
Journal of Algebra 397 (2014) 457–488
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Representation type of finite quiver Hecke algebras of
type A(2)

2�

Susumu Ariki a,1, Euiyong Park b,∗,2

a Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka,
Osaka 560-0043, Japan
b Department of Mathematics, University of Seoul, Seoul 130-743, Republic of Korea

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 December 2012
Available online 2 October 2013
Communicated by Changchang Xi

Keywords:
Representation theory
Quiver Hecke algebras
Representation type
Shifted Young diagrams

We study cyclotomic quiver Hecke algebras RΛ0 (β) in type A(2)
2� ,

where Λ0 is the fundamental weight. The algebras are natural
A(2)

2� -type analogue of Iwahori–Hecke algebras associated with
the symmetric group, from the viewpoint of the Fock space
theory developed by the first author and his collaborators. We
give a formula for the dimension of the algebra, and a simple
criterion to tell the representation type. The criterion is a natural
generalization of Erdmann and Nakano’s for the Iwahori–Hecke
algebras. Except for the examples coming from cyclotomic Hecke
algebras, no results of these kind existed for cyclotomic quiver
Hecke algebras, and our results are the first instances beyond the
case of cyclotomic Hecke algebras.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Block algebras of the finite Hecke algebra associated with the symmetric group have been studied
extensively in 1990’s. Let k be an algebraically closed field, q ∈ k× the parameter of the Hecke algebra,
and e the quantum characteristic defined by

e = min
{

a ∈ Z+
∣∣ 1 + q + · · · + qa−1 = 0 holds in k

}
.
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Then, the block algebras are parametrized by pairs of an e-core partition and an e-weight. This
well-known fact, the Nakayama conjecture for Hecke algebras, was proved by James and Mathas
[13, Theorem 4.29] based on earlier work by Dipper and James [8]. Nowadays it is understood as one
of the results which fits in Fock space theory for cyclotomic Hecke algebras: the block algebras cate-
gorify weight spaces of the basic g(A(1)

e−1)-module V (Λ0). In fact, this example was the origin of the
conjecture by Lascoux, Leclerc and Thibon, where the Fock space theory started. Let δ be the null root
and let W be the Weyl group i.e. the affine symmetric group. We recall that every weight that appear
in V (Λ0) has the form wΛ0 − kδ, where w ∈ W and k ∈ Z�0. Then, in the Misra–Miwa realization of
the Fock space, wΛ0 is the e-core partition, and k is the e-weight. Thus, the modular representation
theory of finite Hecke algebras turned out to be Lie theoretic, and we have various interesting ques-
tions to ask under the philosophy of categorification. For example, research in the early stage focused
on higher level analogues, that is, the modular representation theory of cyclotomic Hecke algebras,
and finite Hecke algebras of type BC (and type D by Clifford theory) are special cases of them. See
[1] and [2], for example.

An important turning point for the philosophy was the introduction of cyclotomic quiver Hecke
algebras by Khovanov and Lauda in [29,30]. The algebras are associated with dominant integral
weight Λ, certain set of polynomials and non-negative integral linear combination β of simple roots.
We denote the algebra by RΛ(β). As Rouquier [43] also developed another theory to categorify in-
tegrable highest weight modules, which generalizes his work with Chuang [6], it is also called the
cyclotomic KLR algebra by various authors. Further, theorems from Brundan and Kleshchev [5], Rouquier
[43] and Lyle and Mathas [38] combined imply that block algebras of the cyclotomic Hecke algebras
are cyclotomic quiver Hecke algebras of type A(1)

e−1. More precisely, we label the vertices of the Dynkin
diagram with Z/eZ as usual, and we let A = (aij)i, j∈Z/eZ be the Cartan matrix. Then their quiver
Hecke algebra is associated with polynomials

Q i, j(u, v) = 1, if aij = 0, and Q i,i+1(u, v) = Q i+1,i(v, u) = −(u − v)−ai,i+1 , for i ∈ Z/eZ.

Therefore, the cyclotomic quiver Hecke algebras are indeed generalization of cyclotomic Hecke alge-
bras.

Many papers on the quiver Hecke algebras have already appeared, e.g. [3,11,24,31,32,36] or [45].
But most of them study labeling or construction of irreducible modules. The only case which receives
rather detailed study is type A(1)

e−1, where the isomorphism theorem by Brundan–Kleshchev [5] and
Rouquier [43] allows us to reduce problems to well-studied cyclotomic Hecke algebras.

Our aim is to show some new results which go beyond this stage. Note that, beyond classifying
or constructing irreducible modules, first questions to be asked are representation type, shape of
the Auslander–Reiten quiver and others. In this paper, we start with RΛ0 (β) in type A(2)

2� and their

representation type. As we have explained in the above, the algebras are natural A(2)
2� -type analogues

of the Iwahori–Hecke algebra associated with the symmetric group. Thus, we call them finite quiver
Hecke algebras of type A(2)

2� . We give a dimension formula for RΛ0 (β), some structure theorem, and
prove Erdmann–Nakano type theorem which tells the representation type of RΛ0 (β). Note that the
Erdmann–Nakano theorem treats e = 2 case separately, and tame representation type appears only
in this case. The reader might expect that the statement in type A(2)

2 would be different from the

other A(2)
2� , for � � 2, by the comparison with the A(1)

e−1 cases. However, we find that it is not the case,
and the criterion is uniform for all �. Apart this point, the criterion is exactly the same as that of the
Erdmann–Nakano theorem, for e � 3, as follows.

Theorem A. (Theorem 4.22.) Suppose that RΛ0 (β) is a finite quiver Hecke algebra of type A(2)
2� , for � � 1. We

denote the Weyl group of type A(2)
2� by W, WΛ0 the W-orbit through Λ0 . There exist unique κ ∈ WΛ0 and

unique k ∈ Z�0 such that β = Λ0 − κ + kδ. Then, RΛ0 (β) is

(1) simple if k = 0,
(2) of finite representation type but not semisimple if k = 1,
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(3) of wild representation type if k � 2,
(4) and tame representation type does not occur.

The following is our dimension formula. We do not explain the notation here. Note that almost no
result is known for the dimension of cyclotomic quiver Hecke algebras, except for block algebras of
cyclotomic Hecke algebras. Another importance of Theorem B is that it tells when e(ν) = 0, for ν ∈ In .
It is repeatedly used in the proof of Theorem A.

Theorem B. (Theorem 3.4.) Let λ � n be a shifted Young diagram consisting of n boxes. For β ∈ Q+ with
|β| = n and ν,ν ′ ∈ Iβ , we have

dim e
(
ν ′)RΛ0(n)e(ν) =

∑
λ�n

2−〈d,wt(λ)〉−l(λ)K
(
λ,ν ′)K (λ, ν),

dim RΛ0(β) =
∑

λ�n, wt(λ)=Λ0−β

2−〈d,wt(λ)〉−l(λ)
∣∣ST(λ)

∣∣2
,

dim RΛ0(n) =
∑
λ�n

2−〈d,wt(λ)〉−l(λ)
∣∣ST(λ)

∣∣2
.

In proving our results, solution to the cyclotomic categorification conjecture from [29] by Kang and
Kashiwara in [18] and [27] is used in an essential way. The strategy of the proof works for general
affine types. In particular, the argument in our paper gives a completely new proof of the original
Erdmann–Nakano theorem [9, 1.2] as well. We will consider the other affine types than A(1)

e−1 and

A(2)
2� in separate papers. We remark that Hecke–Clifford superalgebras and quiver Hecke superalgebras

also categorify the basic representation V (Λ0) in type A(2)
2� and its quantization Vq(Λ0) respectively

[4,21,22]. We think that the finite quiver Hecke algebras deserve detailed study because they give
uniform generalization of the Iwahori–Hecke algebra. In the same spirit, studying uniform generaliza-
tion of the Hecke–Clifford superalgebra by categorification using superalgebras might be a different
direction to be pursued.

The structure of the paper is as follows. Section 1 is for preliminaries. In Section 2, we recall
cyclotomic quiver Hecke algebras and categorification results. In Section 3, we prove the dimension
formula. In Section 4, we prove the Erdmann–Nakano type theorem for the representation type of
RΛ0 (β). Appendix A is for generalized cellularity. We propose a generalized cellular algebra structure
for finite quiver Hecke algebras of type A(2)

2� .

1. Preliminaries

In this section, we quickly review the Fock space of neutral fermions as a module over the Kac–
Moody algebra of type A(2)

2� . The Fock space is realized in terms of combinatorics of shifted Young
diagrams, and it will be used in a crucial manner in proving the dimension formula for finite quiver
Hecke algebras.

1.1. Shifted Young diagrams

An array λ of a finite number of boxes arranged in l rows is a shifted Young diagram of depth l, if

(i) the ith row from the top, for 1 � i � l, starts with its leftmost box in the ith column and there is
no gap before it ends on the rightmost box,

(ii) each row has strictly shorter length than its predecessor.

We denote the depth l by l(λ) and we denote λ � n if λ consists of n boxes. We write (i, j) ∈ λ if
there exists a box in the ith row and the jth column. We identify a shifted Young diagram λ with
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the strict partition (λ1 > λ2 > λ3 > · · ·), where λi is the number of boxes in the ith row of λ. For
λ = (λ1 > λ2 > · · ·) � n and μ = (μ1 > μ2 > · · ·) � n, we say λ dominates μ and write λ � μ if

k∑
i=1

λi �
k∑

i=1

μi, for 1 � k � l(λ). (1.1.1)

A standard tableau T of shape λ � n is a filling of n boxes of λ with numbers 1 to n such that (i)
each number is used exactly once, (ii) the numbers in rows and columns increase from left to right
and top to bottom, respectively. Let ST(λ) be the set of all standard tableaux of shape λ. For example,
there are 3 standard tableaux of shape (4,1):

1 2 3 4

5

1 2 3 5

4

1 2 4 5

3

For λ = (λ1 > λ2 > · · ·) � n, let T λ be the tableau of shape λ whose (i, j)-entry is

( j − i) + 1 +
i−1∑
k=1

λk.

We call T λ the canonical tableau of shape λ. In the above example, the first tableau is the canonical
tableau of shape (4,1). The following theorem is well known.

Theorem 1.1. (Cf. [44, Theorem 2.2.1, Corollary 3.2.2].)

(1) For λ � n, the number of standard tableaux of shape λ is given by the following hook formula.

∣∣ST(λ)
∣∣ = n!∏

(i, j)∈λ hi, j
,

where hi, j is the hook-length of (i, j) ∈ λ, i.e.,

hi, j = ∣∣{(i, j′
) ∈ λ

∣∣ j′ � j
}∣∣ + ∣∣{(i′, j

) ∈ λ
∣∣ i′ > i

}∣∣ + ∣∣{( j + 1, j′
) ∈ λ

∣∣ j′ > j
}∣∣.

(2) We have the following equality.

n! =
∑
λ�n

2n−l(λ)
∣∣ST(λ)

∣∣2
.

Let λ � n be a shifted Young diagram. We declare that each row has the residue pattern

012 · · · � · · ·210,

which repeats from left to right in each row, and define res(i, j) to be the residue of (i, j) ∈ λ. For
example, if g is of type A(2)

6 and λ = (10,6,3,1), the residues are as follows:
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0 1 2 3 2 1 0 0 1 2

0 1 2 3 2 1

0 1 2

0

Thus, if we pick (2,5) ∈ λ then it has residue 3. Now, we are ready to introduce the residue sequence
of a tableau.

Definition 1.2. Let T ∈ ST(λ). We define the residue sequence of T by

res(T ) = (
res(i1, j1), res(i2, j2), . . . , res(in, jn)

) ∈ In,

where (ik, jk) ∈ λ is the box filled with k in T , for 1 � k � n.

We remark that the residue pattern for shifted Young diagrams is the same as the pattern of
Young walls defined by the level one perfect crystal of type A(2)

2� [12,17,19,20], which we will use
in Section 2.3. It reminds the reader of the q-deformed Fock space introduced in [23], and of the
q-deformed Fock space from [28]. However, we must distinguish between categorification of inte-
grable highest weight modules and its crystals. It seems more natural to consider the embedding of
the basic module V (Λ0) into the classical Fock space which we will recall in Section 1.3, rather than
the q-deformed Fock space. We suspect that it would be related to quasihereditary covers of finite
quiver Hecke algebras and some theory of packets for those algebras would explain the distinction of
the classical Fock space from the deformed Fock space.

1.2. Cartan datum

Let I = {0,1, . . . , �}, for � � 2, and let A be the affine Cartan matrix of type A(2)
2� , i.e.,

A = (aij)i, j∈I =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −2 0 . . . 0 0 0
−1 2 −1 . . . 0 0 0
0 −1 2 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 2 −1 0
0 0 0 . . . −1 2 −2
0 0 0 . . . 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

When � = 1, the affine Cartan matrix of type A(2)
2 is

A = (aij)i, j∈I =
(

2 −4
−1 2

)
.

We choose a realization of the Cartan matrix and obtain an affine Cartan datum (A,P,Π,Π∨), where

(1) A is the affine Cartan matrix of type A(2)
2� as above,

(2) P is a free abelian group of rank � + 2, called the weight lattice,
(3) Π = {αi | i ∈ I} ⊂ P, called the set of simple roots,
(4) Π∨ = {hi | i ∈ I} ⊂ P∨ := Hom(P,Z), called the set of simple coroots,

which satisfy the following properties:



462 S. Ariki, E. Park / Journal of Algebra 397 (2014) 457–488
(a) 〈hi,α j〉 = aij for all i, j ∈ I ,
(b) Π and Π∨ are linearly independent, respectively.

The weight lattice P has a symmetric bilinear pairing ( | ) satisfying

(αi |Λ) = di〈hi,Λ〉 for all Λ ∈ P,

where (d0,d1, . . . ,d�) = (1,2, . . . ,2,4). We write Λ(h) = 〈h,Λ〉 for h ∈ P∨, Λ ∈ P, and denote by

P+ = {
Λ ∈ P

∣∣ Λ(hi) ∈ Z�0, i ∈ I
}

the set of dominant integral weights. We fix an element d which satisfies 〈d,αi〉 = δi0. It is called the
scaling element, and we assume that Π∨ 
 {d} is a Z-basis of P∨ as in [12, p. 21]. Then, for i ∈ I , we
define the ith fundamental weight Λi ∈ P+ , i.e. the element defined by Λi(d) = 0 and Λi(h j) = δi j ,
for j ∈ I . The free abelian group Q = ⊕

i∈I Zαi is called the root lattice, and Q+ = ∑
i∈I Z�0αi is the

positive cone of the root lattice. For β = ∑
i∈I kiαi ∈ Q+ , the height of β is defined by |β| = ∑

i∈I ki .
Let W = 〈ri | i ∈ I〉 be the Weyl group associated with A. The Coxeter generators {ri}i∈I act on P by

riΛ = Λ − 〈hi,Λ〉αi , for Λ ∈ P , as usual. Finally, the null root in type A(2)
2� is

δ = 2α0 + 2α1 + · · · + 2α�−1 + α�,

for � � 1. Note that 〈hi, δ〉 = 0 and wδ = δ, for i ∈ I and w ∈ W. The residue pattern for shifted Young
diagrams comes from the null root, and we denote the residue pattern 01 · · · � · · ·10 by νδ .

1.3. The Fock space of neutral fermions

Recall that g(A) is realized as B K P2�+1 in the terminology of [7, §2]. In other words, g(A) is
obtained by (2� + 1)-reduction from g(B∞). To obtain the basic g(A)-module V (Λ0), we start with
the basic g(B∞)-module. Thus, we recall the Fock space of neutral fermions from [15, §6], which
affords the basic spin representation of g(B∞). Let C be the Clifford algebra over complex numbers C
defined by generators φk (k ∈ Z) and the following relations:

φpφq + φqφp =
{

2 if p = q = 0,

(−1)pδp,−q otherwise.

The Chevalley generators of g(B∞) are given as follows:

e0 = φ−1φ0, e j = (−1) jφ− j−1φ j ( j � 1),

f0 = φ1φ0, f j = (−1) jφ j+1φ− j ( j � 1),

h0 = 2φ1φ−1 + 1, h j = (−1) j(φ jφ− j + φ j+1φ− j−1) ( j � 1).

Let I be the left ideal of C generated by {φk | k < 0}, and define F = C/I. Then, F is the direct sum of
two irreducible g(B∞)-modules F0 and F1 with highest weights Λ0, and their highest weight vectors
are |0〉 := 1 + I and |1〉 := φ0|0〉, respectively. We take a shifted Young diagram λ. It can be written as
λ = (λ1 > λ2 > · · · > λ2r−1 > λ2r � 0) for a unique r, where λ2r > 0 if l(λ) is even and λ2r = 0 if �(λ)

is odd. We define |λ〉 = φλ1φλ2 · · ·φλ2r |0〉. Then, they are linearly independent and

F := F0 = SpanC

{|λ〉 ∣∣ λ: shifted Young diagrams
}
.
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It is easy to see that if λ has a row of length j + 1 and does not have a row of length j (resp. λ has
a row of length j and does not have a row of length j + 1), then we have

e j|λ〉 = |e jλ〉 (
resp. f j|λ〉 = |f jλ〉), (1.3.1)

where e jλ (resp. f jλ) is the shifted Young diagram obtained from λ by deleting the rightmost box of
the row of length j + 1 (resp. adding a new box on the right of the row of length j). Otherwise, we
have e j |λ〉 = 0 (resp. f j |λ〉 = 0). Therefore, we may think of F as a based vector space whose basis is
given by |λ〉’s, and it is an integrable g(B∞)-module by the action |λ〉 �→ |e jλ〉, |f jλ〉. This is our Fock
space.

We now define a g-module structure on the space F by reduction. Let h = 2�+1. From [7, Table 2],
the action of the Chevalley generators f i, ei of g on F are given as follows:

f i =
∑

j�0, j≡i,−i−1

f j, ei =
{

e0 + 2
∑

j>0, j≡0,−1 e j if i = 0,∑
j>0, j≡i,−i−1 e j if i = 1, . . . , �,

(1.3.2)

where all congruences are taken modulo h. Each |λ〉 is a weight vector, and if we define a multiset
res(λ) of I by res(λ) = {res(i, j) | (i, j) ∈ λ}, then its weight is given by

wt(λ) = Λ0 −
∑

k∈res(λ)

αk.

We remark that F is isomorphic to the direct sum of countably many copies of V (Λ0).

2. Cyclotomic quiver Hecke algebras of type A(2)
2�

Let (A, P , P∨,Π,Π∨) be a Cartan datum associated with a symmetrizable Cartan matrix A. In
this section, we review results on categorification of integrable Uq(g(A))-modules and their crystals.
As was explained in the introduction, this categorification gives us a new family of self-injective
algebras, namely cyclotomic quiver Hecke algebras, and the algebras are main object of study in this
paper. Categorification of the basic integrable module specialized at q = 1 combined with Lie theoretic
treatment of the Fock space explained in the previous section are key ingredients in discovering
dimension formulas for finite quiver Hecke algebras on the one hand, categorification of its crystal
gives us the number of irreducible modules of cyclotomic quiver Hecke algebras and their behavior
under induction and restriction functors. For the latter, realization of the abstract crystal in an explicit
combinatorial model is required, and we use Young walls for the purpose. The results in this section
will be used in a crucial manner in the proof of our main theorems in later sections.

2.1. Quiver Hecke algebras

Throughout the paper, k is an algebraically closed field, and algebras are unital associative
k-algebras.

Let (A,P,Π,Π∨) be the affine Cartan datum from Section 1.2. We are going to define k-algebras
which we call finite quiver Hecke algebras of type A(2)

2� . To do this, we choose polynomials Qi, j(u, v) ∈
k[u, v], for i, j ∈ I , of the form

Qi, j(u, v) =
{∑

p(αi |αi)+q(α j |α j)+2(αi |α j)=0 ti, j;p,qup vq if i �= j,

0 if i = j,

where ti, j;p,q ∈ k are such that ti, j;−aij ,0 �= 0 and Qi, j(u, v) = Q j,i(v, u). For example, if � � 2,
Qi, j(u, v) should have the following form:
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Qi, j(u, v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ti, j;0,0 if aij = a ji = 0,

ti, j;1,0u + ti, j;0,1 v if aij = a ji = −1,

ti, j;2,0u2 + ti, j;0,1 v if aij = −2, a ji = −1,

ti, j;1,0u + ti, j;0,2 v2 if aij = −1, a ji = −2,

0 if i = j,

where ti, j;p,q �= 0 and ti, j;p,q = t j,i;q,p for all i, j, p,q.
The symmetric group Sn = 〈sk | k = 1, . . . ,n − 1〉 acts on In by place permutations. Namely, the

Coxeter generator sk acts on In by

sk(ν1, . . . , νk, νk+1, . . . , νn) = (ν1, . . . , νk+1, νk, . . . , νn).

Definition 2.1. Let Λ ∈ P+ . The cyclotomic quiver Hecke algebra RΛ(n) associated with polynomials
(Qi, j(u, v))i, j∈I and the dominant integral weight Λ is the Z-graded k-algebra defined by three sets
of generators

{
e(ν)

∣∣ ν = (ν1, . . . , νn) ∈ In}, {xk | 1 � k � n}, {ψl | 1 � l � n − 1}

subject to the following relations:

e(ν)e
(
ν ′) = δν,ν ′e(ν),

∑
ν∈In

e(ν) = 1, xke(ν) = e(ν)xk, xkxl = xlxk,

ψle(ν) = e
(
sl(ν)

)
ψl, ψkψl = ψlψk if |k − l| > 1,

ψ2
k e(ν) = Qνk,νk+1(xk, xk+1)e(ν),

(ψkxl − xsk(l)ψk)e(ν) =
{−e(ν) if l = k and νk = νk+1,

e(ν) if l = k + 1 and νk = νk+1,

0 otherwise,

(ψk+1ψkψk+1 − ψkψk+1ψk)e(ν) =
{

Qνk ,νk+1 (xk,xk+1)−Qνk ,νk+1 (xk+2,xk+1)

xk−xk+2
e(ν) if νk = νk+2,

0 otherwise,

x
〈hν1 ,Λ〉
1 e(ν) = 0.

The Z-grading on RΛ(n) is given as follows:

deg
(
e(ν)

) = 0, deg
(
xke(ν)

) = (ανk |ανk ), deg
(
ψle(ν)

) = −(ανl |ανl+1).

The following statement was proved in a special case [5, Lemma 2.1]. As we are not able to find a
reference for general case, we add a proof, but it is straightforward.

Lemma 2.2. The algebra RΛ(n) is a finite dimensional algebra and x1, . . . , xn are nilpotent.

Proof. It is proved in [18, Corollary 4.4] that RΛ(n) is a finite dimensional algebra. Thus, we prove
that x1, . . . , xn are nilpotent elements. Note that, by general theory of graded Artin algebras, irre-
ducible RΛ(n)-modules are gradable, and it implies that any element of positive degree acts nilpo-
tently on finite length modules. �
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For β ∈ Q+ with |β| = n, let

Iβ = {
ν = (ν1, . . . , νn) ∈ In

∣∣ αν1 + · · · + ανn = β
}
.

The symmetric group action preserves Iβ , so that

e(β) =
∑
ν∈Iβ

e(ν)

is a central idempotent of RΛ(n). We define

RΛ(β) = RΛ(n)e(β).

The following algebras are the object of study in this paper. We do not know whether RΛ(β) is an
indecomposable k-algebra, for every β .

Definition 2.3. We call the algebras RΛ0 (β) finite quiver Hecke algebras of type A(2)
2� .

2.2. Categorification of integrable modules

Let g = g(A) be the affine Kac–Moody Lie algebra associated with the Cartan matrix A. Let q be an
indeterminate and we denote the corresponding quantum affine algebra by Uq(g). It is a Q(q)-algebra
defined by generators ei, f i (i ∈ I), qh (h ∈ P∨) and their relations.

For i ∈ I , let qi = qdi and

[n]i = qn
i − q−n

i

qi − q−1
i

, [n]i ! =
n∏

k=1

[k]i .

For A = Z[q,q−1], we consider the A-subalgebra of Uq(g) generated by f (k)
i := f k

i /[k]i !, for i ∈ I
and k ∈ Z�0. We denote it by U−

A
(g).

Let Λ ∈ P+ be a dominant integral weight. Then we may consider the irreducible highest weight
Uq(g)-module Vq(Λ) with highest weight Λ and its A-form VA(Λ), which is the U−

A
(g)-submodule

of Vq(Λ) generated by a fixed highest weight vector. If we specialize VA(Λ) at q = 1, we have the
irreducible highest weight g-module V (Λ).

We denote the direct sum of split Grothendieck groups of additive categories RΛ(β)-projZ of
finitely generated projective graded left RΛ(β)-modules, for β ∈ Q+ , by

KZ

0

(
RΛ

) =
⊕
β∈Q+

K0
(

RΛ(β)-projZ
)
.

It has an A-module structure induced by the Z-grading on RΛ(n).
Let e(ν, ν ′) be the idempotent corresponding to the concatenation ν ∗ ν ′ of ν and ν ′ . If ν ′ = i, we

write e(ν, i). For β ∈ Q+ and i ∈ I , we set

e(β, i) =
∑
ν∈Iβ

e(ν, i)

and define functors
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Ei : RΛ(β + αi)-modZ → RΛ(β)-modZ,

Fi : RΛ(β)-modZ → RΛ(β + αi)-modZ,

between categories RΛ(β)-modZ and RΛ(β + αi)-modZ of finitely generated graded modules by
Ei(N) = e(β, i)N and Fi(M) = RΛ(β + αi)e(β, i) ⊗RΛ(β) M , for M ∈ RΛ(β)-modZ and N ∈ RΛ(β +
αi)-modZ , respectively. Then, Ei and Fi are exact functors [18, Theorem 4.5] which send projective
modules to projective modules, and the following theorem holds.

Theorem 2.4. (See [18, Theorem 5.2].) Set li = 〈hi,Λ − β〉, for i ∈ I . Then one of the following isomorphisms
of endofuctors on the category of finitely generated graded RΛ(β)-modules holds.

(1) If li � 0, then

q−2
i F i Ei ⊕

li−1⊕
k=0

q2k
i id

∼→ Ei Fi .

(2) If li � 0, then

q−2
i F i Ei

∼→ Ei Fi ⊕
−li−1⊕
k=0

q−2k−2
i id.

Thus, functors q1−〈hi ,Λ−β〉
i Ei and Fi , for β ∈ Q+ and i ∈ I , define a UA(g)-module structure on

KZ

0 (RΛ).
The following theorem is the cyclotomic categorification theorem conjectured by Khovanov and

Lauda, and proved by Kang and Kashiwara.

Theorem 2.5. (See [18, Theorem 6.2].) There exists a UA(g)-module isomorphism between KZ

0 (RΛ) and
VA(Λ).

In the study of representation type, we do not need grading. So we specialize q → 1. Let
RΛ(β)-proj be the category of finitely generated projective RΛ(β)-modules, and define

K0
(

RΛ
) =

⊕
β∈Q+

K0
(

RΛ(β)-proj
)
.

Then we have an isomorphism of gZ-modules K0(RΛ) ∼= V (Λ)Z , where gZ and V (Λ)Z are the Kostant
Z-form of g and V (Λ), respectively.

2.3. Categorification of crystals

We now recall a combinatorial realization of the crystal of Vq(Λ0) by Young walls [12,17]. A Young
wall is a generalization of a colored Young diagram based on certain level 1 perfect crystal, which
gives a combinatorial realization of crystals for basic representations of various quantum affine al-
gebras. This realization will be used in Proposition 2.8 for counting irreducible modules over finite
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quiver Hecke algebras. We refer the reader to [12,17,25,26] for the details. For type A(2)
2� , we consider

the following blocks:

0 : unit width and half-unit height, unit thickness

i (i = 1, . . . , �): unit width and unit height, unit thickness

and define a Young wall to be a wall consisting of the above colored blocks stacked by the following
rules. We write (2) for completeness, but it is a vacant condition, as we do not have blocks of half-unit
thickness.

(1) Colored blocks should be stacked in the pattern given below.
(2) No block can be placed on top of a column of half-unit thickness.
(3) Except for the rightmost column, there should be no free space to the right of any block.

The pattern is given as follows:

0

1

...

�

...

1

0
0

1

0

1

...

�

...

1

0
0

1

0

1

...

�

...

1

0
0

1

0

1

...

�

...

1

0
0

1

0

1

...

�

...

1

0
0

1

The sequence (0,1,2, . . . , � − 1, �, � − 1, . . . ,2,1,0) of colors is repeated in each column. For a Young
wall Y , define

wt(Y ) = Λ0 −
∑
i∈I

kiαi,

where ki is the number of i-blocks in Y , for i ∈ I .
A column is called a full column if its height is a multiple of the unit length and its top is of

unit thickness. As the ground state blocks have half-unit height, a column is not full if and only
if the number of stacked blocks is divisible by |δ| = 2� + 1. A Young wall is said to be proper if
none of the full columns have the same height. A part of a column consisting of two 0-blocks,
two 1-blocks, . . . , two (� − 1)-blocks and one �-block is called a δ-column. A column in a proper
Young wall is said to contain a removable δ if we may remove a δ-column from Y and still ob-
tain a proper Young wall. For example, when A is of type A(2)

4 , i.e. � = 2, the following are Young
walls.
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0 0

Y1

0 0 0

1 1

2 2

Y2

0 0

1 1

2 2

1 1

0 0
0

1

Y3

0 0 0

1 1

2 2

1 1

0 0

Y4

0 0

1

2

1

0
0

Y5

By definition, we have

wt(Y1) = Λ0 − 2α0, wt(Y2) = Λ0 − 3α0 − 2α1 − 2α2,

wt(Y3) = Λ0 − 5α0 − 5α1 − 2α2, wt(Y4) = Λ0 − 5α0 − 4α1 − 2α2,

wt(Y5) = Λ0 − 4α0 − 2α1 − α2.

Y1 and Y2 are not proper since both have two full columns with the same height. Y3 is proper but
it has a removable δ because a proper Young wall can be obtained by removing δ-column from the
shorter column of Y3. Y4 has two columns with the same heights but the height is not multiple
of unit length. Thus, Y4 is proper and has no removable δ. Y5 is also proper and it has no remov-
able δ.

Let Y(Λ0) be the set of all proper Young walls Y such that none of the columns contain a remov-
able δ. Then, Kashiwara operators ẽi and f̃ i on Y(Λ0) can be defined by using the combinatorics of
Young walls, and Y(Λ0) has a Uq(g)-crystal structure [12,17].

Theorem 2.6. (See [17, Theorem 7.1].) The crystal Y(Λ0) is isomorphic to the crystal B(Λ0) of the highest
weight Uq(g)-module Vq(Λ0).

Let B(Λ)Λ−β be the set of isomorphism classes of irreducible RΛ(β)-modules, for β ∈ Q+ , and de-
fine B(Λ) = 
β∈Q+B(Λ)Λ−β . Then, Lauda and Vazirani defined a crystal structure on B(Λ) and proved
the theorem below. We note that the idea to use socle and cosocle for defining crystal structure goes
back to Leclerc’s interpretation of the modular branching rule as a crystal in the Hecke algebra case.

Theorem 2.7. (See [36, Theorem 7.5].) The crystal B(Λ) is isomorphic to the crystal B(Λ) of the highest weight
module Vq(Λ).

A realization of the crystal B(Λ0) in terms of partitions is easier to handle for those who are
not familiar with Young walls, and we explain the realization by h-restricted h-strict partitions from
[4, Theorem 9.2].

For h ∈ Z�0, a partition λ = (λ1, λ2, . . .) is h-strict if h divides λr , whenever λr = λr+1 for r � 1.
If h = 0, we understand it as a strict partition. An h-strict partition λ is h-restricted if it satisfies
λr −λr+1 < h if h | λr and λr −λr+1 � h if h � λr . We denote by RPh the set of all h-restricted h-strict
partitions. Let

h = 2� + 1. (2.3.1)

For a Young wall Y ∈ Y(Λ0), let λk(Y ) be the number of stacked blocks in the kth column of Y .
Then, it is easy to see that the map Y �→ λY = (λ1(Y ), λ2(Y ), . . .) is a 1–1 correspondence between
Y(Λ0) and RPh . For example, consider the case A = A(2)

4 , where h = 5. Then, λ(Y1) = (1,1,0, . . .)
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and λ(Y2) = (3,3,1,0, . . .) are not 5-strict, λ(Y3) = (7,5,0, . . .) is 5-strict but not 5-restricted, and
λ(Y4) = (5,5,1,0, . . .) and λ(Y5) = (6,1,0, . . .) are 5-strict and 5-restricted.

Thus, RPh has the induced crystal structure, which is easy to describe, and the weight of
λ ∈ RPh is given by the residue pattern νδ = 01 · · · � · · ·10 on the nodes of λ. We define, for β =∑

i∈I kiαi ∈ Q+ ,

RPh(β) = {λ ∈ RPh | the number of i-nodes is ki, for i ∈ I.}

Then, we have the following proposition by Theorems 2.6 and 2.7.

Proposition 2.8. For β ∈ Q+ , the number of isomorphism classes of irreducible RΛ0 (β)-modules is equal to
|RPh(β)|.

3. Dimension formula for RΛ0(β)

3.1. Fock space revisited

We need some computation in F before giving dim RΛ0 (β). As in the Fock space theory for type
A(1)

e−1, we may describe the action of Chevalley generators by the combinatorics of adding/removing
nodes of Young diagrams, after minor modification. Let λ � n be a shifted Young diagram.

• Suppose that we may remove a box of residue i ∈ I from λ and obtain a new shifted Young
diagram. Then, we denote the resulting shifted Young diagram by λ ↗ i .

• Similarly, if we may add a box of residue i ∈ I to λ and obtain a new shifted Young diagram then
we denote the resulting shifted Young diagram by λ ↙ i .

We have wt(λ ↗ i ) = wt(λ) + αi and wt(λ ↙ i ) = wt(λ) − αi . Recalling the residue pattern νδ , a
box to be removed (resp. added) has residue i ∈ I if and only if it is the rightmost box of a row of
length j + 1 in λ (resp. λ ↙ i ) with j ≡ i,−i − 1 modulo h. Thus, it follows from (1.3.1) and (1.3.2)
that

ei |λ〉 =
∑

μ=λ↗ i

m(λ,μ)|μ〉, f i|λ〉 =
∑

μ=λ↙ i

|μ〉, (3.1.1)

where m(λ,μ) =
{

2 if wt(μ) = wt(λ) + α0 and l(λ) = l(μ),

1 otherwise.

Definition 3.1. For λ � n and ν ∈ In , we denote by K (λ, ν) the number of standard tableaux of shape
λ that has the residue sequence ν . Namely, we define

K (λ, ν) = ∣∣{T ∈ ST(λ)
∣∣ ν = res(T )

}∣∣.
We have the following equality.

∣∣ST(λ)
∣∣ =

∑
ν∈IΛ0−wt(λ)

K (λ, ν). (3.1.2)

In the next lemma, d is the scaling element. Note that if wt(λ) = Λ0 −∑
i∈I kiαi then k0 = −〈d,wt(λ)〉.
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Lemma 3.2. Let λ � n and ν = (ν1, . . . , νn) ∈ In. Then we have

eν1 eν2 · · · eνn |λ〉 = 2−〈d,wt(λ)〉−l(λ)K (λ, ν)|0〉,
fνn fνn−1 · · · fν1 |0〉 =

∑
μ�n

K (μ,ν)|μ〉.

Proof. The second equality is clear. We prove the first equality by induction on n. Since it is obvious
when n = 1, we assume n > 1. By definition, if μ = λ ↗ i , then we have

2−〈d,wt(λ)〉−l(λ) = m(λ,μ)2−〈d,wt(μ)〉−l(μ).

Let j = νn and ν− = (ν1, . . . , νn−1). Using the induction hypothesis and (3.1.1), we obtain

eν1 eν2 · · · eνn |λ〉 =
∑

μ=λ↗ j

m(λ,μ)eν1 eν2 · · · eνn−1 |μ〉

=
∑

μ=λ↗ j

m(λ,μ)2−〈d,wt(μ)〉−l(μ)K
(
μ,ν−)|0〉

= 2−〈d,wt(λ)〉−l(λ)
∑

μ=λ↗ j

K
(
μ,ν−)|0〉

= 2−〈d,wt(λ)〉−l(λ)K (λ, ν)|0〉.

Hence the desired formula follows. �
3.2. Dimension formula

Now we are ready to state and prove the main theorem of this section. We remark that dimen-
sion of cyclotomic quiver Hecke algebras is not known except for block algebras of cyclotomic Hecke
algebras. In the case of cyclotomic Hecke algebras, we know dim RΛ(β) from the theory of cellular
algebras. For a suitable definition of λ and ST(λ), we have

dim RΛ(β) =
∑

wt(λ)=Λ−β

∣∣ST(λ)
∣∣2

.

Theorem 3.4 below gives the dimension of the finite quiver Hecke algebra RΛ0 (β) of type A(2)
2� in

terms of shifted standard tableaux. The idea to obtain the formula is different, and we use computa-
tion in the Fock space F and the biadjointness result from [18] and [27].

We recall functors Ei and Fi from Section 2.2 and consider them in non-graded setting.

Ei : RΛ(β + αi)-mod → RΛ(β)-mod,

Fi : RΛ(β)-mod → RΛ(β + αi)-mod.

Then the pair (Ei, Fi) is a biadjoint pair of exact functors by [18, Theorem 4.5], [27, 3.2, Theorem 3.5].
[27, 3.2] gives the adjunction id → Ei Fi , Fi Ei → id on the one hand, [27, Theorem 3.5] gives the
adjunction Ei Fi → id, id → Fi Ei on the other hand.
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Lemma 3.3. We have the following equality, for M, N ∈ RΛ0 (β)-mod.

dim HomRΛ0 (β)(M, N) = dim HomRΛ0 (β)(N, M).

Proof. We prove the assertion by induction on |β|. Suppose that the assertion holds for all β ′ ∈ Q+
such that |β ′| < |β|. Then, by the induction hypothesis and the biadjointness of Ei and Fi , we have

dim HomRΛ0 (β)(Fi M, N) = dim HomRΛ0 (β−αi)
(M, Ei N)

= dim HomRΛ0 (β−αi)
(Ei N, M) = dim HomRΛ0 (β)(N, Fi M).

As RΛ0 (β)’s categorify V (Λ0) and

V (Λ0)Λ0−β =
∑
i∈I

f i V (Λ0)Λ0−β+αi ,

where V (Λ0)μ is the μ-weight space, the assertion follows. �
Theorem 3.4. Let λ � n be a shifted Young diagram consisting of n boxes. For β ∈ Q+ with |β| = n and
ν,ν ′ ∈ Iβ , we have

dim e
(
ν ′)RΛ0(n)e(ν) =

∑
λ�n

2−〈d,wt(λ)〉−l(λ)K
(
λ,ν ′)K (λ, ν),

dim RΛ0(β) =
∑

λ�n, wt(λ)=Λ0−β

2−〈d,wt(λ)〉−l(λ)
∣∣ST(λ)

∣∣2
,

dim RΛ0(n) =
∑
λ�n

2−〈d,wt(λ)〉−l(λ)
∣∣ST(λ)

∣∣2
.

Proof. We have K0(RΛ0 ) ∼= V (Λ0)Z by the paragraph after Theorem 2.5. Let (,) be the Shapovalov
form on V (Λ0). It is a symmetric bilinear form characterized by the following properties, where v0
is a vector which generates {v ∈ V (Λ0)Z | wt(v) = Λ0} as a Z-module.

(v0, v0) = 1, ( f i x, y) = (x, ei y), for x, y ∈ V (Λ0).

As (Ei, Fi) is a biadjoint pair and Lemma 3.3 holds, the above characterization implies that the in-
duced Shapovalov form on K0(RΛ0 ) is given as follows:

dim HomRΛ0 (β)(M, N) = ([M], [N]), for projective RΛ0(β)-modules M and N. (3.2.1)

We identify U (g)|0〉 = V (Λ0) and embed V (Λ0) to the Fock space F . As V (Λ0) is a direct sum-
mand of F as a g-module, we may extend the Shapovalov form on V (Λ0) to a symmetric bilinear
form on F that has the property

( f ix, y) = (x, ei y), for x, y ∈ F .

Further, Fi(RΛ0 (n)e(ν)) = RΛ0 (n + 1)e(ν, i) and

Fνn · · · Fν1

(
RΛ0(0)

) = RΛ0(n)e(ν), for ν ∈ In.
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Hence, for ν = (ν1, . . . , νn), ν ′ = (ν ′
1, . . . , ν

′
n) ∈ In , Lemma 3.2 and (3.2.1) imply that

dim e
(
ν ′)RΛ0(n)e(ν) = dim HomRΛ0 (n)

(
RΛ0(n)e

(
ν ′), RΛ0(n)e(ν)

)
= (

fν ′
n

fν ′
n−1

· · · fν ′
1
|0〉, fνn fνn−1 · · · fν1 |0〉)

=
∑
λ�n

K (λ, ν)
(

fν ′
n

fν ′
n−1

· · · fν ′
1
|0〉, |λ〉)

=
∑
λ�n

K (λ, ν)
(|0〉, eν ′

1
eν ′

2
· · · eν ′

n
|λ〉)

=
∑
λ�n

2−〈d,wt(λ)〉−l(λ)K
(
λ,ν ′)K (λ, ν).

To deduce the second formula from the first, we use (3.1.2) and

RΛ0(β) =
⊕

ν,ν ′∈Iβ

e
(
ν ′)RΛ0(n)e(ν).

Then we have

dim RΛ0(β) =
∑

ν,ν ′∈Iβ

∑
λ�n

2−〈d,wt(λ)〉−l(λ)K
(
λ,ν ′)K (λ, ν)

=
∑

λ�n, wt(λ)=Λ0−β

2−〈d,wt(λ)〉−l(λ)
∑
ν∈Iβ

∑
ν ′∈Iβ

K
(
λ,ν ′)K (λ, ν)

=
∑

λ�n, wt(λ)=Λ0−β

2−〈d,wt(λ)〉−l(λ)
∣∣ST(λ)

∣∣2
.

The last formula follows from RΛ0 (n) = ⊕
β∈Q+, |β|=n RΛ0 (β). �

Theorem 3.4 has several important consequences.

Corollary 3.5.

(1) Let ν ∈ In. Then, e(ν) �= 0 in RΛ0 (n) if and only if ν may be obtained from a standard tableau T as
ν = res(T ).

(2) We have the following hook-length formula, for β ∈ Q+ .

dim RΛ0(β) =
∑

λ�n, wt(λ)=Λ0−β

2−〈d,wt(λ)〉−l(λ)

(
n!∏

(i, j)∈λ hi, j

)2

.

(3) For any natural number n, we have the following equality.

n! =
∑

β∈Q+, |β|=n

2n−〈d,β〉 dim RΛ0(β).
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Proof. (1) It follows from Theorem 3.4 that

e(ν)RΛ0(n)e(ν) =
∑
λ�n

2−〈d,wt(λ)〉−l(λ)K (λ, ν)2.

Then, observe that e(ν) �= 0 if and only if dim e(ν)RΛ0 (n)e(ν) > 0.
(2) It follows from Theorems 1.1(1) and 3.4.
(3) Using Theorems 1.1(2) and 3.4, we obtain

n! =
∑
λ�n

2n−l(λ)
∣∣ST(λ)

∣∣2

=
∑

β∈Q+, |β|=n

2n+〈d,Λ0−β〉 ∑
λ�n, |λ|=β

2−〈d,Λ0−β〉−l(λ)
∣∣ST(λ)

∣∣2

=
∑

β∈Q+, |β|=n

2n−〈d,β〉 dim RΛ0(β).

We have proved the equality. �
4. Representation type of RΛ0(β)

4.1. Reduction to RΛ0 (kδ)

We denote by RΛ(n)-mod the category of finitely generated RΛ(n)-modules and we define functors
E and F by

E :=
∑
i∈I

Ei : RΛ(n + 1)-mod → RΛ(n)-mod,

F :=
∑
i∈I

F i : RΛ(n)-mod → RΛ(n + 1)-mod.

Recall that the pair (Ei, Fi) is a biadjoint pair of exact functors.

Lemma 4.1. Let A and B be abelian categories, E :A → B an exact functor. If F is right adjoint (resp. left
adjoint) to E then F sends an injective object (resp. projective object) to an injective object (resp. projective
object).

Proposition 4.2. RΛ(β) is a self-injective algebra.

Proof. As the pair (Ei, Fi) is a biadjoint pair of exact functors, F is right adjoint to E . Hence F pre-
serves injective objects. On the other hand, by definition, RΛ(k + 1) = F RΛ(k) for k ∈ Z�0. Since
RΛ(0) is an injective RΛ(0)-module, RΛ(n) is an injective RΛ(n)-module and so are its direct sum-
mands RΛ(β)’s. �

In the following, we recall several general results. Let A and B be k-algebras.

Theorem 4.3 (Krause). If A and B are stable equivalent, then A and B have the same representation type.
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See [37, Theorem 1] for the Krause’s theorem from [34]. The following theorem is well known.

Theorem 4.4. (See [41, Theorem 2.1].) If A and B are self-injective algebras such that Db(A-mod) and
Db(B-mod) are equivalent as triangulated categories, i.e., A and B are derived equivalent. Then A and B
are stably equivalent.

Hence, if two self-injective algebras are derived equivalent, they have the same number of irre-
ducible modules, the same representation type, isomorphic centers, and if they are not radical square
zero Nakayama algebras then isomorphic stable Auslander–Reiten quivers.

Theorem 4.5. (See [6, Theorem 6.4].) Let A be an artinian and noetherian k-linear abelian category such that
the endomorphism ring of any simple object is k. Suppose that an adjoint pair (E, F ) of exact endo-functors
on A satisfies sl2-categorification axioms in [6, 5.2]. Then

(1) The weight space decomposition of the locally finite sl2(Q)-module K (A) ⊗Z Q gives the decomposition
of the category A= ⊕

c∈ZAc .
(2) The categories A−c and Ac are derived equivalent.

We consider A= ⊕
c∈ZAc , where

Ac =
⊕

μ∈P:μ(hi)=c

RΛ(Λ − μ)-mod.

Then, (Ei, Fi) is an adjoint pair of exact endo-functors on A. The following is another consequence of
[27].

Theorem 4.6. For i ∈ I , the pair of functors (Ei, Fi) satisfies the sl2-categorification axioms.

Proof. It follows from [27, 3.2] that we have Xi, Xi+1, T ∈ End(E⊗2
i ) that satisfy nil affine Hecke rela-

tions. Thus [43, 5.3.3] implies the result. �
Corollary 4.7. Let Λ be an integral dominant weight, V (Λ) the corresponding integrable highest weight
g-module. If μ ∈ P appears in its weight system, that is, if the weight space V (Λ)μ is nonzero, then RΛ(Λ−μ)

and RΛ(Λ − wμ) are derived equivalent, for w ∈ W.

Proof. As the weight system of an integrable module is W-invariant, it suffices to consider the case
w = si , for some i ∈ I . Then, the result follows from Theorems 4.5 and 4.6. �

The following corollary is crucial in reducing the proof of Theorem 4.22 to the cases when β is a
multiple of the null root δ.

Corollary 4.8. Let Λ be a dominant integral weight. Then, for w ∈ W and k ∈ Z�0 , cyclotomic quiver Hecke
algebras RΛ(kδ) and RΛ(Λ − wΛ + kδ) have the same representation type.

Proof. Since wδ = δ, Corollary 4.7 tells that RΛ(kδ) and RΛ(Λ − wΛ + kδ) are derived equivalent.
Then, Proposition 4.2 and Theorem 4.4 imply that they are stably equivalent. Thus, the assertion
follows from Theorem 4.3. �

In the rest of the paper, we focus on finite quiver Hecke algebras RΛ0 (β) of type A(2)
2� . Then,

every nonzero RΛ0 (β) has the form RΛ0 (Λ0 − wΛ0 + kδ), which has the same representation type as
RΛ0 (kδ) by Corollary 4.8.
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We recall the following theorem. Let Rad A be the two-sided ideal generated by paths of positive
length, for a path algebra A.

Theorem 4.9. (See [10, Theorem 1].) Brauer tree algebras are stably equivalent to symmetric Nakayama alge-
bras A/Radlm+1 A, for the path algebra A of a cyclic quiver of length l and m ∈ Z�0 .

Thus, Brauer tree algebras have finite representation type by Theorem 4.3. Of course, the fact had
been known before Theorem 4.9 appeared, but we do not know a good reference for this well-known
fact. According to Professor Asashiba, arguments in Janusz [14] may be read as another proof, which
is more direct and elementary. We are grateful to him for the explanation.

4.2. The algebra RΛ0 (δ)

In this subsection, we prove that RΛ0 (δ) is a Brauer tree algebra. Hence, it has finite representation
type by Theorem 4.9. We assume that Q i, j(u, v) = 1 if aij = 0 for simplifying computations. This
assumption is not essential. Recall that h = 2� + 1.

For 0 � i � � − 1, we consider two row partitions λ(i) = (h − i − 1, i) � h − 1. Note that wt(λ(i)) =
Λ0 − δ + αi and the residues are given as follows:

0 1 · · · i · · · � · · · i+1

0 · · · i−1
(4.2.1)

We set

Li =
⊕

T ∈ST(λ(i))

kT

and define an RΛ0 (δ −αi)-module structure on Li as follows: for ν ∈ Iδ−αi , 1 � k � h − 1 and 1 � l <

h − 1,

e(ν)T =
{

T if ν = res(T ),

0 otherwise,
xk T = 0, ψl T =

{
sl T if sl T is standard,

0 otherwise,
(4.2.2)

where sl T is the tableau obtained from T by exchanging the entries l and l + 1. We check that it
is well defined. It is easy to see from the residue pattern (4.2.1) that νk = νk+1 does not occur, for
ν = res(T ) with T ∈ ST(λ(i)). Thus, it is straightforward to check the defining relations except those
for ψ2

k and for ψk+1ψkψk+1 − ψkψk+1ψk .
Let T ∈ ST(λ(i)) and write res(T ) = (ν1, . . . , νh−1). Since 0 � i � �− 1, one can also show from the

residue pattern (4.2.1) that

(i) Let (1, j) ∈ λ(i) and (2, j′) ∈ λ(i) be such that j > j′ . Then apq = 0, for p = res(1, j) and q =
res(2, j′).

(ii) If νk = νk+2, then (νk, νk+1, νk+2) = (0,1,0) or (� − 1, �, � − 1).

We show that ψ2
k e(ν) = e(ν) if aνk,νk+1 = 0, and ψ2

k e(ν) = 0 otherwise. Let ν = res(T ), for T ∈
ST(λ(i)). Since (i) implies that sk T is standard if and only if aνk,νk+1 = 0, we have

ψ2
k T =

{
T if aνk,νk+1 = 0,

0 otherwise.

Thus, we have proved that ψ2
k e(ν) = Q νk,νk+1 (xk, xk+1)e(ν) holds on Li .
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As sk T , sk+1sk T , sksk+1sk T are all standard if and only if sk+1T , sksk+1T , sk+1sksk+1T are all stan-
dard, the operators ψk and ψk+1 on Li satisfy the Artin braid relation. Thus, we show that the
terms with νk = νk+2 in the defining relation vanish. Since (ii) implies that we only have to con-
sider (νk, νk+1, νk+2) = (0,1,0) or (� − 1, �, � − 1), and deg(ψkψk+1ψke(ν)) > 0 in both cases, they
vanish as desired.

Lemma 4.10. For i = 0,1, . . . , � − 1,

(1) RΛ0 (δ − αi) is a simple algebra,
(2) Li is an irreducible RΛ0 (δ − αi)-module of dimension

(h−2
i

) − (h−2
i−1

)
.

Proof. (1) Since Λ0 − δ + αi is a maximal weight of V (Λ0),

dim V (Λ0)Λ0−δ+αi = 1, Λ0 − δ + αi = wΛ0,

for some w ∈ W [16, Lemma 12.6]. Then, as RΛ0 (0) is a simple algebra, the assertion follows from
Corollary 4.8 and the fact that derived equivalence preserves the center.

(2) Theorem 1.1 gives the dimension of Li as follows:

dim Li = (h − 1)!
(h − 1)(

(h−i−1)!
h−2i−1 )i! = (h − 2)!

(h − i − 2)!i! − (h − 2)!
(h − i − 1)!(i − 1)! .

Next we show that dim e(ν)Li � 1, for any ν . Then, a standard argument shows that Li is irreducible.
But, if one tries to enumerate all possible standard tableaux T with res(T ) = ν , one finds that it is
unique if it exists. It follows that dim e(ν)Li � 1. �

We now extend the RΛ0 (δ − αi)-module Li to an RΛ0 (δ)-module Si as follows. As the genera-
tors xk , for 1 � k � h − 1, and ψl , for 1 � l < h − 1, act as (4.2.2), we define the action of xh and ψh−1.
We declare that both act as 0. The idempotents e(ν), for ν ∈ Ih , act as

e(ν)T =
{

T if ν = res(T ) ∗ i,
0 otherwise.

Here, res(T ) ∗ i is the sequence obtained from res(T ) by adding i at the right end. We check that it is
well defined. Let ν = res(T ) ∗ i. Then, it follows from (4.2.1) that

νh−2 �= i and νh−1 = i − 1 or i + 1,

if � � 2, deg Q νh−2,νh−1 � 2 and νh−1 = i ± 1 if � = 1. Then, νh−1 = i ± 1 implies that νh−1 = νh does
not occur. Thus, the relations which involve xh all hold. It also follows that aνh−1νh = 0 does not occur,
so that the relation for ψ2

h−1 holds. Finally, νh−2 �= νh if � � 2 and deg Q νh−2,νh−1 � 2 if � = 1 implies
that the relation for ψh−1ψh−2ψh−1 − ψh−2ψh−1ψh−2. Note that Si is a homogeneous representation
in the sense of Kleshchev and Ram [31], and

E j Si =
{

Li if j = i,
0 if j �= i.

(4.2.3)
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Lemma 4.11. The set {Si | 0 � i � � − 1} is a complete set of irreducible RΛ0 (δ)-modules.

Proof. By Proposition 2.8, the number of pairwise non-isomorphic irreducible RΛ0 (δ)-modules is �.
On the other hand, Lemma 4.10(2) and (4.2.3) tell us that Si ’s are irreducible and pairwise non-
isomorphic. Thus, we have the assertion. �

We now consider the module Fi Li . Note that Fi Li is a projective-injective module since the functor
Fi preserves projectivity and injectivity. By the biadjointness of Ei and Fi ,

Hom(S j, Fi Li) � Hom(Ei S j, Li) �
{

k if j = i,
0 if j �= i,

Hom(Fi Li, S j) � Hom(Li, Ei S j) �
{

k if j = i,
0 if j �= i,

(4.2.4)

which implies that Fi Li is indecomposable and Top(Fi Li) = Soc(Fi Li) = Si . So, Fi Li is the projective
cover of Si .

Theorem 4.12. If � � 2, the radical series of Fi Li , for 0 � i � � − 1, is given as follows:

F0L0 �
S0

S0 ⊕ S1
S0

, Fi Li �
Si

Si−1 ⊕ Si+1
Si

(i �= 0, � − 1), F�−1L�−1 �
S�−1
S�−2
S�−1

.

If � = 1, S0 is the unique irreducible module and F0 L0 is a uniserial module of length 3.

Proof. By definition, E j Li = 0, for j �= i ± 1, and we know that

E j Li � Ei L j, for j = i ± 1

by comparing their characters, since both are irreducible. For i �= j, by the biadjointness of E j and F j
and [18, Theorem 5.1], we have

Hom(Fi Li, F j L j) � Hom(E j Fi Li, L j) � Hom(Fi E j Li, L j) � Hom(E j Li, Ei L j),

which gives

dim Hom(Fi Li, F j L j) =
{

1 if j = i ± 1,

0 if j �= i, i ± 1.

We now consider the case i = j. Since Ei Li = 0 and 〈hi,Λ0 − δ +αi〉 > 0, we have, by Theorem 2.4,

Ei Fi Li � L⊕〈hi ,Λ0−δ+αi〉
i

So, we have

Hom(Fi Li, Fi Li) � Hom(Li, Ei Fi Li) � k⊕〈hi ,Λ0−δ+αi〉.

To summarize, we have the following decomposition numbers.



478 S. Ariki, E. Park / Journal of Algebra 397 (2014) 457–488
[Fi Li : S j] =

⎧⎪⎨
⎪⎩

0 if j �= i ± 1,

1 if j = i ± 1,

2 if j = i �= 0,

3 if j = i = 0.

In other words, we have

[F0L0] =
{

3[S0] + [S1] if � � 2,

3[S0] if � = 1,

[Fi Li] = 2[Si] + [Si−1] + [Si+1] (1 � i � � − 2),

[F�−1L�−1] = 2[S�−1] + [S�−2] if � � 2,

in the Grothendieck group K0(RΛ0 (δ)-mod). Since Top(Fi Li) = Soc(Fi Li) = Si , we only have to show
that the heart of Fi Li is a direct sum of two irreducible modules when i �= � − 1. Recall that the
anti-involution of RΛ0 (δ), which fixes the generators elementwise, defines a left module structure on
the k-dual of any module. Further, the character consideration shows that irreducible modules are
self-dual. This implies that the k-dual of Fi Li is isomorphic to Fi Li itself. It follows that the heart of
Fi Li is self-dual, and the assertion follows. �

As a corollary, we have the following theorem, for � � 1. (1) is by definition of the Brauer tree
algebra, and (2) follows from Theorem 4.9.

Theorem 4.13.

(1) RΛ0 (δ) is the Brauer tree algebra associated with Brauer graph

•
e = 2

◦ ◦ ◦ ◦ ◦
S0 S1 S�−2 S�−1

(2) RΛ0 (δ) is not semisimple and has finite representation type.

4.3. The algebra RΛ0 (2δ)

We define νk ∈ Ih+k , for 1 � k � h, by adding residues of νδ one by one. Namely,

ν1 = νδ ∗ (0), ν2 = νδ ∗ (01), . . . , ν�+1 = νδ ∗ (01 · · ·�), . . . ,

νh−1 = νδ ∗ (012 · · ·� · · · 21), νh = νδ ∗ νδ.

We denote the corresponding idempotent by ek = e(νk). Then, ek ∈ RΛ0 (βk), where βk are

β1 = δ + α0, β2 = δ + α0 + α1, . . . , β�+1 = δ + α0 + · · · + α�, . . . ,

βh−1 = 2δ − α0, βh = 2δ.

We define ik ∈ I , for 1 � k < h, by αik = βk+1 − βk .

Lemma 4.14.

(1) dim ek RΛ0 (βk)ek = 12, for 1 � k � h − 1.
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(2) We have an isomorphism of k-algebras

ek RΛ0(βk)ek
∼= ek+1 RΛ0(βk+1)ek+1, for 1 � k < h − 1,

which sends xhek, xh+1ek, ψhek to xhek+1 , xh+1ek+1 , ψhek+1 , respectively.

Proof. (1) We use Theorem 3.4. In counting standard tableaux T with res(T ) = νk , one finds that the
filling of 1, . . . ,h − 1 are unique, the filling of h,h + 1 is either (1,h), (1,h + 1) or (1,h), (2,2), and
after that, there is unique way to fill in h + 2, . . . ,h + k. Thus,

K (λ, νk) =
{

1 if λ = (h + k),

2 if λ = (h,k),

0 otherwise.

It follows that dim ek RΛ0 (βk)ek = 22 · 12 + 21 · 22 = 12.
(2) We can easily find that

〈h0,Λ0 − δ〉, 〈h1,Λ0 − δ − α0〉, . . . , 〈h�,Λ0 − δ − α0 − · · · − α�−1〉,
〈h�−1,Λ0 − 2δ + α0 + · · · + α�−1〉, . . . , 〈h1,Λ0 − 2δ + α0 + α1〉,

are all positive, for � � 1. Thus, Theorem 2.4 implies that there is a (RΛ0 (βk), RΛ0 (βk))-bimodule
monomorphism

RΛ0(βk) → e(βk, ik)RΛ0(βk+1)e(βk, ik),

for 1 � k < h − 1, which respects generators. Thus, we have an (ek RΛ0 (βk)ek, ek RΛ0 (βk)ek)-bimodule
monomorphism

ek RΛ0(βk)ek → ek+1 RΛ0(βk+1)ek+1,

for 1 � k < h − 1, such that xhek, xh+1ek,ψhek �→ xhek+1, xh+1ek+1,ψhek+1, respectively. As both alge-
bras are 12-dimensional, it is a k-algebra isomorphism. �
Definition 4.15. The cyclotomic nilHecke algebra N Hm

2 , for a positive integer m, is the k-algebra de-
fined by generators y1, y2,ψ and the relations

ym
1 = 0, y2ψ − ψ y1 = 1 = ψ y2 − y1ψ, ψ2 = 0.

We need the fact N H3
2

∼= Mat(2,k[x]/(x3)) [35, (5.4)] in the proof of next proposition.

Lemma 4.16. We have xh−1e(sh−1ν
1) = 0.

Proof. If � = 1, then e(s2ν
1) = 0, so that there is nothing to prove. Suppose that � � 2 and

Q i, j(u, v) = 1 if aij = 0 and

Qi, j(u, v) =
{

u + v if aij = a ji = −1,

u2 + v if aij = −2 and a ji = −1,

for simplifying computation. This assumption is not essential.
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We define μ by

μ = s3s4 · · · sh−1ν
1 = (0,1,0,2,3, . . . , � − 1, �, � − 1, . . . ,1,0).

By Corollary 3.5, and the defining relations, we have

(i) e(s1μ) = e(s2μ) = 0,
(ii) For 3 � r � h − 2, we have

ψrψr−1 · · ·ψ3e(μ)ψ3 · · ·ψr−1ψr = e
(
sr+1sr+2 · · · sh−1ν

1).
Then, it follows that

x3e(μ) = (x1 + x3)e(μ) = (ψ2ψ1ψ2 − ψ1ψ2ψ1)e(μ) = 0,

which yields

xh−1e
(
sh−1ν

1) = xh−1
(
ψh−2 · · ·ψ3e(μ)ψ3 · · ·ψh−2

)
= ψh−2 · · ·ψ3x3e(μ)ψ3 · · ·ψh−2

= 0.

We have proved the result. �
Proposition 4.17.

(1) The following set spans e1 RΛ0 (β1)e1 as a k-vector space.

{
xa

hxb
h+1e1, xa

hxb
h+1ψhe1

∣∣ a,b ∈ Z�0
}
.

(2) We have the following isomorphism of k-algebras.

N H3
2

∼= e1 RΛ0(β1)e1 : y1 �→ xhe1, y2 �→ xh+1e1, ψ �→ ψhe1.

(3) The algebra eh−1 RΛ0 (βh−1)eh−1 is generated by xheh−1, xh+1eh−1,ψheh−1 , which obey the affine nil-
Hecke relations, and we have the following isomorphism of k-algebras.

eh−1 RΛ0(βh−1)eh−1
∼= Mat

(
2,k[x]/(x3)).

Proof. (1) In the proof, we assume that Q i, j(u, v) = 1 if aij = 0 and

Qi, j(u, v) =
⎧⎨
⎩

u + v if aij = a ji = −1,

u2 + v if aij = −2 and a ji = −1,

u4 + v if aij = −4 and a ji = −1,

for simplifying computation. This assumption is not essential. Let e = e1 and ν = ν1. Observe that
siν , for 1 � i � h − 2, cannot be the residue sequence of a standard tableau. Thus, eψi = 0 = ψie, for
1 � i � h − 2, by Corollary 3.5. Suppose that � � 2. We have
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eψ2
1 e = (

x2
1 + x2

)
e, eψ2

i e = (xi + xi+1)e, for 2 � i � � − 1, eψ2
� e = (

x2
� + x�+1

)
e,

so that, starting with x1 = 0, we obtain xie = 0, for 1 � i � � + 1. x�+2e = 0 follows from

eψ�+1ψ�ψ�+1e − eψ�ψ�+1ψ�e = (x� + x�+2)e.

Then, eψ2
i e = (xi + xi+1)e, for � + 2 � i � h − 2, proves that xie = 0, for 1 � i � h − 1. If � = 1, then

x1 = 0 and eψ2
1 e = (x4

1 + x2)e proves xie = 0, for 1 � i � h − 1.
For each w ∈ Sn , we fix a reduced expression and defines ψw . Then, e1 RΛ0 (β1)e1 is spanned by

the set

{
xa

hxb
h+1eψw e

∣∣ a,b ∈ Z�0, w ∈ Sh+1
}
.

Hence, it is enough to show that eψw e = 0 unless w = 1 or w = sh . Recall the distinguished coset
representatives for Sn−1\Sn:

Sn =
n⊔

i=1

Sn−1sn−1 · · · si .

Hence, we may choose the reduced expression as w = w2 · · · wh , where

wh ∈ {shsh−1 · · · s1, shsh−1 · · · s2, . . . , sh,1}
wh−1 ∈ {sh−1sh−2 · · · s1, sh−1sh−2 · · · s2, . . . , sh−1,1}

. . .

w2 ∈ {s1,1}.

Suppose that eψw e �= 0. If w2 �= 1, eψ1 = 0 implies eψw e = 0, so that w2 = 1. Arguing similarly, we
obtain w2 = · · · = wh−2 = 1. Using ψie = 0, for 1 � i � h − 2, we deduce that

wh ∈ {shsh−1, sh,1}.

But, shsh−1ν = 01 · · · � · · ·2001 if � � 2, and shsh−1ν = 0001 if � = 1. In either case, it cannot be
of the form res(T ), for a standard tableau T . Hence, we have either wh = 1 or wh = sh . It follows
that eψw e = eψwh−1 eψwh , and using ψie = 0, for 1 � i � h − 2 again, we have either wh−1 = 1 or
wh−1 = sh−1. But wh−1 = sh−1 implies eψw e = e(ν)e(sh−1ν)ψh−1ψwh = 0 because sh−1ν �= ν , and we
must have wh−1 = 1. We have proved (1).

(2) If � � 2, then e1ψ
2
h−1e1 = (xh−1 + x2

h)e1 = x2
he1 and Lemma 4.16 implies

x3
he1 = e1ψ

2
h−1e1xh = e1ψh−1xh−1e

(
sh−1ν

1)ψh−1e1 = 0.

If � = 1, then e1ψi = 0 = ψie1, for i = 1,2, implies

x3
3e1 = (

x3
1 + x2

1x3 + x1x2
3 + x3

3

)
e1 = e1(ψ2ψ1ψ2 − ψ1ψ2ψ1)e1 = 0.

Thus, x3
he1 = 0, for all � � 1, and we may define a homomorphism of k-algebras
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N H3
2 → e1 RΛ0(β1)e1 : y1 �→ xhe1, y2 �→ xh+1e1, ψ �→ ψhe1,

which is an epimorphism by (1). As both algebras are 12-dimensional, it is an isomorphism.
(3) follows from (2) and Lemma 4.14(2). �

Proposition 4.18. The algebra eh RΛ0 (2δ)eh is a quotient algebra of Mat(2,k[x]/(x3)) ⊗k k[t] by the ideal
generated by an element of the form t3 − c2t2 − c1t − c0 , for some

c0, c1, c2 ∈ Mat
(
2,k[x]/(x3)).

Proof. By explicit enumeration of possible standard tableaux, Theorem 3.4 computes

dim eh RΛ0(2δ)eh = 36.

We consider the algebra homomorphism

eh−1 RΛ0(βh−1)eh−1 ⊗k k[t] → eh RΛ0(2δ)eh

defined by m ⊗ tk �→ mxk
2heh , for m ∈ eh−1 RΛ0 (βh−1)eh−1 and k ∈ Z�0.

This algebra homomorphism is well defined because x2h commutes with xheh, xh+1eh,ψheh , and
xheh−1, xh+1eh−1,ψheh−1 generate eh−1 RΛ0 (βh−1)eh−1 by Proposition 4.17(3).

As 〈h0,Λ0 − 2δ + α0〉 = 3, Theorem 2.4 implies that its restriction to

⊕
k=0,1,2

eh−1 RΛ0(βh−1)eh−1 ⊗ tk → eh RΛ0(2δ)eh

is an isomorphism of k-vector spaces. In fact, the isomorphism of functors in Theorem 2.4 is given in
an explicit manner, and the terms in the direct sum are given by multiplication by xk

2h , for 0 � k � 2.
See the statement of [27, Theorem 3.4], for example.

Thus, t3 = c2t2 + c1t + c0, for some c0, c1, c2 ∈ eh−1 RΛ0 (βh−1)eh−1, and if we consider the factor
algebra by the cubic relation, the algebra homomorphism induces an isomorphism to eh RΛ0 (2δ)eh .
Recalling the isomorphism of k-algebras

eh−1 RΛ0(βh−1)eh−1
∼= Mat

(
2,k[x]/(x3))

from Proposition 4.17(3), we have the result. �
Proposition 4.19. The algebra RΛ0 (2δ) is wild, for all � � 1.

Proof. Let A = eh RΛ0 (2δ)eh . It suffices to show that A is wild. We define a two-sided ideal of
Mat(2,k[x]/(x3)) ⊗ k[t] by

J = Mat
(
2,k[x]/(x3)) ⊗ tk[t] + Mat

(
2, xk[x]/(x3)) ⊗ k[t].

We know from Proposition 4.18 that A/Rad3 A is isomorphic to

Mat
(
2,k[x]/(x3)) ⊗ k[t]/ J 3

as k-algebras. We show that this algebra is wild. Then it follows that A is wild. Let E11 be the matrix
unit. Then, for the idempotent f = E11 ⊗ 1, we have
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f
(
Mat

(
2,k[x]/(x3)) ⊗ k[t]/ J 3) f ∼= k[x, t]/(x3, x2t, xt2, t3).

In [42, (1.2)], the following result is attributed to Brenner and Drozd:

the commutative algebra k[x, t]/(x2, xt2, t3) is wild.

As k[x, t]/(x2, xt2, t3) is a quotient algebra of k[x, t]/(x3, x2t, xt2, t3), k[x, t]/(x3, x2t, xt2, t3) is wild.
We have proved that A is wild. �
4.4. Representation type of RΛ0 (β)

It remains to consider RΛ0 (kδ), for k � 3.

Lemma 4.20. (See [9, Proposition 2.3].) Let A and B be finite dimensional k-algebras and suppose that there
exist a constant C > 0 and functors

F : A-mod → B-mod, G : B-mod → A-mod

such that, for any A-module M,

(1) M is a direct summand of G F (M) as an A-module,
(2) dim F (M) � C dim M.

If A is wild then so is B.

Proposition 4.21. RΛ0 (kδ), for k � 2, are wild.

Proof. Suppose that � = 1. Then the numbers

〈h0,Λ0 − kδ〉 = 1, 〈h1,Λ0 − kδ − α0〉 = 1, 〈h0,Λ0 − kδ − α0 − α1〉 = 3,

are all positive. Thus, the functors

F0 : RΛ0(kδ)-mod → RΛ0(kδ + α0)-mod,

F1 : RΛ0(kδ + α0)-mod → RΛ0(kδ + α0 + α1)-mod,

F0 : RΛ0(kδ + α0 + α1)-mod → RΛ0
(
(k + 1)δ

)
-mod

satisfy the assumptions of Lemma 4.20, by Theorem 2.4. As RΛ0 (2δ) is wild by Proposition 4.19, so
are RΛ0 (kδ), for k � 3. Suppose that � � 2. Then

〈h0,Λ0 − kδ〉, . . . , 〈h�,Λ0 − kδ − α0 − · · · − α�−1〉, . . . ,〈
h1,Λ0 − (k + 1)δ + α0 + α1

〉
,

〈
h0,Λ0 − (k + 1)δ + α0

〉
,

are all positive, and the same argument as � = 1 case proves the result. �
We recall that V (Λ0)μ �= 0 if and only if μ = κ − kδ, for some κ ∈ WΛ0 and k ∈ Z�0, and the pair

(κ,k) ∈ WΛ0 × Z�0 is uniquely determined by μ. The following theorem is the Erdmann–Nakano

type theorem for type A(2)
2� .
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Theorem 4.22. Let κ ∈ WΛ0 and k ∈ Z�0 . The finite quiver Hecke algebra RΛ0 (Λ0 −κ +kδ) of type A(2)
2� , for

� � 1, is

(1) simple if k = 0,
(2) of finite representation type but not semisimple if k = 1,
(3) of wild representation type if k � 2,
(4) and tame representation type does not occur.

Proof. As the representation type of RΛ0 (Λ0 −κ +kδ) is the same as that of RΛ0 (kδ) by Corollary 4.8,
the result follows from Theorem 4.13 and Proposition 4.21. �

Note that if k = 1 then the stable Auslander–Reiten quiver is ZA2�/〈τ �〉, where τ is the Auslander–
Reiten translate.

Acknowledgment

We are grateful to Mr. Mori for letting us know his work on generalized cellularity and some
comments on our paper.

Appendix A. Generalized cellular structure

A.1. Generalized cellular algebras

We first recall König and Xi’s notion of affine cellular algebra [33]. Let k be a field. We note that
they also require that B is commutative in the definition below.

Definition A.1. Let (A, σA) and (B, σB) be k-algebras with anti-involution. A two-sided ideal J ⊆ A is
called an affine cell ideal if σA( J ) = J and there exist an (A, B)-bimodule C and an (A, A)-bimodule
isomorphism

α : J � C ⊗B Cop,

where Cop is C equipped with right A-module structure given by xa = σA(a)x, for x ∈ C and a ∈ A,
such that

(a) C is free as a B-module.
(b) Let τA : C ⊗B Cop → C ⊗B Cop be the flip x ⊗ y �→ y ⊗ x. Then α ◦ σA = τA ◦ α.

Recently, Masaki Mori has modified the definition and introduced more transparent general setup.

Definition A.2. Let A and B be k-algebras. We call a pair of (A, B)-bimodule M and (B, A)-bimodule
N weak Morita pair if we have (A, A) and (B, B)-bimodule homomorphisms

ϕA : M ⊗B N → A and ϕB : N ⊗A M → B

such that the following diagrams commute:

M ⊗B N ⊗A M

id⊗ϕB

ϕA⊗id
A ⊗A M

�

M ⊗B B
∼

M

N ⊗A M ⊗B N

id⊗ϕA

ϕB⊗id
B ⊗B N

�

N ⊗A A
∼

N
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Suppose that (M, N) is a weak Morita pair. We denote J A = Im(ϕA) and J B = Im(ϕB). Mori has
proved the following lemma by showing that any element in M ⊗B V \ Ker(Φ) generates M ⊗B V : the
proof resembles the proof of [39, Proposition 2.11].

Lemma A.3. Let V be an irreducible B-module with J B V �= 0. We define an A-module homomorphism

Φ : M ⊗B V → HomB(N, V )

by Φ(m ⊗ v) :n �→ ϕB(n ⊗ m)v. Then, Ker(Φ) is the unique maximal proper A-submodule of M ⊗B V .

In particular, Im(Φ) � M ⊗B V /Ker(Φ) is an irreducible A-module, which we denote by D N
M V . By

the commutativity constraint for the Morita pair and J B V = V , we have J A D N
M V �= 0. Thus, we have

a map V �→ D N
M V from the set of isomorphism classes of irreducible B-modules V with J B V �= 0 to

the set of isomorphism classes of irreducible A-modules W with J A W �= 0. By interchanging the role
of M and N , W �→ D M

N W gives a map in the opposite direction.
Next lemma by Mori implies that D N

M V = Soc(HomB(N, V )). For the proof, he finds b ∈ B and
n ∈ N which satisfy Φ(m ⊗ v) = ϕA(mb ⊗ n) f for any m ⊗ v ∈ M ⊗B V .

Lemma A.4. Let V and Φ be as above. For any nonzero element f ∈ HomB(N, V ), we have Im(Φ) ⊆ A f .

A main corollary of the above two lemmas is the following result by Mori. Mori informed us
Müller’s work [40], but Mori’s argument is transparent and enough for our purposes.

Theorem A.5. Let (M, N) be a weak Morita pair. Then, V �→ D N
M V induces a bijective map between the set of

isomorphism classes of irreducible B-modules V with J B V �= 0 and that of isomorphism classes of irreducible
A-modules W with J A W �= 0.

Proof. It suffices to show that W � D N
M V if and only if V � D M

N W . Suppose that W � D N
M V . Then

0 �= HomA(M ⊗B V , W ) � HomB
(

V ,HomA(M, W )
)

implies that V appears in Soc(HomA(M, W )) � D M
N W . If V � D M

N W , then

0 �= HomB(N ⊗A W , V ) � HomA
(
W ,HomB(N, V )

)
implies that W appears in Soc(HomB(N, V )) � D N

M V . �
Following those ideas by König-Xi and Mori, we shall define as follows.

Definition A.6. Let (A, σA) be a k-algebra with anti-involution. We call (A, σA) generalized cellular if
there exists a sequence of σA -stable two-sided ideals

A = J0 ⊇ J1 ⊇ · · · ⊇ Jr = 0

and a collection of k-algebras with anti-involution (Bi, σBi ) and (A/ J i, Bi)-bimodules Ci , for 1 � i � r,
such that (Ci, Cop

i ) is a weak Morita pair with J i−1/ J i = Im(ϕA/ J i ), for 1 � i � r.

Let us take all Bi to be k and σk to be the identity map. Then, in each step, we have

ϕA/ J i : Ci ⊗k Cop
i → A/ J i, and Cop

i ⊗A Ci → k.
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We denote the second map by x ⊗ y �→ 〈x, y〉. As (Ci, Cop
i ) is a weak Morita pair, we have

ϕA/ J i (x ⊗ y)z = 〈y, z〉x, 〈z, y〉x = σA
(
ϕA/ J i (y ⊗ x)

)
z.

If we further assume that ϕA/ J i commutes with anti-involutions, namely, if we assume

ϕA/ J i (y ⊗ x) = σA
(
ϕA/ J i (x ⊗ y)

)
,

then

〈z, y〉x = σA
(
ϕA/ J i (y ⊗ x)

)
z = ϕA/ J i (x ⊗ y)z = 〈y, z〉x,

showing that the bilinear form is symmetric.3 If we put one more assumption that ϕA/ J i are
monomorphims, then we have

Ci ⊗R Cop
i � J i−1/ J i

and we reach the classical definition of cellular algebras. In fact, the commutativity constraint is
known to hold in cellular algebras [39, Proposition 2.9]. Hence, cellular algebras are generalized cellu-
lar algebras, and the reader can see that Theorem A.5 is vast generalization of Graham–Lehrer’s result
on classification of irreducible modules.

A.2. Structure of RΛ0 (β)

Any algebra has the trivial generalized cellular structure: we choose the cell bimodule C to be the
algebra itself. Hence, our aim in this subsection is to propose a reasonable set of cell modules for
RΛ0 (β), for β ∈ Q+ with |β| = n.

Set A = RΛ0 (β). Recall the dominance order on the set of shifted Young diagrams and the canoni-
cal tableaux T λ from (1.1.1). We define idempotents {eλ | λ � n} of A by

eλ = e
(
res

(
T λ

))
.

We fix a linear extension of the dominance order, e.g. the lexicographic order, and define
J<λ, Bλ, C(λ), for λ � n, as follows.

J<λ =
∑
μ<λ

Aeμ A, Bλ = eλ Aeλ/eλ J<λeλ, and C(λ) = Aeλ/ J<λeλ.

Then C(λ) is an (A/ J<λ, Bλ)-bimodule in the natural way.
Let σA be the anti-involution of A which is the identity on the set of the generators. Then, we

have C(λ)op = eλ A/eλ J<λ . We define

ϕA/ J<λ : C(λ) ⊗Bλ C(λ)op → A/ J<λ,

ϕBλ : C(λ)op ⊗A C(λ) → Bλ,

by the maps induced by the multiplication on A. Then, we have

3 If ϕA/ J i anti-commutes with anti-involutions, then the bilinear form is skew-symmetric.
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Im(ϕA/ J<λ) = Aeλ A + J<λ/ J<λ.

We sort the two-sided ideals J<λ as

A = J0 ⊇ J1 ⊇ · · · ⊇ Jr = 0.

We delete repetition whenever J i = J i+1 occurs.

Lemma A.7. The pair (C(λ), C(λ)op) is a weak Morita pair, and RΛ0 (β) is generalized cellular with respect to
the collection of those weak Morita pairs.

Proof. The commutativity constraints obviously hold, because they are given by the product map in
RΛ0 (β). �

The generalized cellular structure we propose in the above looks natural, but we know little about
the structure of cell modules. It might be an interesting question to determine the set of irreducible
Bλ-modules V with Im(ϕBλ )V �= 0.
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