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u,v for the full flag variety in Lie types C and D . This is
accomplished by first observing that a number of the K = GL(n,C)-
orbit closures on these flag varieties coincide with Richardson
varieties, and then applying a theorem of M. Brion on the decom-
position of such an orbit closure in the Schubert basis in terms of
paths in the weak order graph.
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1. Introduction

Let G be a simple algebraic group over C, of classical type, with B, B− ⊆ G opposed Borel sub-
groups. Let W be the Weyl group for G . For each w ∈ W , there exists a Schubert class S w =
[B−w B/B] ∈ H∗(G/B). It is well known that the classes {S w}w∈W form a Z-basis for H∗(G/B). As
such, for any u, v ∈ W , we have

Su · S v =
∑

w∈W

cw
u,v S w

in H∗(G/B), for uniquely determined non-negative integers cw
u,v . These integers are the Schubert struc-

ture constants.
Although the Schubert constants are computable, it has been a long-standing open problem, even

in type A, to give a positive (i.e. subtraction-free) formula for an arbitrary constant cw
u,v in terms of
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u, v , w . Such positive formulas are known in type A in various special cases, but fewer results of this
sort are known in the other classical types.

In [Wys11], a special case rule for structure constants cw
u,v in type An−1 is described in the event

that (u, v) form what is referred to there as a “(p,q)-pair” (p + q = n). The key observation of that
paper is that a number of the K = GL(p,C) × GL(q,C)-orbit closures on the flag variety coincide
with Richardson varieties—intersections of Schubert varieties with opposite Schubert varieties. The rule
follows when this observation is combined with a theorem of M. Brion (Theorem 2.6), which describes
intersection numbers of spherical subgroup orbit closures with Schubert varieties in terms of paths
in the weak order graph. Theorem 2.6 applies to K -orbit closures since K is a symmetric subgroup
of GL(n,C) (i.e. the fixed-point subgroup of an involution), and because symmetric subgroups form
a special class of spherical subgroups.

In this note, we extend the results of [Wys11] to obtain analogous special case rules for
some cw

u,v in Lie types C and D . If elements of W are viewed as signed permutations, then
the types of structure constants described by these rules correspond to pairs (u, v) of “signed
shuffles”. The key observation once again is that a number of symmetric subgroup orbit closures
on these flag varieties coincide with Richardson varieties. More specifically, let G = Sp(2n,C) or
SO(2n,C), and let X = G/B be the flag variety for G . Let G ′ = GL(2n,C), and let X ′ = G ′/B ′
be the flag variety for G ′ . When K ′ = GL(n,C) × GL(n,C) ⊆ G ′ is intersected with G , the result
is a symmetric subgroup of G , isomorphic to K = GL(n,C) in each case. Moreover, the intersec-
tion of any K ′-orbit on X ′ with X , if non-empty, is a single K -orbit on X . Using this, along
with the fact that a number of the K ′-orbit closures on X ′ coincide with Richardson varieties
in X ′ , we see also that a number of the K -orbit closures on X coincide with Richardson vari-
eties in X . Specifically, if Y ′ = Q ′ is a K ′-orbit closure on X ′ coinciding with a Richardson variety
in X ′ , and if Q ′ ∩ X �= ∅, then Y := Y ′ ∩ X is a K -orbit closure on X which coincides with a
Richardson variety in X . Because Theorem 2.6 applies to the class of any spherical subgroup or-
bit closure in any flag variety, we apply it once again in these settings to obtain the additional
rules.

The paper is organized as follows. Section 1 is the introduction. In Section 2, we cover some
preliminaries, recalling Theorem 2.6 and the results of [Wys11] which will be relevant to us here.
With these facts recalled, we describe the results in types C and D in Sections 3 and 4, re-
spectively. We conclude with a natural question in Section 5: Are there other spherical subgroups
of the classical groups some of whose orbit closures happen to coincide with Richardson vari-
eties?

The results presented here and in [Wys11] grew out of the author’s doctoral thesis work on
some aspects of the equivariant geometry of symmetric subgroup orbit closures on flag varieties.
The author thanks William A. Graham, his research advisor at the University of Georgia, for his in-
valuable assistance in that project, as well as for his help in editing and revising this manuscript.
The author also thanks an anonymous referee for his/her careful reading and helpful sugges-
tions.

2. Preliminaries

2.1. Schubert varieties, opposite Schubert varieties, and Richardson varieties

Let G , B , B− , and W be as in the introduction. We quickly define our conventions regarding
Schubert varieties, opposite Schubert varieties, and Schubert classes.

Definition 2.1. For w ∈ W , the Schubert variety Xw is defined to be B w B/B . This is an irreducible
subvariety of G/B of complex dimension l(w). The opposite Schubert variety X w is defined to be
B−w B/B . This is an irreducible subvariety of G/B of complex codimension l(w). The Schubert class
S w is defined to be the (Poincaré dual to the) fundamental class of X w , i.e. S w = [X w ]. Note that
S w ∈ H2l(w)(G/B).
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Definition 2.2. For u, v ∈ W , the Richardson variety X v
u is defined to be Xu ∩ X v . This intersection

is non-empty if and only if u � v in the Bruhat order on W . In that event, the intersection is proper
and reduced, and has dimension l(u) − l(v).

Due to the fact that [Xw ] = [X w0 w ] for any w ∈ W (w0 denoting the longest element of W ), along
with the fact that X v

u is a proper, reduced intersection, we have the following in H∗(G/B):

[
X v

u

] = [
X w0u] · [X v] = S w0u · S v . (1)

2.2. K -orbits on G/B, the weak order, and a theorem of Brion

Let G be any complex, reductive algebraic group, with θ : G → G an involution, and K = Gθ the
corresponding symmetric subgroup. Let T ⊆ B be a θ -stable maximal torus and Borel subgroup,
respectively. K acts on G/B with finitely many orbits [Mat79]. Let Q be one of these orbits. Let
α ∈ Δ(G, T ) be a simple root, with Pα the standard minimal parabolic subgroup of type α, and

πα : G/B → G/Pα

the natural projection. The set π−1
α (πα(Q )) is K -stable, and contains a dense K -orbit. We denote the

dense orbit as follows:

sα · Q = the (unique) dense K -orbit on π−1
α

(
πα(Q )

)
.

If dim(πα(Q )) < dim(Q ), then sα · Q = Q , but if dim(πα(Q )) = dim(Q ), sα · Q is another orbit
of dimension one higher than the dimension of Q .

Definition 2.3. The weak closure order (or simply the weak order) on K -orbits is the partial order
generated by relations of the form Q ≺ Q ′ ⇔ Q ′ = sα · Q �= Q , for α ∈ Δ. Equivalently, we may
speak of the weak ordering on orbit closures. Supposing that Y , Y ′ are the closures of orbits Q , Q ′ ,
respectively, we say that Y ′ = sα · Y if and only if Q ′ = sα · Q , if and only if Y ′ = π−1

α (πα(Y )).

Let Q , Q ′ , Y , Y ′ be as above. If Y ′ = sα · Y �= Y , then the simple root α can be categorized as
either “complex” or “non-compact imaginary” for Y . (See [RS90] for this terminology.) In the non-
compact imaginary case, α is said to be of “type I” or “type II” depending on whether Q is fixed by
the “cross-action” of sα .

Definition 2.4. The cross-action, denoted ×, of W on K\G/B is defined as follows:

w × (K · g B) = K · g ẇ−1 B,

where ẇ denotes a representative of w in NG(T ).
If sα · Y �= Y , and if α is non-compact imaginary for Y , then α is said to be of type I if sα × Q �= Q ,

and of type II if sα × Q = Q .

Remark 2.5. Note that the cross-action is independent of the choice of ẇ , since for t ∈ T ,

(ẇt)−1 B = t−1 ẇ−1 B = ẇ−1(ẇt−1 ẇ−1)B = ẇ−1t′B = ẇ−1 B,

since t′ = ẇt−1 ẇ−1 is an element of T (hence an element of B), ẇ being an element of NG(T ).
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In [Bri01], the poset graph for the set of orbit closures equipped with the weak order is endowed
with additional data, as follows: Whenever Y ′ = sα · Y , the directed edge originating at Y and termi-
nating at Y ′ gets a label of α. Moreover, if α is non-compact imaginary type II for Q , this edge is
double. (In all other cases, the edge is simple.) The double edge is meant to indicate that when α is
a non-compact imaginary type II root, the restriction πα |Y has degree 2 over its image. (In all other
cases, πα |Y is birational over its image.)

If w ∈ W , with si1 . . . sik a reduced expression for w , set

w · Y = si1 · (si2 · . . . (sik · Y ) . . .
)
.

This is well defined, independent of the choice of reduced expression for w , and defines an action
of a certain monoid M(W ) on the set of K -orbit closures [RS90]. As a set, the monoid M(W ) is
comprised of elements m(w), one for each w ∈ W . The multiplication on M(W ) is defined inductively
by

m(s)m(w) =
{

m(sw) if l(sw) > l(w),

m(w) otherwise.

(For the sake of simplicity, we denote this action by w · Y , as opposed to m(w) · Y . However, we
emphasize that this defines an action of M(W ), and not of W .)

Suppose that Y is a K -orbit closure on G/B of codimension d. Define the following subset of W :

W (Y ) := {
w ∈ W

∣∣ w · Y = G/B and l(w) = d
}
.

(Note that in this definition, “G/B” refers to the closure of the dense, open orbit.) Elements of W (Y )

are precisely those w such that there is a path connecting Y to the top vertex of the weak order
graph, the product of whose edge labels is w . For any w ∈ W (Y ), denote by D(w) the number of
double edges in such a path. (Although there may be more than one such path, each corresponding
to a different reduced expression for w , any such path has the same number of double edges, so
D(w) is well defined. See [Bri01, Lemma 5].)

With all of this defined, we now recall a theorem of [Bri01] which is used in [Wys11] to obtain
positive rules for certain Schubert constants cw

u,v in type A. In the present paper, we use it again to
obtain analogous rules in types C D .

Theorem 2.6. (See [Bri01].) Let Y be a K -orbit closure on G/B. In H∗(G/B), the fundamental class of Y is
expressed in the Schubert basis as follows:

[Y ] =
∑

w∈W (Y )

2D(w)S w .

2.3. GL(p,C) × GL(q,C)-orbits, (p,q)-clans, and (p,q)-pairs

We now briefly recall results of [Wys11] which relate GL(p,C) × GL(q,C)-orbit closures on the
type A flag variety to Richardson varieties.

Let G = GL(n,C), with B the Borel subgroup of G consisting of upper-triangular matrices. Let
X = G/B be the type A flag variety. For p,q with p + q = n, let θ = int(I p,q), where I p,q is the matrix

(
I p 0
0 −Iq

)
,

and where int(g) denotes conjugation by g .



B.J. Wyser / Journal of Algebra 364 (2012) 67–87 71
One checks easily that K = Gθ is isomorphic to GL(p,C) × GL(q,C), embedded diagonally as fol-
lows:

K =
{[

K11 0
0 K22

]
∈ G

∣∣∣ K11 ∈ GL(p,C)

K22 ∈ GL(q,C)

}
.

As detailed in [MŌ90,Yam97,MT09], and as recalled in [Wys11], the set K\X of K -orbits is in
bijection with the set of combinatorial objects known as (p,q)-clans:

Definition 2.7. A (p,q)-clan is a string of n = p + q symbols, each of which is a +, a −, or a natural
number. The string must satisfy the following two properties:

(1) Every natural number which appears must appear exactly twice in the string.
(2) The difference in the number of plus signs and the number of minus signs in the string must be

p − q. (If q > p, then there should be q − p more minus signs than plus signs.)

Such strings are considered only up to an equivalence which says, essentially, that it is the posi-
tions of matching natural numbers, rather than the actual values of the numbers, which determine
a clan. So, for instance, the clans (1,2,1,2), (2,1,2,1), and (5,7,5,7) are all the same, since they
all have matching natural numbers in positions 1 and 3, and also in positions 2 and 4. On the other
hand, (1,2,2,1) is a different clan, since it has matching natural numbers in positions 1 and 4, and
in positions 2 and 3.

For (p,q)-clans, there is an obvious notion of pattern avoidance. This notion is used in, e.g.,
[McG09,MT09] to give combinatorial criteria for rational smoothness of symmetric subgroup orbit
closures in various cases. In [Wys11], pattern avoidance is used to identify certain K -orbit closures as
Richardson varieties.

Definition 2.8. Given a (p,q)-clan γ and a (p′,q′)-clan γ ′ (with p′ � p and q′ � q), γ is said to avoid
the pattern γ ′ if there is no substring of γ of length p′ + q′ which is equal to γ ′ as a clan.

One of the main observations of [Wys11] is that the closure of any K ′-orbit whose clan avoids the
pattern (1,2,1,2) is a Richardson variety. The precise statement is as follows:

Theorem 2.9. (See [Wys11, Theorem 6.4].) Suppose that γ = (c1, . . . , cn) is a (p,q)-clan avoiding (1,2,1,2).
Define permutations u(γ ), v(γ ) as follows:

• u(γ ) is the permutation which assigns the numbers p, p −1, . . . ,1, in order, to those positions i for which
ci is either a + or the second occurrence of some natural number, and the numbers n,n − 1, . . . , p + 1, in
order, to the remaining positions.

• v(γ ) is the permutation which assigns the numbers 1, . . . , p, in order, to those positions i for which ci is
either a + or the first occurrence of some natural number, and the numbers p + 1, . . . ,n, in order, to the
remaining positions.

Then the orbit closure Yγ = Q γ is the Richardson variety X v(γ )

u(γ ) .

As an example, if γ = (+,−,1,1,2,2), then Yγ = X142536
365241 .

Let u = u(γ ), v = v(γ ). Since [Yγ ] is the product [Xw0u] · [Xv ], Theorem 2.6 and some case-
specific knowledge of the combinatorics of K\X give a positive rule for computing cw

w0u,v for any w .
Note that (w0u, v) have the property that the one-line notation for w0u is a “shuffle” of 1, . . . ,q
and q + 1, . . . ,n—that is, in the one-line notation, 1, . . . ,q occur in order, and q + 1, . . . ,n occur in
order. Likewise, v is a shuffle of 1, . . . , p and p + 1, . . . ,n. In [Wys11], (w0u, v) is referred to as
a “(p,q)-pair”.
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There is a converse to Theorem 2.9, which says that any Richardson variety X v
u such that (w0u, v)

form a (p,q)-pair is the closure of a K -orbit on X .

Proposition 2.10. (See [Wys11, Proposition 7.2].) Suppose that (w0u, v) is a (p,q)-pair with u � v. The
Richardson variety X v

u is the K -orbit closure Yγ (u,v) , where γ (u, v) is a (p,q)-clan avoiding the pattern
(1,2,1,2). The clan γ (u, v) is produced from u, v by the following recipe: First, create an “FS-pattern”
(e1, . . . , en) from u, v as follows:

(1) If u(i), v(i) � p, set ei = +.
(2) If u(i), v(i) > p, set ei = −.
(3) If u(i) > p, v(i) � p, set ei = F .
(4) If u(i) � p, v(i) > p, set ei = S.

From this FS-pattern, produce γ (u, v) = (c1, . . . , cn) by the following steps:

(1) First, for all i with ei = ±, set ci = ei .
(2) Next, for all i with ei = F , set ci to be a distinct natural number. (If there are m occurrences of F , these

may as well be the numbers 1, . . . ,m, in order from left to right.)
(3) Finally, starting at the left and moving to the right, for all i with ei = S, set ci to be the mate of the closest

natural number to the left of position i which does not yet have a mate.

As an example, consider the Richardson variety X142536
365241 . The FS-pattern produced is (+,−, F , S,

F , S). The clan produced from this FS-pattern by the steps outlined above is:

(1) (+,−,∗,∗,∗,∗).
(2) (+,−,1,∗,2,∗).
(3) (+,−,1,1,2,2).

Thus we recover the fact, noted above, that X142536
365241 = Y(+,−,1,1,2,2) .

Proposition 2.10 tells us that the rule of [Wys11, Theorem 7.5] for structure constants in type A
applies to all cw

u,v where u, v form a (p,q)-pair with w0u � v . (Note that if w0u � v , then cw
u,v is

automatically zero.)

3. Type C

In this section, we apply the results recalled in the previous section to obtain a positive rule for
Schubert constants in type C . In the next section, we do the same in type D .

We realize the complex symplectic group G = Sp(2n,C) as the isometry group of the symplectic
form

〈x, y〉 =
n∑

i=1

xi y2n+1−i −
2n∑

i=n+1

xi y2n+1−i.

That is, G is the set of all matrices g such that gt Jn,n g = Jn,n , where

Jn,n =
(

0 Jn

− Jn 0

)
,

with Jn the n × n antidiagonal matrix (δi,n+1− j).
Let B ⊆ G be the Borel subgroup of upper-triangular elements of G . The flag variety G/B nat-

urally identifies with the set of flags which are isotropic with respect to the form 〈·,·〉. (A flag
F• = (F0 ⊂ F1 ⊂ · · · ⊂ F2n) is isotropic with respect to 〈·,·〉 if and only if F2n+1−i = F ⊥

i for i = 1, . . . ,n,
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where orthogonal complements are taken with respect to 〈·,·〉.) Thus the type C flag variety X is nat-
urally a closed subvariety of the type A flag variety X ′ = G ′/B ′ , where G ′ = GL(2n,C) and B ′ ⊆ G ′ is
the Borel subgroup of upper-triangular elements of G ′ . (The embedding X ′ ↪→ X corresponds to the
obvious map G/B ↪→ G ′/B ′ taking g B to g B ′ .)

Recall that K ′ = GL(n,C) × GL(n,C) ⊆ G ′ is (G ′)θ ′
for θ ′ = int(In,n). One checks easily that G is

stable under θ ′ , so that θ := θ ′|G is an involution of G . Let K = Gθ = G ∩ K ′ . It is a straightforward
calculation to see that

K =
{(

g 0
0 Jn(gt)−1 Jn

) ∣∣∣ g ∈ GL(n,C)

}
∼= GL(n,C).

We wish to see that certain of the K -orbit closures on X are Richardson varieties. Namely, suppose
that Y ′ = Q ′ is a K ′-orbit closure on X ′ which is a Richardson variety, and suppose that Q ′ ∩ X =
Q �= ∅. Then Y = Q is a K -orbit closure on X which coincides with a Richardson variety.

To see this, we must first note that in the above notation, Q is a K -orbit on X . Thus we start
by identifying the K -orbits on X . It is clear that the intersection of a K ′-orbit on X ′ with X , if non-
empty, is stable under K and hence is at least a union of K -orbits on X . In fact, each such non-empty
intersection is a single K -orbit on X . (We briefly describe the idea of the proof of this below, see
Proposition 3.2). This means that K -orbits on X are in one-to-one correspondence with K ′-orbits
on X ′ which intersect X . And since K ′-orbits on X ′ are parametrized by (n,n)-clans, K -orbits on X
are parametrized by the subset of (n,n)-clans γ having the property that Q ′

γ ∩ X �= ∅. (Q ′
γ denotes

the K ′-orbit on X ′ corresponding to γ .) As it turns out, this last condition amounts to γ possessing
a simple combinatorial property.

Definition 3.1. An (n,n)-clan γ = (c1, . . . , c2n) is skew-symmetric if the clan (c2n, . . . , c1) obtained
from γ by reversing the string is the “negative” of γ , meaning it is the same clan except with all
signs flipped. More precisely, γ is skew-symmetric if and only if for each i = 1, . . . ,n,

(1) If ci is a sign, then c2n+1−i is the opposite sign.
(2) If ci is a number, then c2n+1−i is also a number, and if c2n+1−i = c j , then ci = c2n+1− j .

Proposition 3.2. Let γ be an (n,n)-clan, with Q ′
γ the corresponding K ′-orbit on X ′ . Then Q ′

γ ∩ X �= ∅ if and
only if γ is skew-symmetric. Furthermore, if γ is skew-symmetric, then Q ′

γ ∩ X is a single K -orbit on X. Thus
K\X is parametrized by the set of all skew-symmetric (n,n)-clans.

Proof. The first claim is proved in [Yam97]. We do not prove the second claim here, but briefly
indicate what is involved in one possible proof. (The author thanks Peter Trapa for explaining this
general line of argument to him.) One considers an entire “inner class” of involutions θi , and lets
Ki = Gθi . (To be more specific, in this case, the relevant Ki ’s turn out to be GL(n,C) together with
the groups Sp(2p,C) × Sp(2q,C) as p, q range over all possibilities with p + q = n.) Each Ki can be
realized as G ∩ K ′

i , with each K ′
i isomorphic to GL(p,C) × GL(q,C) for some p, q. Given this setup,

one can consider the disjoint union of all orbit sets,
∐

i Ki\X . The resulting set of orbits is in bijection
with the so-called “one-sided parameter space” X , defined in [AdC09]. The cardinality of the latter
set can be computed explicitly, allowing for a counting argument which shows that no intersection of
a K ′

i -orbit on X ′ with X can be anything other than a single Ki -orbit (for any Ki ).
A detailed argument of this type will appear in another paper currently in preparation by the

author. �
Suppose that Y ′

γ = Q ′
γ is a K ′-orbit closure on X ′ , with γ a skew-symmetric (n,n)-clan avoiding

the pattern (1,2,1,2). We know that Y ′
γ is a Richardson variety in X ′ . By the previous proposition,

we also know that Yγ = Q γ = Q ′
γ ∩ X = Y ′

γ ∩ X . We now wish to see that Yγ is a Richardson variety
in X .
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Let W be the Weyl group for G , and W ′ = S2n the Weyl group for G ′ . Recall that W consists of
signed permutations of [n] (changing any number of signs). A signed permutation of [n] is a bijec-
tion σ from the set {±1, . . . ,±n} to itself having the property that

σ(−i) = −σ(i)

for all i. We shall denote signed permutations in one-line notation with bars over some of the
numbers to indicate negative values. For example, the one-line notation 312 represents the signed
permutation which sends 1 to 3, 2 to −1, and 3 to 2.

There is a natural embedding W ↪→ W ′ as permutations π of [2n] having the property that

π(2n + 1 − i) = 2n + 1 − π(i)

for all i ∈ [n]. This embedding takes a signed permutation σ of [n] to the permutation π of [2n]
defined by

π(i) =
{

σ(i) if σ(i) > 0,

2n + 1 − |σ(i)| otherwise,

and π(2n + 1 − i) = 2n + 1 − π(i) for i = 1, . . . ,n.
To avoid any confusion in terminology, we will refer to elements of S2n in the image of this

embedding as “signed elements of S2n”. For any w ∈ W , we will denote its image in S2n by w ′ . (Con-
versely, any permutation denoted w ′ , u′ , etc. should be assumed to be the image of a corresponding
element w , u, etc. of W .)

Proposition 3.3. Suppose that γ = (c1, . . . , c2n) is a skew-symmetric (n,n)-clan avoiding the pattern
(1,2,1,2). Let u(γ ), v(γ ) ∈ S2n be as described in the statement of Theorem 2.9. Then u(γ ), v(γ ) are signed
elements of S2n.

Proof. Consider u. Moving from left to right from c1 to cn , the ith character which is either a plus
sign or a second occurrence of a natural number is assigned the value n − i + 1. Say this character
is ck , so that u(k) = n − i + 1. Then due to skew-symmetry, as we move right to left from c2n to cn+1,
c2n+1−k is the ith occurrence of a minus sign or first occurrence of a natural number, so it is assigned
n + i, i.e. u(2n + 1 − k) = n + i. This says that

u(2n + 1 − k) = n + i = 2n + 1 − (n − i + 1) = 2n + 1 − u(k).

Likewise, moving left to right, the ith character which is either a minus sign or first occurrence of
a natural number is assigned the value 2n − i + 1. If this character is ck , then u(k) = 2n − i + 1. Then
moving right to left, the ith character which is either a plus sign or second occurrence of a natural
number is c2n+1−k , and this position is assigned the value i. Thus u(2n + 1 − k) = i. Then

u(2n + 1 − k) = i = 2n + 1 − (2n − i + 1) = 2n + 1 − u(k).

Thus u(2n + 1 − k) = 2n + 1 − u(k) for all k ∈ [n]. The argument for v is virtually identical. �
The last proposition says in particular that any K ′-orbit closure Y ′ = Q ′ which coincides with

a Richardson variety, and which has the property that Q ′ ∩ X �= ∅, is of the form X v ′
u′ for u, v ∈ W .

Indeed, such an orbit closure is of the form Y ′
γ with γ a skew-symmetric (n,n)-clan avoiding the

pattern (1,2,1,2). We know that Y ′
γ = X v(γ )

u(γ ) by Theorem 2.9, and we have just shown that u(γ )

and v(γ ) are of the form u′, v ′ . We wish to see now that the intersection of Y ′
γ = X v ′

u′ with X is the
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Richardson variety X v
u . We need the following fact regarding the Bruhat order on W , for which we

refer to [BL00, §3.3]:

Proposition 3.4. (See [BL00, §3.3].) When W is considered as a subset of W ′ via the embedding described
above, the Bruhat order on W is the one induced by the Bruhat order on W ′ .

Corollary 3.5. Suppose Xw ′ (resp. X w ′
) is the Schubert subvariety (resp. the opposite Schubert subvariety)

of X ′ corresponding to w ′ , the image of w ∈ W in W ′ = S2n. Then Xw ′ ∩ X = Xw (resp. X w ′ ∩ X = X w ), the
Schubert subvariety (resp. the opposite Schubert subvariety) of X corresponding to w.

Proof. For the sake of clarity, we denote Schubert cells of X by {C w}w∈W , and Schubert cells of X ′
by {D w}w∈W ′ .

One first checks that the C w are all of the form D w ′ ∩ X . Indeed, each of these intersections is
easily seen to be non-empty, and is clearly stable under the Borel B = B ′ ∩ G , with B ′ ⊆ GL(2n,C) the
Borel of upper-triangular elements of the larger group. An easy counting argument then shows that
each such intersection must be a single B-orbit, hence equal to C w .

Then using the previous proposition, we see that

Xw ′ ∩ X =
( ⋃

v�w ′
D v

)
∩ X

=
⋃

v�w ′
(D v ∩ X)

=
⋃

v ′�w ′,v∈W

(D v ′ ∩ X)

=
⋃

v�w,v∈W

Cv

= Xw ,

and similarly for opposite Schubert varieties. �
Corollary 3.6. Let γ be a skew-symmetric (n,n)-clan avoiding the pattern (1,2,1,2). Let Y ′

γ denote the
closure of the K ′-orbit Q ′

γ on X ′ associated to γ , and let Yγ denote the closure of the K -orbit Q γ = Q ′
γ ∩ X

on X associated to γ . Let u′ = u(γ ), v ′ = v(γ ) be the elements of S2n produced from γ as described in the
statement of Theorem 2.9. Then Yγ is the Richardson variety X v

u .

Proof. By Proposition 3.3, u(γ ), v(γ ) are signed elements of S2n , which justifies denoting them by
u′ , v ′ . We know that Y ′

γ is the Richardson variety X v ′
u′ = Xu′ ∩ X v ′

. Since Q γ = Q ′
γ ∩ X by Proposi-

tion 3.2, we have Yγ = Y ′
γ ∩ X . Then by Corollary 3.5,

Yγ = Y ′
γ ∩ X = Xu′ ∩ X v ′ ∩ X = (Xu′ ∩ X) ∩ (

X v ′ ∩ X
) = Xu ∩ X v = X v

u . �
Recall that for an (n,n)-clan γ , the permutation u(γ ) is a shuffle of n,n − 1, . . . ,1 and 2n,

2n − 1, . . . ,n + 1, while v(γ ) is a shuffle of 1, . . . ,n and n + 1, . . . ,2n. When γ is skew-symmetric,
then u(γ ) and v(γ ) are of the form u′ , v ′ for u, v ∈ W signed permutations. Note that as signed
permutations, u is a shuffle of n,n − 1, . . . ,k + 1 and −1, . . . ,−k for some k, while v is a shuffle of
1, . . . , j and −n, . . . ,−( j + 1) for some j.

Since Yγ is the Richardson variety X v
u , using Theorem 2.6, we can compute the Schubert prod-

uct S w0u · S v . Given the above description of u, and given that w0 is the signed permutation which
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flips all signs, w0u is a shuffle of 1, . . . ,k and −n, . . . ,−(k + 1). Thus we make the following defini-
tion:

Definition 3.7. Suppose that u, v ∈ W are signed permutations with the following properties:

(1) u is a shuffle of 1, . . . ,k and −n, . . . ,−(k + 1) for some k.
(2) v is a shuffle of 1, . . . , j and −n, . . . ,−( j + 1) for some j.

We call (u, v) a type C pair of signed shuffles.

Since Theorem 2.6 applies to the class of any spherical subgroup orbit closure in any flag variety,
we now know that we can use it to compute the Schubert product Su · S v whenever (u, v) is a type C
pair of signed shuffles such that u = w0 · u(γ ) and v = v(γ ) for some skew-symmetric (n,n)-clan γ .
Note that by Proposition 2.10, we can compute all such non-trivial products this way: Assuming (u, v)

is a type C pair of signed shuffles with w0u � v , we have

Su · S v = [Xw0u] · [X v] = [
X v

w0u

] = [
X v ′

(w0u)′ ∩ X
] = [

X v ′
w ′

0u′ ∩ X
] = [

Y ′
γ (u′,v ′) ∩ X

] = [Yγ (u′,v ′)].

We now apply Theorem 2.6 to determine a positive rule for type C structure constants cw
u,v when

(u, v) is a type C pair of signed shuffles. To determine precisely what the rule says, we must un-
derstand the weak order on K\X , and specifically the monoidal action of M(W ) on K\X . For this,
we refer to [Yam97,MŌ90]. Let t be the Cartan subalgebra of g = Lie(G) consisting of diagonal matri-
ces

diag(a1, . . . ,an,−an, . . . ,−a1).

Let x1, . . . , xn be coordinates on t, with

xi
(
diag(a1, . . . ,an,−an, . . . ,−a1)

) = ai .

Order the simple roots in the following way: αi = xi − xi+1 for i = 1, . . . ,n − 1, and αn = 2xn . For
i = 1, . . . ,n, let si denote sαi . We wish to define the monoidal action of si on any K -orbit Q . Identi-
fying K -orbits with skew-symmetric (n,n)-clans, we speak instead of the action of si on such a clan
γ = (c1, . . . , c2n). We identify the simple roots as complex or non-compact imaginary (type I or II)
for γ , rather than for the orbit Q γ .

First consider α = αi with i = 1, . . . ,n − 1. Then α is complex for γ (and si · γ �= γ ) if and only if
one of the following occurs:

(1) ci is a sign, ci+1 is a number, and the mate for ci+1 occurs to the right of ci+1.
(2) ci is a number, ci+1 is a sign, and the mate for ci occurs to the left of ci .
(3) ci and ci+1 are unequal natural numbers, the mate for ci occurs to the left of the mate for ci+1,

and (ci, ci+1) �= (c2n−i, c2n−i+1).

In this event, si · γ = γ ′ , where γ ′ is obtained from γ by interchanging the characters in positions
i, i + 1, and the characters in positions 2n − i, 2n − i + 1.

On the other hand, α is non-compact imaginary for γ if and only if one of the following two
possibilities occurs:

(1) ci and ci+1 are opposite signs.
(2) ci and ci+1 are unequal natural numbers, with (ci, ci+1) = (c2n−i, c2n−i+1) (in order).
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In the first case above, si · γ = γ ′′ , where γ ′′ is obtained from γ by replacing the opposite signs
in positions i, i + 1 and (by skew-symmetry) positions 2n − i, 2n − i + 1 each by a distinct pair
of matching natural numbers. In the second case, si · γ = γ ′′′ , where γ ′′′ is obtained from γ by
interchanging the characters in positions i, i + 1 (but not those in positions 2n − i, 2n − i + 1).

The cross-action of si on the clan γ is by the action of the corresponding permutation s′
i =

(i, i + 1)(2n − i,2n − i + 1) ∈ S2n . That is, si × γ is the clan obtained from γ by interchanging the
characters in positions i, i + 1 and the characters in positions 2n − i, 2n − i + 1. Note that this action
does not fix γ in the first case above, since two pairs of opposite signs get interchanged. This means
that in the first case above, α is a non-compact imaginary root of type I. However, this cross-action
does fix γ in the second case, since interchanging the two pairs of numbers does not change the clan.
(Recall the equivalence of character strings described immediately after Definition 2.7.) Thus in the
second case, α is a non-compact imaginary root of type II.

Now consider sn . We have that αn is complex for γ (and sn · γ �= γ ) if and only if cn and cn+1 are
unequal natural numbers, with the mate for cn to the left of the mate for cn+1. αn is non-compact
imaginary for γ if and only if cn and cn+1 are opposite signs. In this case, the cross-action of sn on γ
is by the permutation action of s′

n = (n,n + 1) ∈ S2n . Thus sn × γ �= γ , since the cross-action of sn

interchanges the opposite signs in positions n, n + 1. Thus we see that αn is a non-compact imaginary
root of type I.

We summarize the preceding discussion by recasting the monoidal action of W in purely combi-
natorial terms, as a sequence of “operations” on skew-symmetric (n,n)-clans. Given a simple reflec-
tion si , consider the following possible operations on γ :

(a) Interchange the characters in positions i, i + 1 and the characters in positions 2n − i, 2n − i + 1.
(b) Interchange the characters in positions i, i +1, but not the characters in positions 2n− i, 2n− i +1.
(c) Replace the characters in positions i, i + 1 and the characters in positions 2n − i, 2n − i + 1 each

by a pair of matching natural numbers.
(d) Interchange the characters in positions n, n + 1.
(e) Replace the characters in positions n, n + 1 by a pair of matching natural numbers.

Then the monoidal action of M(W ) on γ is as follows: For i = 1, . . . ,n − 1,

(1) If ci is a sign, ci+1 is a number, and the mate for ci+1 occurs to the right of ci+1, si ·γ is obtained
from γ by operation (a).

(2) If ci is a number, ci+1 is a sign, and the mate for ci occurs to the left of ci , si ·γ is obtained from
γ by operation (a).

(3) If ci and ci+1 are unequal natural numbers, with the mate for ci occurring to the left of the mate
for ci+1, and if (ci, ci+1) �= (c2n−i, c2n−i+1), then si · γ is obtained from γ by operation (a).

(4) If ci and ci+1 are unequal natural numbers, and if (ci, ci+1) = (c2n−i, c2n−i+1), then si · γ is ob-
tained from γ by operation (b). (*)

(5) If ci and ci+1 are opposite signs, then si · γ is obtained from γ by operation (c).
(6) If none of the above hold, them si · γ = γ .

We give examples of (1)–(5) above:

(1) s2 · (+,+,1,1,2,2,−,−) = (+,1,+,1,2,−,2,−).
(2) s2 · (1,1,+,+,−,−,2,2) = (1,+,1,+,−,2,−,2).
(3) s1 · (1,2,1,2,3,4,3,4) = (2,1,1,2,3,4,4,3).
(4) s1 · (1,2,3,4,3,4,1,2) = (2,1,3,4,3,4,1,2).
(5) s1 · (+,−,1,1,2,2,+,−) = (3,3,1,1,2,2,4,4).

The action of sn is described as follows:

(1) If cn and cn+1 are unequal natural numbers, with the mate of cn occurring to the left of the mate
for cn+1, then sn · γ is obtained from γ by operation (d).
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(2) If cn and cn+1 are opposite signs, then sn · γ is obtained from γ by operation (e).
(3) If neither of the above hold, then sn · γ = γ .

Examples of (1), (2) above include

(1) s4 · (+,1,+,1,2,−,2,−) = (+,1,+,2,1,−,2,−).
(2) s4 · (1,+,1,+,−,2,−,2) = (1,+,1,3,3,2,−,2).

Note that in the definition of si · γ for i = 1, . . . ,n − 1, rule (4) above is marked with an asterisk.
This rule warrants special attention, since it is the sole case in which αi is a non-compact imaginary
root of type II. Thus if γ ′ is obtained from γ by application of rule (4), there is a double edge
connecting γ to γ ′ in the weak order graph.

Definition 3.8. For any w ∈ W , and for any skew-symmetric (n,n)-clan γ , define D(w, γ ) to be
the number of times rule (4) must be applied in the computation of w · γ . If w · Yγ = G/B and
l(w) = codim(Yγ ), then this corresponds to the number of double edges in a path from Yγ to G/B in
the weak order graph, the product of whose edge labels is w . (Again, this is well defined by [Bri01,
Lemma 5].)

As with [Wys11, Theorem 7.5], when we combine Theorem 2.6 with Corollary 3.6 and the case-
specific combinatorics described above, we get a special case rule for Schubert constants in type C .
The statement of the rule is as follows:

Theorem 3.9. Suppose (u, v) is a type C pair of signed shuffles, with w0u � v. Let u′ , v ′ be the images of u, v
in S2n, and let γ = γ (u′, v ′) be the corresponding skew-symmetric (n,n)-clan avoiding the pattern (1,2,1,2)

(cf. Proposition 2.10). Let

γ0 = (1,2, . . . ,n − 1,n,n,n − 1, . . . ,2,1)

be the skew-symmetric (n,n)-clan corresponding to the open, dense K -orbit on X.
For any w ∈ W ,

cw
u,v =

{
2D(w,γ ) if l(w) = l(u) + l(v) and w · γ = γ0,

0 otherwise.

Example 3.10. Consider the product Su · S v for u = 4123, v = 1423. The images of u and v in S8
are u′ = 51236784 and v ′ = 15236748, respectively. One checks that this (4,4)-pair corresponds to
the skew-symmetric (4,4)-clan γ (u′, v ′) = (+,−,1,2,2,1,+,−). As elements of W , we have that
l(u) = 4, l(v) = 3, and there are 44 elements of W of length l(u) + l(v) = 7. Table 1 of Appendix A
shows each of these elements as words in the simple reflections, the clan obtained from computing
the action of each on the clan γ (u, v), and the corresponding structure constant cw

u,v specified by
Theorem 3.9.

The data in Table 1, obtained using Theorem 3.9, was seen to agree with the output of Maple code
written by Alexander Yong, which computes Schubert products in all classical Lie types [Yon].

Note that unlike the rule of [Wys11, Theorem 7.5] (and the rule described in the next section for
type D), the type C rule is not multiplicity-free, as this example demonstrates. Consider the monoidal
action of w = [3,2,1,4,3,2,1] on the clan γ (u, v):

(+,−,1,2,2,1,+,−)
1−→ (3,3,1,2,2,1,4,4)

2−→ (3,1,3,2,2,4,1,4)

3−→ (3,1,2,3,4,2,1,4)
4−→ (3,1,2,4,3,2,1,4)

1−→ (1,3,2,4,3,2,4,1)

2−→ (1,2,3,4,3,4,2,1)
3∗−→ (1,2,3,4,4,3,2,1).
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Note that the last step, marked with an asterisk, is an application of rule (4) above. Since this is
the lone application of rule (4) required in the computation of the action of w , the corresponding
structure constant is 2.

On the other hand, the action of [4,3,2,1,4,3,2] requires no applications of rule (4), so the
corresponding structure constant is 1:

(+,−,1,2,2,1,+,−)
2−→ (+,1,−,2,2,+,1,−)

3−→ (+,1,2,−,+,2,1,−)

4−→ (+,1,2,3,3,2,1,−)
1−→ (1,+,2,3,3,2,−,1)

2−→ (1,2,+,3,3,−,2,1)

3−→ (1,2,3,+,−,3,2,1)
4−→ (1,2,3,4,4,3,2,1).

4. Type D

In parallel with the previous section, here we realize the even special orthogonal group G =
SO(2n,C) as the isometry group of the quadratic form

〈x, y〉 =
2n∑

i=1

xi y2n+1−i.

Thus G is the set of all matrices g such that gt J2n g = J2n , with J2n the 2n × 2n antidiagonal matrix
(δi,2n+1− j).

Again, the flag variety X for G is naturally a closed subvariety of the type A flag variety X ′ , here as
one of the two components of the variety of isotropic flags with respect to the form 〈·,·〉. (We choose
X to be the component containing the “standard flag” 〈e1, . . . , e2n〉.) The embedding corresponds
again to the map G/B ↪→ G ′/B ′ , where G ′ = GL(2n,C), B ′ is the Borel subgroup of G ′ consisting of
upper-triangular matrices, and B = B ′ ∩ G is the Borel subgroup of G consisting of upper-triangular
elements of G . And again, in exactly the same notation as the previous section, G is stable under θ ′ ,
with Gθ = G ∩ K ′ ∼= GL(n,C).

As in the last section, it is the case that if Y ′ is a K ′-orbit closure on X ′ which coincides with
a Richardson subvariety of X ′ , and if Y ′ ∩ X �= ∅, then Y ′ ∩ X is a single K -orbit closure on X which
coincides with a Richardson subvariety of X . Applying Theorem 2.6 once more, we obtain a positive
rule for structure constants in type D . The specific constants cw

u,v for which we get a rule once again
correspond to pairs (u, v) of shuffles. When n is even, this is a pair of signed shuffles as defined in
the previous section, but when n is odd, the definition is slightly different. (See Definition 4.7.)

We start once again by parametrizing the K -orbits on X by a subset of the (n,n)-clans parametriz-
ing K ′-orbits on X ′ . We do not prove the following proposition, but refer the reader to [MT09,MŌ90].

Proposition 4.1. (See [MT09,MŌ90].) Let γ = (c1, . . . , c2n) be an (n,n)-clan, with Q ′
γ the corresponding

K ′-orbit on X ′ . Then Q ′
γ ∩ X �= ∅ if and only if γ has the following three properties:

(1) γ is skew-symmetric.
(2) If ci = c j is a pair of equal natural numbers, then j �= 2n + 1 − i.
(3) Among (c1, . . . , cn), the total number of − signs and pairs of equal natural numbers is even.

Moreover, in this event, Q ′
γ ∩ X is once again a single K -orbit on X. Thus K\X is parametrized by the set of

all (n,n)-clans having properties (1)–(3) above.

We note further [MT09,MŌ90] that when we parametrize K\X as described in the previous propo-
sition, the open dense K -orbit corresponds to the clan

γ0 = (1,2, . . . ,n − 3,n − 2,n − 1,n,n − 1,n,n − 3,n − 2, . . . ,1,2)
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if n is even, and to the clan

γ0 = (1,2, . . . ,n − 3,n − 2,n − 1,n,+,−,n − 1,n,n − 3,n − 2, . . . ,1,2)

if n is odd.

Definition 4.2. For the sake of brevity, we refer to an (n,n)-clan having properties (1)–(3) of the
previous proposition as a type D clan.

Now suppose that Y ′
γ = Q ′

γ is a K ′-orbit closure on X ′ , with γ a type D clan avoiding the pattern
(1,2,1,2). We know that Y ′

γ is a Richardson variety in X ′ . By the previous proposition, we also know

that Yγ := Q γ = Q ′
γ ∩ X = Y ′

γ ∩ X . We wish to see that Yγ is a Richardson variety in X .
Let W be the Weyl group for G , W ′ = S2n the Weyl group for G ′ . In this case, W consists of signed

permutations of [n], changing an even number of signs. These embed into W ′ in precisely the same
way as described in the previous section. The only difference is that now the image of this embedding
is smaller. Indeed, elements of W ′ which are images of W under the embedding are signed elements
w ′ of S2n having the property that #{i � n | w ′(i) > n} is even. We will refer to such elements as
“type D elements of S2n”. Once again, we use notation such as w ′ , u′ , etc., to indicate the images of
elements w , u, etc. of W in W ′ .

Proposition 4.3. Suppose that γ = (c1, . . . , c2n) is a type D clan avoiding the pattern (1,2,1,2). Then
u(γ ), v(γ ) ∈ W ′ are type D elements of S2n.

Proof. Since γ is skew-symmetric, we know by Proposition 3.3 that u := u(γ ) and v := v(γ ) are
signed elements of S2n . Thus the only question is whether #{i � n | u(i) > n} and #{i � n | v(i) > n}
are both even.

For any skew-symmetric clan avoiding the pattern (1,2,1,2), and for i � n, suppose that ci is
a natural number. Then the mate for ci must be either c2n+1−i , or c j for another j � n. Indeed,
suppose that ci = c j for j > n but j �= 2n + 1 − i. Then we must have either (ci, c2n+1− j, c j, c2n+1−i)

(if j < 2n + 1 − i) or (c2n+1− j, ci, c2n+1−i, c j) (if j > 2n + 1 − i) in the pattern (1,2,1,2). Now, by
part (2) of the definition of a type D clan, the case ci = c2n+1−i is not allowed. Since γ is a type D
clan, any natural number occurring among the first n characters of γ has its mate also occurring
among the first n characters.

Now, recall that u is defined by assigning numbers less than or equal to n to + signs and second
occurrences of natural numbers, and numbers greater than n to − signs and first occurrences of
natural numbers. By the observation of the previous paragraph, the number of first occurrences of
natural numbers among the first n characters of γ is the same as the number of pairs of equal
natural numbers among the first n characters. By part (3) of the definition of a type D clan, then,
we have that the total number of − signs and first occurrences of natural numbers occurring among
the first n characters is even. Thus #{i � n | u(i) > n} is even. A similar argument, involving second
occurrences of natural numbers, applies to v . �

Suppose that Y ′ is a K ′-orbit closure on X ′ coinciding with a Richardson variety, such that Y :=
Y ′ ∩ X �= ∅. As we have just seen, Y ′ is of the form X v ′

u′ . We wish now to see that Y = X v ′
u′ ∩ X = X v

u ,
a Richardson variety of X . This is a bit more difficult to see in the type D case than it was in the
type C case. The complication comes from the fact that, unlike in type C , here the Bruhat order on
W is not induced by the Bruhat order on W ′ . Indeed, the Bruhat order on W is weaker than the
induced order. The precise statement is as follows:

Proposition 4.4. (See [BL00, §3.5].) For 1 � i � 2n, let i′ = 2n + 1 − i, and let |i| = min(i, i′). For u, v ∈ W ,
denote by u′ , v ′ their images in W ′ . Then u < v in the Bruhat order on W if and only if the following two
conditions hold:
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(1) For any d, 1 � d � n, if the sets {u′(1), . . . , u′(d)} and {v ′(1), . . . , v ′(d)} are each rewritten in ascending
order, then each element of the first set is less than or equal to the corresponding element of the second
set. Equivalently, u′ < v ′ in the Bruhat order on W ′ .

(2) Suppose that a1 . . .a2n is the one-line notation for u′ , and that b1 . . .b2n is the one-line notation for v ′ .
For any d ∈ [n], denote by (c1, . . . , cd) the numbers a1, . . . ,ad rewritten in ascending order, and by
(e1, . . . , ed) the numbers b1, . . . ,bd rewritten in ascending order. Then for any pair of compatible con-
tinuous subsequences {|ci+1|, . . . , |ci+r |}, {|ei+1|, . . . , |ei+r |}, which are both equal, as sets (i.e. without
respect to order), to {n + 1 − r, . . . ,n}, the numbers

#{ j | i + 1 � j � i + r and c j > n}
and

#{ j | i + 1 � j � i + r and e j > n}
are either both even or both odd.

This complicates matters somewhat, because the type D analogue of Corollary 3.5 does not hold
in general. Indeed, using notation as in the proof of that corollary, if C w = D w ′ ∩ X is a Schubert
cell of X , and if Du′ < D w ′ in the Bruhat order on Schubert cells of X ′ , it is no longer necessarily
the case that Cu < C w in the Bruhat order on Schubert cells of X . The upshot is that in general, the
intersection of a Schubert variety Xw ′ of X ′ with X is not the Schubert variety Xw of X—indeed, such
an intersection need only be a union of Schubert varieties.

However, we are dealing with type D elements u′ , v ′ of a very specific type. Namely, u′ is a shuffle
of n,n − 1, . . . ,1 and 2n,2n − 1, . . . ,n + 1, while v ′ is a shuffle of 1, . . . ,n and n + 1, . . . ,2n. The next
proposition says that for such type D elements of S2n , the potential complications arising due to the
weaker Bruhat order in type D do not occur.

Proposition 4.5. Suppose that u ∈ W is such that u′ ∈ W ′ is a shuffle of n,n − 1, . . . ,1 and 2n,

2n − 1, . . . ,n + 1, and that v ∈ W is such that v ′ ∈ W ′ is a shuffle of 1, . . . ,n and n + 1, . . . ,2n. For any
element w ∈ W , we have that w < u (resp. w > v) as elements of W if and only if w ′ < u′ (resp. w ′ > v ′) as
elements of W ′ .

Proof. By Proposition 4.4, if w < u, we automatically have w ′ < u′ , so we need only prove the con-
verse. What must be verified is that condition (2) of Proposition 4.4 automatically holds if w ′ < u′ ,
provided that u′ is a shuffle of the specified type.

Let a1, . . . ,an be the first n values of w ′ , and b1, . . . ,bn the first n values of u′ . Choose a d with
1 � d � n. Let (e1, . . . , ed) be b1, . . . ,bd rewritten in ascending order, and let (c1, . . . , cd) be a1, . . . ,ad
rewritten in ascending order. Since we know that b1, . . . ,bn is a shuffle of n, . . . ,k + 1 and 2n,

2n − 1, . . . ,2n − k + 1 for some k, the sequence (e1, . . . , ed) must be of the form

(l, l + 1, . . . ,n,2n − m + 1,2n − m + 2, . . . ,2n)

for some k+1 � l � n and m � k. Taking absolute values as defined in the statement of Proposition 4.4,
we have the sequence

(l, l + 1, . . . ,n,m,m − 1, . . . ,1).

Consider the possible length r continuous subsequences of this sequence which are, as sets, of the
form {n − r + 1,n − r + 2, . . . ,n}. One possibility is a subsequence of the form (l′, l′ + 1, . . . ,n) with
l′ � l. Clearly, no elements of such a subsequence correspond to elements of the sequence (e1, . . . , ed)

which are greater than n. Since w ′ < u′ , each ci in the matching subsequence of (c1, . . . , cd) is less



82 B.J. Wyser / Journal of Algebra 364 (2012) 67–87
than or equal to the corresponding ei . In particular, none of the ci are larger than n either. So if
the matching subsequence of the |ci| also gives {n − r + 1, . . . ,n}, condition (2) of Proposition 4.4 is
satisfied.

The other possibility occurs only when d = n. In this case, the sequence (e1, . . . , en) is (k + 1,

. . . ,n,2n − k + 1, . . . ,2n), with absolute value sequence (k + 1,k + 2, . . . ,n,k,k − 1, . . . ,1). Here, any
subsequence

(k + 1,k + 2, . . . ,n,k,k − 1, . . . ,k − j)

for some j with 0 � j � k − 1 is of the appropriate form. This absolute value sequence corresponds
to the sequence (e1, . . . , en−k+ j+1). The elements of this sequence switch from being less than or
equal to n to being greater than n at position n − k + 1—that is, (e1, . . . , en−k) are all less than or
equal to n, and (en−k+1, . . . , en−k+ j+1) are all greater than n. Consider the corresponding sequence
(c1, . . . , cn−k+ j+1). This sequence must switch from being less than or equal to n to being greater
than n at a position at or beyond n−k+1 (since each ci is less than or equal to the corresponding ei),
which is congruent modulo 2 to n − k + 1 (since the number of elements of (e1, . . . , en) and the
number of elements of (c1, . . . , cn) greater than n must both be even). From these two facts, one sees
that the only way that the numbers

#{i | 1 � i � n − k + j + 1 and ei > n}

and

#{i | 1 � i � n − k + j + 1 and ci > n}

can differ in parity is if the first is odd, and the second is zero. If the first number is odd, then
there are an odd number of terms occurring after position n − k + j + 1, since the number of ei
greater than n must be even, and since all ei beyond this position are greater than n (the ei being
ordered). This means that the number of ci beyond position n − k + j + 1 which are less than n
is odd, since the even number of ci which are greater than n all occur beyond this position. In
particular, there is at least one ci beyond position n − k + j + 1 which is less than n. But this says
that {|c1|, . . . , |cn−k+ j+1|} cannot possibly be equal to {k − j, . . . ,n} as a set, since all elements of it
are less than n (the ci being ordered). Thus we see that condition (2) of Proposition 4.4 cannot be
violated.

We apply a similar argument for v . Now let a1, . . . ,an be the first n values of v ′ , and b1, . . . ,bn

the first n values of w ′ . Choose d and define (c1, . . . , cd) and (e1, . . . , ed) as above. We know that
a1, . . . ,an is a shuffle of 1, . . . , j and n + 1, . . . ,2n − j, so the sequence (c1, . . . , cd) must be of the
form

(1, . . . , l,n + 1, . . . ,n + m)

for 1 � l � j and 1 � m � n − j. Taking absolute values, we obtain

(1, . . . , l,n,n − 1, . . . ,n − m + 1).

One possible continuous subsequence of this sequence which gives {n − r + 1, . . . ,n} as a set is
n,n − 1, . . . ,n − r + 1 for r � m. Every element of such a sequence corresponds to an element of the
sequence (c1, . . . , cd) which is greater than n. Since w ′ > v ′ , each ei in the matching subsequence
of (e1, . . . , ed) is greater than or equal to the corresponding ci . In particular, all such ei are also
greater than n. So if the matching subsequence of the |ei| also gives {n − r + 1, . . . ,n}, condition (2)
of Proposition 4.4 is satisfied.
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The other possibility occurs only when d = n. In this case, the absolute value sequence for
(c1, . . . , cn) is (1, . . . , j,n,n − 1, . . . , j + 1). Here, any subsequence of the form (k,k + 1, . . . , j,n,n − 1,

. . . , j + 1) for some k with 1 � k � j is of the appropriate form. This corresponds to the sequence
(ck, . . . , cn). This sequence contains all ci which are greater than n, necessarily an even number. Since
each ei is greater than or equal to the corresponding ci , the only way that the numbers

#{i | k � i � n and ci > n}
and

#{i | k � i � n and ei > n}
can differ in parity is if the second number is odd. Since an even number of (e1, . . . , en) are greater
than n, and since the ei are ordered, this can only occur if all (ek, . . . , en) are greater than n and there
are an odd number of them. In this case, there must also be an odd number of ei > n with i < k.
In particular, there is at least one such ei . Thus the absolute value set {|ek|, . . . , |en|} cannot possibly
be equal to {k, . . . ,n}, since all elements of the sequence (ek, . . . , en) are at least n + 2, and hence
have absolute value at most n − 1. Thus again, we see that condition (2) of Proposition 4.4 cannot be
violated in this situation. This completes the proof. �
Corollary 4.6. Suppose that γ is a type D clan avoiding the pattern (1,2,1,2). Letting u′ = u(γ ), v ′ =
v(γ ) be the corresponding type D elements of S2n, the K -orbit closure Yγ := Q γ is the Richardson vari-
ety X v

u .

Proof. One argues just as in the proof of Corollary 3.5 that for any w ∈ W , the Schubert cell C w of X
is precisely D w ′ ∩ X , with D w ′ the type A Schubert cell corresponding to w ′ . Proposition 4.5 allows
us to argue just as in the proof of Corollary 3.5 that Xu = Xu′ ∩ X , and that X v = X v ′ ∩ X . Thus

Yγ = Y ′
γ ∩ X = X v ′

u′ ∩ X = (Xu′ ∩ X) ∩ (
X v ′ ∩ X

) = Xu ∩ X v = X v
u . �

The previous corollary shows that we will be able to compute the Schubert product S w0u · S v by
once again applying Theorem 2.6. Observe that v , as a signed permutation, is a shuffle of 1, . . . ,k
and −n, . . . ,−(k + 1) for some k. (Note that n − k must be even.) If n is even, then w0 is the signed
permutation which flips all signs, so since u is a shuffle of n,n − 1, . . . , j + 1 and −1, . . . ,− j for some
(even) j, w0u is a shuffle of 1, . . . , j and −n, . . . ,−( j +1). However, if n is odd, then w0 is the signed
permutation which sends all numbers except n to their negatives, so in that case, w0u is a shuffle of
1, . . . , j and n,−(n − 1), . . . ,−( j + 1).

Definition 4.7. A type D pair of signed shuffles is a pair (u, v) such that, for some j, k with j and
n − k both even,

(1) u is a shuffle of 1, . . . , j and −n, . . . ,−( j + 1) if n is even, or a shuffle of 1, . . . , j and n,−(n −
1), . . . ,−( j + 1) if n is odd.

(2) v is a shuffle of 1, . . . ,k and −n, . . . ,−(k + 1).

Note once again that any product Su · S v with (u, v) a type D pair of signed shuffles can be
computed using Theorem 2.6, since all Richardson varieties of the appropriate form arise as K -orbit
closures:

Su · S v = [Xw0u] · [X v] = [
X v

w0u

] = [
X v ′

(w0u)′ ∩ X
] = [

X v ′
w ′

0u′ ∩ X
]

= [
Y ′

γ (u′,v ′) ∩ X
] = [Yγ (u′,v ′)]. (2)
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We remark that there is an inconsistency in notation here when n is odd. Recall that the nota-
tion γ (u′, v ′) previously meant the clan γ such that w0u′ = u(γ ) and v ′ = v(γ ). (Here, w0 denotes
the long element of W ′ = S2n , not of W .) In the string of equalities above, γ (u′, v ′) means the clan
γ such that w ′

0u′ = u(γ ) and v ′ = v(γ ), where w ′
0 is the image in W ′ of the long element w0

of W . When n is even, w ′
0 is the long element of W ′ , but when n is odd, it is not. (Indeed, when n

is odd, w ′
0 = w0sn , with w0 the long element of S2n , and sn the simple transposition (n,n + 1).)

The author prefers to offer this caveat to the reader, rather than invent a separate notation for
odd n.

We now use the facts developed in this section to give a positive formula for structure constants
cw

u,v when (u, v) is a type D pair of signed shuffles. Once again, we must understand the M(W )-
action on K\X at the level of type D clans. As in the previous section, we describe this action in
purely combinatorial terms, as a sequence of operations on type D clans. References are [MŌ90,
MT09].

Let t be the Cartan subalgebra of g = Lie(G) consisting of diagonal matrices

diag(a1, . . . ,an,−an, . . . ,−a1).

Let x1, . . . , xn be coordinates on t, with

xi
(
diag(a1, . . . ,an,−an, . . . ,−a1)

) = ai .

Order the simple roots in the following way: αi = xi − xi+1 for i = 1, . . . ,n − 1, and αn = xn−1 + xn .
For i = 1, . . . ,n, let si denote sαi . Let γ = (c1, . . . , c2n) be any type D clan. Given a simple reflection si
for i = 1, . . . ,n − 1, consider the following possible operations on γ :

(a) Interchange the characters in positions i, i + 1 and the characters in positions 2n − i, 2n − i + 1.
(b) Replace the characters in positions i, i + 1 and the characters in positions 2n − i, 2n − i + 1 each

by a pair of matching natural numbers.

Then the monoidal action of M(W ) of si (i = 1, . . . ,n − 1) on γ is as follows:

(1) If ci is a sign, ci+1 is a number, and the mate for ci+1 occurs to the right of ci+1, si ·γ is obtained
from γ by operation (a).

(2) If ci is a number, ci+1 is a sign, and the mate for ci occurs to the left of ci , si ·γ is obtained from
γ by operation (a).

(3) If ci and ci+1 are unequal natural numbers, with the mate for ci occurring to the left of the mate
for ci+1, and if (ci, ci+1) �= (c2n−i, c2n−i+1), then si · γ is obtained from γ by operation (a).

(4) If ci and ci+1 are opposite signs, then si · γ is obtained from γ by operation (b).
(5) If none of the above hold, them si · γ = γ .

We give examples of (1)–(4) above:

(1) s2 · (+,−,1,1,2,2,+,−) = (+,1,−,1,2,+,2,−).
(2) s2 · (1,1,−,+,−,+,2,2) = (1,−,1,+,−,2,+,2).
(3) s1 · (1,2,1,2,3,4,3,4) = (2,1,1,2,3,4,4,3).
(4) s1 · (+,−,1,1,2,2,+,−) = (3,3,1,1,2,2,4,4).

The action of sn is a bit different. The most concise way to define it is as follows: Given a type D
clan γ , let Flip(γ ) denote the clan obtained from γ by interchanging the characters in positions n,
n + 1. Then

sn · γ = Flip
(
sn−1 · Flip(γ )

)
.
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When n = 3, we have the following examples:

(1) s3 · (+,+,+,−,−,−) = (+,1,2,1,2,+). We apply Flip to obtain (+,+,−,+,−,−), act by s2 on
the result to obtain (+,1,1,2,2,+), and finally apply Flip once more to obtain (+,1,2,1,2,+).

(2) s3 ·(1,−,1,2,+,2) = (1,2,+,−,1,2). We apply Flip to obtain (1,−,2,1,+,2), apply s2 to obtain
(1,2,−,+,1,2), and apply Flip again to obtain (1,2,+,−,1,2).

(3) s3 · (−,1,1,2,2,+) = (−,1,1,2,2,+). We Flip to obtain (−,1,2,1,2,+), apply s2 to the result
(which does nothing), and Flip again, which returns us to the clan we started with.

Unlike the rule of Theorem 3.9, our rule in type D is multiplicity-free, due to the following fact:

Proposition 4.8. In the weak order graph for K\X, all edges are single.

Proof. Similarly to the type C case described in the previous section, αi (i = 1, . . . ,n − 1) is non-
compact imaginary for γ if and only if ci and ci+1 are opposite signs. The cross-action of si in this
case is to interchange the opposite signs in positions i, i + 1 as well as those in positions 2n − i,
2n − i + 1. Thus si × γ �= γ , so si is type I. The simple root αn is non-compact imaginary for γ if
and only if (cn−1, cn, cn+1, cn+2) = (+,+,−,−) or (−,−,+,+). Here, the cross-action of sn is by the
permutation action of s′

n = (n − 1,n + 1)(n,n + 2) ∈ S2n , thus it interchanges these two patterns. In
particular, in each case we have sn × γ �= γ , so that sn is of type I. Thus all non-compact imaginary
roots are of type I, so that all edges in the weak order graph are single.

Alternatively, the claim here follows from [Bri01, Corollary 2], and indeed this case is mentioned
explicitly in the discussion immediately following that corollary. �

The combinatorics of the monoidal action of W described above, together with Corollary 4.6, The-
orem 2.6, and the previous proposition then give us the following multiplicity-free special case rule
for Schubert constants in type D:

Theorem 4.9. Suppose (u, v) is a type D pair of signed shuffles, with w0u � v. Let u′ , v ′ be the images of u, v
in S2n, and let γ = γ (u′, v ′) be the corresponding type D clan avoiding the pattern (1,2,1,2). (Recall our
remarks on this notation immediately following displayed equation (2) in the event that n is odd.) Let γ0 be the
type D clan corresponding to the open, dense K -orbit on X, as described immediately following the statement
of Proposition 4.1.

Then for any w ∈ W ,

cw
u,v =

{
1 if l(w) = l(u) + l(v) and w · γ = γ0,

0 otherwise.

Example 4.10. We first give an example with n even. Take n = 4, and consider the product Su · S v =
S4123 · S1243. This corresponds to u′ = 51263784, v ′ = 12563478. One computes that γ (u′, v ′) is the
type D clan (+,1,−,1,2,+,2,−). As elements of W , l(u) = 3 and l(v) = 1. There are 23 elements
of W of length l(u) + l(v) = 4. Table 2 of Appendix A shows each of these elements as words in the
simple reflections, the clan obtained from computing the action of each on the clan γ (u′, v ′), and the
corresponding structure constant cw

u,v according to Theorem 4.9.
The data in Table 2, obtained using Theorem 4.9, was seen to agree with the output of [Yon].

Example 4.11. For an example with n odd, take n = 3 and consider the product Su · S v = S132 · S312.
This corresponds to u′ = 132546, v ′ = 415263. Here, γ (u′, v ′) means the clan γ such that 653421 ·
u′ = 635241 = u(γ ) and v ′ = v(γ ). One checks that this clan is (−,+,−,+,−,+). As elements of W ,
l(u) = 1 and l(v) = 2. There are 6 elements of W of length l(u)+ l(v) = 3. Table 3 of Appendix A gives
the details of the computation according to Theorem 4.9.

The data in Table 3 agrees with the output of [Yon].



86 B.J. Wyser / Journal of Algebra 364 (2012) 67–87
5. A final question

As we have seen, both here and in [Wys11], Theorem 2.6 applies very generally to the class of any
spherical subgroup orbit closure in any flag variety. In total, we have now seen three examples where
closures of orbits of certain symmetric subgroups coincide with Richardson varieties, and have used
this to obtain some limited information on Schubert calculus. The author feels that it is natural to
wonder whether there are other examples, and leaves the reader with this question.

Question. Are there other examples of spherical subgroups of the classical groups, the closures
of whose orbits on the flag variety coincide with Richardson varieties? If so, are combinatorial
parametrizations of those orbits understood, and is the M(W )-action on the orbits understood on
the level of that combinatorial parametrization?

Appendix A. Tables for examples

Table 1
Example 3.10: Computing the C4 Schubert product S4123 · S1423.

Length 7 element w w · (+,−,1,2,2,1,+,−) cw
u,v

[1,2,1,4,3,2,1] (1,2,3,4,3,4,2,1) 0
[3,2,1,4,3,2,1] (1,2,3,4,4,3,2,1) 2
[1,3,2,4,3,2,1] (1,2,3,4,4,2,3,1) 0
[2,3,2,4,3,2,1] (1,2,3,4,4,3,1,2) 0
[2,1,3,4,3,2,1] (1,2,3,4,4,3,2,1) 2
[1,2,3,4,3,2,1] (1,2,3,4,4,3,2,1) 2
[1,3,2,1,4,3,2] (1,2,3,+,−,3,2,1) 0
[2,3,2,1,4,3,2] (1,2,3,+,−,3,2,1) 0
[4,3,2,1,4,3,2] (1,2,3,4,4,3,2,1) 1
[2,1,3,2,4,3,2] (1,2,+,3,3,−,2,1) 0
[1,2,3,2,4,3,2] (1,+,2,3,3,2,−,1) 0
[1,2,1,3,4,3,2] (1,2,+,3,3,−,2,1) 0
[2,1,3,2,1,4,3] (1,2,3,3,4,4,2,1) 0
[1,2,3,2,1,4,3] (1,2,3,2,4,3,4,1) 0
[1,4,3,2,1,4,3] (1,2,3,4,2,3,4,1) 0
[2,4,3,2,1,4,3] (1,2,3,4,1,3,2,4) 0
[3,4,3,2,1,4,3] (1,2,3,4,4,1,2,3) 0
[1,2,1,3,2,4,3] (1,2,+,−,+,−,2,1) 0
[2,1,4,3,2,4,3] (1,2,+,3,3,−,2,1) 0
[1,2,4,3,2,4,3] (1,+,2,3,3,2,−,1) 0
[3,2,4,3,2,4,3] (+,1,2,3,3,2,1,−) 0
[1,3,4,3,2,4,3] (1,+,2,3,3,2,−,1) 0
[2,3,4,3,2,4,3] (+,1,2,3,3,2,1,−) 0
[1,2,1,3,2,1,4] (1,2,3,3,4,4,2,1) 0
[2,1,4,3,2,1,4] (1,2,3,4,3,4,2,1) 0
[1,2,4,3,2,1,4] (1,2,3,4,2,3,4,1) 0
[3,2,4,3,2,1,4] (1,2,3,4,4,1,2,3) 0
[1,3,4,3,2,1,4] (1,2,3,4,4,2,3,1) 0
[2,3,4,3,2,1,4] (1,2,3,4,4,3,1,2) 0
[1,2,1,4,3,2,4] (1,2,+,3,3,−,2,1) 0
[3,2,1,4,3,2,4] (1,2,3,+,−,3,2,1) 0
[1,3,2,4,3,2,4] (1,+,2,3,3,2,−,1) 0
[2,3,2,4,3,2,4] (+,1,2,3,3,2,1,−) 0
[2,1,3,4,3,2,4] (1,2,+,3,3,−,2,1) 0
[1,2,3,4,3,2,4] (1,+,2,3,3,2,−,1) 0
[1,3,2,1,4,3,4] (1,2,3,2,4,3,4,1) 0
[2,3,2,1,4,3,4] (1,2,3,1,4,3,2,4) 0
[4,3,2,1,4,3,4] (1,2,3,4,1,3,2,4) 0
[2,1,3,2,4,3,4] (1,2,+,−,+,−,2,1) 0
[1,2,3,2,4,3,4] (1,+,2,−,+,2,−,1) 0
[1,4,3,2,4,3,4] (1,+,2,3,3,2,−,1) 0
[2,4,3,2,4,3,4] (+,1,2,3,3,2,1,−) 0
[3,4,3,2,4,3,4] (+,1,2,3,3,2,1,−) 0
[1,2,1,3,4,3,4] (1,2,2,3,3,4,4,1) 0
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Table 2
Example 4.10: Computing the D4 Schubert product S4123 · S1243.

Length 4 element w w · (+,1,−,1,2,+,2,−) cw
u,v

[1,3,2,1] (1,2,2,1,3,4,4,3) 0
[2,3,2,1] (1,2,2,1,3,4,4,3) 0
[1,4,2,1] (1,2,3,4,2,1,4,3) 0
[2,4,2,1] (1,2,3,4,3,4,1,2) 1
[3,4,2,1] (1,2,3,4,2,1,4,3) 0
[2,1,3,2] (1,2,2,1,3,4,4,3) 0
[1,2,3,2] (1,+,−,1,2,+,−,2) 0
[2,1,4,2] (1,2,+,+,−,−, 1,2) 0
[1,2,4,2] (1,+,2,+,−,1,−,2) 0
[3,2,4,2] (+,1,2,+,−,1,2,−) 0
[1,3,4,2] (1,+,2,+,−,1,−,2) 0
[2,3,4,2] (+,1,2,+,−,1,2,−) 0
[1,2,1,3] (1,2,2,1,3,4,4,3) 0
[4,2,1,3] (1,2,3,4,2,1,4,3) 0
[1,4,2,3] (1,+,2,+,−,1,−,2) 0
[2,4,2,3] (+,1,2,+,−,1,2,−) 0
[3,4,2,3] (+,1,2,+,−,1,2,−) 0
[1,2,1,4] (1,2,+,+,−,−, 1,2) 0
[3,2,1,4] (1,2,+,+,−,−, 1,2) 0
[1,3,2,4] (1,+,2,+,−,1,−,2) 0
[2,3,2,4] (+,1,2,+,−,1,2,−) 0
[2,1,3,4] (1,2,+,+,−,−, 1,2) 0
[1,2,3,4] (1,+,2,+,−,1,−,2) 0

Table 3
Example 4.11: Computing the D3 Schubert product S132 · S312.

Length 3 element w w · (−,+,−,+,−,+) cw
u,v

[1,2,1] (1,−,1,2,+,2) 0
[1,3,1] (1,+,2,1,−,2) 0
[2,3,1] (1,2,+,−,1,2) 1
[3,1,2] (1,2,+,−,1,2) 1
[2,1,3] (1,−,1,2,+,2) 0
[1,2,3] (1,−,1,2,+,2) 0

References

[AdC09] Jeffrey Adams, Fokko du Cloux, Algorithms for representation theory of real reductive groups, J. Inst. Math. Jussieu 8 (2)
(2009) 209–259.

[BL00] Sara Billey, V. Lakshmibai, Singular Loci of Schubert Varieties, Progr. Math., vol. 182, Birkhäuser Boston Inc., Boston,
MA, 2000.

[Bri01] Michel Brion, On orbit closures of spherical subgroups in flag varieties, Comment. Math. Helv. 76 (2) (2001) 263–299.
[Mat79] Toshihiko Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math.

Soc. Japan 31 (2) (1979) 331–357.
[McG09] William M. McGovern, Closures of K -orbits in the flag variety for U (p,q), J. Algebra 322 (8) (2009) 2709–2712.
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