +s where v(s) and h are algebraically

independent.
Let C be the subalgebra generated by h, h−1 and s, and equip it with the weighted degree func-

tion w1,p where w1,p(h) = 1 and w1,p(s) = p. Of course f ′, g′ ∈ C , and we write f̃ ′ , g̃′ as the leading
parts of f ′ and g′ respectively relative to w1,p . To any polynomial P (x, y), let P denote the leading
part relative to the weighted degree function wq,p . Let deg be the homogeneous degree of An , and
we have:

Lemma 2.7 (On degrees). P ( f̃ ′, g̃′) �= 0 and

deg
(

P
(

f ′, g′)) � deg
(

P
(

f̃ ′, g̃′)).
Proof. Consider P ( f ′, g′) = Q (h,h−1, s) as well as P ( f̃ ′, g̃′) = R(h,h−1, s) as the element of C ,
and then R is the leading part of Q relative to w1,p , so all the monomials of R appear
in Q with nonzero coefficients. Since h and v(s) are algebraically independent, deg(P ( f ′, g′)) =
wdeg(h),deg(s)(Q (h,h−1, s)) and deg(P ( f̃ ′, g̃′)) = wdeg(h),deg(s)(R(h,h−1, s)). We conclude by the defi-
nition of weighted degree. �

Now we only need to estimate deg(P ( f̃ ′, g̃′)).
The following procedure is similar to the counterparts in [10].
Now we can write f̃ = tm and g̃ = tn + s just for convenience since deg( f ) = m and deg(g) = n.

Then deg(t) = 1 and to each polynomial m(x, y), deg(m(t, s)) = deg1,deg(s)(m(x, y)), or we can say that
v(t) and v(s) are algebraically independent over K .

Let N = wm,n(P (x, y)), and q be the greatest integer among the integers which are not greater
than N

m+n (or we can denote it by q = [ N
m+n ]). Define Q (t, s) = P (tm, tn + s), and we have

Lemma 2.8 (On monomials). There is a monomial u(t, s) in supp(Q ) such that degs(u) � q.

Proof. Choose a monomial z(x, y) in supp(P (x, y)) such that

(1) degy(z) is the greatest;
(2) among all the monomials whose degree related to y is equal to degy(z), z is the greatest under

the lexicographic order x 
 y.

Let z(x, y) = xα1 yβ1 · · · xαk yβk with α1, βk � 0 and αi � 1, 2 � i � k, β j � 1, 1 � j � k − 1. Let I =
degx(z) and J = degy(z). If J � q, then the degrees related to s of all the monomials in supp(Q )

are not greater than q, and since in Proposition 2.4 it is proved that supp(Q ) is not empty, we
prove the lemma. Hence assume J > q, or J � q + 1. If I + J � 2q + 2, then since N = mI + n J ,
N = m(I + J )+(n−m) J � m(2q+2)+(n−m)(q+1) = (m+n)(q+1) which contradicts to N

m+n < q+1,
and hence I + J � 2q + 1.

Now for z(x, y) = xα1 yβ1 · · · xαk yβk , replace x by tm , and, if βi = 2σi , replace yβi by (stn)σi ; if
βi = 2σi + 1, replace yβi by (stn)σi s. Then we get a monomial u(t, s). It is easy to verify that u(t, s) is
a monomial in the extension of z(tm, tn + s) = tmα1 (tn + s)β1 · · · tmαk (tn + s)βk , and the coefficient of u
is just the coefficient of z in supp(P ) and hence nonzero.

Now we are going to prove that u(t, s) cannot come from other extensions of the monomials in
supp(P ) after replacement.

We divide z(x, y) into different parts first: xα1 ; yβi xαi+1 where 1 � i � k − 1; yβk . Let l(x, y)

be a part of z(x, y), and we define ψ(l(x, y)) being the corresponding part in u(s, t) after re-
placement. So ψ(xα1 ) = tmα1 and so on. If u(s, t) is also in the extension of z1(tm, tn + s) where
z1(x, y) ∈ supp(P (x, y)), then let l1(x, y) be a part of z1(x, y), and we define ψ1(l(x, y)) to be
the corresponding part in u(s, t). Hence z1(x, y) can also be divided in to

∏
i+1k+1 hi(x, y) with

ψ1(h1) = ψ(xα1 ), ψ1(hi) = ψ(yβi xαi+1 ) where 1 � i � k − 1, and ψ1(hk+1) = ψ(yβk ). Obviously
degy(h1) � degy(xα1 ). To each i, 1 � i � k − 1, if βi is odd, then ψ1(hi+1) = (stn)σi s · tmαi+1 , and since
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n < m, the tn between two s has to come from g̃ , so hi+1 = yβi ·h′
i+1 where ψ1(h′

i+1) = tmαi+1 , namely

degy(hi+1) � βi . If βi is even, then ψhi+1 = (stn)σ ·tmαi+1 = (stn)σ−1s ·tmαi+1+n . Hence hi+1 = yβi−1h′
i+1

where ψ1(h′
i+1) = tmαi+1+n . However, since n < m, h′

i+1 cannot be of the form xp for some integer p,
and hence degy(h

′
i+1) � 1, namely degy(hi+1) � βi . To hk+1, since ψ1(hk+1) = ψyβk = stnstn · · · s or

stnstn · · · stn , it has to equal to yβk . Hence, degy(z1(x, y)) = ∑k+1
i=1 degy(hi) �

∑k
i=1 βi = degy(z(x, y)).

However degy(z(x, y)) is the greatest one among the monomials in supp((P )), degy(z1(x, y)) =
degy(z(x, y)), and the only case is that h1(x, y) = xα1 , and for 1 � i � k − 1, h′

i+1 = xαi+1 if βi
is odd and deg(h′

i+1) = 1 if βi is even. Let h′
j+1 be the monomial with least j such that β j is

even but h′
j+1 �= yxα j+1 , then since degy(h

′
j+1) = 1, h′

j+1 = xr yxα j+1−r for 1 � r � α j+1. But if so,
z1(x, y) > z(x, y) under the lexicographic order x 
 y which contradicts to z(x, y) being maximal,
hence no such h′

j+1 exists, namely each h′
j+1 of this kind is equal to yxα j+1 . Hence z1(x, y) = z(x, y)

and the coefficient of u(s, t) is not zero.
According to the definition of u(s, t), we see that

degs(u) �
k∑

i=1

βi + 1

2
= J + k

2
.

Obviously that I � k − 1, and hence J+k
2 � I+ J+1

2 � 2q+2
2 = q + 1 (be reminded that I + J �

q + 1). Notice that degs(u) = q + 1 only if all the βi s’ are odd and I = k − 1, and z(x, y) =
y2σ1+1xy2σ2+1 · · · xy2σk+1 or y2σ1+1xy2σ2+1 · · · xy2σk−1+1x. Then in z(tm, tn + s) we replace y2σ1+1x
by (tns)σ1 tn · tm and choose u(t, s) = (tns)σ1tntm(stn)σ2 s · · · . We denote z(x, y) = y2σ1+1x · h(x, y) and
if u(s, t) can also come from another monomial z1(x, y), then z1(x, y) = y2σ2 h1(x, y)h(x, y) with
ψ1(h1) = tm+n . Hence h1(x, y) = xy or yx. Notice again that z(x, y) is the maximal element under
the lexicographic order x 
 y, and hence h1(x, y) = yx which means z1(x, y) = z(x, y). Then the co-
efficient of u(s, t) is nonzero and degs(u) = q + 1 − 1 = q. �
Proof of Theorem 1.1. Recall that deg( f ) = m, deg(g) = n, deg(t) = 1, deg(s) = deg([ f , g]) − deg( f ) =
deg([ f , g])−m, N = wm,n(P (x, y)). We have proved that there exists some u(s, t) ∈ supp(P (tm, tn + s))
such that degs(u) � N/(m + n). Since N = degt(u) + n · degs(u), then deg(u) = degt(u(t, s)) +
degs(u(t, s)) · (deg([ f , g]) − m) = N + degs(u(s, t))(deg([ f , g]) − m − n). Since deg([ f , g]) − m − n � 0,
we get

deg
(

P ( f , g)
)
� deg

(
P ( f̃ , g̃)

)
� deg(u) � N + N(deg([ f , g]) − m − n)

m + n
= deg([ f , g])

m + n
wm,n(P ).

Since m + n = deg( f g), we get

deg
(

P ( f , g)
)
� deg([ f , g])

deg( f g)
wdeg( f ),deg(g)(P ). �

Example 2.9. Let f = xn , g = xm + y, P = [x, y]k . Then

deg
(

P ( f , g)
) = k(n + 1) = deg([ f , g])

deg( f g)
wdeg( f ),deg(g)(P ),

which shows the estimate is sharp.

Remark 2.10. The methodology in this paper, unlike that in [10], is not applicable for commutative
case, as in that case there is no invariant to judge whether two polynomials are algebraically depen-
dent or independent over a field of positive characteristic, and in fact to find such an invariant is an
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interesting question, and it is also interesting to get a sharp degree estimate for the commutative case
for positive characteristic.
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