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1. Introduction

For positive integers m, n, and p, we consider an m X n X p tensor which is an element of
the tensor product of R™, R™, and RP with standard basis. This tensor can be identified
with a 3-way array (a;;z) where 1 <4 <m, 1< j <mnand1l <k <p. We denote by
R™*7XP the set of all m x n X p tensors. This set is a topological space with Euclidean
topology. Hitchcock [15] defined the rank of a tensor. An integer r is called a typical rank
of R™*™P if the set of tensors with rank r is a semi-algebraic set of dimension mnp. In
the other words, r is a typical rank of R"*™*P if the set of tensors with rank r contains a
nonempty open set of R™*"*P_In this paper we discuss the typical ranks of 3-tensors and
connect between plurality of typical ranks and existence of a nonsingular bilinear map.

Let n < p. A typical rank of R1*"*? is equal to an n x p matrix full rank, that is, n. If
n > 2, then the set of typical ranks of R2X"*? is equal to {n,n+1} if n = p and otherwise
min{p, 2n} [36]. This is also obtained from the equivalent class: almost all 2 xn X p tensors
are equivalent to ((En, Opx (p—n)); (Onx(p—n)> En)) which has rank min{p,2n} if n < p
(see [18] or [32]), see Section 2 for notation. Suppose that n > m > 3. The set of typical
ranks of R™*"*? ig equal to min{p, mn} if (m — 1)n < p [35]. If p = (m — 1)n then the
set of typical ranks of R™*"™*P depends on the existence of a nonsingular bilinear map
R™ x R™ — R™: Tt is equal to {p} if there is no nonsingular bilinear map R™ x R — R™
and {p, p+1} otherwise [33]. Here, a bilinear map f: R™ xR"™ — R" is called nonsingular
if f(x,y) =0 implies = 0 or y = 0.

Suppose that (m — 1)(n — 1)+ 1 < p < (m — 1)n. A typical rank of R"™*"*P ig
unknown except a few cases. First, p is a minimal typical rank, since p is a generic
rank of C™*™*P [5]. The authors [34] showed that the Hurwitz—Radon function gives a
condition that R”™>*™*(m=1n hag plural typical ranks. We [24] also showed that R™*"*?
has plural typical ranks for some (m,n, p) by using the concept of absolutely full column
rank tensors. We let m#n be the minimal integer r such that there is a nonsingular
bilinear map R™ x R™ — R". Then m#n < m+n—1 (see Section 2). The set R"*™*™ of
7 X m X n tensors is one to one corresponding to the set of bilinear maps R™ x R™ — R".
By this map the set of absolutely full column rank tensors is one to one corresponding
to the set of nonsingular bilinear maps.

Theorem 1.1. Let m,n >3 and (m —1)(n—1)+ 1 < p < mn.

(1) If there exists a nonsingular bilinear map R™ x R™ — R™" P then R™*"*P hqas
plural typical ranks.

(2) Ifp > (m—1)(n—1)+2 and R™*™*P has plural typical ranks, then there exists a
nonsingular bilinear map R™ x R™ — R™"~P,

(1) of Theorem 1.1 is an extension of one of [24]. Furthermore, we completely determine
the set trank(m, n, p) of typical ranks of R™*"*? for p>(m—1)(n—1)+2 by the number

m#n.
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Theorem 1.2. Let m,n >3, k > 2, and p= (m — 1)(n — 1) + k. The set of typical ranks
of RM>X"XP js given as follows.

{p,p+1}, 2<k<m+n—1—(m#n)
trank(m, n,p) = { {p}, max{2,(m+n)— (m#n)} <k <m+4n-—2
{mn}, k>m+n—1.

Consider the case where p = (m — 1)(n — 1) + 1, Friedland [12] showed that
Rxnx((n=1)°+1) hag plural typical ranks. We extend this result.

Theorem 1.3. Let m,n > 3 andp = (m —1)(n—1) + 1. R™*"*P has plural typical ranks
ifm—1 and n — 1 are not bit-disjoint.

This article is organized as follows. Sections 2-7 are preparation to show the above
theorems. In Section 2, we set notations and discuss the number m#n. In Section 3, we
study absolutely full column rank tensors. Since the set of absolutely full column rank
tensors is an open set, there exists a special form of an absolutely full column rank tensor
if an absolutely full column rank tensor exists. In Section 4, we state the other notions
and deal with ideals of minors of matrices. Theorem 4.31 in Section 4 which corresponds
with the real radical ideals is quite interesting in its own right. We show that for integers
with 0 < t < min{u,n} and m > (u—t+1)(n—t+1)+2, there exist open subsets &’; and
O of R**™*™ guch that the union of them is dense, I(V(I;(M(x,Y)))) = L;(M(xz,Y))
for Y € €y and I(V(I;(M(x,Y)))) = (z1,...,%m) for Y € O, where L;(M(2,Y)) is
the ideal generated by all ¢-minors of the u x n matrix M (z,Y) = >"/" | 2;Y) given by
the indeterminates x1,...,z, and Y = (Y1;...;Y,,) € R**™X™_ From this, we can give
a subset of m x n X p tensors with rank p for 3 < m <nand (m—-1)(n—-1)+2 <
p < (m — 1)n. In Section 5 we discuss a property for the determinantal ideals by using
monomial preorder. This property plays an important role for proving Theorem 1.1. We
characterize m x n X p tensors with rank p in Section 6. In Section 7, we show that the
existence of an absolutely full column rank tensor with suitable size implies that p+1 is
a typical rank of R™*™*P_ Moreover there exist a nonempty open subset 77 consisting
of tensors with rank p and a possibly empty open subset .7 consisting of tensors with
rank greater than p, corresponding &, and &, respectively, such that the union of them
is a dense subset of R™*"*P (see Theorem 7.14). Finally, in Section 8, we show that
p + 2 is not a typical rank of R™*"*?P and complete proofs of the above theorems.

2. Nonsingular bilinear maps

We first recall some basic facts and establish terminology.
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Notation.

(1) We denote by R™ (resp. R1*™) the set of n-dimensional column (resp. row) real
vectors and by E, the n x n identity matrix. Let e; be the j-th column vector of an
identity matrix.

(2) For a tensor z € R" @ R? @ R™ with = = Zijk aijre; ® e; @ ey, we identify z

with T = (aijk)lgign’lgjgp)lgkgm and denote it by <A1;...;Am), where Ak =
(@iji)1<i<ni<j<p for k = 1,...,m is an n X p matrix, and call (A1;...;4n) a
tensor.

(3) We denote the set of n x p x m tensors by R"*P*™ and the set of typical ranks by
trank(n, p, m).

(4) For an n x pxm tensor T = (T1;...;T,,), an I X n matrix P and an k X p matrix @,
we denote by PT the | x p x m tensor (PTh;...; PT,) and by TQT the n x k x m
tensor (T1Q7;...;T,Q").

(5) For nxpmatrices Ay, ..., A, we denote by (A, ..., A,,) the nxmp matrix obtained
by aligning Ay, ..., A,, horizontally.

Ay 0]
Az
(6) We set Diag(Aq, Aa,..., A) = ) for matrices Ay, Ag, ..., As.
(@) Ay

(7) For an m x n matrix M, we denote by M<; (resp. j<« M) the m x j (resp. mx (n—j))
matrix consisting of the first j (resp. last n — j) columns of M. We denote by M=
(resp. M) the i x n (resp. (m — i) X n) matrix consisting of the first i (resp. last
m — i) rows of M. We put M<* = M<=1 M_, = M<;_q, and M~ = =1<(M<P)

which is the i-th row vector of M. T
1

(8) We set f1,(T") = (T1,...,T)n) and fla(T) = | @ | for a tensor T' = (T1;...;Th).
T

Definition 2.1. A bilinear map f: R™ x R® — R! is called nonsingular if f(x,y) = 0
implies & = 0 or y = 0. For positive integers m and n, we set

m#n := min{l | there exists a nonsingular bilinear map R™ x R" — R'}.

Let ¢g: R1>% x R'*v — R (u#v) he a nonsingular bilinear map. For positive in-
tegers m and n, let f: RVX™u x RIxnv _ RIX(m4n—1)(u#v) he a map defined by

f((a17 sy am)7 <b17 sy bn)) = (g(ala bl)ag(ah b2>+g<a25 b1)7 ey Zi+j:k g(ai7 bj>7 sy
g(@m,by)). It is easily verified that f is a nonsingular bilinear map. Thus we have the
following:

Lemma 2.2. (mu)#(nv) < (m +n — 1)(u#v).
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By applying this lemma to nonsingular bilinear maps obtained by multiplications of
R, C, quaternions and octanions respectively, we have the following:

Proposition 2.3 (¢f. [30, Proposition 12.12 (8)]). For k =1, 2, 4 and 8, it holds that
km#tkn < k(m +mn—1).

Let 42 (r,s,n) be the condition on the binomial coefficients, called the Stiefel-Hopf
criterion, that the binomial coefficient (Z) is even whenever n — s < k < r. If there exists
a continuous, nonsingular, biskew map R” x R®* — R"™ then the Stiefel-Hopf criterion
H(r, s,n) holds. Put

ros=min{n | (r,s,n) holds}.
We have
max{r,s} <ros<r#s<r+s-—1

Putting n* = [ 5] for n € Z, the number r o s is easily obtained by the formula

{2(7'*03*)—1 if r, s are both odd and r* o s* = r* 4+ s* — 1,
ros=

2(r* o s*) otherwise

(cf. [30, Proposition 12.9]).

For a positive integer n, we put integers aj(n) = 0,1, j > 0 such that n =
Z;io a;j(n)27 is the dyadic expansion of n and let a(n) := Y "2 j a;j(n) be the number of
ones in the dyadic expansion of n. Two integers m and n are bit-disjoint if {j | oj(m) = 1}
and {j | a;(n) = 1} are disjoint. For k > h, let 7(k, h) be a nonnegative number defined
as

7(k,h) = #{j = 0| a;(k — h) = 0,a;(k) # a;(h)}.
Proposition 2.4. r#s =r+s—1 if and only if r — 1 and s — 1 are bit-disjoint.

Proof. If » — 1 and s — 1 are bit-disjoint, then ros = r#s=r+s—1 (cf. [30, p. 257]).
Moreover, 7(k,h) = 0 if and only if h and k& — h are bit-disjoint. There is a nonsingular
bilinear map R x RF=A+7(k:h) 5 RF for k> h > 0 [20] and thus (h + 1)#(k — h +
7(k,h)) < k.Puttingr =h+1and k =r+s—2, we have r#(s—1+7(r+s—2,7—1)) <
r+ s — 2. In particular, if r — 1 and s — 1 are not bit-disjoint then r#s <r+4+s—2. O

Let p be the Hurwitz—Radon function defined as p(n) = 2°+8c for nonnegative integers
a,b,c such that n = (2a + 1)2°74¢ and 0 < b < 4. There is a nonsingular bilinear map
R™ x RP(") — R™ [17,26] and there is no nonsingular bilinear map R” x RP(™+1 — R»
for any n > 1 [1]. Therefore, n#p(n) < n and n#(p(n) + 1) > n.
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Corollary 2.5. n#n < 2n—2. In particular, the equality n#n = 2n—2 holds forn = 2°+1.

Proof. The inequality n#n < 2n — 2 is clear by Proposition 2.4 since n — 1 and n — 1
are not bit-disjoint.

There is an immersion RP" — R™** if and only if there is a nonsingular biskew map
R+ x R+ — R4 (cf. [2.30]). Note that p(2) = 2 and p(4) = 4. Then 2#2 = 2
and 3#3 = 4 which follows from 4#4 = 4. Suppose that a > 2. Put m = 2°~!. Since
there is no immersion RP?™—R*"~2 (cf. [21]), we have 4m = (2m + 1)#(2m +1). O

Many estimations for m#n are known from immersion problem for manifolds, as
projective spaces. For example, the existence of a nonsingular bilinear map R"! x
R+ — R*F14E implies that RP" immerses in R™* [13].

Proposition 2.6.

(1) (n+1)#(n+1)<2n—a(n)+1[7].
(2) 2n+ a(n))#2n + a(n)) > 4n — 2a(n) + 2 [8].
(3) (Bn+9)#(8n +9) > 16n + 6 and (16n + 12)#(16n + 12) > 32n + 14 if a(n) = 2
10,31].
(8n+10)#(8n+10) > 16n+1 and (8n+11)#(8n+11) > 16n+4 if a(n) = 3 [9,10].
(n+1D#m+1) <n+m+1—(a(n)+aln—m)+min{k(n), k(m)}) if m, n are
odd and n > m, where k(n) is a nonnegative function depending only in the mod 8
residue class of n with k(8a+1) = 0, k(8a+3) = k(8a+5) =1 and k(8a+7) = 4 [23].
(6) d(h+1)#(d(k —h) +7(k,h)) <dk fork>h>0andd=1,2,4,8 [20].
(7) (n+1)#(n+7(2n,n)) < 2n.

(4)
()

3. Absolutely full column rank tensors

For a tensor T of R™ ® RP ® R™, we define the rank of T, denoted by rank T, the
minimal number r so that there exist a; € R", b; € R?, and ¢; € R™ fori =1,...,r
such that

T:zr:ai(@bi@ci,
i=1

The set R™*P*™ has an action of GL(m) x GL(p) x GL(n) as

(A,B,C)'ZCL@@IH@CZ' :ZAG%@BI)Z@CCZ

i=1 i=1

For tensors T1,T> € R™*"*P Ty and T, are said to be equivalent if Ty = (A, B,C) - T:
for some (4, B,C) € GL(n) x GL(p) x GL(m). The equivalence relation preserves the
rank. For a subset % and an open semi-algebraic subset . of R™*"*P we say that
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almost all tensors in . are equivalent to tensors in % if there exists a semi-algebraic
subset . of & with dim .y < mnp such that any tensor of .\ .4 is equivalent to
a tensor of % . In particular, for a given tensor Tp, if almost all tensors in R™*"*P are
equivalent to {Tp}, then we say that any tensor is generically equivalent to Tp.

An integer r is called a typical rank of n X p x m-tensors if there is a nonempty
open subset & of R™"*P*™ guch that rank X = r for X € &. Over the complex number
field C, it is known that there is a unique typical rank, called the generic rank, of
n X p X m-tensors for any n, p and m. The set of typical ranks of n X p X m-tensors
over R is denoted by trank(n,p, m) and the generic rank of n x p x m-tensors over C is
denoted by grank(n,p, m).

We recall the following facts.

Theorem 3.1 ([12, Theorem 7.1]). The space R™*™2XMs 'y, mo, ms € N, contains
a finite number of open connected disjoint semi-algebraic sets O, . .., Oy satisfying the
following properties.

1) Rmuxmexms\ | M 5 50 closed semi-algebraic set R™*™M2X™Ms of dimension strictly
i=1
less than mimaoms.
(2) Each T € O; has rank r; fori=1,..., M.

(3) min{ry,...,ra} = grank(my, ma, ms).
(4) trank(mq,mo,ms) = {r € Z | min{ry,...,ry} <7 <max{ry,...,ra}}.
Let T = (A1;...;4,) be an m x n X p tensor over R. The tensor T is called an

absolutely full column rank tensor if
P
rank(z yjAj;) =n
j=1

for any (y1,...,y,)" € RP\ {0}.
From the definition of the absolutely full column rank property, we see the following

fact.

Lemma 3.2. Let T be an m xn xp tensor over R and P € GL(m,R). Then T is absolutely
full column rank if and only if so is PT.

Lemma 3.3 (see Corollary 4.20 or [2/, Theorem 3.6]). The set of m X n X p absolutely
full column rank tensors is an open subset of R™M>"*P,

Let T'= (A;;...;A,) be an m x n X p-tensor. We define fr: R™ x RP — R™ as

p
fr(z,y) =) y;A;m,
i=1
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where y = (y1, - .. 7yp)—'—. Then fr is a bilinear map. This assignment T — f7 induces a
bijection from R™>*™*P to the set of all bilinear maps R™ x RP? — R™. It is easily verified
that fp: R™ x RP — R™ is nonsingular if and only if 7" is absolutely full column rank.
Therefore

Corollary 3.4. There is an m X n X p absolutely full column rank tensor if and only if
there is a nonsingular bilinear map R™ x RP — R™, i.e., n#p < m.

Lemma 3.5. Let n, m, and u be positive integers with u < mn. Set p = mn — u. Then
the following conditions are equivalent.

(1) n#m < u.
(2) There is a u X n X m absolutely full column rank tensor.
(3) There is a uxnxm absolutely full column rank tensorY such that ,fl1(Y) = —E,,.

Proof. (1) < (2) follows from Corollary 3.4.

It is clear that (3) = (2).

(2) = (3): Let X = (X71;...;X,,) be a u xn x m absolutely full column rank tensor.
By Lemma 3.3, we may assume that ,.fl;(X) is nonsingular. Set ¥ = —,f1;(X)X.
Then Y satisfies the required conditions. O

4. Ideals of minors

In this section, we state some results on ideals of minors, which we use in the following
of this paper and interesting in its own right.
First we recall the definition of normality of a ring.

Definition 4.1 (see [22, Section 9]). Let R be a commutative ring. We say that R is
normal if Rp is an integrally closed integral domain for any prime ideal P of R.

Remark 4.2.
(1) A Noetherian integral domain is normal if and only if it is integrally closed.
(2) If R is a Noetherian normal ring, then R ~ R/P; X - -+ x R/P,, where Py, ..., P, are
associated prime ideals of R.
We recall a criterion of normality in terms of Serre’s condition.

Definition 4.3 (/22, page 183]). Let R be a Noetherian ring and ¢ a nonnegative integer.

(1) We say that R satisfies (R;) if Rp is regular for any prime ideal P of R with htP < i.
(2) We say that R satisfies (5;) if depth Rp > min{é, ht P} for any prime ideal P of R.
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Lemma 4.4 (/22, Theorem 23.8]). Let R be a Noetherian ring. Then R is normal if and
only if R satisfies (R1) + (S2).

The condition (Ry) + (S2) is restated as follows.

Lemma 4.5. Let R be a Noetherian ring. Then R satisfies (Ry1) + (S2) if and only if the
following condition is satisfied: if P is a prime ideal of R with depth Rp < 1, then Rp
is reqular.

Proof. First assume that R satisfies (R1) 4+ (S2). Let P be a prime ideal of R with
depth Rp < 1. Since R satisfies (S3), we see that depth Rp > min{htP, 2}. Therefore,
htP < 1. Thus by (R1), we see that Rp is regular.

Conversely, assume that Rp is regular for any prime ideal P of R with depth Rp < 1.
First we show that R satisfies (R;). If P is a prime ideal with htP < 1, then
depth Rp < htP < 1. Thus by assumption, we see that Rp is regular. Next we show
that R satisfies (S2). Let P be an arbitrary prime ideal of R. If depth Rp < 1, then by
assumption, Rp is regular. Thus depth Rp = htP = min{htP, 2}. If depth Rp > 2, then
depth Rp > min{htP, 2} holds trivially. O

Next we state notations and definitions used in this section.

Definition 4.6. We denote by u, n, m, and ¢ positive integers with ¢ < min{u,n} and
set v = (u—t+1)(n—t+1). Let M = (m;;) be a u x n matrix with entries in a
commutative ring A. We denote by I(M)A, or simply I;(M), the ideal of A generated
by t-minors of M. For a(1),...,a(t) € {1,...,u} and B(1),...,B(t) € {1,...,n}, we set
[a(1),...,a(t) | B(1),...,B(1)]xm = det(mai)sy)), and if u > n and a(l),...,a(n) €
{1,...,u}, we set [a(1),...,a(n)]n = det(mq();). For a tensor T' = (T1;...;T,,) and
a=(ai,...,am) we set M(a,T) := 3" a;T; and we define I'(u x n) = {[a1,...,a,] |
1<a <+ <ap <u,a €7} For vy = [ay,...,a,] € T(u x n), we set suppy =
{a1,...,a,}. If Bis aring, A is a subring of B and T is a tensor (resp. matrix, vector)
with entries in B, we denote by A[T] the subring of B generated by the entries of T'
over A. If moreover, B is a field, we denote by A(T) the subfield of B generated by the
entries of T over A. If the entries of a tensor (resp. matrix, vector) T are independent
indeterminates, we say that 7' is a tensor (resp. matrix, vector) of indeterminates.

Here we note the following fact, which is verified by using [3, Chapter 1 Exercise 2]
r [25, (6.13)].

Lemma 4.7. Let A be a commutative ring, X a square matriz of indeterminates. Then
det X is a non-zerodivisor of A[X].

Next we recall the following fact.
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Lemma 4.8 (/16, Theorem 1 and Corollaries 3 and /]). (see also [4, (6.3) Theorem)). Let
A be a Noetherian ring and X a u X n matrix of indeterminates.

(1) he(L,(X)A[X]) = grade(I,( X) A[X]) = v.
(2) If A is a domain, then I;(X)A[X] is a prime ideal of A[X].
(3) If A is a normal domain, then so is A[X]/I,(X)A[X].

We also recall the following fact.

Lemma 4.9 (/16, Theorem 1 and Corollaries 2 and /]). (see also [4, (2.1) Theorem]).
Let A be a Noetherian commutative ring and M a u X n matriz with entries in A. If
Li(M) # A, then WtI, (M) < v. Moreover, if A is Cohen—-Macaulay and htI,(M) = v,
then I,(M) is height unmized.

The following Lemma is a generalization of [4, (12.4) Lemma).

Lemma 4.10. Let u, n, m, t and v be as in Definition /.6, A a commutative Noetherian
ring, T = (tijr) a u X n X m tensor of indeterminates and fi,..., fm elements of A.
Suppose that (f1,..., fm) # A. Set g = grade(f1,..., fm)A, F=(f1,.--,fm) and M =
M(f,T) = (mij).

(1) grade I;(M)A[T] = min{g,v}.

(2) If g >v+1 and A is a domain, then I;(M)A[T] is a prime ideal.

(3) If g > v+ 2 and A is a Cohen—Macaulay normal domain, then A[T)/I,(M)A[T] is
a normal domain.

Remark 4.11. If g > v, then grade I;(M) = ht [,(M) = v by Lemma 4.10 (1) and [16,
Theorem 1 and Corollary 4].

Proof of Lemma 4.10. Set R = A[T].

First we prove (1). Set v = min{g,v}. Since I;(M) C (fi,..., fm)R, we see that
grade It (M) R < grade(fi,..., fm)R = g. Thus we see by Lemma 4.9, grade [;(M)R < v'.

To prove the converse inequality, it is enough to show that if P be a prime ideal of
R with P D I;(M), then depth Rp > v'. Since if P D (fi,..., fm)R, then depth Rp >
g > v, we may assume that P 5 (fi1,..., fm)R. Takel with f; ¢ P. Then M is essentially
a matrix of indeterminates over A[f; '|[tix | k # I]. Thus grade(I;(M)R[f;']) = v by
Lemma 4.8. Since Rp is a localization of R[fl_l], we see that depth Rp > v > v'.

Next we prove (2). We may assume f1,..., fm # 0. Set B = R/I;(M)R. Since I;(M)R
is grade unmixed by (1) and [16, Theorem 1 Corollaries 2 and 4] (see also [27, Corollary
of Theorem 1.2] or [22, Exercise 16.3]), we see that every associated prime ideal of
I;(M)R is of grade v. In particular any associated prime ideal of I;(M)R does not
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contain (f1,..., fm)R, since g > v by assumption. Thus (fl,...,fm)B has grade at
least 1, where fj, denote the natural image of f, in B for 1 < k < m.

Since A[f; Y[tijx | k # 1] is an integral domain and M is essentially a matrix of
indeterminates over A[f '[tix | k # I], we see that B[ﬁil] = R[f "/ L(M)R[f ]
is an integral domain for any I. Thus we see that f; is contained in all associated
prime ideals of B but one. We denote this prime ideal by P;. Since B[(fifi)™'] =
R[(fifi)"Y /I (M)R[(fifi)~'] is not a zero ring by the same reason as above, we see
that P, = Py for any [ and I’. In particular, P, = P; for any | with 1 < | < m.
Since grade(fi,..., fm)B > 1 and any associated prime of B other than P; contains
(fis. .., fm)B, we see that P is the only associated prime ideal of B.

Therefore, B C B[fl_l] and we see that B is a domain.

Finally we prove (3). Assume that P is a prime ideal of B with depth Bp < 1. Since B
is Cohen-Macaulay by (1) and [16, Theorem 1 and Corollary 4] and ht(fi1, ..., fm)B > 2,
we see that P 3 (fi,..., fm)B.

Take [ with f; ¢ P. Then B[f, '] is a normal domain by Lemma 4.8 and the same
argument as above. Since Bp is a localization of B] ffl], we see that Bp is regular by
Lemmas 4.4 and 4.5. Thus B is normal by Lemmas 4.4 and 4.5. O

Here we note the following fact, which can be verified by considering the associated
prime ideals of I and using [22, Theorems 15.5, 15.6].

Lemma 4.12. Let K be a field, x = (x1,...,xm) a vector of indeterminates and I a proper
ideal of Klzx]. Then

Fit, e Ty T ]
dim K[a] /T = max { r 111, i iy s - ., Ty, are algebraically ,
independent over K

where T; denote the natural image of x; in K[x]/I.

Lemma 4.13. Let K be a field, T = (tijr) a u X n x m-tensor of indeterminates, and
x = (21,...,2m) a vector of indeterminates. Set R = K[T|, L = K(T), M = M(x,T)
and v' = min{m,v}. Then

Lz, ..., 2m-o] N L(M)L[z] = (0), Rlz1,...,2m_] N L(M)R[z] = (0),

Llx]/I;(M)L[x] is algebraic over the natural image of Llz1,...,Tm—o] in Llx]/
I;(M)L[x] and R[x]/I;(M)R[x] is algebraic over the natural image of R[x1,. .., Tm—y]
in Rlzx]/I,(M)R[x].

Proof. Since I;(M)L[z] is generated by homogeneous polynomials of positive degree with
respect to 1, ..., Tm, we see that L N I, (M)L[x] = (0).

By Lemma 4.10, we see that I;(M) is an ideal of height v’. Thus by Lemma 4.12, we
see
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tr.degy L[z]/I;(M)L[x] = m —v'.

Thus there is a permutation i,...,i, of 1,...,n such that z;,...,7z; _ , are alge-

braically independent over L and L[z]/I;(M)L[x] is algebraic over L[z;,,...,Z; ]

where Z; denote the natural image of x; in L[x]/I;(M)L[z]. By symmetry, we see that

Z1,...,Tm_, are algebraically independent over L and L[x]/I;(M)L[x] is algebraic over

L[Z1,...,Zm—ov]. We also see that R[x]/I;(M)R][x] is algebraic over R[Z1,...,Tm—v'].
Since Z1,...,Z;,_, are algebraically independent over L, we see that

L[xla v 7‘(Em7v’] N It(M)L[w] = (0)
and therefore R[x1,...,m—yv]| N L(M)R[z] = (0). O

Lemma 4.14. Let L/K be a field extension with charK =0, @ = (x1,...,2my) a vector of
indeterminates andY a u x n x m tensor with entries in L. Set M = M (x,Y’). Suppose
that the entries of Y are algebraically independent over K. Then the following hold.

(1) Ifm > v+1, then L[z, ..., Tm—o)NL(M)L[x] = (0) and L{x]/I;(M)L[x] is algebraic
over the natural image of L[xy, ..., Tm—y].

(2) If m > v+2, then Llz]/I;(M)L[x] is a normal domain. In particular, I,(M)L[x] is
a prime ideal of Lzx] of height v.

Proof. Since the entries of Y are algebraically independent over K, we see by Lemma 4.13
that K(Y)[x]/I;(M)K(Y)[x] is algebraic over K(Y)[x1, ..., Zm—s]. Thus L[x]/L;(M)L|[x]
is algebraic over L[zi,...,Zm—y] since Llx]/L(M)L[x] = (K )[x]/L(M)K(Y)[x])
®k(y) L. On the other hand, since tr.degyL[x]/I;(M)L[z] = dimL[z]/I;(M)L[z] >
m — v, by Lemmas 4.9 and 4.12, we see that zi,...,T,,—, are algebraically inde-
pendent over L, where Z; denote the natural image of x; in L[x]/L(M)L[x]. Thus
L{z1,. .., Zm—o] N L;(M)L[x] = (0). This proves (1).
Next we prove (2). Take a transcendence basis S of L/K(Y') and put

A = KY)[z]/L(M)K(Y)[z],
C = K)(S)[=]/I:(M)K(Y)(S)[z] and
B = Ll|/L(M)L[z].

By Lemma 4.10 (3), we see that A is a normal domain.
Since

K(Y)[S][]/ I (M)K(Y)[S][2] = (K(Y)[z]/I;(M)K(Y)[2]) ©x) K(Y)[S] = A[S]

is a polynomial ring (with possibly infinitely many variables) over A, it is an integrally
closed integral domain. Since C' is a localization of the above ring, C' is a normal domain.
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Now let P be a prime ideal of B with depth Bp < 1. By Lemmas 4.4 and 4.5, it is
enough to show that Bp is regular. Set () = C'N P. Then since B = C @y (s) L is flat
over C, we see that depthCg < 1 by [22, Theorem 23.3 Corollary|. Thus Cgq is regular
since C' is normal. The fiber ring Cq/QCq ®¢ Bp is a localization of

Cq/QCq ®c B = Co/QCq ®xk(v)(s) L

which is a 0-dimensional reduced ring, thus regular, since L is separably algebraic over
K(Y)(S). (Note that L is an inductive limit of finitely generated algebraic extension
fields of K(Y')(S). Or see [25, Theorem 3.2.6 and Theorem 3.2.8 (i)] and note the as-
sumption of the existence of a field containing M and N is not used in the proof of [25,
Theorem 3.2.8 (i)].) Thus by [22, Theorem 23.7], we see that Bp is regular.

Thus, B is a normal ring. Since B is a nonnegatively graded ring whose degree 0
component is a field, B is not a direct product of 2 or more rings. Therefore, B is a
domain by Remark 4.2. Moreover, we see by (1), that ht[;(M)L[x] =v. O

Definition 4.15. Let u, n, m, t and v be as in Definition 4.6. We set

A=Y € ReXXm | [[(M(a,Y)) # (0) for any a € R1*™ \ {0}},
%uxnxm — RuXnxm \ g{tuxnxm’

S :={Y € R"*™*™ | the entries of Y are algebraically independent over Q},

and for Y = (Y1;...;Y,,) € R¥*™*™ and for integers k, k' witht < k <wandt < k' < n,
we set

,uk.,k/(w,Y) = [1,...,t— l,k‘ | 1,...,?5— lak/]M(m,Y)a

where x is a vector of indeterminates. We also define

Ji(z,Y) = a(lu’ttvﬂt,ﬂrlw"7Mtn7ﬂ“t+1,ta"'7Nt+1,n7"'7ﬂu7t7'"7Mun) (z,Y),
6($m7v+1a e 7xm)

det M(a,Y)St #0,Ji(a,Y) # 0 and

I;(M(a,Y)) = (0) ’

Py = {Y e Rv*mxm | §(Y) # (0}

St(Y) = aERlxm

Remark 4.16.

(1) %uxnxm :) %anXm D - D %r;:ii?;nm}'

(2) &*"*™ is stable under the action of GL(u, R) for any ¢.
(3) €™ £ () for any t.

(4)

4) P, is a subset of €™ and
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det M(a,Y)S) #0,Ji(a,Y) # 0 and there exist
S;(Y) =< a € R"™™™| linearly independent vectors by, ..., b, € R"
such that M(a,Y)b; =0 for any t < j <n

Lemma 4.17. Let u, n and t be as in Definition 4.6, A an integral domain and M a
u X n matriz with entries in A. Suppose that det MS} # 0 and [1,...,t—1,k|1,... ¢t —
1,Ear = 0 for any integer witht < k < w and t < k' < n. Then I;(M) = (0). In
particular,

det M(a,Y)St #0, Ji(a,Y) # 0 and
Si(Y)={ acR>™ [, t=1k]|1,...;t—1,K]p =0
for any integer with t < k < w and t < k' < n.

Proof. Set

DLt =12, t =11
(=121, ..t =1 1,3,...,t— 1,1y

= (L1211, 11, -2y | €A
0
(D)1, t=1|1,...,t =2t =1y
0

for each [ with t <1 <n ((=1)?[1,...,t —1]1,...,t —2,t — 1]5; in the [-th position).
Then, since [1,...,t—1|1...,t—1]y = det M} # 0, we see that &, ..., &, are linearly
independent over A. Since the k-th entry of M & is [1,...,t — 1, k| 1,...,¢ — 1,15, we
see, by assumption, that M¢& = 0 for t < [ < n. Thus, rank M < t and we see that
L(M)=(0). O

It is verified the following fact, since Q is a countable field.
Lemma 4.18. .¥ is a dense subset of R4“*">m,

We also see that «“*"*™ is an open subset of R**™*™_ First note the following fact,

which is easily verified.
Lemma 4.19. Let X and Y be topological spaces with X compact and f: X XY — R is
a continuous map. Set g: Y — R by g(y) := mingex f(x,y). Then, g is a continuous

map.

Corollary 4.20. <" "™ is an open subset of R“*"*™,
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Proof. Since <" ™ ™ is the set consisting of Y € R“*™*™ guch that

Igin (the maximum of the absolute values of ¢t-minors of M(a,Y)) > 0,
ac m—1

we see the result by the previous lemma. O
Lemma 4.21. If v < m, then &, is a dense subset of €™ ™. In particular, P # 0.

Proof. Let Y € €**™*™ and % an open neighborhood of Y in R“*™*™_In order to
prove the first assertion, it suffices to show that &, N % # 0.

There exist a nonzero vector a € R'*™ and linearly independent vectors by, ...,b, €
R™ such that M(a,Y)b; = 0 for t < j < n. Let g3 € GL(m) and g» € GL(n) such
that the first entry of g4 a is nonzero, *<(gq by, ..., gq by,) is nonsingular and sufficiently
close to E,, and E,, respectively so that (1,g95',95")-Y € %. By replacing Y, a and
by, ..., b, by (1, g;l,ggl) Y, g4 aand gg by, . .., gg b, respectively, we may assume that
the first entry of a is nonzero and *<(by, ..., b,) is nonsingular.

Let e € R. We take a tensor P(e) = (pi;x) € R**™*™ as follows. For any 1, j, k with
j<tork=#1, weput

el (k=1,i<t,j<t),
e (Ghk)=0C+Lt+U!m—v+1+1+1V(u—t+1)),
0<i<u—t,0<l <n—1),

0  (otherwise)

Pijk =

and take p;j; for 1 <4 < wand t < j < n so that M(a,P(e))b; =0 fort < j < n.
Note that we can take such p;;; since the first entry of a is nonzero and t<(by,...,by,)
is nonsingular.

Then we have

det M(a,Y + P(e))Si #0 and Jy(a,Y + P(e)) #0

for e > 0.
Therefore, since the entries of P(e) are polynomials of e, we see that for a real number
eo # 0 which is sufficiently closed to 0,

det M(a,Y + P(eq))Si # 0, (4.1)
Jt(a, Y + P(eo)) # 0, (42)
Y + Pleg) € %. (4.3)
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(4.1), (4.2) and the fact M(a,Y + P(eg))b; = M(a,Y)b; + M(a, P(ep))b; = 0 for
t < j <n imply that a € S(Y + P(ep)). Thus we have Y + P(eg) € &, and we see that
PNU # 0.

The latter assertion follows from Remark 4.16. O

Lemma 4.22. Suppose that v < m. Then the set P, is an open subset of R**™ ™ and
for any Y € P, and a = (ay,as) € Sy(Y), where a; € R (™= and ay € R, there
exists an open neighborhood O(a,Y) of a1 € RY("™=?) such that for any by € O(a,Y),
there exists by € RY¥? such that (b1, bs) € S(Y).

Proof. Assume that Y € & and a = (a1,a2) € Si(Y). Then pgi(a,Y) = 0 for any
t <k <wuandt <k’ <mn. Thus by implicit function theorem, we see that there is an open
neighborhood U of (ay,Y) in R1* (M=) 5 RuX"Xm and a continuous map v: U — R ¥V
such that v(a1,Y) = ag, and pkw (b, Z) = 0 for any (b1,Z) € U and any k, k' with
t <k<wandt <k <mn, where b := (by,v(b1,7)). By replacing U by a smaller
neighborhood if necessary, we may assume that det M (b, Z)S} # 0 and Ji(b, Z) # 0 for
any (by,2) € U.

Assume (b1,Z) € U. Put b= (by,v(b1,Z)). By Lemma 4.17, we see that b € S,(Z).
Thus it suffices to set O(a,Y) := {by € R™*(™=%) | (b;,Y) € U}. Moreover, since
{Z e R¥*"*™ | (a1,Z) € U} is an open subset of &, containing Y, we see that % is
an open subset of R**"*™

By Corollary 4.20 and Lemmas 4.21 and 4.22, we see the following:
Corollary 4.23. If v < m, then &, C int €""*™ and P; = int €™ = GH*"=m,
Definition 4.24. We set 2, := {PY | P € GL(u,R),Y € 2,}.

Lemma 4.25. Py is an open subset of R¥X"X™ stable under the action of GL(u,R) and
g}t _ %uxnxm‘

Proof. Since &, = UPeGL(u’R) PP, and P, is an open subset of R**™*™ for any
P € GL(u,R) by Lemma 4.22 and the fact that multiplication of a nonsingular matrix
is a homeomorphism on R**™*™_ Therefore, &, is an open subset of R**™"*™_ The fact
that 2, is stable under the action of GL(u, R) is clear from the definition of £2;. Finally,
since 27"*"*™ is stable under the action of GL(u,R), we see, by Remark 4.16, that
P, C €™, Therefore, we see that th =€ "™ by Lemma 4.21. O

Lemma 4.26. Let L be an infinite field and = (21,...,%,) a vector of indeterminates.
Set v/ = min{m, v} and v = min{m, (v —t+2)(n — t + 2)}. Then there is a Zariski
dense open subset 21 of L¥*"*™ guch that if Y € 21, then Llz]|/I;(M(z,Y))L[x]
is algebraic over the wnatural image of Llxy,...,Tm—v], Ll[z1, ..., Zm—w] N
L(M(x,Y))L[z] = (0), htI[,(M)L[x] = o', L]z]/Li—1(M(x,Y))L[x] is algebraic over
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the natural image of L[x1, ..., Tm—yr], Lx1, ..., Z;m_pr ]| N Li—1(M(2,Y))L[x] = (0) and
htl;—1 (M (2, Y))L[z] = v".

Proof. Let T' = (t;;;) be the uxn xm tensor of indeterminates. Then by Lemma 4.13, we
see that L[T]|[x]/L(M(x,T))L[T][x] is algebraic over the natural image of
L[T)[z1,. .., %Zm—o]. Denote the natural image of z; in L[T][x]/L(M (2, T))L[T][x]
by Z;. Take a nonzero polynomial f;(t) with coefficient in L[T|[z1,. .., Zm—] such that
f1(z;) = 0 for each [ with m—v'4+1 <1 < m. Let g be the product of all nonzero elements
of L[T] appearing as the coefficient of at least one of f; and set 2] = L*>*"*™ \ V(g).
Then 2] is a Zariski dense open subset of L**"*™,

Suppose that Y € 21. And let Z; be the natural image of z; in L{z]/I;(M (z,Y))L[z]
and f; be an element of L[z1,...,Zm—] obtained by substituting ¥ to 7. Then fi is
a nonzero element of L[x1, ..., %y ] and fi(#) = 0 for m —v' + 1 < 1 < m. There-
fore, L[x]/I;(M (x,Y))L[x] is algebraic over the natural image of L[z1, ..., Zmm—y]. Thus
htI,(M(2,Y))L[x] = m—dim L[x]/I,(M)L[z] = m—tr.deg; L{z]/I,(M)L[x] > v'. Thus,
ht (M (2, Y))L[x] = v’ by Lemma 4.9 and we see that tr.degy L{z]/I;(M (x,Y))L[x] =
m — v'. Therefore Z1,...,T,_ are algebraically independent over L, that is,
L{z1, .., Zmeo] N L(M(2,Y))L[z] = (0).

We see by the same way that there is a Zariski dense open subset 27 of
Luxnxm guch that if Y € 2F, then Liz]/I;—1(M(z,Y))L[x] is algebraic over the
natural image of L[z1,...,Zm—v], L[z1, ..., Zm—p] N Li_1(M(2,Y))L[x] = (0) and
htly_1 (M (x,Y))L[z] = v”. Thus it is enough to set 21 = 21N 2Y. O

Let L be a field, © = (z1,...,%,,) a vector of indeterminates and M a u X n ma-
trix with entries in L[z]. Suppose that ht[;(M) = v and det(MZ)) ¢ /I;(M). Then
I(M)L[z][det(MZ/)~!] is a proper ideal of L[z][det(MZS))~!] and M is equivalent to
the matrix of the following form in L[z][(det(M=f)~1].

E, 1 O
O *

In particular, I;(M) is a complete intersection ideal in L[z][(det(MSf)~1]. By symmetry,
we see that if htl;_; (M) > v, then I;(M) is a generically complete intersection ideal.

We use the notation of [11, p. 219]. Let L be a field of characteristic 0, T a
u X n X m tensor of indeterminates and = (x1,...,%,,) a vector of indeterminates.
Set M = L(T). Suppose that m > v. Then I;(M(x,T))M[x] is a prime ideal and
htl; 1 (M (2, T))M[x] > v by Lemma 4.10. Thus

L(M(2,T)) : Jm—o(li(M(,T))) = I(M(z,T))

by [11, Theorem 2.1] and the argument above. Thus if we set I’ = I;(M(x,T)) +
Im—v([y(M(2,T))), then htl’ > v. Therefore the natural images of x1,...,%m—, in
M[z]/I" are algebraically dependent over M by Lemma 4.12. Take a transcendence basis
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Tiyy .. x4, of M[x]/I" over M. By symmetry, we may assume that i, = k for 1 < k < d.
Since htI” > v, we see that d < m — v. Take a nonzero polynomial f(t) with coefficients
in L[T][x1,...,24] such that f(z,,—,) € I’ and let g be the product of all nonzero ele-
ments of L[T] which appear in some nonzero coefficient of f. Set 2y = L**™*™ \ V(g).
Then 25 is a Zariski dense open subset of L**"*™ and if ¥ € 21 N 2, where
2, is the one in Lemma 4.26, then ht(I;(M(x,Y)) + Fm—o(l(M(2,Y)))) > v since
tr.degy Lix]/(It(M(2,Y)) + FZm—o(Le(M(x,Y)))) < m —wv.

Until the end of this section, assume that m > v + 2 and let U be the m x m matrix
of indeterminates, T the u x n X m tensor of indeterminates, = (1, ..., Z;,) the vector
of indeterminates and L. the algebraic closure of R(U).

Set

X7 I
Tm

Then L(T)[x},...,2;,] = L(T)[zx] and L(T)[x},... 2, ) N L(M(2,T)) is a prin-
cipal ideal generated by a polynomial F' called the ground form of I;(M (x,T)), since
I;(M(x,T)) is a prime ideal therefore is unmixed of height v. See [29, parts 28 and 29].

Since L(T')[x, ..., 27, 1) N I (M(2,T)) is the elimination ideal, I is obtained by
the Buchberger’s algorithm. Let g3 be the products of all elements of L[T] which appear
as a numerator or a denominator of a nonzero coefficient of at least one polynomial in the
process of Buchberger’s algorithm to obtain the reduced Grobner basis of I; (M (x,T')) in
L[T][x]. Set 23 = L»*™*™ \ V(g3). Then 25 is a Zariski dense open subset of L¥*"*™
and if Y € 23, then the Buchberger’s algorithm to obtain the reduced Grébner basis
of I;(M(x,Y))L[x| in L[] is identical with that of I;(M (x, T))L(T)[x] in L(T)[x]. In
particular, L{z},... 2z}, _, 1] N I;(M(x,Y)) is a principal ideal generated by Fy, the
polynomial obtained by substituting Y in 7" in the coefficients of F.

Let d = deg F and let P (d, m—v+1) (resp. Pr(d, m—v+1)) be the set of homogeneous
polynomials with coefficients in L. (resp. R) with variables ', ...z, ,,, and degree d.
Since m —v 4+ 1 > 3 and L is an algebraically closed field containing R, we see by [14]
that

{G € Pr(d,m — v+ 1) | G is absolutely irreducible}
=Pr(d,m—-v+1)N{G € P.(d,m —v+1) |G is irreducible}

is a Zariski dense open subset of Pr(d,m —v + 1).
Definition 4.27. Set

2={Y € 21N23N 23 NRY™™ | Fy is absolutely irreducible},
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where 2 is the one in Lemma 4.26 and 25, 23 and Fy are the ones defined after the
proof of Lemma 4.26.

Remark 4.28. 2 is a Zariski open subset of R“*™*™ since the correspondence Y to Fy
is a rational map whose domain contains 23.

Moreover, we see the following fact.
Lemma 4.29. 2 D 4 N 21N 2yN Zs. In particular, 2 is not an empty set.

Proof. Suppose that Y € .# N2, N 25N Z3. Then we see, by applying Lemma 4.14
to L/Q, that I;(M(x,Y))L[x] is a prime ideal. Thus the elimination ideal is also prime
and therefore the generator Fy of the elimination ideal is an irreducible polynomial
in L{x},...,2,,_, ). Therefore, Y € 2. Since .# is a dense subset of R**™"*™ by
Lemma 4.18, we see that # N 21N 925N 23 # 0. Thus, 2#0. O

Thus we see that 2 is a non-empty Zariski open subset of R“*"*™ 1In particular, 2
is dense.

Lemma 4.30. If Y € 2, then I;(M(2,Y))R[x] is a prime ideal of height v.

Proof. Since Y € 2, htl,(M(,Y))R[z] = vand L[z},...,2],_, ]NL(M(x,Y))Llx] =
(Fy)L[z!, ... 2z, ;1] Thus
RO, - - 2y ] N (M (2, Y))R(U) [2] = (Fy )R(U)[2), - s 25,y
since L is faithfully flat over R(U). Thus we see that Fy is the ground form of
Ii(M(x,Y))R[x] [29, part 28]. Since Fy is an irreducible polynomial in L[z}, ..., z],_, ]
and therefore in R(U)[x1, ..., ), _, 1], we see by [29, part 31|, that I;(M(x,Y))R[x] is
a primary ideal.
On the other hand, since Y € 27 N 25, we see that

ht(Li(M(2,Y)) + Fm—o(li(M(2,Y)))) > v.
Since It(M(x,Y)) is a primary ideal of height v, we see that
L(M(@,Y)) : Fmo(L(M(,Y))) = L(M(,Y)).

Therefore, by [11, Theorem 2.1], we see that I;(M(x,Y)) is a radical ideal. Thus
I;(M(z,Y)) is a prime ideal. O

Now we show the following result.
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Theorem 4.31. Suppose that m > v+ 2. Set 0, = 2N P, and Oy = 2N M*"™ . Then
the following hold.

(1) 01 and Os are disjoint open subsets of R“*"™"*™ and 01 # (.

(2) 01U 05 is a dense subset of R*>*m>m,

(3) ﬁ u><n><m Ruanm\%anXm

4) Ify € 6’1 U Oy, then Ii(M(x,Y))R[x] is a prime ideal of height v.
(5) If Y € Ov, then I(V(I,(M(x,Y)))) = I,(M(x,Y)).

(6) If Y € Oy, then [(V(Li(M(x,Y)))) = (1, -, Tm)-

Proof. The set «7"**"*™ is an open subset of R**"*™ by Corollary 4.20 and 2 is a
nonempty open subset of R*X"*™ with @/**"*™ N 2, = () by Lemmas 4.21 and 4.25.
Further 2 is a Zariski open subset. Thus (1) holds.

(2): Since 2 and .&/"*"*"™ U P, are dense open subsets of R**"*™ by Corollary 4.20
and Lemma 4.25, we see that 01 U0y D 2N (&, " ™ U Z,) is also a dense open subset
of Ruxmxm

(3): Since 2 is a dense subset of
9ND, = P, = € ™™ by Lemma 4.25.

(4) follows from Lemma 4.30.

(5): Assume the contrary and take g € I(V(I;(M(2,Y)))) with g ¢ L(M(2,Y)). Set
J = (¢)R[z]+I;(M(x,Y)). Then J 2 I;(M (2, Y))R[x]. Since It (M (x,Y))R[x] is a prime
ideal of height v by Lemma 4.30, we see that htJ > v and therefore R[z1, ..., Zy_y] N
J #(0). i

Take 0 # f € JNR[z1,...,Tm—yp]. Since Y € P, we can take P € GL(u,R)
such that PY € Z;. Take b € S,(PY). Since O(b, PY') defined in Lemma 4.22 is an
open set and f is a non-zero polynomial, we can take (ai,...,an—y) € O(b, PY) with
flay,...,am—y) # 0. On the other hand, we see that there are a;y—yt1,-..,am € R
such that I;(M(a,Y)) = I,(PM(a,Y)) = I,(M(a,PY)) = (0) by Lemma 4.22, where
a = (ay,...,ay,). Thus by assumption, we see that g(a) = 0. This contradicts to the
fact that f € J = (¢)R[x] + ;(M (2, Y))R[z] and f(ai,...,am—v) # 0.

Finally, (6) is clear from the definition of &7"*"*™. 0O

Ruxnxm - and P, is an open set, we see that ) =

5. Monomial preorder

In this section, we introduce the notion of monomial preorder and prove a result about
ideals of minors by using it.
First we recall the notion of preorder.

Definition 5.1. Let S be a nonempty set and < a binary relation on S. We say that < is
a preorder on S or (S, <) is a preordered set if the following two conditions are satisfied.



T. Sumi et al. / Journal of Algebra 471 (2017) 409-453 429

(1) a<aforanyacS.
(2) axbb=c=a=<c

If moreover,
(3) axborb=aforanya,besS.
is satisfied, then we say that (S, <) is a totally preordered set or < is a total preorder.

Notation. Let (S, <) be a preordered set. We denote by b = a the fact a < b. We denote
by a < b or by b > a the fact that a < b and b £ a. We also denote by a ~ b the fact
that ¢« < b and b <X a.

Remark 5.2. The binary relation ~ defined above is an equivalence relation and if a ~ o’
and b ~ V', then

a=b < d =<V

In particular, we can define a binary relation < on the quotient set P = S/ ~ by
a < b g a = b, where a is the equivalence class which a belongs to. It is easily
verified that (P, <) is a partially ordered set and (S, <) is a totally preordered set if and

only if (P, <) is a totally ordered set. As usual, we denote @ > b the fact a > b and @ # b.

Definition 5.3. Let z1,...,x, be indeterminates. We denote the set of monomials or
power products of x1,...,2, by PP(x1,...,z.). A monomial preorder on x1,...,xz, is a
total preorder < on PP(z1,...,x,) satisfying the following conditions.

(1) 1 < m for any m € PP(x1,...,2,).
(2) For mqy, ma, m € PP(x1,...,x,),

mi1 XMy < mim = maom.

Let ~ be the equivalence relation on PP(z1,...,,) defined by the monomial preorder <.
We denote by P(z1,...,xz,) the quotient set PP(x1,...,2,)/ ~ and by qdegm the class
of m in P(x1,...,x,) and call it the quasi-degree of m, where m € PP(x1,...,x;.).

Remark 5.4. Our definition of monomial preorder may seem to be different from that
of [19], but it is identical except we allow m ~ 1 for a monomial m # 1.

Example 5.5 (cf. [19, Ezample 3.1]). Let x4, ..., x, be indeterminates, W = (wq, ..., ws)
an r X s matrix whose entries are real numbers such that the first nonzero entry of each
row is positive. If one defines



430 T. Sumi et al. / Journal of Algebra 471 (2017) 409-453

def
z® <2 & (@ -wy,...,a ws) <jex (b-w1,...,b-wy),

where - denotes the inner product and <j.x denotes the lexicographic order, then < is a
monomial preorder. In fact, one can prove by the same way as [28] that every monomial
preorder is of this type.

Definition 5.6. Let K be a field and z1,...,z, indeterminates. If a monomial preorder
on x1,...,x, is defined, we say that K|zy,...,z,] is a polynomial ring with monomial
preorder. Let f be a nonzero element of K[x1,...,x,]. We say that f is a form if all the

monomials appearing in f have the same quasi-degree. We denote by qdeg f the quasi-
degree of the monomials appearing in f. Let g be a nonzero element of K[zy,...,x.].
Then there is a unique expression

g=g gt

of g, where g; is a form for 1 <7 <t and qdegg; > qdeggs > --- > qdeg g;. We define
the leading form of g, denoted lf(g) as g;.

Remark 5.7. Let K[z1,...,z,| be a polynomial ring with monomial preorder and f, g
nonzero elements of K[x1,...,z.]. Then If(fg) = 1f(f)lf(g).

Remark 5.8. It is essential to assume both implications in (2) of Definition 5.3. For
example, let x and y be indeterminates. We define total preorder on PP(z,y) by 1 <
y < x and my < my if the total degree of m, is less than that of ms. Then it is easily
verified that

(1) 1 < m for any m € PP(z,y) \ {1}.
(2) m1 X mg = mim = mam.

Let f =z +y. Then If(f) = x while If(f?) = 22 + 2zy + 3 # 22 = (If(f))%

Definition 5.9. Let z1,...,x, be indeterminates. Suppose that a total preorder on
{z1,...,2,} is defined. Rewrite the set {z1,...,z,.} as follows. {z1,..., 2.} = {y11,.- -,
Ylsys Y215y Y2sas ooy el ooy Ytse o ST F 8 =T Y11 ~ -0~ Yigy = Ya1 ~ -~ Yo,
= Y ~~ e~ Yy,

The lexicographic monomial preorder on PP(zy,...,z,) is defined as follows.
I, | T M, | yf;j if and only if one of the following conditions is satisfied.

. Zjlzl aij < Zjl:l b1j~
o Dihiay =300 by and 30372 ag; < 302 boj
o Yihiany =200 by, D00 agy =305 boj and 307 ag; < 30T bsy
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o ohian = iy by 5 agy = 35 bajy o D5 Gra = Y5 biaj and
Z;Zf ag—1,5 < Z;Zf b1,

o Dliay = 20t by, Y agy = 203 by o 25 a1y = D055 b1y and
Dt < 205 bey

Remark 5.10. Suppose that x1,...,x, are indeterminates and total preorder =< on
{z1,...,2,} is defined. Suppose also that

Ty~~~ Ty, }xm1+1 ~ e D, }...}xmt—l+1 N~ N Ty,
my = r. Then the lexicographic monomial preorder induced by this preorder on
{z1,...,2,} is the one defined as in Example 5.5 by the r X ¢t matrix whose j-th column

has 1 in mj;_; + 1 through mj -th position and 0 in others, where we set mg = 0.

Definition 5.11. We set

k
[a1, .. @iy oyan] i=la1,. .., ai—1,k, Qi1 ..., an)
and
k l
[alv"'7ai;'~'aaj,-~~van] = [alv"'aaiflakaai%*la'"7ajflalvaj+1a"'aan]'
Lemma 5.12. Let K be a field, K|x1,...,2,:] a polynomial ring with monomial pre-

order, S a subset of {x1,...,x.} and g1,...,9: € Klx1,...,2z,]. Set L = KIS|. If
1f(g1),...,1f(g:) are linearly independent over L, then gi,...,g: are linearly independent
over L.

Proof. Assume the contrary and suppose that
Z cigi =0
i

is a non-trivial relation where ¢; € L and ¢; # 0 for any i which appears in the above
sum. Then

S 1 (e (g:) = 0,

where 3’ runs through i’s with qdeglf(c;g;) are maximal. Since 1f(¢;) € L for any i, it
contradicts the assumption. O

Lemma 5.13 (Plicker relations, see e.qg. [/, (4,4) Lemmal). For every u X n-matriz M,
u > n, with entries in a commutative ring and all indices aq, . .., ax, by, ..., by, c1,...,¢c5 €
{1,...,u} such that s=n—k+1l—1>n,t=n—k >0 one has
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Z sgn (i1, -y 0)[@1, .oy Qs Cips ooy Ci M [Cipyrs - -5 Ciga by - - i) = 0,

<<y
141 < <lg

{18 ={i1,..is}

where sgn(o) is the signature of a permutation o and the notations are defined in Defi-
nition 4.0.

An element a is called a non-zerodivisor if ab = 0 implies b = 0.

Lemma 5.14. Let A = Ay @ A1 & -+ be a graded ring, X = (x;5) a u X n matriz with
u>n and entries in Ay andy = (y1,...,yn) € A7*". Set X = <‘;(> and T =T(uxn).
Suppose that

e 0=1[1,2,...,n]x is a non-zerodivisor of A,
o for any k1 and ko with 1 < ki < ko <mn,

oxyx (veTl),
n+1
[1,..., ka,...,nlxyx (y€T\{6}) and

[1""a kl;"wn}X’yX (’YEFa SUPP’Y?s{lw-wI%ZP-w”})

are linearly independent over Ay and

o [(X)=1,(X),

where the notations are defined in Definition J.6. Then, y is an Ag-linear combination
of rows of X.

Proof. We denote v as v and Z as Z for simplicity. Set
~el’ ol

u+1
[1,..., k 7...,71]:2:61%’“)7
¥

and

n+1 u+1
..., k1 ..., kay...,n] :Zagkl’]”)'y
v

(k)

(k) agkl’kQ) € A. By considering the degree, we may assume that ay’,

where ay",
k1,k
ag 1:k2) S Ao.

n+1 u+1
[1,..., ]{11 gee ey ]{ig ,...,n]XCOf(Xgn)
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u+1
L ky .

n+1
= det(Cof (X="))[1,..., k1 ,..

— 677,71 Zasfkl,kz),}/’
Y

?n]

where Cof (X=") denotes the matrix of cofactors of X=". On the other hand, since

1)
1)
1)
ol n n+1 n+1
XCof(X=")= | ["1",2....,n) [1,"2,....n] 1,2,
n+2 n+2
[ 1 72 ’n] [17 2 K 7n] [1?27
+1 41
"1,2...n [1,"2,....1 1,2,
we see that
n+1 u+1
[].,..., kl goe ey kQ ,...7n]xcof(XSn)
n—2 geeey K1 ,...,T geeey K2,
=0 det u+1 u+1
[1,...,]@1,...,%] [1,...,k2, ..,n]
Since § is a non-zerodivisor, we see that
> alrtey
v
n+1 u+1 n+1
:[1,..., ]{/’1 ,...,n][l,...7 k:g,...,n]—[l,..., ](,‘2,...,’[7,][1,...
n+1 n+1
:Zasfb)[l,..., k1 ,...,n]’nyagkl)[l,..., ko y...,n]y
¥ ¥
n+1 n+1
:fagkl)é[l,..., ky,...,n]— Z ag’“)[l,..., ky ... ,n]y
yeET\ {6}
n+1 n+1
+agk2)5[1,...,k1,...,n]—|— Z a(vkz)[l,...,kl,...
supp’yﬂA{l ..... n}
:{1,...,162,...,11}
n+1
+ Z ang)[l,...,kl,...,nh

n}

supp y2{1,....k2,...

)

u+1

ki, ..

7n]7

,n

433
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Suppose that suppyN{l,...,n} ={1,...,ks,...,n}. Then y = [1,... ks, ..., n,I] for
!

some [ with n+1 <1 <w. Thusy = (=1)""%2[1,... ko,...,n]. By applying Lemma 5.13
to

l n+1
[1,...,]{}2,...,71”1,..., kl,...,n],

by substituting w, n, k, s, by u, n, k; — 1, n+ 1, k1 + 1 respectively, we see that
l n+1

[1,...,]62,...,71][17...7 kl,...,n]

n—+1 l n+1 l
25[1,..., k1 ...,k27...,n]+[1,..., /{:2,...,n][l,...,kl,...7n]

n+1 l & n+1 N
:6[1,, kl ...,kg,...,ﬂ]ﬁ*(*l)ni 1[1,..., k2,...,n][l,...,kl,...,n,l]

Therefore, if we set

(k1)

k k(K . -
pk) a(vl) — (1) klaflf?wk%“’n’l] ify=1[1,...,k...,n]]
K ay otherwise

for y € I'\ {0}, we see that there are b, € Ay such that

n+1
S by — > b k. mly
Y ~yeD\{d}

n+1
+ Z afYkZ)[l,...,kl,...,nh:O.

suppyZ{1,....k2,...,n}

Thus we see, by the assumption, that
pf) =0 ifyeT\ {6}
and
agw) =0 ifsuppy B {1,....ks,...,n}.
Therefore, by the definition of bgkl), we see that

n—ky, (k1) _ (_1\n—k (k2)
(_1) 1a[1},,‘,1;17,,,,n,1]_( 1) 2a[1,..,,fcz,...,n,l]

and

a(ykl) =0 ifsuppy B {1,...,k1,...,n}.
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Since these hold for any kq, ko with 1 < k1 < ko < n, we see that if we set

_ (n)
Q=0 a1

for l withn+1<1<wu,

u+1 v
Mooy ko] =af?0+ (=) 37l k)
I=n+1

- l
=al”5+ > all,.. k...
l=n+1

for any k£ with 1 <k <n.

Set
n u
z:y—Zags)X:S— Z aX™!
s=1 l=n+1
and
Z:(X).
z
Then
u+1
[1,..., k,...,n]z
u+1 n (S) s “ l
=Lkl = a Lkl — Y all k]
s=1 l=n+1

for any k with 1 < k < n. Thus zCof(X<") = 0 and we see that z = 0 since
det Cof (X=") = "~ is a non-zerodivisor. O

Lemma 5.15. Let L be a field, n, m integers with n > m > 3, x1,..., T, indetermi-
nates and o, 8 € L with 0 # a # B # 0. Then the following polynomials are linearly
independent over L.

:c%"

x%n_l(xQ — Bxm)
w?"flxs 3<s<m-—-1)
) (X2 — 0xm) (X2 — BEm) T, T,y (1<by <o < bpo < 2)

2P (X2 — QX )Ty -+ Tp,_,Ts (1 <by < <bp9<2 3<s<m—1)

n—2"38
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ryxy, cccxp, (1<b < <by<m—1, b1 > 3)
x?n Z(xZ_me)Z
21" (2 — Bam B3<s<m-1)

)Ts
ai N2y — awm) (w2 — B )wp, -y, _, (1<by < <bpp <2)
(

2} (w2 — axm) (T2 — BTm)To, -+ Th,_,Ts

(1<b; < <bp9<2,3<s<m-—1)

n—1

2} (e — Bz, -y, (1<by <---<b, <m-—1, b,_1>3)

27 (20 — axm)? (22 — Brm) 2y, o ap, 5, (1<by <o <byn <2)

272 (29 — axm)? (29 — BT, - Th, ,Ts

1< < <bp2<2,3<s<m—1)

2t (22 — o) (22 — BTy, - T,

1< <+ <bp<m—1, b1 >3)

Proof. Set degx; = degxs = degx,,, = 0 and degz3 = --- = degx,,—1 = 1. Then the
polynomials under consideration are homogeneous. Thus it is enough to show that for
each integer d, the polynomials of degree d in the above list are linearly independent
over L.

First consider the polynomials with degree more than 1. They are

xlap, rxp, (1<by < <b,<m-—1, b1 >3)

2t wo — Bam)my (1<b < <b,<m—1, by_y >3)
2y (s — axm)(l“z - 5fﬁm)5€b1 Tp,,

(1<b <---<bp<m—1, b1 > 3).

By first substituting 8~ '3 to z,, and next by substituting a~tzs to x,, one sees that
these polynomials are linearly independent.
Next consider the polynomials with degree 1. They are

x%” Lo B3<s<m-1)
oY (T2 — Q) Tp, - Tp,_,Ts (10 <0< by 9 <2, 3<s<m—1)
21" (2 — fag)rs (3<s<m—1)

l’? 1(502 —azm,) (T2 — ﬁﬂﬁm)xbl ©Tp, T

(1<b < <bp2<2,3<s<m—1)

2772 (29 — ) (22 — BTy - Tp,, LT

(1<b < <bp92<2,3<s<m—1).
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By a similar but more subtle argument as above, one sees that these polynomials are
linearly independent.
Finally consider the polynomials with degree 0. They are

x%”
23" @y — Brm)
o (xe — axm ) (22 — BEm)Te, - Tp, , (1<bp <o < bypg < 2)

x?n72(x2 - ﬂxm)2

n—1

2} (@2 — axp) (22 — Brm)’wy, @,y (1< by <-or <byn < 2)

272 (zg — axm)? (2o — Brm) 2wy, - ap, , (1<by <o <byg <2)

By a similar but more subtle argument, one sees that these polynomials are linearly
independent. 0O

Lemma 5.16. Let K be a field, T = (T1;--- ;Tpn) = (tijr) a u X n X m-tensor of indeter-
minates withu >n>m>u—n+2, € = (z1,...,%m) a vector of indeterminates. Set
X = M(z,T) (cf. Definition 4.6), T =T(uxn),d = =[1,...,n] and A = K[T][z].
Then dx is a non-zerodivisor of A and for any ki, ko with 1 < k1, ko < n, k1 # ko,

dxvx (yeTl)
n+1

[1,..., kay...,nlxyx (y€T\{6})
n+1

[1""7 kl 7"'7”}XF)/X (VGFaSUPp’Yz {17"'7];27"'771})
are linearly independent over K[T).

Proof. The first assertion is clear since A is an integral domain and dx # 0. Next we
prove the second assertion. By symmetry, we may assume that k&y = n — 1 and ky = n.
Set 61 = [1,2,...,n—1,n+ 1] and d2 = [1,2,...,n — 2,n,n + 1]. We introduce the
lexicographic monomial preorder induced by the preorder on the indeterminates defined
as follows.

If one of the following is satisfied, we define ¢;j > ts /5.

o 1<
e i=1and j < j'.
e i=d,j=7,k<k and“i<jori>j+u—n”

Incase 0 <i—j <wu—mnand (4,j) # (n,n—1),(n+ 1,n), we define

biji—j+1 = bigi—ja2 = o = tigm = L1 = - = i ji—j.
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In case (¢,7) = (n,n — 1) or (n+ 1,n), we define
tij2 ~ tijm = tig1 = tigs = = i imet.

And

Lijle = T1 ~ Tg ~ o~ Ty

for any ¢, j and k.

Set

To=A{la1,...,an] €T | ap_1 =n—1},
't ={la1,...,an) €T | apn_1 =n},
Iy =A{la1,...,an] €T | ap_1 > n+1},
Too = {[a1,...,an] € To | an =n} = {0},
Tor ={[a1,...,an] €To | an =n+1} = {1},
Too = {[a1,...,an] €To | an > n+ 2},
I ={[a1,...,an] €T | an =n+ 1} = {d2},
I ={[a1,...,an] €T1 | an > n+2}.

Then

I'=Touly Ul
Fo =T Ul U2
I'y =T UTs.
Set a1 = thn-12, 02 = tpn-1,my B1 = tntin2 and B2 = tp41n,m. Then for v =
[a1,...,a,] € T, lif(vx) is, up to multiplication of nonzero element of K[T], as follows.
zp ifyeTo
P (B + Bawm) if v €Ty
o' Ta, i1 ify €Ty
Ta,Tay—1" " Tay_o—nt3(Q1T2 + @2y ) (B102+B2wy) if vy €Ty
TayTap—1"" " Ta,_,—n+3(Q1T2 + 02%m)Ta, —n+1 i 7 €12
Lo Tay—1"" " Ta,—n+1 if 7 € a.

Therefore, for v = [a1,...,a,]) € T, If(dxvx) is, up to multiplication of nonzero element
of KT,
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I%n if S Too

1" (Brag + Powy) if v € Toy

x%n_lx'an—n—&-l if v € o2

TV Tay Tay—1 - Ta,_,—n+3(1T2 + ay,)(B122+Poxy,) if v €Ty
TV TayTay—1 Ta,_p—nt3(01T2 + Q2T)Ta, —ny1 iy €T

T Ty Tay—1 " Tap—nt1 if v € Ta.

For v = [a1,...,a,] € T'\ {6}, If((01)xyx) is, up to multiplication of nonzero element
of K[T],

27" (Braa + Borm)? ify €Ty

27" (Br1we + Boim)Tay —n1  if 7 € Too

21 e, Tayo1 + Ta,_y—nt3(0122 + Qo) (BraatPazm)® ify €Tp

x?ilxalxagfl e xan,gfnJrB(ale + a2xm)(ﬂ1x2+ﬁ2xm)xan7rz+l if v e F12

21N (BraatBatm)Ta, Tay—1+  Ta,—nt1  ify €T
Finally, consider the leading form of (d2)x7yx, where v = [a1,...,a,] € T and suppy 5
{1,...,n—1}. Tt is easily verified that suppy 2 {1,...,n—1} if and only if y € T'y UT5.
Thus the leading form of (d2)xyx is, up to multiplication of nonzero element of K[T7,

20 W0y Tay 1 Ta,_y—nys(01T2 + Q2T ) (Br2a+PBaan)®  ify € Tiy

T @0y Tay—1* Tay_p—nt3(1T2 + 22) 2 (B122+B28m ) Tay —nt1  if ¥ € T

x?fz(alxg + oXm) (B122+82%m ) Tay Tag—1 ** * Ta,—n+1  if ¥ € o,

Since
1<y <ay—1<---<a,—n+1<u—m+1<m-1
p—2—m+3<2 ifyely
n—1—m+22>3 ifyely
and

an7n+123 if’}/GFOQuFlQ,
we see by Lemma 5.15 that

lf(6xvx) (veT)
E((01)xvx) (veT'\{d})
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lf(((SQ)X’yX) (’VE F? Supp7¢ {1,...,71— 1})
are linearly independent over K[T]. The assertion follows by Lemma 5.12. O

Corollary 5.17. Let K be a field, T a u X n X m tensor of indeterminates with u > n >
m > u—n+2, R acommutative ring containing K(T), € = (x1,...,Zm) a vector of
indeterminates. Set M = M(x,T) (cf. Definition 4.6) and B = R[x]. Then dyr is a
non-zerodivisor of B and for any ki, ko with 1 < ki,ky < n, ki # ko,

duym (v €T)
n+1

[, k2ol (Y €T\ {6})
[17'”7 kla‘”vn]M’yM (’761—‘7 Supp’yz{lw'w%%“'vn})

are linearly independent over R.

Proof. Set A = K[T'[z]. Then B = A k7] R.
Since R is flat over K[T], we see that B is flat over A. By Lemma 5.16, we see that
0 is a non-zerodivisor of A and for any ky, ko with 1 < k1, ke < n, ki # ko,

Suym (v €T)
0o Rl (v € T\ {6])

n+1 ~
[1,..., k1,....nlpmymw (v €T, suppy 2 {1,...,ka,...,n})

are linearly independent over K[T]. Since R (resp. B) is flat over K[T] (resp. A), we see
that 7 is a non-zerodivisor of B and for any ki, ko with 1 < ky, ko < n, k1 # ko,

omym (v €T)

L) Kool (v €T\ {8))

[1,..., ki,...on)lmuyr (v € Dsuppy 2 {1, ..., ka,...,n})
are linearly independent over R. O

Corollary 5.18. Let = (z1,...,2m) be a vector of indeterminates. Suppose that u > n
and Y € . (cf. Definition 4.15) and set M = M (z,Y). Then dpr is a non-zerodivisor
of Rlx] and for any ki, ko with 1 < ki, ks <n, k1 # ko,

oy (v €eT)

1o, Byl (€T {6])
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n+1 ~
[1""? kl 7"'7n]M7M (761—\3 Suppvz{1’~~~,k27~~',n})

are linearly independent over R.

Definition 5.19. Let = (x1,...,2,) be a vector of indeterminates. We set 2’ :=
n+1
{Y e Rw*™*™ | §pp # 0 and dypymr (v €T1), [1,..0, kayoooyn)pym (v € T\ {d}),
n+1 ~
[1,..., k1 ....nlmym (v €T, suppy 2 {1,...,ks,...,n}) are linearly independent

over R for any kq, ko with 1 < k; < ko <n, where M = M (z,Y)}.

Remark 5.20. 2’ is a Zariski open set of R¥*™*™ and by Corollary 5.18, we see that
2' D . In particular, 2’ is a Zariski dense open subset of R¥*"X™

By Lemma 5.14, we see the following fact.

Proposition 5.21. Let u, n and m be integers with u > n > m > u—n + 2 and let

x = (21,...,7m) be a vector of indeterminates. Suppose that Y € 2' and y € R*"*m,

Set
7= (Y> |
)
IfL(M(x,Y)) = L,(M(x,Y)), then i, (y) is an R-linear combination of rows of iy (Y').

Proof. Set M = M(x,Y). Since R[z] is a domain and dp; # 0 by the definition of 2/,
we see that dys is a non-zerodivisor of R[x]. Moreover,

dmym (v €T)

L) Fo e mlamar (v €T\ {8))

n+1 ~
[13"'7 kl 7"'7n]MﬂyM (’}/GF, Supp’yz{lau-vk%-",n})

are linearly independent over R for any ki, ko with 1 < k1 < ko < n by the definition
of 2'. Thus by Lemma 5.14, we see that M (x,y) is an R-linear combination of rows
of M = M(x,Y). Since z1,...,,, are indeterminates, we see that fl;(y) is an R-linear
combination of rows of fl;(Y). O

6. Tensor with rank p

Let3<m<n,(m—1)n—1)+1<p<(m—1)nandset I = (m—1)n —p and
u =n + [. In the following of this paper, we use the results of the previous sections by
setting ¢ = n. See Definition 4.6. Then v = [+ 1 and it follows that v < m since | < m—2.
Note also u 4+ p = nm. We make bunch of definitions used in the sequel of this paper.
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Definition 6.1. We put
Y = YPXM = [T € R™PX™ | fl,(T)=P is nonsingular}
and define o: ¥ — R“*P be a map defined as
o(T) = (" fl2(T)) (H2(T)=F) .

We denote by &7 **™*™ the set of all u x n x m absolutely full column rank tensors and
put cganXm — Ruxnxm \ %uxnxm. Note that %anXm — %anxm and cguxnxm —
€™ in the notation of Definition 4.15.

Let M be the subset of R**""™ consisting of all matrices W = (W1, ..., W,,) satisfying
that there are A = (aq,...,a,) € R"™? and p x p diagonal matrices D1, ..., D,, such
that Dy, = Diag(dlk, R dpk) forl1 <k <m, (dj1W1+' : '+dijm)aj =0forl <j<p,
and

AD,
(6.1)

ADm72
AS"L_le,l

is nonsingular. Let ¢: R¥*P — R**™™ he a map which sends A to (4, —E,). Moreover

put

We define ¢: RYX™ x R™ — RP a map defined as

alb
(Zgb
o(a,b) = : € RP, where a = (a1,...,@m-1,am)-

<n—l1
Qy—1b=

Recall that the set &/“*™*™ is an open subset of R**™*™ by Lemma 3.3 or Corol-
lary 4.20.

Proposition 6.2. o is an open, surjective and continuous map.

Proof. Clearly o is surjective and continuous. Let & be an open subset of ¥ and let
h: R™XP s RPXP x R¥XP be a homeomorphism defined as h(M) = (M <P, P<M). Then
h(fla(€)) can be written by

U O1,a X Oz»

A
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for some open subsets O1 y C RP*P and O3y C R**P and thus

o0)=J | 0wma™".

X A€O01
The set Oz A~ is open and then o (&) is open. O
The following fact follows from the definition.
Lemma 6.3. M is stable under the action of GL(u,R).
Lemma 6.4. M C C.

Proof. By observing the first column of (6.1), we see that a; # 0 and at least
ADq

one of dy1, di2,...,d1,m—1 is nonzero, since is nonsingular, where

ADpy s
ASn_lefl
Dy, = Diag(dik, ... ,dpk) for 1 < k < m — 1. Since di1Wi + - -+ + d1,, Wy, is singular,

(Wy;...; Wy,) is not absolutely full column rank, i.e, M CC. O

Theorem 6.5. Let X € ¥ C R™P*™_ Pyt (Wy,...,Wp_1,Wn) = t(o(X)), where

Wi,..., Wy € R¥*™. The following four statements are equivalent.
(1) rank X = p.
(2) There are an n X p matriz A, and diagonal p X p matrices D1, ..., Dy, such that
W1ADy + WoADy + -+ -+ Wy 1ADy 1 + W, AD,, = O (6.2)
and
AD,
= : 6.3
AD s (6.3)
Agnlem_l

is monsingular.

(3) U(o(X)) € M.

Proof. It holds that rank X > p, since fla(X)SP has rank p. Put (Si;...;S,) =
X (fl(X)=P)~! Then rank X = rank(Si;...;S,,) and

n—I<
< SSm1> = (W17W27~'~an72;(Wmfl)gnfl)
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(1) = (2): Since rank(Sy;...; Sm) = p, there are an n x p-matrix A, a p x p-matrix @,
and p X p diagonal matrices D1, ..., D,, such that

ADrQ =S5, fork=1,...,m.

Since
AD1 Sl
No—| e
Q ADm72 Q Sm72 P
Aén_lefl (Smfl)én_l

we see that NV and @ are nonsingular and Q~! = N. Since

n—I<
( SSm—1> — O'(X) = (Wl,W27~-~7Wm—27(Wm—1)§n—l)a
m
and ADy = SN for k =m — 1, m, we see that

Ou><p

B n—l<Smi1 n—l<ADm71
()= ()

=W1AD1 + -+ Wy2ADp, o

+ (Win1) <ntAS" Dy + (‘OE’> "ISADy oy + (_%n> AD,,
=WiADy + -+ Wy2ADy o+ Wy 1ADy 1 + Wp, AD,,.
Therefore the equation (6.2) holds.
(2) = (1): Set @ = N~!. Then, since NQ = E,,, we see that
ADQ =S5, 1<k<m-—2
and
AS™ID,, Q= S5
Furthermore, since
WiAD; + -+ Wy _9AD,,_o
+ (Wine1) <nt A" Dy + (‘OE’> "ISADyy + (_%n> AD,,

= WiAD; + -+ W, AD,,

= Ouxp>
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we see that

<81 _ (B naic @
(55 e (5) <A+ () a0

Thus

n—l<Al)m_1 Q _ n—l<Sm_1
ADm - Sm

and we see that AD;Q = Sy, for k = m—1, m. Therefore, rank X = rank(Sy;...;5,) <p
and we see (1).
Finally it is easy to see that (2) < (3). O

Since M C C by Lemma 6.4, we see the following:

Proposition 6.6. For X € ¥, if rank X = p, then 1(o(X)) ¢ fl; (a/*>*m*™m),
7. Contribution of absolutely full column rank property

Let m, n and p be integers with 3 <m <nand (m—1)(n—1)+1 <p < (m—1)n. We
set u =nm — p and t = n and use the results of Sections 4 and 5. Note v =u—n+1=
(m —1)n — p+ 1 in the notation of Definition 4.6.

It is known that the generic rank grank(n,p,m) of n X p x m tensors over C is equal
to p ([5, Theorem 3.1] or [6, Theorem 2.4 and Remark 2.5]) and it is also equal to the
minimal typical rank of n X p x m tensors over R. Thus if we discuss the plurality of
typical ranks, it is enough to consider whether there exists a typical rank that is greater
than p or not.

Definition 7.1. We set A := .71 (fl; (@“*"*™)) C R“*P, where ¢ and &7**"*™ are defined
in Definition 6.1.

Lemma 7.2. If Y € ¥™*P*™ gnd o(Y) € A, then rankY > p.

Proof. This follows from the fact that rankY > p if Y € ¥"™*P*X™ and Proposi-
tion 6.6. O

Theorem 7.3. If &/“>X"X™ =L () then there are plural typical ranks of n X p X m tensors
over R.

Proof. By Lemma 3.5, we see that A # 0. Since .&/%*™*™ is an open subset of R4X"*™M
we see that A is an open subset of R“*P, Moreover, since g: ¥"*P*™ — R“XP ig a
surjective continuous map, we see that 0 ~!(A) is a nonempty open subset of #™*P*xm,
Thus, there is a typical rank greater than p by Lemma 7.2.
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Since p is a typical rank of n X p X m tensors over R, we see that there are plural
typical ranks of n X p X m tensors over R. 0O

From now on until the end of this section, we assume that p > (m — 1)(n — 1) + 2.
Thus, m > v + 2.

Definition 7.4. Let Y € R**™*™ and let = (z1,..., %) be a vector of indeterminates.
For i1, ...,in—1 € {1,...,u}, we set
(—1)”21[2.1, N ,in,1 | 2, e, — 1,n]M(w7y)
(=1)™2[i1, i1 | 1,3, n = Ln] ey
¢i1,~~~;in—1(w7 Y) = . € R[Cc]n
(=1)*"[i1, .. yip_1 | 1,...,n—2,n — M,y
For the definition [ay,...,as | b1, ..., bs], see Definition 4.6. We define 1@1“”%71 s R
Ruxnxm _ Rz]? by
w1iy i (@, Y) O\ P
. Totiy iy (2,Y)
wh ----- in—1(m7 Y) = : € R[(B]p
mm—1¢i17,..,i",1(wyy)
We also define the R-vector space U(Y') by
~ u e V(I,(M(z,Y)))
UY):= i i ’LL,Y . . ’ ’ C RP,
)= sy | € VOV
For ¢ = (611, ey Cn15C125 -5 Cn2y o s Clmy - - - 7cnm) S Rlxnm, we set Zp =
( i ) for 1 <k<m, Z=(Z;...;Zy) € Rutxnxm anq
Cik - Cnk
Giryosin (@Y €) = [in, .o yin—1,u + 1 p(2,2)
for any i1,...,in—1 € {1,...,u}. For the definition [i1,...,in—1,% + 1]pr(z,z), see Defi-

nition 4.6.
Lemma 7.5. Suppose that Y € R“*"*™_ Then the following claims are equivalent.

(1) dimU(Y) = p.
(2) If c € RY*"™ satisfies the following conditions, then ¢ = 0.
(¥) p<c=0 and
(%%) Giy...in_,(u,Y,c) = 0 for any u € V(I,(M(x,Y))) and any i1,...,in—1 €
{1,...,u}.
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Proof. The vector d € R? is perpendicular to U(Y) if and only if d is perpendicular
to Ui,...i,_,(w,Y) for any w € V(I,(M(x,Y))) and any ij,...,4,_1. Since the inner

.....

Next we show the following result. For the definition of M, see Definition 6.1.
Lemma 7.6. If dim U (Y) = p, then fl1(Y) € M.

Proof. Set Y = (Y1;...;Y,,). Suppose that dim U(Y) = p. Then there are uq,...,up, €
V(In(M(:c, Y))) and tll) . 7t1,n—17 . ,tpl, . 7tp,n—1 such that

wtu ----- t1,n—1 (ul, Y)a .. 7wtp1,...,tpm,—1 (upv Y)

are linearly independent over R. Set w; = (uj1,...,ujm) for 1 < j < p, Dy =
Diag(uik, .- ., upg) for 1 <k <m and

A= th ----- t1,m—1 (ula Y)a B ,wt;ﬂ ----- tp,n—1 (up7 Y))

Then,
AD, AD; \ =P
ADy» | | 4D,,_,
ASnile—l ADm—l

= ('(/A]t11,~--,t1,n71 (ula Y)’ ce- ’,(//;tpln"ytp,nfl(up7 Y))

is a nonsingular matrix and

(L1, s tjn—1]M(u,,v)
(2,851, s tjn—1]M(u,,v)

(w1 Y1+ um Yo )ty 00 (U5, Y) = : =0
(U tjay s tin—1]M(u,,y)

since I,(M(u;,Y))=(0) for 1 <j<p. O

Definition 7.7. Set % := {Y € Rv*™>*™ | ,fl;(Y) is nonsingular}, O3 :=Z N2N2'N
P =0,NUN2 and Oy := U N2N2 NA""M = GoNU N2, where 2, 2’ and
2, are the ones defined in Definitions 4.27, 5.19, and 4.24 and @, and Oy are the ones
in Theorem 4.31 under ¢t = n. Define v: Z — R**? as v(Y) := — (<1 (Y)) " 11(Y)<,
for ¢ = 1,2, where o is the one defined in Definition 6.1. Set O; = v(0;+2) C R¥*P and

Ty = 0~ 1(O;)C PXPXM for = 1,2.

The following fact is immediately verified.
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Lemma 7.8. :(v(Y)) = fl; (—(,<f;: (Y))"'Y).
By the same way as Theorem 4.31 (1), (2) and (3), we see the following fact.
Lemma 7.9. Then the following hold.

(1) 05 and Oy are disjoint open subsets of R¥*™*™ and 05 is nonempty.
(2) O3U 0Oy is a dense subset of R*>*m>m,
(3) WS — guxXnxm _ Ruxnxm \ ofuxXnxm.

Lemma 7.10. fl,(05) C M.

Proof. Let Y € 05. By Lemmas 7.6 and 7.5, it is enough to show that if ¢ € RM*"™
satisfies (%) and (xx), then ¢ = 0.

Set ¢ = (c1,...,¢n), where ¢; € RY™ ¢ = (e1;-+-5¢) € RP*™X™ and Yy =
(f) Then by (+#), gi,....s. (@, Y,¢) € I(V(I.(M(2,Y)))) for any i1,...,in_1 €
{1,...,u}. Therefore, by the definition of &5 and Theorem 4.31 (5), we see that
Girooiin 1 (®,Y,€) € I,(M(2,Y)) for any 41,...,i,—1 € {1,...,u}. Thus we see that
IL.(M(x,Y)) = I,(M(z,Y)). Thus, by Proposition 5.21, we see that fl; (¢) is an R-linear
combination of rows of fl; (Y'). Since ,cc =0and Y € %, we see that c=0. O

By the same way as Proposition 6.2, we see the following:
Proposition 7.11. v is an open, surjective and continuous map.
We see the following fact.
Lemma 7.12. Then the following hold.

Y € "™ if and only if v(Y) € A forY € % .
O1 and Oy are disjoint open subsets of R P and O1 # ).

tw(Y)) = 1 (—(p<f1(Y)) 1Y) and fl; is a bijection, we see (1).

We see (2) by the facts that 22, and &/**"*™ are stable under the action of GL(u,R),
Lemma 7.9, and Proposition 7.11. (3) also follows from Lemma 7.9 and Proposition 7.11.
We see by (1) that if Y € 03, then v(Y) ¢ A. Thus O; = v(05) C R“*P \ A. Since
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O3 = RuXnxm\ g7uxnxm by [ emmas 7.9 (3), we see that O; D v(03N%) = v((R¥*Xm\
gy N g ) = R**P\ A by (1) and the surjectivity of v. Thus we see (4). Therefore
Oy C A by (2). Further, we see that Oz D A by (3) and (4). Thus we see (5). O

Lemma 7.13. Let X and Y be topological spaces, f: X — Y a mapping and B a subset
of Y.

(1) If f is continuous, then f~*(B) D f~1(B).

(2) If f is an open map, then f~1(B) C f~1(B).

Proof. (1): Since f~!(B) is a closed subset of X containing f~!(B), we see that

1~'(B) > F1(B).

(2): Suppose that x € f~1(B) and let U be an open neighborhood of . We show that
Unf~YB)#0.

Since f(x) € B, f(x) € f(U) and f(U) is an open subset of Y, we see that f(U)N B #
(). Take b € f(U) N B and a € U such that f(a) = b. Then, since f(a) € B, we see that
a € f~Y(B). Thus, a € UN f~1(B) and we see that UN f~1(B) #0. O

Theorem 7.14. Let m, n and p be integers with3 <m <n and (m—1)(n—1)+2<p <
(m — 1)n. The following hold.

(1) A and F5 are disjoint open subsets of ¥ P*™ and 7 is nonempty.

(2) AU Z is a dense subset of RV<PX™M,

(3) Em YNXPXM _ A/nXpXm \0'_1(A) and ?20 Yuxpxm _ mm grnxpxm.
4) If T € &, thenrank T = p.

(5) If T € P, then rankT > p.

Proof. First note that o—1(X) N ¥"*P*™ = 5=1(X) for any subset X of R**? by
Lemma 7.13, since ¢ is an open continuous map.

(1) and (2) follow from Lemma 7.12 and the facts that o is surjective and ¥"™*P*™ ig
a dense subset of R™"*P*,

(3): We see by Lemma 7.12 that .7, N #™*PXm = o=1(0)) = 07} (R¥*P\ A) =
yrxexm\ g=l(A) and To NP VPXM = g=1(Oy) = o 1(A) N yXPX™,

(4): Suppose that T' € 3. Then o(T) € O;. Thus there exists Y € 3 such that
v(Y) = o(T). By Lemma 7.10, we see that fl;(Y) € M. Hence t(o(T)) = t(v(Y)) =
—(p<f1(Y))"11(Y) € M, since M is stable under the action of GL(u,R). Therefore
rank T' = p by Theorem 6.5.

(5): I T € P, then o(T) € Oy C A by Lemma 7.12. Thus rankT > p by
Lemma 7.2. O
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8. Upper bound for typical ranks

In Lemma 7.2, we see a class of tensors with rank greater than p. To complete the
proof of Theorem 1.2, we give an upper bound of the set of typical ranks of R™*P*™:

Theorem 8.1. Let 3<m <n and (m—1)(n—1)+1 <p < (m —1)n. Any typical rank
of R">*PX™ g less than or equal to p+ 1.

‘We prepare the proof.

Let 3<m<n (m—-—1)n-1)+1<p< (m—1)nand u = mn — p. Let
ol : yrxptxm _ Ru=1)x(p+1) he the counterpart of o: ¥™*PX™ s R“*P_ Also,
let A/ ¢ R=Dx(+1) and 7/ ¢ ym>P+Dxm he the counterparts of A C R**P and
Ty C YXPXTM respectively. Let m: R?*(PH)xm _y RrxpXm he g canonical projection
defined as m(Y1;...;Y) = (Y1) <p;---; (Yimn)<p). Clearly 7 is a continuous, surjective
and open map.

Lemma 8.2. 7(.7}) is an open dense subset of R™"*P*™,

Proof. Since .77 is an open set and 7 is an open map, w(.7;') is an open subset of R"*P*™,
We show that (7)) is dense. Let X € ¥"*P*™_ Consider the map f: ¥"*P*™ —
ymx (XM defined as

f(Xh ceey Xm72; mel;Xm> = ((X], O)a ey (Xm727 0)7 (mela 6); (Xm7 0))

where e is the (2n — u 4+ 1)th column vector of the identity matrix E,. Since the
(p + 1)th column vector of the matrix o/(f(X)) is zero, f(X) ¢ o' ~!(A’) holds and
by Theorem 7.14 (3), f(X) € F7. Since 7 o f is the identity map and  is continuous,

X e n(F) € w(F7) holds. Therefore ¥"*P*™ C 1(F/) and thus R"*P*™ = 7(F/). O

By Theorem 7.14 (5), and Lemma 8.2, we have immediately the following corollary.

Corollary 8.3. Let3<m <nand (m—1)(n—1)+1<p< (m—1n. % #0 if and
only if S Nw(F)#0, and rankT =p+1 for any T € T N7w(TF).

Note that arbitrary tensor of 7(.77) has rank less than or equal to p + 1 by Theo-
rem 7.14 (4).

Proof of Theorem 8.1. The assertion for p = (m — 1)n holds by [33]. Suppose that
(m—=1)(n—1)+1<p< (m—1)n. Then rank(T) < p+ 1 for T € n(F). Since 7w (.F)
is dense, arbitrary integer greater than p + 1 is not a typical rank. 0O

Recall that trank(m,n,p) = trank(n, p, m). We are ready to prove main theorems.

Proof of Theorem 1.1. (1) follows from Theorem 7.3 and Corollary 3.4.
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(2): We may assume that 3 < m < n without the loss of generality. Ten Berge [35]
showed that R™*"™*? has a unique typical rank for p > (m — 1)n + 1. Therefore, we
see that p < (m — 1)n. Set u = mn — p. By Theorem 7.14 (2) and (4), we see that
T3 # (. Furthermore, 5 # () = O, # 0 by definitions and the surjectivity of ¢. Since
Oy C "™ we see that there exists an absolutely full column rank u x n x m tensor.
The result follows from Corollary 3.4. O

Proof of Theorem 1.2. We may assume that 3 < m < n. Note that
trank(m,n, p) = {min{p, mn}}

for k > m [35]. Suppose that 2 < k < m — 1. By Theorem 8.1, the maximal typical rank
of R"™*™XP ig less than or equal to p+ 1. Since p is the minimal typical rank of R™*"*P,
trank(m,n, p) is {p} or {p,p + 1}. By Theorem 1.1, R™*"*P has a unique typical rank
if and only if m#n> mn — p + 1, equivalently, k> m 4+ n — (m+#n). This completes the
proof. O

We immediately have Theorem 1.3 by Proposition 2.4 and Theorem 7.3. In the case
where p = (m — 1)(n — 1) + 1, we have many examples for having plural typical ranks.

Corollary 8.4. Let myn > 3 and a > 1. If m = 2°7! + s (mod 2%) and n = 2¢7 ! + ¢
(mod 2%) for some integers s and t with 1 < s,t < 2%71 then Rmxnx((m=1)(n=1)+1) p,e
plural typical ranks.

Proposition 8.5. Let a = 4,8. If m and n are divisible by a, then for each 1 < k < a,
Ranx((m—l)

(n=1+k) has plural typical ranks.

Proof. For a = 4,8, if m and n are divisible by a, then m#n < m + n — a by
Proposition 2.3 and thus m +n — 1 — (m#n) > a — 1. Then the assertion follows by
Theorem 1.2. 0O

Corollary 8.6.

(1) R¥***** has plural typical rank whenever 10 < k < 12.
(2) RE*8XF has plural typical rank whenever 50 < k < 56.

Proposition 8.7. Let m,n > 3. If R7*n>x((m=1)n=1+1) has o unique typical rank, then

_ (m—1)(n—1)
trank(m,n, (m—1)(n—1)—k) = {(m—1)(n—1)+1} holds whenever 0 < k < *=—2=-.

Proof. Let 0 < k < %, g=m-1)(n—-1)—kandp=(m—-1)(n—-1)+1
Suppose that R™*"*P has a unique typical rank. Then trank(n, p,m) = {p}. Since the
set of all n x p x m tensors with rank p is a dense subset of R™"*P*™ the image of this set

by a canonical projection R™*P*™ — R™X4*™ ig also a dense subset of R"*4*™  Thus
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any typical rank of R"*2*™ ig less than or equal to p. On the other hand, by elementary

calculation, we see that (m—1)(n—1) < Tl — < k < % Thus the minimal

typical rank of R™*2*™ ig greater than or equal to p. Therefore R™*7*" has a unique
typical rank p. O

Corollary 8.8. Let 3 < m < n. Suppose that R™*"*((m=1n=1+1) hag ¢ unique typical
rank. If 0 < k <[] — 1 then trank(m,n, (m —1)(n — 1) = k) = {(m —1)(n — 1) + 1}.

Proof. Let 0 <k < [%|—1. Then (m+n—-1)(k+1) < (m+n—-1)F < (n+n—-1)F <
mn and thus (m +n — 1)k < (m — 1)(n — 1). Therefore the assertion follows from
Proposition 8.7. O
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