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0. Introduction

We present a generalization and refinement of the classical ramification theory of com-
plete discrete valuation rings to valuation rings satisfying either (I) or (II) (as explained 
in 0.2), in the case of Artin–Schreier extensions. The classical theory considers the case 
of complete discrete valued field extension L|K where the residue field k of K is perfect. 
In his papers [5,6], Kato gives a natural definition of the Swan conductor for complete 
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discrete valuation rings with arbitrary (possibly imperfect) residue fields. He also de-
fines the refined Swan conductor rsw in this case using differential 1-forms and powers 
of the maximal ideal mL. The generalization we present is a further refinement of this 
definition. Moreover, we can deal with the extensions with defect, a case which was not 
treated previously [7,8].

0.1. Invariants of ramification theory

Let K be a valued field of characteristic p > 0 with henselian valuation ring A, 
valuation vK and residue field k. Let L = K(α) be the Artin–Schreier extension defined 
by αp−α = f for some f ∈ K×. Assume that L|K is non-trivial, that is, [L : K] = p. Let 
B be the integral closure of A in L. Since A is henselian, it follows that B is a valuation 
ring. Let vL be the valuation on L that extends vK and let l denote the residue field 
of L. Let Γ := vK(K×) denote the value group of K. The Galois group Gal(L|K) = G

is cyclic of order p, generated by σ : α �→ α + 1.
Let A = {f ∈ K× | the solutions of the equation αp − α = f generate L over K}. 

Consider the ideals Jσ and H, of B and A respectively, defined as below:

Jσ =
({

σ(b)
b

− 1 | b ∈ L×
})

⊂ B (0.1)

H =
({

1
f
| f ∈ A

})
⊂ A (0.2)

Our first result compares these two invariants via the norm map NL|K = N , by 
considering the ideal Nσ of A generated by the elements of N(Jσ). We also consider the 
ideal Iσ = ({σ(b) − b | b ∈ B}) of B. The ideals Iσ and Jσ play the roles of i(σ) and 
j(σ) (the Lefschetz numbers in the classical case, as explained in 2.1), respectively, in 
the generalization.

0.2. Main results

We did not make any assumptions regarding the rank or defect in these definitions. 
Now consider two special cases of the scenario described above:

(I) (Defectless) In this case, we assume that L|K is defectless. For Artin–Schreier ex-
tensions L|K considered in this paper, it means that either vL(L×)/vL(K×) has 
order p and the residue extension l|k is trivial or the residue extension l|k is of 
degree p and L has the same value group Γ as K.

(II) (Rank 1) The value group Γ of K is isomorphic to a subgroup of R as an ordered 
group.

We will prove the following results:
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Theorem 0.3. If L|K satisfies (I) or (II), we have the following equality of ideals of A:

H = Nσ (0.4)

Theorem 0.5. If L|K satisfies (I) or ( II), we consider the A-module ω1
A of logarithmic 

differential 1-forms and the B-module ω1
B|A of logarithmic differential 1-forms over A

(as defined in section 1.1). Then

(i) There exists a unique homomorphism of A-modules rsw : H/H2 → ω1
A/(Iσ ∩A)ω1

A

such that 1
f
�→ dlog f ; for all f ∈ A.

(ii) There is a B-module isomorphism ϕσ : ω1
B|A/Jσω

1
B|A

∼=→ Jσ/J 2
σ such that dlog x �→

σ(x)
x

− 1, for all x ∈ L×.
(iii) Furthermore, these maps induce the following commutative diagram:

ω1
B|A/Jσω

1
B|A Jσ/J 2

σ

ω1
A/(Iσ ∩A)ω1

A H/H2

ϕσ

∼=

ΔN N

rsw

The maps ΔN , N are induced by the norm map N , as described in section 6.

The map rsw in (i) is a refined generalization of the refined Swan conductor of Kato 
for complete discrete valuation rings [6].

Remark 0.6. It is worth noting that if p = 2, both the results are true without any 
assumptions regarding defect or rank, as seen in later sections.

Remark 0.7. If L|K is unramified (eL|K = 1, l|k separable of degree p), then we have 
i(σ) = j(σ) = 0, Iσ = Jσ = B and H = A. Consequently, our main results are trivially 
true. From now on, we assume that L|K is either wild (eL|K = p, l|k trivial ), ferocious 
(l|k purely inseparable of degree p) or with defect.

0.3. Outline of the contents

• Review, small results, examples: In sections 1, 2 we present some preliminaries and 
the discrete valuation ring case. Section 3 contains some elementary results that help 
us understand the cases I and II.

• Proofs of main results: We prove Theorem 0.3 in section 4. In section 5, we analyze 
the defect case. We use Theorem 0.3 to prove Theorem 5.1, which allows us to express 
the ring B as a filtered union of rings A[x]|A, where elements x ∈ L× are chosen 
very carefully. We prove Theorem 0.5 for both cases I and II in section 6.
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• The different ideal and further results: Section 7 presents the description of the 
different ideal DB|A when L|K satisfies (I) or (II). This ideal equals the annihilator 
of the relative Kähler differential module Ω1

L|K in the classical case [2]. However, this 
is not true in the case of arbitrary valuations.

• Appendix: In Appendix A, we present a non-trivial example of a defect extension. 
It shows us the difficulties that rise from the defect. We also verify the main results 
for this example.

1. Preliminaries: differential forms, defect, cyclic extensions, trace

1.1. Definitions: differential forms and different ideal DB|A

Definition 1.1. Differential 1-forms

(i) Let R be a commutative ring. The R-module Ω1
R of differential 1-forms over R is 

defined as follows: Ω1
R is generated by

• The set {db | b ∈ R} of generators.
• The relations being the usual rules of differentiation: For all b, c ∈ R,

(a) (Additivity) d(b + c) = db + dc,
(b) (Leibniz rule) d(bc) = cdb + bdc.

(ii) For a commutative ring A and a commutative A-algebra B, the B-module Ω1
B|A

of relative differential 1-forms over A is defined to be the cokernel of the map 
B ⊗A Ω1

A → Ω1
B .

Definition 1.2. Logarithmic differential 1-forms

(i) For a valuation ring A with the field of fractions K, we define the A-module ω1
A of 

logarithmic differential 1-forms as follows: ω1
A is generated by

• The set {db | b ∈ A} ∪ {dlog x | x ∈ K×} of generators.
• The relations being the usual rules of differentiation and an additional rule: For 

all b, c ∈ A and for all x, y ∈ K×,
(a) (Additivity) d(b + c) = db + dc,
(b) (Leibniz rule) d(bc) = cdb + bdc,
(c) (Log 1) dlog(xy) = dlog x + dlog y,
(d) (Log 2) b dlog b = db for all 0 	= b ∈ A.

(ii) Let L|K be an extension of henselian valued fields, B the integral closure of A in 
L and hence, a valuation ring. We define the B-module ω1

B|A of logarithmic relative 
differential 1-forms over A to be the cokernel of the map B ⊗A ω1

A → ω1
B.

Definition 1.3. The different ideal DB|A. Let A be a valuation ring with the field of 
fractions K. Let L|K be a separable extension of fields, B the integral closure of A
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in L. As in the classical case, we define the inverse different D−1
B|A by D−1

B|A := {x ∈
L | TrL|K(xB) ⊂ A}.

This is a fractional ideal of L. The different DB|A of B with respect to A is defined as 
the inverse ideal of D−1

B|A.

1.2. Valuation rings and differential 1-forms

Definition 1.4. Let A be a valuation ring with fraction field K and valuation v. For any 
x ∈ K×, we define an A-module homomorphism dx : Mx → ω1

A by h �→ hx dlog x where 
Mx :=

( 1
x

)
.

For x = 0, we define d0 to be the zero map: M0 → ω1
A by h �→ 0 where M0 := K.

Lemma 1.5. Let A, K, v be as above and x, y ∈ K. Then we have the following properties.

(i) (Additivity) The A-module homomorphisms dx, dy, d(x + y) : M → ω1
A satisfy

d(x + y) = dx + dy. Here, M = Mx ∩My ∩Mx+y.
(ii) (Leibniz rule) The A-module homomorphisms dx, dy, d(xy) : M → ω1

A satisfy 
d(xy) = ydx + xdy. Here, M = Mx ∩My ∩Mxy.

Proof.

(i) We may assume that v(x) ≤ v(y) and write y = ax; a ∈ A. Note that in ω1
A, da =

a dlog a and d1 = dlog 1 = 0. Hence, (a + 1) dlog(a + 1) = d(a + 1) = da = a dlog a.
For all h ∈ M ,

d(x + y)(h) = h(x + y) dlog(x + y)

= hx(a + 1) dlog[x(a + 1)]

= hx(a + 1)[dlog x + dlog(a + 1)]

= hx(a + 1) dlog x + hx(a + 1) dlog(a + 1)

= hx dlog x + hxa dlog x + hxa dlog a

= hx dlog x + hxa dlog xa

= dx(h) + dy(h)

(ii) For all h ∈ M ,

d(xy)(h) = hxy dlog(xy)

= hxy dlog x + hxy dlog y

= ydx(h) + xdy(h) �
Lemma 1.6. Let L|K be as in 0.1. Then we have
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(1) A surjective B-module homomorphism Φσ : Ω1
B|A/IσΩ1

B|A → Iσ/I2
σ such that 

Φσ(db) = σ(b) − b for all b ∈ B.
(2) A surjective B-module homomorphism ϕσ : ω1

B|A/Jσω
1
B|A → Jσ/J 2

σ such that 
ϕσ(dlog x) = σ(x)

x − 1 for all x ∈ L×.

Proof. Since σ fixes K, σ(a) − a = 0 for all a ∈ A and σ(x)
x − 1 = 0 for all x ∈ K×. Let 

b, c ∈ B. The first part follows from σ(b + c) − (b + c) = σ(b) − b + σ(c) − c and

σ(bc) − bc = (σ(b) − b)(σ(c) − c) + c(σ(b) − b) + b(σ(c) − c)

≡ c(σ(b) − b) + b(σ(c) − c) mod I2
σ.

Let x, y ∈ L×. The second assertion follows from

σ(xy)
xy

− 1 =
(
σ(x)
x

− 1
)(

σ(y)
y

− 1
)

+ σ(x)
x

− 1 + σ(y)
y

− 1

≡ σ(x)
x

− 1 + σ(y)
y

− 1 mod J 2
σ . �

1.3. Defect: introduction [1]

Definition 1.7. Let E|F be a finite algebraic extension of fields of degree [E : F ] = n and 
v a non-trivial valuation on F . Denote the extensions of v from F to E by v1, ...vg. Let 
Fv be the residue field and v(F×) the value group for the valued field (F, v). Similarly, 
define Evi and vi(E×). For each 1 ≤ i ≤ g, define:

• The ramification index ei = (vi(E×) : v(F×)).
• The inertia degree fi = [Evi : Fv].

Fact I: For each 1 ≤ i ≤ g, ei and fi are finite. Moreover, we have the fundamental 
inequality:

[E : F ] = n ≥
g∑

i=1
eifi (1.8)

If the equality holds, it is called the fundamental equality.
Fact II: When (F, v) is henselian, g = 1 and we deal with a single ramification index 
eE|F = e and a single inertia degree fE|F = f . Furthermore, in this case, n is divisible 
by the product ef and we can write

n = dE|F eE|F fE|F (1.9)

for some positive integer dE|F .
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Definition 1.10. The integer dE|F above is called the defect of the extension (E|F, v). It 
is known that dE|F is a power of q; where q = max{char(Fv), 1}.

1.4. Cyclic extensions of prime degree

Let E|F be a cyclic degree p Galois extension of henselian valued fields, where p =
charF > 0. Let OE and OF denote the valuation rings of E and F respectively. Let E
and F be the respective residue fields.

Lemma 1.11. If E|F is ramified and defectless, then we have two cases:

(a) Order of v(E×)/v(F×) is p and it is generated by vE(μ) for some μ ∈ E×.
(b) There is some μ ∈ E× such that the residue extension E|F is purely inseparable of 

degree p, generated by the residue class of μ.

Lemma 1.12. Let E|F, μ be as in Lemma 1.11 and xi ∈ F for all 0 ≤ i ≤ p − 1. Then
p−1∑
i=0

xiμ
i ∈ OE if and only if xiμ

i ∈ OE for all i.

Proof. If xiμ
i ∈ OE for all i, then clearly, 

p−1∑
i=0

xiμ
i ∈ OE . For the converse, we ob-

serve that if vE(xiμ
i) are all distinct for 0 ≤ i ≤ p − 1, then 0 ≤ vE

(
p−1∑
i=0

xiμ
i

)
=

min
0≤i≤p−1

vE(xiμ
i). Hence, the converse is true in this case. Now let us break down the 

rest into two cases (a) and (b) as described in the lemma above:

(a) We claim that in this case, vE(xiμ
i); 0 ≤ i ≤ p − 1, xi 	= 0 all have to be distinct.

Assume to the contrary. Let 0 ≤ i < j ≤ p − 1 be such that vE(xiμ
i) =

vE(xjμ
j); xi, xj are non-zero. Then vE(μj−i) = (j − i)vE(μ) = vE

(
xi

xj

)
∈ v(F×). 

This is impossible, since the order of vE(μ) in v(E×)/v(F×) is p and p � j − i.
(b) We observe that v(μ) = 0. The only case we need to consider is when min

0≤i≤p−1
v(xiμ

i)

= v < 0 and the minimum is achieved by more than one xiμ
i. Let 0 ≤ i1 < ... <

ir ≤ p − 1; r ≥ 2 integer such that v(xisμ
is) = v for all 1 ≤ s ≤ r. Clearly,

v(xis) = v for all 1 ≤ s ≤ r. In particular, xi1 	= 0. Since v

(
r∑

s=1
xisμ

is

)
> v, we see 

that v
(

r∑ xis

xi
μis

)
> 0.
s=1 1
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Equivalently, z =
r∑

s=1

xis

xi1

μis ∈ mE ; where mE is the maximal ideal of OE .

Since μi’s are F -linearly independent; 0 ≤ i ≤ p − 1, z ∈ mE ⇔ z = 0 ∈ E

⇔
(

xis

xi1

)
= 0 ∈ F for all s. However, this is impossible since v(xis) = v for all 

1 ≤ s ≤ r. �
Lemma 1.13. Let μ be as in Lemma 1.11. Then dlogμ generates the OE-module ω1

OE |OF
.

Proof. It is enough to consider the elements dlog(xμi); 0 ≤ i ≤ p − 1, x ∈ K×.
dlog(xμi) = dlog x + i dlogμ. The rest follows from the fact that dlog x = 0 in 
ω1
OE |OF

. �
1.5. Trace

Lemma 1.14. Let R be an integrally closed integral domain with the field of fractions F . 
Let E|F be a separable extension of fields of degree n. Suppose that β ∈ E is such that 
E = F (β). Let g(T ) = minF (β), the minimal polynomial of β over F . Then

(1) TrE|F

(
βm

g′(β)

)
is zero for all 1 ≤ m ≤ n − 2 and TrE|F

(
βn−1

g′(β)

)
= 1.

(2) Assume, in addition, that β is integral over R. Then {x ∈ E | TrE|F (xR[β]) ⊂ R} =
1

g′(β)R[β].

Details can be found in section 6.3 of [4].

2. Discrete valuation rings

2.1. Classical theory: complete discrete valuation rings with perfect residue fields

Let K be a complete discrete valued field of residue characteristic p > 0 with normal-
ized valuation vK , valuation ring A and perfect residue field k. Consider L|K, a finite 
Galois extension of K. Let eL|K be the ramification index of L|K and G = Gal(L|K). 
Let vL be the valuation on L that extends vK , B the integral closure of A in L and l the 
residue field of L. In this case, we have the following invariants of ramification theory:

• The Lefschetz number i(σ) and the logarithmic Lefschetz number j(σ) for σ ∈ G\{1}
are defined as

i(σ) = min{vL(σ(a) − a) | a ∈ B} (2.1)

j(σ) = min{vL(σ(a)
a

− 1) | a ∈ L×} (2.2)

Both the numbers are non-negative integers.
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• For a finite dimensional representation ρ of G over a field of characteristic zero, the 
Artin conductor Art(ρ) and the Swan conductor Sw(ρ) are defined as

Art(ρ) = 1
eL|K

∑
σ∈G\{1}

i(σ)(dim(ρ) − Tr(ρ(σ))) (2.3)

Sw(ρ) = 1
eL|K

∑
σ∈G\{1}

j(σ)(dim(ρ) − Tr(ρ(σ))) (2.4)

Both these conductors are integers. This is a consequence of the Hasse–Arf Theorem 
(see [3]).

The invariants j(σ) and Sw(ρ) are the parts of i(σ) and Art(ρ), respectively, which handle 
the wild ramification. We wish to generalize these to all valuation rings considered in this 
paper. Namely, the case where L is a non-trivial Artin–Schreier extension of K, a valued 
field with henselian valuation ring, defined by αp − α = f , where f ∈ K. Let us begin 
with the case of discrete valuation rings, possibly with imperfect residue fields.

2.2. Best f and Swan conductor

Let K be a complete discrete valued field of residue characteristic p > 0 with nor-
malized valuation vK , valuation ring A and residue field k. We do not assume that 
k is perfect. Let L = K(α) be the (non-trivial) Artin–Schreier extension defined by 
αp − α = f , where f ∈ K. Let vL, B and l denote the valuation, valuation ring and 
the residue field of L, respectively. We define the Swan conductor of this extension as 
described below.

Definition 2.5. Let P : K → K denote the additive homomorphism x �→ xp − x. Note 
that the extension L does not change when f is replaced by any element g ∈ K such that 
g ≡ f mod P(K). Because, if g = f + hp − h for some h ∈ K, then the corresponding 
Artin–Schreier extension is generated by α + h over K.

(1) If there is such g ∈ A, L is unramified over K and the Swan conductor is defined to 
be 0.

(2) If there is no such g ∈ A, the Swan conductor is defined to be min{−vK(g) | g ≡ f

mod P(K)}. An element f of K which attains this minimum will be referred to as 
“best f” throughout this paper. It is well-defined modulo P(K).

This definition coincides with the classical definition of the Swan conductor when k is 
perfect.

Existence of best f relies on the existence of min{−vK(g) | g ≡ f mod P(K)}. This is 
guaranteed in the case of discrete valuation rings, but not in the case of general valuation 
rings.
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Example 2.6. Let K = k((t)) where k is of characteristic p > 0. t is a prime element 
of K. Let n be a positive integer coprime to p. In this case, the Swan conductor of the 

extension given by αp − α = 1
tn

is n.
More generally, let m ≥ 0 be an integer and n as above. Then the Swan conductor of 

the extension given by αp−α = 1
tnpm is also n. This follows from 

1
tnpm ≡ 1

tn
mod P(K).

A concrete description of the Swan conductor is given by the following lemma:

Lemma 2.7. By replacing f with an element of {g ∈ K | g ≡ f mod P(K)}, we have 
best f which satisfies exactly one of the following properties:

(i) f ∈ A.
(ii) vK(f) = −n where n is a positive integer relatively prime to p.
(iii) f = at−n where n > 0, p|n, t is a prime element of K and a ∈ A× such that the 

residue class of a in k does not belong to kp = {xp | x ∈ k}.

In the case (i), the Swan conductor is 0. In the cases (ii) and (iii), the Swan conductor 
is n.

2.3. Refined Swan conductor rsw

Definition 2.8. Let K be a discrete valued field of residue characteristic p > 0 with 
normalized valuation vK , valuation ring A and residue field k (possibly imperfect). Let 
L = K(α) be the Artin–Schreier extension defined by αp − α = f where f is best. The 
refined Swan conductor (rsw) of this extension is defined to be the A-homomorphism 

df :
(

1
f

)
→ ω1

A given by h �→ (hf) dlog f . We note that for h ∈
(

1
f

)
, hf ∈ A and 

hence, (hf) dlog f is indeed an element of ω1
A.

The A-homomorphism rsw is well-defined up to certain relations, as discussed below.

Lemma 2.9. Let L|K be as above, given by best f , H =
(

1
f

)
. Then rsw is well-defined 

as the A-homomorphism : H → ω1
A/Iω

1
A; where I is the ideal {x ∈ K | vK(x) ≥(

p−1
p

)
vK

(
1
f

)
} of A.

Proof. Let g be best as well. Hence, there exists a ∈ K such that g = f + ap − a

and vK(f + ap − a) = vK(f). Since vK(a) ≥ vK(f), H ∩ Ma = H. By Lemma 1.5, 
dg − df = −da on H.

For h = b

f
∈ H; b ∈ A, da(h) = ha dlog a = b 

(
a

f

)
dlog a ∈

(
a

f

)
ω1
A. It is enough to 

show that vK
(
a

f

)
≥

(
p− 1
p

)
vK

(
1
f

)
. This is clear in the case a ∈ A.

If a ∈ K\A, then vK(ap−a) = pvK(a) ≥ vK(f) = vK(f +ap−a). Hence, proved. �
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Remark 2.10. We note that I = {x ∈ K | vK(x) ≥
(

p−1
p

)
vK

(
1
f

)
} = {x ∈ K | vL(x) ≥(

p−1
p

)
vL

(
1
f

)
}.

3. Small results

In this section, we present some small results that help us understand the two special 
cases I and II better. First we extend the notion of “best f” to the general case.

3.1. Best f

Definition 3.1. Let K be as in 0.1, P : K → K as before. We say that f ∈ K× is best if 
either f ∈ A× or if f satisfies −v(f) = inf{−v(g) | g ≡ f mod P(K)}.

Since we cannot guarantee the existence of best f in general, as seen in the example 
below, we will reinterpret the notion of the refined Swan conductor using the logarithmic 
differential 1-forms over A, as stated in Theorem 0.5.

Example 3.2. (Non-DVR)
Consider the extension L|K as described in Appendix A. The value group Γ is isomor-

phic to Z[ 1p ]. We have a sequence of elements fi ∈ A for all integers i ≥ 0, each better 
than the previous one, such that

(1) −v(fi) = n −
i∑

j=1

1
pj

(2) The ideal H of A is generated by { 1
fi

| i ≥ 0}.

Since inf
i≥0

−v(fi) = n − 1
p− 1 = c ∈ R\Γ, there is no best f .

Corollary 3.3. Let K be as in 0.1 and L|K satisfy (I), given by αp − α = f where f is 
best. Then

(i) B is described as follows:

(a) If eL|K = p, B =
p−1∑
i=0

Aiα
i where A0 := A and for all 1 ≤ i ≤ p − 1,

Ai := {x ∈ K | vL(x) ≥ −ivL(α)} = {x ∈ A | vL(x) > −ivL(α)}.
(b) If eL|K = 1, B = A[αγ] where γ ∈ A such that αγ ∈ B×.

(ii) dlogα generates the B-module ω1
B|A.

Proof.

(i) We apply Lemma 1.12
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(a) −v0 := vL(α) generates the group vL(L×)/vL(K×) of order p. In particular, for 
all 1 ≤ i ≤ p −1, iv0 /∈ vL(K×). For x ∈ K×, xαi ∈ B if and only if vL(x) ≥ iv0
if and only if vL(x) > iv0.

(b) Since e = 1, there exists γ ∈ A such that αγ ∈ B×. We just take μ = αγ.
(ii) This is a direct consequence of (i) and Lemma 1.13. �
3.2. Fractional ideals in a valued field

Let F be a valued field with valuation v, value group Γ, valuation ring O := OF and 
residue field F . A subset S of F is a fractional ideal of F if there exists 0 	= b ∈ O such 
that bS is an (integral) ideal of O.

We note that in such a case, S = {x ∈ F | v(x) ≥ v(s) for some s ∈ S} = ∪s∈S sO.

Definition 3.4. Consider the case (II), we can regard Γ as an ordered subgroup of R. Let 
S be a fractional ideal of F and inf

s∈S
v(s) = t ∈ R. We define F -valuation of S as follows:

(i) If t ∈ Γ ⊂ R, v(S) := t.
(ii) If t ∈ R\Γ, v(S) := t+.

We can define the F -valuation of S by (i) when S is generated by a single element 
s ∈ F , even if Γ is not isomorphic to an ordered subgroup of R. In that case, v(S) := v(s)
and S = s′O for any s′ ∈ F such that v(s′) = v(s).

3.3. Defect and Jσ

Lemma 3.5. The fractional ideals Jσ and H are integral ideals of L and K respectively, 
that is,

(i) Jσ =
(
{σ(b)

b − 1 | b ∈ L×}
)

⊂ B.

(ii) H =
(
{ 1
f | f ∈ A}

)
⊂ A.

Proof.

(i) For b ∈ L×, vL(σ(b) − b) ≥ min{vL(σ(b)), vL(b)} = vL(σ(b)) = vL(b). Hence, σ(b)
b −

1 ∈ B.
(ii) We need to show that for each f ∈ A, 

1
f

∈ A. Assume to the contrary that there 

is some f ∈ mK ∩ A. Since K is henselian, roots of αp − α = f are already in K, 
contradicting our assumption that L|K is non-trivial. �

In Lemma 3.6, we define the A-linear maps Di which will be used in the proof of 
Proposition 3.10.
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Lemma 3.6. Let L|K be as in 0.1 and b ∈ B such that σ(b) − b generates Iσ. Define 
A-linear maps Di : L → L inductively for 0 ≤ i ≤ p − 1 by

D0 := idL : L → L, Di(x) := (σ − 1)(Di−1(x))
(σ − 1)(Di−1(bi))

; 1 ≤ i ≤ p− 1 (3.7)

These maps have the following properties:

(1) Di(bi) = 1; 0 ≤ i ≤ p − 1.
(2) Di(bj) = 0; 0 ≤ j ≤ i − 1, 1 ≤ i ≤ p − 1.
(3) For x ∈ B, Di(xb) = σi(b)Di(x) + Di−1(x); 0 ≤ i ≤ p − 1. (If i = 0, we set 

Di−1(x) = 0.)

(4) Di(bi+1) =
i∑

j=0
σj(b); 0 ≤ i ≤ p − 1.

(5) For each 0 ≤ i ≤ p − 2, (σ − 1)(Di(bi+1)) = σi+1(b) − b and hence, is a generator 
of Iσ.
In particular, it is non-zero.

Proof. First we note that (σ − 1)(D0(b1)) = (σ − 1)(b) 	= 0 and hence, the definition of 
D1 is valid. As we prove (1)–(5) by induction on i, validity of the definition of Di for 
1 ≤ i ≤ p − 1 will become clear.

(1) follows directly from the definition. (2) is clearly true for i = 1, since D1(1) = 0.
If 0 ≤ j ≤ i −1 ≤ p −2, (σ−1)(Di−1(bj)) = (σ−1)(1) or (σ−1)(0) and hence, Di(bj) = 0.
The i = 0 case of (3)–(5) follows directly from the definition.
For i = 1, (3)–(5) follow from

D1(xb) = (σ − 1)(D0(xb))
(σ − 1)(D0(b))

= (σ − 1)(xb)
(σ − 1)(b)

= (σ − 1)(x)σ(b) + x(σ − 1)(b)
(σ − 1)(b)

= σ(b)D1(x) + x = σ(b)D1(x) + D0(x)

Let 2 ≤ i ≤ p − 1 and assume that (3)–(5) are true for 0, ..., i − 2, i − 1. Then we have:

Di(xb) = (σ − 1)(Di−1(xb))
(σ − 1)(Di−1(bi))

= (σ − 1)(σi−1(b)Di−1(x) + Di−2(x))
σi(b) − b

by (3).

= (σ − 1)(Di−1(x)).σi(b) + (σ − 1)(σi−1(b)).Di−1(x) + (σ − 1)(Di−2(x))
σi(b) − b

= σi(b)Di(x) + (σ − 1)(σi−1(b)).Di−1(x) + (σ − 1)(Di−2(x))
σi(b) − b

by (3.7) and (5).
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= σi(b)Di(x) + (σ − 1)(σi−1(b)).Di−1(x) + (σ − 1)(Di−2(bi−1)).Di−1(x)
σi(b) − b

by (3.7) for i− 1.

= σi(b)Di(x) + Di−1(x) (σ − 1)(σi−1(b)) + σi−1(b) − b

σi(b) − b
by (5) for i− 2.

= σi(b)Di(x) + Di−1(x)

This proves (3) for i. (4) follows from (3). For any fixed 0 ≤ i ≤ p − 2, (σ− 1)(Di(bi+1))
has the same valuation as (σ − 1)(b) and hence generates Iσ. �
Corollary 3.8. For all 0 ≤ i ≤ p − 1, Di(B) is a subset of B.

Proof. This is clearly true for i = 0. We proceed by induction. Fix some 1 ≤ i ≤ p − 1
and assume that the statement is true for i − 1. Hence, for all x ∈ B, Di−1(x) ∈ B ⇒
(σ − 1)(Di−1(x)) ∈ Iσ. By Lemma 3.6(5), Di(x) = (σ − 1)(Di−1(x))

(σ − 1)(Di−1(bi))
∈ B. �

Lemma 3.9. If L|K is as in 0.1 and has defect, then

(i)
(
σ(b) − b | b ∈ B×) = Iσ = Jσ =

(
σ(b)
b

− 1 | b ∈ B×
)

.

(ii) Ω1
B|A = ω1

B|A.

Proof. Given any b ∈ L, there are elements a ∈ K, b′ ∈ B× such that b = ab′.

(i) For b ∈ B, a ∈ A and σ(b) − b = a(σ(b′) − b′).
For b ∈ L×, a ∈ K× and σ(b)

b − 1 = aσ(b′)
ab′ − 1 = σ(b′)

b′ − 1.
Furthermore, b′ ∈ B× ⇒ σ(b′)

b′ − 1 = 1
b′ (σ(b′) − b′) ∈ Iσ.

(ii) Let b ∈ L×. dlog b = dlog a + dlog b′ = dlog b′ since dlog a = 0 in ω1
B|A.

b′ ∈ B× ⇒ dlog b′ = 1
b′ db

′ ∈ Ω1
B|A. �

Proposition 3.10. Let L|K be as in 0.1. Jσ is principal if and only if L|K is defect-
less.

Proof. If the extension is defectless, by Lemma 1.11, Lemma 1.13 and Lemma 1.6(a) 
Jσ is principal. Now suppose that the extension is with defect and that Jσ is principal. 
Hence, by Lemma 3.9 Jσ = Iσ. Let b ∈ B such that σ(b) − b generates Iσ.
We claim that B = A[b].

Consider xi ∈ K; 0 ≤ i ≤ p − 1 such that y =
p−1∑
i=0

xib
i ∈ B. We must show that xi ∈ A; 

for all i.
Define yi :=

∑p−i
j=0 xjb

j ; 1 ≤ i ≤ p. We show that yi ∈ B and consequently, Dp−i(yi) =
xp−i ∈ B by Corollary 3.8. Clearly, y1 = y ∈ B. Assume that yi ∈ B for some 1 ≤ i ≤ p. 
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Since xp−i, b ∈ B, yi+1 = yi − xp−ib
p−i ∈ B. Thus, xi ∈ B ∩K = A; for all i and hence, 

B = A[b].
Since the extension is with defect, f = 1 and b = a + b′ for some a ∈ A and for some 

b′ ∈ mL. Therefore, we may assume b ∈ mL. Also, due to the defect, e = 1 and b = ab′

for some a ∈ mK and for some unit b′ of B. σ(b) −b = a(σ(b′) −b′). σ(b′) −b′ = c(σ(b) −b)
for some c ∈ B. Hence, ac = 1. This is impossible since a ∈ mK . Thus, the extension 
must be defectless if Jσ is principal. �
4. Proof of Theorem 0.3

We prove that H = Nσ.
Let f ∈ A. Then (−1)pN(α) = −f . Equivalently, 1

f = N( 1
α ) = N(σ(α)

α − 1). From 
this, it follows that H is a subset of Nσ, without any assumptions regarding defect or 
the value group ΓK . Next, we prove the reverse inclusion Nσ ⊂ H. If L|K is defectless, 
this follows directly from results in section 3 (see Proposition 3.10 and Corollary 3.3(i)). 
Because, H is generated by 1

f , where f is best. Since Jσ =
( 1
α

)
, Nσ =

(
N( 1

α )
)

= H. 
Proof in the defect case, however, requires some work.

Let L|K satisfy (II) and have defect. The value group Γ = ΓK can be regarded as an 
ordered subgroup of R. Let v denote the valuation on L and also on K. We analyze a 
special case first.

4.1. Case p = 2

For any x ∈ L, σ(σ(x) − x) = x − σ(x) = σ(x) − x, since the characteristic is 2. 
Hence, σ(x) − x = σ(x) + x = TrL|K(x) ∈ K; for all x ∈ L. For any fixed x ∈ L, let 
y = σ(x) −x. σ(xy ) − x

y = 1 if y is non-zero, that is, if x does not belong to K. Let z = x
y . 

z + σ(z) = 2z + 1 = 1 and N(z) = z(z + 1) = z2 + z = z2 − z = f ∈ K. Thus, xy is a 
solution of an Artin–Schreier extension α2−α = f ; f ∈ K. All Artin–Schreier extensions 
over K having solution in L are obtained in this way.

Any generator of Jσ has the form σ(x)−x
x . Letting 1

f = N(σ(x)−x
x ) we get the corre-

sponding Artin–Schreier extension.

Remark 4.1. We don’t need Γ to be an ordered subgroup of R for this case, the argument 
is true for any value group.

4.2. Case p > 2

We wish to show Nσ ⊂ H, equivalently, for each β ∈ L×\K× the ideal of A generated 
by N(σ(β)

β − 1) is a subset of H.
Let us begin with some elementary observations:

(O1) We may assume β ∈ B\A: σ(1/β)
1/β − 1 = (σ(β)

β − 1)(− β
σ(β) ). Since (− β

σ(β) ) ∈ B×, 
norms of elements σ(1/β) − 1 and σ(β) − 1 generate the same ideal of A.
1/β β
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(O2) Trace and (σ − 1):
We have the formal expression (σ − 1)p−1 = (σ−1)p

σ−1 = σp−1
σ−1 = σp−1 + σp−2 + ... +

σ + 1.
Thus, for any x ∈ L, (σ − 1)p−1(x) = TrL|K(x).

(O3) Reduction: If we can find an element xβ = x ∈ L\K satisfying an Artin–Schreier 
equation over K and such that v( (σ−1)(x)

x ) ≤ v(σ(β)
β − 1), then we have:

0 ≤ v(N( (σ−1)(x)
x )) = t1 ≤ v(N(σ(β)

β − 1)) = t2

After this, it is sufficient to show that the ideal of A generated by N(σ(x)
x − 1) is 

a subset of H.
(O4) σ − 1 and changes in valuation: Let b ∈ L×.

• σ(b)−b
b ∈ B ⇒ v(σ(b) − b) = v(b) + sb for some sb ≥ 0.

• For 1 ≤ i ≤ p − 1,
v(σi(b) − b) = v(

∑
1≤j≤i σ

j(b) − σj−1(b)) ≥ min1≤j≤i{v(σj(b) − σj−1(b))} =
v(σ(b) − b)

• By the same argument, applied to τ = σi, (σ = τm for some 1 ≤ m ≤ p − 1) we 
have
v(σ(b) − b) ≥ v(σi(b) − b) and thus, the following equality:
For all 1 ≤ i ≤ p − 1,
v(σi(b) − b) = v(b) + sb.

Proof of Theorem 0.3. For given β as above, we will now construct the special element 
xβ [see (O3)] and prove that the ideal of A generated by N(σ(β)

β − 1) is indeed a subset 
of H. Let g(T ) = minK(β) and xβ = x := (σ − 1)p−2(β

p−1

g′(β) ).
Put y = σ(x) − x = (σ − 1)(x). By (O2) and Lemma 1.14, y = TrL|K(β

p−1

g′(β) ) = 1. As 
in the case p = 2, y 	= 0 and we have σ(xy ) − x

y = (σ − 1)(x) = 1.

Observe that x = (σ − 1)p−2
(

βp−1

g′(β)

)
∈ L\K satisfies σ(x) = x + 1 and hence, the 

Artin–Schreier equation αp − α = N(x). Thus, we have

1
N(x) = N

(
1/(σ − 1)p−2(β

p−1

g′(β) )
)

∈ H. (4.2)

Now we need to relate the principal ideals generated by N( (σ−1)(x)
x ) and N(σ(β)

β − 1). 
For this, we look at the L-valuation of these elements. Let v( (σ−1)(x)

x ) = s′ ≥ 0 and 

v( (σ−1)(β)
β ) = s ≥ 0.

If s′ ≤ s, then N(σ(β)
β − 1) ∈ H and hence, 

(
N(σ(β)

β − 1)
)

= N(σ(β)
β − 1)A ⊂ H.

Now suppose that s′ > s. Put r = βp−1

g′(β) . Then g′(β) =
∏

1≤i≤p−1(β − σi(β)). Hence, 
by (O4),

v(r) = −(p− 1)s (4.3)
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For 1 ≤ i ≤ p −1, let v((σ−1)i(r)) = v((σ−1)i−1(r)) +ci; ci ≥ 0. cp−1 = s′ by definition. 
Since v((σ − 1)p−1(r)) = v(1) = 0, from (4.3), we see that

p−1∑
i=1

ci = −v(r) = (p− 1)s (4.4)

Let c := inf{v(σ(b)
b − 1) | b ∈ L×} = inf{sb | b ∈ L×} ∈ R, where sb is as described 

in (O4).
We observe (p − 1)s =

∑p−2
i=1 ci + s′ ≥ (p − 2)c + s′ > (p − 2)c + s ≥ (p − 1)c ≥ 0.

In particular, (p − 2)(s − c) ≥ s′ − s > 0. By the definition of c, we can take s very close 
to c such that s′ ≤ s for this new s.

This concludes the proof. �
Corollary 4.5. Under the assumptions of Theorem 0.3, the following statements are equiv-
alent:

(1) Best f exists.
(2) H is a principal ideal of A.
(3) Jσ is a principal ideal of B.
(4) L|K is defectless.

5. Filtered union in the defect case

To generalize the results to the defect case, we write the ring B as a filtered union 
of rings A[x], where the elements x are chosen very carefully. Although these are not 
valuation rings, each ring is generated by a single element (over A). This makes the 
extensions K(x)|K and the corresponding differential modules, special ideals easier to 
understand. We will use Theorem 0.3 to prove these results.

Theorem 5.1. Consider S = {α ∈ L | αp − α = f ; f ∈ K, and α generates L|K}. For 
each α ∈ S , we can find α′ ∈ B× ∩ αK× such that B = ∪α∈SA[α′] is a filtered union, 
that is, the following are true:

(i) For any α1, α2 ∈ S , either A[α′
1] ⊂ A[α′

2] or A[α′
2] ⊂ A[α′

1].
(ii) Given any β ∈ B, there exists α ∈ S such that β ∈ A[α′].

5.1. p = 2

First we consider the filtered union in the p = 2 case, as given by the result below.

Proposition 5.2. For p = 2, B = ∪α∈L\KA[Tr(α) ] is a filtered union.
α
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Proof. We are dealing with the defect case, so vL = vK = v. Let α1, α2 ∈ L\K. Tr(αi)
αi

=
βi ∈ B. σ( αi

Tr(αi) ) =
σ(αi)
Tr(αi) = αi

Tr(αi) + 1 since p = 2. We have ( αi

Tr(αi) )
2 − αi

Tr(αi) = 1
ci

;
ci ∈ A.
σ( α1

Tr(α1) −
α2

Tr(α2) ) =
α1

Tr(α1) + 1 − α2
Tr(α2) − 1 = α1

Tr(α1) −
α2

Tr(α2)
Therefore, α1

Tr(α1) − α2
Tr(α2) = 1

β1
− 1

β2
= g ∈ K and 1

c1
= 1

c2
+ g2 − g. We note that 

( 1
βi

)2 − 1
βi

= 1
ci

, that is, βi = ci
βi

− ci. We will prove the following two statements:

1. If v(c1) > v(c2), then A[β1] is a subset of A[β2].
2. If v(c1) = v(c2), then A[β1] = A[β2].

In (1), it is enough to show that β1 ∈ A[β2]. Since c2β2
= β2 +c2, it is an element of A[β2]. 

Consequently, c1β2
= c2

β2
c1
c2

∈ A[β2].
Claim. β1 ∈ A[β2] ⇔

c1
β1

∈ A[β2] ⇔
c1
β2

∈ A[β2].

Proof of Claim. This can be shown by following steps:

• β1 = c1
β1

− c1, c1 ∈ A.
• c1

β1
= c1( 1

β2
+ g) = c1

β2
+ c1g.

Now −v(c1) = v( 1
c1

) = v( 1
c2

+ g2 − g) < −v(c2) = v( 1
c2

) ≤ 0
⇒ −v(c1) = v( 1

c2
+ g2 − g) = v(g2 − g) = 2v(g) (the last equality follows from 

0 > −v(c1))
⇒ v(c1g) = −2v(g) + v(g) = −v(g) > 0
⇒ c1g ∈ A (since c1g is already in K).

The proof of (2) is very similar to the proof of (1). We just need to show that v(c1g)
≥ 0. If v(g) ≥ 0, this is clearly true. Let v(g) < 0, v(c1) = v(c2) = v ≥ 0. Since v( 1

c2
+

g2 − g) = v( 1
c2

), 2v(g) = v(g2 − g) ≥ v( 1
c2

) = −v. Hence, v(c1g) ≥ v − v
2 = v

2 ≥ 0. �
Remark 5.3. This particular construction in the case p = 2 doesn’t appear to have an 
easy generalization to the case p > 2. We use a different approach.

5.2. Some elementary results for p > 2

Due to the defect, given any α ∈ S there exists γα = γ ∈ A such that v(γ) =
−v(α) = − 1

pv(f). Define α′ = αγ ∈ B×. We claim that this choice of α′ satisfies the 
conditions of Theorem 5.1. We note that the ring A[α′] does not depend on the choice 
of γ.

Lemma 5.4. If α1, α2 ∈ S such that v(α1) ≤ v(α2), then A[α′
1] ⊂ A[α′

2].
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Proof. We have (by choosing appropriate conjugates ) σ(α2−α1) = (α2+1) −(α1+1) =
α2 − α1. Hence, α2 − α1 =: h ∈ K.

v(α1) ≤ v(α2) ⇒ v(γ1) ≥ v(γ2) and v(h) ≥ v(α1) = −v(γ1). Therefore, γ1
γ2
, γ1h ∈ A.

Consequently, α′
1 = γ1(α2 − h) = γ1

γ2
α′

2 − γ1h ∈ A[α′
2]. �

Lemma 5.5. Given any β ∈ B, there exists α ∈ S such that (σ(β) − β) ⊂ (σ(α′) − α′).

Proof. Let v := v(σ(β) − β), v0 := inf
b∈B×

v(σ(b) − b) ∈ R. Hence, Iσ = Jσ = {x ∈
L× | v(x) > v0} and Nσ = {x ∈ K× | v(x) > pv0}. Since this is the defect case, by 
Proposition 3.10, Iσ is not a principal ideal. We need to show that v > c, where c ∈ R

is defined by
c := inf

α∈S
v(σ(α′) − α′) = inf

α∈S
v(γα) = inf

α∈S
−v(α) = inf

f∈A
−1
p
v(f).

Note that H = {x ∈ K× | v(x) > pc}. By Theorem 0.3, H = Nσ and hence, c = v0. To 
conclude the proof, we observe that σ(β) − β ∈ Iσ ⇒ v > v0 = c. �
Lemma 5.6. For x, y ∈ L, we have (σ−1)n(xy) =

∑n
k=0

(
n
k

)
(σ−1)n−k(x)(σ−1)k(σn−k(y))

In particular, for n = 1, (σ − 1)(xy) = (σ − 1)(x)σ(y) + x(σ − 1)(y).

Proof. This can be proved by using induction on n and the binomial identity 
(
n
k

)
+(

n
k−1

)
=

(
n+1
k

)
. �

5.3. Filtered union for p > 2

Proposition 5.7. Given any β ∈ B×, there exists α ∈ S such that (σ−1)p−1( 1
F ′(α′)A[α′,

β]) ⊂ B. Here, F denotes the minimal polynomial of α′ over K.

Proof. We compute valuation of these elements and show that it is non-negative.
For all α ∈ S , 1 ≤ k ≤ p − 1, σk(α′) − α′ = (σk(α) − α)γ = kγ. Therefore, F ′(α′) =

−γp−1. In particular, it is an element of K and hence, fixed by σ.
We wish to select α such that for all i, j ≥ 0,

v((σ − 1)p−1(α′ iβj)) ≥ v(F ′(α′)) = (p− 1)v(γ) (5.8)

(Step 1) Construction of the special α′

We begin with an α0 satisfying (σ(β) − β) ⊂ (σ(α′
0) − α′

0). Let (σ − 1)(β) =
b1γ0; b1 ∈ B. Therefore, (σ − 1)2(β) = (σ − 1)(b1)γ0. We don’t know much 
about the valuation of (σ−1)(b1), however. Let α1 be such that ((σ − 1)(b1)) ⊂
((σ − 1)(α′

1)). Write (σ−1)(b1) = b2γ1; b2 ∈ B. Now we can write (σ−1)2(β) =
b2γ1γ0. Using this process, we can find bi’s and αi’s such that (σ − 1)i(β) =
biγi−1...γ1γ0; where bi ∈ B.
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Let γ be the γj with smallest valuation involved in the expression for i = p −1. 
Let α denote the corresponding αj . We will show that this α satisfies the 
required property (5.8).

(Step 2) Proof for β
(σ(β) − β) ⊂ (σ(α′

0) − α′
0) ⊂ (σ(α′) − α′) = (γ), since v(γ) ≤ v(γ0). Due to 

the choice of γ, we also have v((σ − 1)t(β)) ≥ tv(γ) for all 1 ≤ t ≤ p − 1. In 
particular, this is true for t = p − 1, proving the statement (5.8) for the case 
i = 0, j = 1.

(Step 3) Terms α′ iβj

For the terms of the form βj , we use induction on j and Lemma 5.6. Valuation 
of each term in the expansion is at least (p − 1)v(γ). In fact, by a similar 
argument, v((σ − 1)k(βj)) ≥ kv(γ) for all 1 ≤ k ≤ p − 1.
For the general terms α′ iβj , first note that (σ − 1)k(α′) = (σ − 1)k−1(γ) = 0
for all k > 1. Therefore, (again using the identity) we have
(σ − 1)p−1(α′ iβj) = α′ i(σ − 1)p−1(βj) + (p − 1)(σ − 1)(α′ i)(σ − 1)p−2(σ(βj)). 
Once again, both these terms have valuation ≥ (p − 1)v(γ).

This concludes the proof of the proposition. �

5.4. Proof of Theorem 5.1

Let β and corresponding special α′ be as described above in (Step 1). We recall that 
for an A-module R ⊂ L, R∗ := {x ∈ L | TrL|K(xR) ⊂ A}.

(1) A[α′, β]∗ = A[α′]∗

Proof. Clearly, A[α′, β]∗ ⊂ A[α′]∗ = 1
F ′(α′)A[α′]. We proved that (σ − 1)p−1( 1

F ′(α′)A[α′,

β]) ⊂ B. Since (σ − 1)p−1 = TrL|K has image in K, TrL|K( 1
F ′(α′)A[α′, β]) ⊂ B ∩K = A

and we have the reverse inclusion. �
(2) R := A[α′, β], S := A[α′] are finitely generated free A-modules.

Proof. Since β, α′ are integral over A, R and S are finitely generated A-modules. A is 
a valuation ring and R, S are finitely generated torsion-free A-modules. Therefore, R, S
are free A-modules (of finite ranks). �
(3) A[α′, β] = A[α′]

Proof. R is a free A-module of finite rank. Hence, R∗∗ = (R∗)∗ = R. Similarly, S∗∗ = S. 
By (1), R∗ = S∗ and hence, R = S. �
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These statements, in combination with Proposition 5.7 prove part (ii) of Theorem 5.1. 
Part (i) was already proved in Lemma 5.4. This concludes the proof.

6. Proof of Theorem 0.5

Lemma 6.1. NL|K = N : B → A/(Iσ ∩A) is a surjective ring homomorphism.

Proof. We just need to check the additive property of N : B → A/(Iσ ∩ A) in order to 
prove that it is a ring homomorphism. For x ∈ B, N(x) = x 

∏p−1
i=1 σi(x).

For each 1 ≤ i ≤ p − 1, σi(x) ≡ x mod Iσ.
Thus, N : B → B/Iσ is just the p-power map, that is, x �→ xp mod Iσ and hence, 

additive. This makes N : B → A/(Iσ ∩A) additive as well. �
Remark 6.2. We don’t need any assumptions regarding defect or rank here.

6.1. Case I: relation between the ideals H, I, Iσ, Jσ

Notation 6.3. Case I is the defectless case, so best f exists and we can define the ideal I
of A by

I :=
(
{a
f
∈ K | vK(f + ap − a) = vK(f)}

)
. It is worth noting that this definition 

coincides with the one in Lemma 2.9. Let vL(α) = −v0 ≤ 0. Hence, vL(f) = −pv0, H =
{x ∈ K | vL(x) ≥ pv0}, I = {x ∈ K | vL(x) ≥ (p − 1)v0} and Jσ = {x ∈ L | vL(x) ≥ v0}.

Proposition 6.4. H ⊂ I ⊂ Iσ ∩A.

Proof. Comparing valuations mentioned above, it is clear that H ⊂ I.
We break down the rest of the argument into several cases:

• If eL|K = 1, Iσ = Jσ = {x ∈ L | vL(x) ≥ v0} and the result follows.
• Let eL|K = p.

(i) p > 2
1
α ∈ B ⇒ σ

( 1
α

)
− 1

α = −1
α(α+1) ∈ Iσ.

Hence, {x ∈ L | vL(x) ≥ 2v0} ⊂ Iσ. Since p > 2, p −1 ≥ 2 and hence, I ⊂ Iσ∩A. 
We cannot use this argument for p = 2, since in that case, p − 1 = 1 < 2.

(ii) p = 2
Let af ∈ K such that vK(f + a2 − a) = vK(f). Consider b = aα

f . Then
vL(b) = vL(α) + vL( a

f ) ≥ −v0 + v0 = 0 ⇒ b ∈ B ⇒ σ(b) − b ∈ Iσ.
σ(b) − b = σ(b) + b = Tr(b) = a

f

Tr(α) = a
f since

Tr(α) = 1.
Hence, af ∈ Iσ ∩K = Iσ ∩A. This concludes the proof. �
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6.2. Case I

Let f be best, b ∈ B. We prove that the following diagram commutes:

ω1
B|A/Jσω

1
B|A Jσ/J 2

σ

ω1
A/(Iσ ∩A)ω1

A H/H2

ϕσ

∼=

ΔN N

rsw

where the maps are given by
b dlogα b 1

α

N(b) dlog f N(b) 1
f

ϕσ

ΔN N

rsw

.

Proof. Consider the map ϕσ : ω1
B|A/Jσω

1
B|A → Jσ/J 2

σ . By Lemma 1.6, we know that 
ϕσ is a surjective B-module homomorphism. We prove that it is injective.

Since ω1
B|A is generated by dlogα, it is enough to consider elements of the form 

b dlogα; where b ∈ B. b dlogα ∈ Ker(ϕσ) ⇔ b(σ(α)
α − 1) = b 1

α ∈ J 2
σ ⇔ b ∈ Jσ ⇔

b dlogα ∈ Jσω
1
B|A. Therefore, ϕ is a B-module isomorphism.

Next, we note that H is generated by 1
f and N(α) = f . By Lemma 6.1, we have 

additivity of the two vertical maps. Since H ⊂ I ⊂ Iσ ∩ A, the map rsw is independent 
of the choice of best f . �
6.3. Preparation for Case II

6.3.1. Valuation on A and B
Fix some α0 ∈ S as our starting point. We may only consider α ∈ S such that 

v(α0) < v(α). Consider the subset S0 of S consisting of such α’s. Let v(α0) =
−μ < 0, γ0 ∈ A such that v(γ0) = μ. For each α ∈ S0, we have corresponding γα ∈ A

with v(γα) = −v(α) < v(γ0) = μ and α′ = αγα ∈ B×. Let Fα denote the minimal poly-
nomial of α′ over K. We recall that F ′

α(α′) = −γp−1
α and hence, we have the isomorphism 

Ω1
A[α′]|A

∼= A[α′]/(γp−1
α ) described in 6.3.3.

Let fα := αp − α = N(α) ∈ K.

6.3.2. Special ideals
Due to the defect, we have Iσ = Jσ by Lemma 3.9.

Let v0 := inf{v(σ(b)
b − 1) | b ∈ B×} ∈ R. Then

(a) Iσ = Jσ = {b ∈ B | v(b) > v0}, and consequently, by Theorem 0.3,
(b) Nσ = {a ∈ A | v(a) > pv0} = H.

We have inf{v(σ(b)
b − 1) | b ∈ B×} = inf{v(σ(b) − b) | b ∈ B×} = inf{v(σ(α′) − α′) |

α ∈ S0} ∈ R. The last equality follows from Lemma 5.5. Therefore,

v0 = inf{v(γα) | α ∈ S0} ∈ R (6.5)
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6.3.3. Differential modules Ω1
A[α′]|A’s

We compare Ω1
A[α′

0]|A and Ω1
A[α′]|A. Let cα := γp−1

α , c0 := γp−1
0 and the ratio γ0/γα =:

aα ∈ A. Then we have the following commutative diagram:

Ω1
A[α′

0]|A A[α′
0]/(c0) ( 1

a0
)A[α′

0]/( c0
a0

)A[α′
0]

Ω1
A[α′]|A A[α′]/(cα) ( 1

aα
)A[α′]/( cα

aα
)A[α′]

∼=

ρα

∼=

ια jα

∼= ∼=

Here, a0 = γ0/γ0 = 1 ∈ A and the isomorphisms are given by b0dα′
0 �→ b0 �→ b0

a0
; for all 

b0 ∈ A[α′
0] and bdα′ �→ b �→ b

aα
; for all b ∈ A[α′]. The vertical maps are described as 

follows. We look at the relationship between the generators α′
0, α

′ and similarly, between 
dα′

0, dα′. Since α and α0 give rise to the same extension L|K, α0 − α =: h ∈ K. 
Comparing the valuations, we see that v(α0) = v(h) < v(α) and hence, u = hγ0 ∈ A×.

α′
0 = (α + h)γ0 = (α + h)γα · aα = aαα

′ + u (6.6)

Since α′ ∈ B and aα, u ∈ A, α′daα = 0 = du in the differential module Ω1
A[α′]|A. 

Therefore, we have

dα′
0 = aαdα

′ + α′daα + du = aαdα
′ (6.7)

Thus, ρα, ια are given by multiplication by aα. The map jα is also multiplication by aα
and rises from the inclusions

( 1
a0

)A[α′
0] ⊂ ( 1

aα
)A[α′]; 1

a0
�→ 1

a0
aα = 1

aα
a2
α (6.8)

and

( c0
a0

)A[α′
0] ⊂ ( cα

aα
)A[α′]; c0

a0
�→ c0

a0
aα = cα

aα
apα (6.9)

Lemma 6.10. Consider the fractional ideals Θ and Θ′ of L given by Θ = {x ∈ L | v(x) >
v0 − μ} and Θ′ = {x ∈ L | v(x) > pv0 − μ}. Then we have:

(a) Ω1
B|A

∼= Θ/Θ′,
(b) Θ/JσΘ ∼= Jσ/J 2

σ .

Proof.

(a) Let I be the fractional ideal of L generated by the elements ( 1
aα

). Let I ′ be the frac-
tional ideal of L generated by the elements ( cα ). Under the isomorphisms described 
aα
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in the preceding discussion, we can identify each Ω1
A[α′]|A with ( 1

aα
)A[α′]/( cα

aα
)A[α′]. 

Taking limit over α’s, we can identify Ω1
B|A with I/I ′.

Since −v(aα) = v(γα) − v(γ0) = v(γα) − μ, I = {x ∈ L | v(x) > inf
α

v(γα) − μ} = Θ. 
Similarly, v(cα) = (p − 1)v(γα) ⇒ v( cα

aα
) = pv(γα) − μ ⇒ I ′ = Θ′.

(b) This follows from the fact that Θ ∼= Jσ as B-modules, via the map ×γ0 : x �→
xγ0. �

6.4. Proof of Theorem 0.5 in Case II

Due to the defect, we consider Ω1
B|A and Ω1

A instead:

Ω1
B|A/JσΩ1

B|A Jσ/J 2
σ

Ω1
A/(Iσ ∩A)Ω1

A H/H2

ϕσ

∼=

ΔN N

rsw

As discussed in Lemma 6.10, we can write Ω1
B|A = lim−−→

α∈S0

Ω1
A[α′]|A and it is enough to 

consider the diagram for each α ∈ S0:

Ω1
A[α′]|A/(

1
α )A[α′]Ω1

A[α′]|A ( 1
α )A[α′]/( 1

α )2A[α′]

Ω1
A/(Iσ ∩A)Ω1

A ( 1
fα

)A/( 1
fα

)2A

ϕσ

∼=

ΔN N

rsw

(6.11)

where the maps are given by

bdα′ bα′ 1
α

N(bα′) dlog fα N(bα′) 1
fα

ϕσ

ΔN N

rsw

We note that in ω1
B|A, dlogα = dlogα′ + dlog γα = dlogα′ = dα′

α′ and σ(α′)
α′ − 1 = 1

α .
At each α-level, we observe the following:

(i) The map ϕσ : Ω1
A[α′]|A/(

1
α )Ω1

A[α′]|A → ( 1
α )/( 1

α )2 is same as the one obtained from 
Lemma 6.10.

Proof. By Lemma 6.10, Ω1
A[α′]|A/(

1
α )Ω1

A[α′]|A
∼= ( 1

aα
)/( 1

α )( 1
aα

) ∼= ( 1
α )/( 1

α )2 under the 

composition dα′ �→ 1
aα

�→ γ0
1
aα

= γα = α′

α .
On the other hand, ϕσ(dα′) = α′

(
σ(α′)
α′ − 1

)
= α′

α . �
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(ii) The map rsw is well-defined.

Proof. Define the ideal Iα of A by Iα :=
(
{ a
fα

∈ K | vK(fα + ap − a) = vK(fα)}
)
. As 

in case (I), we have ( 1
fα

)A ⊂ Iα ⊂ ( 1
α )A[α′] ∩A. Since ( 1

α )A[α′] ∩A ⊂ Jσ∩A = Iσ∩A, 
the map rsw is well-defined. �

7. The different ideal DB|A

7.1. Basic properties

We recall that D−1
B|A := {x ∈ L | TrL|K(xB) ⊂ A} = B∗ and the different ideal DB|A

is defined to be its inverse ideal.

Lemma 7.1. Let μ ∈ B\A, L = K(μ), and F (T ) ∈ K[T ] the minimal polynomial of μ
over K, then A[μ]∗ = 1

F ′(μ)A[μ].

Proof. See Lemma 6.76 of [4]. �
Now we describe the different ideal DB|A in the cases I and II. We will assume that 

the extension L|K is ramified. Consider the following three sub-cases:

• Case (i): eL|K = 1, fL|K = p.
Let v denote both vL and vK . Assume that L|K is generated by αp − α = f where 
f is best. There exists γ ∈ A such that α′ := αγ ∈ B× and l|k is purely inseparable, 
generated by the residue class of α′. Let v(α) = −v0. Hence, v(f) = −pv0, v(γ) = v0.
Since fγp ∈ A×, F (T ) = T p − Tγp−1 − fγp is the minimal polynomial of α′ over 
A. Therefore, F ′(T ) = pT p−1 − (p − 1)γp−1 = γp−1. By Lemma 1.11, Lemma 1.13, 
B = A[α′] and hence, D−1

B|A = B∗ = A[α′]∗ = 1
F ′(α′)A[α′] is clearly a fractional ideal 

of L, generated by a single element 1
F ′(α′) .

• Case (ii): eL|K = p, fL|K = 1.
Let f be best, vL(α) = −v0. Recall that B =

∑p−1
i=0 Aiα

i; A0 := A, for all 1 ≤ i ≤
p − 1,
Ai := {x ∈ K | v(x) ≥ iv0} = {x ∈ A | v(x) > iv0}. Let y ∈ L. Then for all 
0 ≤ i ≤ p − 1,

y =
p−1∑
j=0

yjα
j ∈ D−1

B|A; yj ∈ K ⇔ TrL|K(yαiAi) ⊂ A (7.2)

α has the minimal polynomial F (T ) = T p − T − f . Hence, F ′(α) = −1.
For 1 ≤ i ≤ p − 1, αi+(p−1) = αi + fαi−1. By Lemma 1.14, we have
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TrL|K(αi) =

⎧⎪⎨
⎪⎩

0; 0 ≤ i ≤ p− 2
−1; i = p− 1, 2(p− 1)
0; p ≤ i ≤ 2(p− 1) − 1

Let xi ∈ Ai. Then

Tr(xiyα
i) = Tr(

p−1∑
j=0

xiyjα
i+j) =

⎧⎪⎨
⎪⎩

−x0yp−1; i = 0
−xiyp−1−i; 1 ≤ i ≤ p− 2

−xp−1y0 − xp−1yp−1; i = p− 1

Hence, y ∈ D−1
B|A if and only if A0yp−1, Ap−1(y0 + yp−1), Aiyp−1−i ⊂ A (for all 

1 ≤ i ≤ p − 2).
• Case (iii): Rank 1 and eL|K = 1, fL|K = 1

Let Γ ⊂ R and let v denote both vL, vK . By Theorem 5.1, we can write B =
∪α∈SA[α′], where α′ = αγα ∈ B×, γα ∈ A. Recall that v0 := inf

α∈S
v(γα) ∈ R\Γ. 

By an argument similar to Case (i) above, we have D−1
A[α′]|A = {x ∈ L | v(x) ≥

(p − 1)v(α) = −(p − 1)v(γα)}.
Since all the A[α′]’s and B have the same fraction field L, D−1

B|A ⊂ D−1
A[α′]|A for all 

α ∈ S . Hence, γp−1
α D−1

B|A ⊂ γp−1
α D−1

A[α′]|A ⊂ A[α′] ⊂ B and D−1
B|A is a fractional ideal 

of L described by

D−1
B|A = ∩α∈SD−1

A[α′]|A

= ∩α∈S {x ∈ L | v(x) ≥ (p− 1)v(α)}

= {x ∈ L | v(x) ≥ (p− 1)v(α) ∀ α ∈ S }

= {x ∈ L | v(x) ≥ −(p− 1)v0}

7.2. Results in the case eL|K = 1

Let L|K satisfy (I) or (II) and assume further that eL|K = 1.

Lemma 7.3. {x ∈ L | TrL|K(xB) ⊂ H} = Jσ.

Proof. Since eL|K = 1, given any x ∈ L, there are elements x′ ∈ B×, a ∈ K such that 
x = x′a. Hence, Tr(xB) = a Tr(x′B) = a Tr(B).

• Case (i): We note that Tr( 1
α ) = −1

f . Hence, Jσ =
( 1
α

)
B ⊂ {x ∈ L | Tr(xB) ⊂ H}.

Conversely, suppose that Tr(xB) ⊂ H =
(

1
f

)
A. In particular, a Tr

( 1
α′

)
=

a Tr
(

1
αγ

)
= a

γ Tr
( 1
α

)
= a

γ

(
−1
f

)
∈ H. Hence, aγ ∈ A ⇒ aα ∈ B ⇒ a ∈ Jσ.

• Case (iii): The argument is very similar to the case (i). Again, Jσ ⊂ {x ∈ L |
Tr(xB) ⊂ H}. Conversely, suppose that Tr(xB) ⊂ H. Hence, for all α ∈ S ,
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a
γα

(
−1
fα

)
∈ H

⇒ v(a) − v(γα) − v(fα) > pv0

⇒ v(a) > (p − 1)(v0 − v(γα)) + v0.
Since this is true for all α ∈ S , we have v(a) ≥ v0.
But v0 /∈ Γ ⇒ v(a) > v0 ⇒ a ∈ Jσ. �

Lemma 7.4. Consider the rank 1 case, i.e., case (II ). For an ideal I of A and a ∈ K, 
aI ⊂ I if and only if a ∈ A.

Corollary 7.5. In particular, if L|K satisfies (II ) and eL|K = 1, then {x ∈ L | Tr(xJσ) ⊂
H} = B.

Proof. By Lemma 7.3, {x ∈ L | Tr(xJσ) ⊂ H} = {x ∈ L | xJσ ⊂ Jσ} and hence, clearly 
contains B. The reverse inclusion follows from Lemma 7.4. �
Proposition 7.6. In the cases (i) and (iii), D−1

B|A is described by:

• Case (i): D−1
B|A = J 1−p

σ and
• Case (iii): D−1

B|A = {x ∈ L | xBH ⊂ Jσ}.

Proof. Since eL|K = 1, Iσ = Jσ.

• Case (i): v(F ′(μ)) = (p − 1)v(γ) = (p − 1)v0 ⇒ D−1
B|A = {x ∈ L | v(x) ≥ −(p − 1)v0}. 

The rest follows from Jσ = Iσ =
( 1
α

)
B.

• Case (iii): By Lemma 7.4, Tr(xB) ⊂ A if and only if Tr(xB)H ⊂ H. By Lemma 7.3, 
Tr(xB)H ⊂ H if and only xBH ⊂ Jσ. �

7.3. Results in the case eL|K = p

We study the case (ii) in this section.

7.3.1. Preparation
Lemma 7.7. Let S be a fractional ideal of L and α ∈ L× such that vL(α) generates 
vL(L×)/vL(K×). Then for y =

∑p−1
j=0 yjα

j ; yj ∈ K, y ∈ S if and only if yiαi ∈ S for all 
0 ≤ i ≤ p − 1.

Proof. Since eL|K = p, vL(yiαi); yi 	= 0 are all distinct. If y ∈ S, then for some s ∈ S, 
we have vL(y) = min

0≤i≤p−1
vL(yiαi) ≥ vL(s). Thus, vL(yiαi) ≥ vL(s) for all 0 ≤ i ≤ p − 1

and hence, yiαi ∈ S for all 0 ≤ i ≤ p − 1. The converse is clearly true. �
Two important applications of the lemma are below.
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• Consider S = D−1
B|A, y ∈ L. y ∈ D−1

B|A ⇔ Tr(yiαib) ∈ A for all b ∈ B for all 
0 ≤ i ≤ p − 1.
Hence, D−1

B|A = ∪0≤i≤p−1DiB where Di := {yαi | y ∈ K, yαi ∈ D−1
B|A}.

Fix some i, let y ∈ K. Write b =
p−1∑
j=0

xjα
j ; xj ∈ Aj . Tr(yαib) ∈ A ⇔

p−1∑
j=0

yxj Tr(αi+j) ∈ A.

Thus, if i = p − 1, then
yαp−1 ∈ D−1

B|A ⇔ vL(y) + vL(x0 + xp−1) ≥ 0 for all x0 ∈ A, for all xp−1 ∈ Ap−1. 
⇔ vL(y) ≥ 0 and hence, Dp−1B = Aαp−1B = αp−1B = J−(p−1)

σ .
If 0 ≤ i ≤ p − 2,
yαi ∈ D−1

B|A ⇔ vL(y) + vL(xp−1−i) ≥ 0 for all xp−1−i ∈ Ap−1−i

⇔ yαi.xp−1−iα
p−1−i ∈ αp−1B

⇔ yαiAp−1−iα
p−1−i ⊂ αp−1B.

• Consider S = Iσ.
Iσ is generated by {(σ − 1)(xiα

i) | xi ∈ Ai, 1 ≤ i ≤ p − 1}. For a fixed i,
(σ − 1)(Aiα

i)B = Aiα
i[(1 + 1

α )i − 1]B = Aiα
i 1
αB = Aiα

iJσ. Thus,

Iσ = [∪1≤i≤p−1Aiα
iB]Jσ. (7.8)

Definition 7.9. We consider the B-sub-module Ω1
B|A

′ of Ω1
B|A generated by the set {db |

b ∈ mL} of generators (and the relations described for Ω1
B|A).

Lemma 7.10. Ω1
B|A

′ ∼= Ω1
B|A as B-modules.

Proof. Ω1
B|A

′ → Ω1
B|A is the map db �→ db. Consider the map π : Ω1

B|A → Ω1
B|A

′ described 
below.

For b ∈ B, there exists x ∈ A such that b − x ∈ mL. We define π(db) = d(b − x). 
Note that this definition is independent of the choice of x. It is enough to show that π
preserves the relations.

Let b, c ∈ B, x, y ∈ A such that b − x, c − y ∈ mK .
Additivity is preserved, since π(d(b + c)) = d(b + c − x − y) = d(b − x) + d(c − y) =
π(db) + π(dc).
Since dx = 0, dy = 0 and bc − xy = c(b − x) + x(c − y) ∈ mL,

cd(b− x) + bd(c− y) = cd(b− x) + (b− x)dc− (b− x)dc + (b− x)d(c− y)

+ xd(c− y) + (c− y)dx

= d(c(b− x)) + d(x(c− y)) + (b− x)d(c− y) − (b− x)dc

= d(bc− xc + xc− xy) + (b− x)[d(c− y) − dc]

= d(bc− xy) − (b− x)dy = d(bc− xy)
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Hence, π(d(bc)) = cπ(db) + bπ(dc). �
We do not have a good description, as in Proposition 7.6, of the different ideal in 

this case. However, with further assumptions on the value group ΓK , we obtain similar 
results.

7.3.2. Some results in a special case
Notation 7.11. Let L|K satisfy (II). Assume further that eL|K = p and the value group 
ΓK of K (as an ordered subgroup of R) is not isomorphic to Z. Thus, L|K is a defectless 
Artin–Schreier extension and ΓK is a dense ordered subgroup of R.

Lemma 7.12. Under the assumptions above (Notation 7.11),

(a) For 1 ≤ i ≤ p − 1, AiB = J i
σmL.

(b) Iσ = JσmL.
(c) mn

L = mL for all integers n ≥ 1, and consequently, In
σ = J n

σ mL.

Proof.

(a) For 1 ≤ i ≤ p − 1, AiB = {x ∈ K | vL(x) > iv0}B = {x ∈ L | vL(x) > iv0}. Hence, 
AiB = 1

αimL = J i
σmL.

(b) By (a), for 1 ≤ i ≤ p − 1, Aiα
iB = 1

αiα
imL = mL. Hence, by Equation (7.8),

Iσ = [∪1≤i≤p−1Aiα
iB]Jσ = JσmL.

(c) Let x ∈ mL, vL(x) > 0. Since the value group is dense in R, there exists an element 
y of mL satisfying 0 < vL(y) < vL(x)/n. Therefore, (x) ⊂ (yn) ⊂ mn

L and we can 
conclude that mL = mn

L. The rest follows from (b). �
Remark 7.13. In the general case when eL|K = p, 1 ≤ i ≤ p − 1, we have AiB ⊂ J i

σmL

and Iσ ⊂ JσmL.

Proposition 7.14. Under the assumptions above (Notation 7.11),

(a) D−1
B|A = J−(p−1)

σ .

(b) Ω1
B|A

∼= ω1
B|A ⊗B mL

∼= Iσ
Ip
σ
.

Proof.

(a) We recall that Dp−1 = J−(p−1)
σ and hence, J−(p−1)

σ ⊂ D−1
B|A. If 0 ≤ i ≤ p − 2,

yαi ∈ D−1
B|A

⇔ vL(y) + vL(xp−1−i) ≥ 0 for all xp−1−i ∈ Ap−1−i

⇔ vL(y) + (p − 1 − i)v0 ≥ 0 (since ΓK is dense)
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⇔ vL(yαi) ≥ −(p − 1)v0
⇔ yαi ∈ J−(p−1)

σ .
Hence, D−1

B|A ⊂ J−(p−1)
σ and we have the equality D−1

B|A = J−(p−1)
σ .

(b) We defined a map π : Ω1
B|A → Ω1

B|A
′ in Lemma 7.10. Let Ω := Ω1

B|A, Ω′ := Ω1
B|A

′, 
for convenience. Consider the following maps:

ξ : Ω′ → ω1
B|A ⊗B mL; ξ(db) = dlog b⊗ b (7.15)

where 0 	= b ∈ mL and

ψ : ω1
B|A ⊗B mL → Ω; ψ(dlog b⊗ c) = c

ab
d(ab) (7.16)

where b ∈ L×, c ∈ mL, a ∈ K×; 0 ≤ vL(ab) ≤ vL(c). Such an a exists since ΓK is 
dense in R.
We verify that these maps are well-defined. Furthermore, ξ ◦ π ◦ ψ : ω1

B|A ⊗B mL →
ω1
B|A ⊗B mL and ψ ◦ ξ ◦ π : Ω → Ω are isomorphisms.

• Let 0 	= b, c ∈ mL, 0 < vL(c) ≤ vL(b). We can write b = ch ; h ∈ B.

dlog(b + c) ⊗ (b + c) = dlog c(1 + h) ⊗ c(1 + h)

= (1 + h) dlog c⊗ c + (1 + h) dlog(1 + h) ⊗ c

= dlog c⊗ c + h dlog c⊗ c + h dlog h⊗ c

= dlog c⊗ c + h dlog ch⊗ c

= dlog c⊗ c + dlog ch⊗ ch

= dlog c⊗ c + dlog b⊗ b

• Let 0 	= b, c ∈ mL

dlog(bc) ⊗ (bc) = dlog b⊗ bc + dlog c⊗ bc

= cdlog b⊗ b + b dlog c⊗ c

Thus, ξ is well-defined. Next, we check that ψ is well-defined.
• Let b ∈ L×, c ∈ mL, a, a′ ∈ K× such that 0 ≤ vL(ab), vL(a′b) ≤ vL(c). Since 

da = 0 = da′,
c
abd(ab) =

c
ab (adb + bda) = c

bdb =
c
a′bd(a

′b).
Thus, ψ is independent of choice of a.

• Let 0 	= b ∈ B, c ∈ mL, a ∈ K× as described in the definition of ψ. Since da = 0, 
we have
ψ(db ⊗ c) = b c

abd(ab) =
c
a (adb + bda) = cdb.

Hence, ψ preserves additivity and Leibniz rule.
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• Let b, b′ ∈ L, c, c′ ∈ mL, a, a′ ∈ K× such that 0 ≤ vL(ab) ≤ vL(c) and 0 ≤
vL(a′b′) ≤ vL(c′).
Furthermore, since ΓK is dense in R, we can choose a, a′ such that 0 ≤
vL(aa′bb′) ≤ vL(c).

c
aa′bb′ d(aa

′bb′) = c
aa′bb′ [a

′b′d(ab) + abd(a′b′)] = c
abd(ab) +

c
a′b′ d(a

′b′)
Thus, ψ is well-defined.
Next, we consider the maps ξ◦π◦ψ : ω1

B|A⊗BmL → ω1
B|A⊗BmL and ψ◦ξ◦π : Ω → Ω.

• Let b ∈ L×, c ∈ mL, a ∈ K×, x ∈ A such that 0 ≤ vL(ab) ≤ vL(c) and ab −x ∈ mL.

ξ ◦ π ◦ ψ(dlog b⊗ c) = c

ab
dlog(ab− x) ⊗ (ab− x)

= ab− x

ab
dlog(ab− x) ⊗ c

= ab

ab
dlog(ab) ⊗ c

= dlog a⊗ c + dlog b⊗ c = dlog b⊗ c

• Let 0 	= b ∈ B, x ∈ A such that b − x ∈ mL.

ψ ◦ ξ ◦ π(db) = ψ(dlog(b− x) ⊗ (b− x))

=
(
b− x

b− x

)
d(b− x)

= d(b− x) = db

This proves the first isomorphism.
Next, we prove that

ω1
B|A

∼= B/J p−1
σ (7.17)

By Corollary 3.3(ii), ω1
B|A is generated by dlogα = − dlog

( 1
α

)
. In ω1

B|A, we have

0 = −
(

1 − 1
αp−1

)
dlog( 1

f
) =

(
1 − 1

αp−1

)
dlog f

=
(

1 − 1
αp−1

)
dlog(αp) +

(
1 − 1

αp−1

)
dlog

(
1 − 1

αp−1

)

= d

(
1 − 1

αp−1

)
= d

(
− 1
αp−1

)

= −d

(
1

αp−1

)
=

(
1 − 1

αp−1

)

= −(p− 1)
(

1
p−1

)
dlog

(
1
)

α α
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Therefore, J p−1
σ =

( 1
αp−1

)
annihilates ω1

B|A.
Conversely, let 0 	= b ∈ B such that b ω1

B|A = 0. Hence, for all 1 ≤ i ≤ p − 1,
xi ∈ Ai, bd(xiα

i) = 0
⇒ b ∈ ∩i,xi

G′
i,xi

(xiα
i)B, where Gi,xi

is the minimal polynomial of xiα
i over K. Let 

G := Gi,xi
for fixed (i, xi). Then

G′(xiα
i) =

∏
1≤j≤p−1

xiα
i

(
1 −

(
α + j

α

)i
)

= (xiα
i)p−1

∏
1≤j≤p−1

(
1 −

(
α + j

α

)i
)

= (xiα
i)p−1

∏
1≤j≤p−1

(
1 − s

(
α + j

α

))
u; u ∈ B×

= (xiα
i)p−1

(
−1
α

)p−1

(p− 1)! u

Thus, b ∈ ∩i,xi
G′

i,xi
(xiα

i)B = ∩i,xi
(xiα

i)p−1J p−1
σ ⇒ b ∈ J p−1

σ

By Equation (7.17) and Lemma 7.12,
ω1
B|A ⊗mL

∼= B/J p−1
σ ⊗mL

∼= mL/J p−1
σ mL

∼= JσmL/J p
σmL = Iσ/Ip

σ. �
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Appendix A. Non-trivial example of defect extension

For some of the well-known examples of defect extensions, our main results are trivially 
true, since the differential modules are all 0. We construct an example below that exhibits 
complications created by the defect.

Example A.1. Let k be a perfect field of characteristic p > 0 and let A0 be the local ring 
of a smooth algebraic surface over k at some closed point, and assume that we are given 
an Artin–Schreier extension L of the field of fractions K of A0 given by

αp − α = a + y

xn

where x and y are regular parameters of A0, a ∈ k \ Fp, and n ≥ 1 is coprime to p. We 
assume n ≥ 3 if p = 2. We will construct two dimensional regular local rings Ai ⊂ K
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(i ≥ 0) such that

A0 ⊂ A1 ⊂ A2 ⊂ . . .

as follows, by using successive blow ups. We will have a valuation ring A :=
⋃

i Ai for 
which this Artin–Schreier extension has defect.

A.1. Construction

Let u := y + a. Define x′ ∈ K by x = x′yp and let A′
0 be local ring of A0[x′] ⊂ K at 

the maximal ideal generated by x′− 1 and y. Then A′
0 is a two dimensional regular local 

ring with regular parameters x′ − 1 and y. Since n is coprime to p, z := (x′)−n − 1 and 
y are also regular parameters of A′

0. Define z′ ∈ K by z = z′y and let A1 be the local 
ring of A′[z′] ⊂ K at the maximal ideal generated by z′ − 1 and y.

Then the above Artin–Schreier equation is rewritten as follows. We have

f0 := a + y

xn
= a + y

(x′)nynp = (a + y)(1 + z′y)
ynp

= a

ynp
+ a + 1 + a(z′ − 1) + z′y

ynp−1

= a + 1 + y1

xnp−1
1

+ cp − c (A.2)

with

x1 = y, y1 = a(z′ − 1) + z′y + a1/pyn(p−1)−1, c = a1/py−n.

In A1, x1 and y1 are regular parameters, and the same Artin–Schreier extension is 
obtained by

αp
1 − α1 = a + 1 + y1

xnp−1
1

=: f1.

We can repeat this process and get A0 ⊂ A1 ⊂ A2 ⊂ . . . inductively. To sum up, we 
have the following for all i ≥ 0:

In Ai, the regular parameters are xi and yi, as described in the construction (and we 
put x = x0, y = y0, α = α0, n = n0). The same Artin–Schreier extension is give by

αp
i − αi = a + i + yi

xni
i

=: fi

where the integers ni satisfy the recursive relation ni+1 = pni − 1.
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A.2. Valuation on A and B

Let B be the integral closure of A in L. Due to their construction using successive 
blow ups we note that A and B are valuation rings [9]. Let vK = v be the valuation on K. 
We see from the calculations below that the value group of K is Γ ∼= Z[ 1

p
]; v(x0) �→ 1. 

For all i ≥ 0, we have the following:

(1) ni = pin − (pi−1 + · · · + p2 + p + 1) = pin − pi − 1
p− 1 .

(2) v(xi) = pv(yi) = pv(xi+1)
And hence, we get

v(xi) = 1
pi
, v(yi) = 1

pi+1

(3) −v(fi) = niv(xi) = n − 1
p− 1 + 1

pi(p− 1) .

Since Γ is p-divisible, L|K has defect. We will use v to denote vL as well. By the 
computations above, it follows that

−v(αi) = 1
p

(−v(fi)) = n

p
− 1

p(p− 1) + 1
pi+1(p− 1)

A.3. Special ideals and differential modules

Due to the defect, we have Iσ = Jσ and it is enough to look at Ω1’s instead of ω1’s 
(see Lemma 3.9).

The elements 1
αi

for i ≥ 0 generate the ideal Jσ of B and the elements 1
fi

for i ≥ 0
generate the ideal H of A.

• Since inf
i≥0

(
n

p
− 1

p(p− 1) + 1
pi+1(p− 1)

)
= n

p
− 1

p(p− 1) , we have

Iσ = Jσ = {b ∈ B | v(b) > 1
p
(n − 1

p− 1) =: v0}, and consequently,

• Nσ = {a ∈ A | v(a) > (n − 1
p− 1) = pv0}.

• Since inf
i≥0

−v(fi) = inf
i≥0

(
n− 1

p− 1 + 1
pi(p− 1)

)
= n − 1

p− 1 , there is no best f and 

furthermore,
H = {a ∈ A | v(a) > (n − 1

p− 1)}

Thus, Theorem 0.3 is clearly true in this case.
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Next, use the notation from the proof of Theorem 0.5 and consider the differential 
modules Ω1

B|A, Ω1
Bi|Ai

’s.
Let βi := αiy

ni
i . Then the integral closure of Ai in L is given by Bi = Ai[βi]. Let Fi(T )

be the minimal polynomial of βi over Ai. Then F ′
i (T ) = −y

ni(p−1)
i .

We have an isomorphism: Ai[βi]/F ′
i (βi) → Ω1

Bi|Ai
of Bi-modules via the Ai-linear 

map a �→ adβi; for all a ∈ Ai.

We use α0 as our starting point. The valuation of α0 is −n/p and v0 = 1
p

(
n− 1

p− 1

)
. 

The fractional ideals Θ and Θ′ of L are described by Θ = {x ∈ L | v(x) > − 1
p(p− 1) =:

v1} and Θ′ = {x ∈ L | v(x) >
(
n(p− 1) − 1

p

)
+ v1 =: v2}. Then we have:

• Ω1
B|A

∼= Θ/Θ′,
• Θ/JσΘ ∼= Jσ/J 2

σ .

From this, Theorem 0.5 will follow.
We can also verify that

• D−1
B|A = ∩i≥0D−1

Bi|Ai
,

• D−1
B|A = {x ∈ L | v(x) > −(p − 1)v0},

• DB|A = J p−1
σ is the annihilator of Ω1

B|A.
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