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1. Introduction

For positive integers m, n, and p, we consider an m ×n ×p tensor which is an element of 
the tensor product of Rm, Rn, and Rp with standard basis. This tensor can be identified 
with a 3-way array (aijk) where 1 ≤ i ≤ m, 1 ≤ j ≤ n and 1 ≤ k ≤ p. We denote by 
Rm×n×p the set of all m × n × p tensors. This set is a topological space with Euclidean 
topology. Hitchcock [15] defined the rank of a tensor. An integer r is called a typical rank 
of Rm×n×p if the set of tensors with rank r is a semi-algebraic set of dimension mnp. In 
the other words, r is a typical rank of Rm×n×p if the set of tensors with rank r contains a 
nonempty open set of Rm×n×p. In this paper we discuss the typical ranks of 3-tensors and 
connect between plurality of typical ranks and existence of a nonsingular bilinear map.

Let n ≤ p. A typical rank of R1×n×p is equal to an n ×p matrix full rank, that is, n. If 
n ≥ 2, then the set of typical ranks of R2×n×p is equal to {n, n +1} if n = p and otherwise 
min{p, 2n} [36]. This is also obtained from the equivalent class: almost all 2 ×n ×p tensors 
are equivalent to ((En, On×(p−n)); (On×(p−n), En)) which has rank min{p, 2n} if n < p

(see [18] or [32]), see Section 2 for notation. Suppose that n ≥ m ≥ 3. The set of typical 
ranks of Rm×n×p is equal to min{p,mn} if (m − 1)n < p [35]. If p = (m − 1)n then the 
set of typical ranks of Rm×n×p depends on the existence of a nonsingular bilinear map 
Rm ×Rn → Rn: It is equal to {p} if there is no nonsingular bilinear map Rm ×Rn → Rn

and {p, p +1} otherwise [33]. Here, a bilinear map f : Rm×Rn → Rr is called nonsingular 
if f(x, y) = 0 implies x = 0 or y = 0.

Suppose that (m − 1)(n − 1) + 1 ≤ p ≤ (m − 1)n. A typical rank of Rm×n×p is 
unknown except a few cases. First, p is a minimal typical rank, since p is a generic 
rank of Cm×n×p [5]. The authors [34] showed that the Hurwitz–Radon function gives a 
condition that Rm×n×(m−1)n has plural typical ranks. We [24] also showed that Rm×n×p

has plural typical ranks for some (m, n, p) by using the concept of absolutely full column 
rank tensors. We let m#n be the minimal integer r such that there is a nonsingular 
bilinear map Rm×Rn → Rr. Then m#n ≤ m +n −1 (see Section 2). The set Rr×m×n of 
r×m ×n tensors is one to one corresponding to the set of bilinear maps Rm×Rn → Rr. 
By this map the set of absolutely full column rank tensors is one to one corresponding 
to the set of nonsingular bilinear maps.

Theorem 1.1. Let m, n ≥ 3 and (m − 1)(n − 1) + 1 ≤ p ≤ mn.

(1) If there exists a nonsingular bilinear map Rm × Rn → Rmn−p, then Rm×n×p has 
plural typical ranks.

(2) If p ≥ (m − 1)(n − 1) + 2 and Rm×n×p has plural typical ranks, then there exists a 
nonsingular bilinear map Rm × Rn → Rmn−p.

(1) of Theorem 1.1 is an extension of one of [24]. Furthermore, we completely determine 
the set trank(m, n, p) of typical ranks of Rm×n×p for p≥(m −1)(n −1) +2 by the number 
m#n.
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Theorem 1.2. Let m, n ≥ 3, k ≥ 2, and p = (m − 1)(n − 1) + k. The set of typical ranks 
of Rm×n×p is given as follows.

trank(m,n, p) =

⎧⎪⎪⎨
⎪⎪⎩

{p, p + 1}, 2 ≤ k ≤ m + n − 1 − (m#n)
{p}, max{2, (m + n) − (m#n)} ≤ k ≤ m + n − 2
{mn}, k ≥ m + n− 1.

Consider the case where p = (m − 1)(n − 1) + 1, Friedland [12] showed that 
Rn×n×((n−1)2+1) has plural typical ranks. We extend this result.

Theorem 1.3. Let m, n ≥ 3 and p = (m − 1)(n − 1) + 1. Rm×n×p has plural typical ranks 
if m − 1 and n − 1 are not bit-disjoint.

This article is organized as follows. Sections 2–7 are preparation to show the above 
theorems. In Section 2, we set notations and discuss the number m#n. In Section 3, we 
study absolutely full column rank tensors. Since the set of absolutely full column rank 
tensors is an open set, there exists a special form of an absolutely full column rank tensor 
if an absolutely full column rank tensor exists. In Section 4, we state the other notions 
and deal with ideals of minors of matrices. Theorem 4.31 in Section 4 which corresponds 
with the real radical ideals is quite interesting in its own right. We show that for integers 
with 0 < t ≤ min{u, n} and m ≥ (u −t +1)(n −t +1) +2, there exist open subsets O1 and 
O2 of Ru×n×m such that the union of them is dense, I(V(It(M(x, Y )))) = It(M(x, Y ))
for Y ∈ O1 and I(V(It(M(x, Y )))) = (x1, . . . , xm) for Y ∈ O2, where It(M(x, Y )) is 
the ideal generated by all t-minors of the u × n matrix M(x, Y ) =

∑m
k=1 xkYk given by 

the indeterminates x1, . . . , xm and Y = (Y1; . . . ; Ym) ∈ Ru×n×m. From this, we can give 
a subset of m × n × p tensors with rank p for 3 ≤ m ≤ n and (m − 1)(n − 1) + 2 ≤
p ≤ (m − 1)n. In Section 5 we discuss a property for the determinantal ideals by using 
monomial preorder. This property plays an important role for proving Theorem 1.1. We 
characterize m × n × p tensors with rank p in Section 6. In Section 7, we show that the 
existence of an absolutely full column rank tensor with suitable size implies that p +1 is 
a typical rank of Rm×n×p. Moreover there exist a nonempty open subset T1 consisting 
of tensors with rank p and a possibly empty open subset T2 consisting of tensors with 
rank greater than p, corresponding O1 and O2 respectively, such that the union of them 
is a dense subset of Rm×n×p (see Theorem 7.14). Finally, in Section 8, we show that 
p + 2 is not a typical rank of Rm×n×p and complete proofs of the above theorems.

2. Nonsingular bilinear maps

We first recall some basic facts and establish terminology.
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Notation.

(1) We denote by Rn (resp. R1×n) the set of n-dimensional column (resp. row) real 
vectors and by En the n ×n identity matrix. Let ej be the j-th column vector of an 
identity matrix.

(2) For a tensor x ∈ Rn ⊗ Rp ⊗ Rm with x =
∑

ijk aijkei ⊗ ej ⊗ ek, we identify x
with T = (aijk)1≤i≤n,1≤j≤p,1≤k≤m and denote it by (A1; . . . ; Am), where Ak =
(aijk)1≤i≤n,1≤j≤p for k = 1, . . . , m is an n × p matrix, and call (A1; . . . ; Am) a 
tensor.

(3) We denote the set of n × p × m tensors by Rn×p×m and the set of typical ranks by 
trank(n, p, m).

(4) For an n × p ×m tensor T = (T1; . . . ; Tm), an l×n matrix P and an k× p matrix Q, 
we denote by PT the l × p × m tensor (PT1; . . . ; PTp) and by TQ� the n × k × m

tensor (T1Q
�; . . . ; TpQ

�).
(5) For n ×p matrices A1, . . . , Am, we denote by (A1, . . . , Am) the n ×mp matrix obtained 

by aligning A1, . . . , Am horizontally.

(6) We set Diag(A1, A2, . . . , At) =

⎛
⎜⎜⎝
A1 O

A2
. . .

O At

⎞
⎟⎟⎠ for matrices A1, A2, . . . , At.

(7) For an m ×n matrix M , we denote by M≤j (resp. j<M) the m ×j (resp. m ×(n −j)) 
matrix consisting of the first j (resp. last n − j) columns of M . We denote by M≤i

(resp. i<M) the i × n (resp. (m − i) × n) matrix consisting of the first i (resp. last 
m − i) rows of M . We put M<i = M≤i−1, M<i = M≤i−1, and M=i = i−1<(M≤i)
which is the i-th row vector of M .

(8) We set fl1(T ) = (T1, . . . , Tm) and fl2(T ) =

⎛
⎝ T1

...
Tm

⎞
⎠ for a tensor T = (T1; . . . ; Tm).

Definition 2.1. A bilinear map f : Rm × Rn → Rl is called nonsingular if f(x, y) = 0
implies x = 0 or y = 0. For positive integers m and n, we set

m#n := min{l | there exists a nonsingular bilinear map Rm × Rn → Rl}.

Let g : R1×u × R1×v → R1×(u#v) be a nonsingular bilinear map. For positive in-
tegers m and n, let f : R1×mu × R1×nv → R1×(m+n−1)(u#v) be a map defined by 
f((a1, . . . , am), (b1, . . . , bn)) = (g(a1, b1), g(a1, b2) +g(a2, b1), . . . , 

∑
i+j=k g(ai, bj), . . . ,

g(am, bn)). It is easily verified that f is a nonsingular bilinear map. Thus we have the 
following:

Lemma 2.2. (mu)#(nv) ≤ (m + n − 1)(u#v).
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By applying this lemma to nonsingular bilinear maps obtained by multiplications of 
R, C, quaternions and octanions respectively, we have the following:

Proposition 2.3 (cf. [30, Proposition 12.12 (3)]). For k = 1, 2, 4 and 8, it holds that 
km#kn ≤ k(m + n − 1).

Let H (r, s, n) be the condition on the binomial coefficients, called the Stiefel–Hopf 
criterion, that the binomial coefficient 

(
n
k

)
is even whenever n −s < k < r. If there exists 

a continuous, nonsingular, biskew map Rr × Rs → Rn then the Stiefel–Hopf criterion 
H (r, s, n) holds. Put

r ◦ s = min{n | H (r, s, n) holds}.

We have

max{r, s} ≤ r ◦ s ≤ r#s ≤ r + s− 1.

Putting n∗ = �n
2 	 for n ∈ Z, the number r ◦ s is easily obtained by the formula

r ◦ s =
{

2(r∗ ◦ s∗) − 1 if r, s are both odd and r∗ ◦ s∗ = r∗ + s∗ − 1,
2(r∗ ◦ s∗) otherwise

(cf. [30, Proposition 12.9]).
For a positive integer n, we put integers αj(n) = 0, 1, j ≥ 0 such that n =∑∞
j=0 αj(n)2j is the dyadic expansion of n and let α(n) :=

∑∞
j=0 αj(n) be the number of 

ones in the dyadic expansion of n. Two integers m and n are bit-disjoint if {j | αj(m) = 1}
and {j | αj(n) = 1} are disjoint. For k > h, let τ(k, h) be a nonnegative number defined 
as

τ(k, h) = #{j ≥ 0 | αj(k − h) = 0, αj(k) 
= αj(h)}.

Proposition 2.4. r#s = r + s − 1 if and only if r − 1 and s − 1 are bit-disjoint.

Proof. If r − 1 and s − 1 are bit-disjoint, then r ◦ s = r#s = r + s − 1 (cf. [30, p. 257]). 
Moreover, τ(k, h) = 0 if and only if h and k − h are bit-disjoint. There is a nonsingular 
bilinear map Rh+1 × Rk−h+τ(k,h) → Rk for k > h ≥ 0 [20] and thus (h + 1)#(k − h +
τ(k, h)) ≤ k. Putting r = h +1 and k = r+s −2, we have r#(s −1 +τ(r+s −2, r−1)) ≤
r + s − 2. In particular, if r − 1 and s − 1 are not bit-disjoint then r#s ≤ r + s − 2. �

Let ρ be the Hurwitz–Radon function defined as ρ(n) = 2b+8c for nonnegative integers 
a, b, c such that n = (2a + 1)2b+4c and 0 ≤ b < 4. There is a nonsingular bilinear map 
Rn × Rρ(n) → Rn [17,26] and there is no nonsingular bilinear map Rn × Rρ(n)+1 → Rn

for any n ≥ 1 [1]. Therefore, n#ρ(n) ≤ n and n#(ρ(n) + 1) > n.
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Corollary 2.5. n#n ≤ 2n −2. In particular, the equality n#n = 2n −2 holds for n = 2a+1.

Proof. The inequality n#n ≤ 2n − 2 is clear by Proposition 2.4 since n − 1 and n − 1
are not bit-disjoint.

There is an immersion RPn → Rn+k if and only if there is a nonsingular biskew map 
Rn+1 × Rn+1 → Rn+1+k (cf. [2,30]). Note that ρ(2) = 2 and ρ(4) = 4. Then 2#2 = 2
and 3#3 = 4 which follows from 4#4 = 4. Suppose that a ≥ 2. Put m = 2a−1. Since 
there is no immersion RP2m→R4m−2 (cf. [21]), we have 4m = (2m + 1)#(2m + 1). �

Many estimations for m#n are known from immersion problem for manifolds, as 
projective spaces. For example, the existence of a nonsingular bilinear map Rn+1 ×
Rn+1 → Rn+1+k implies that RPn immerses in Rn+k [13].

Proposition 2.6.

(1) (n + 1)#(n + 1) ≤ 2n − α(n) + 1 [7].
(2) (2n + α(n))#(2n + α(n)) ≥ 4n − 2α(n) + 2 [8].
(3) (8n + 9)#(8n + 9) ≥ 16n + 6 and (16n + 12)#(16n + 12) ≥ 32n + 14 if α(n) = 2

[10,31].
(4) (8n +10)#(8n +10) ≥ 16n +1 and (8n +11)#(8n +11) ≥ 16n +4 if α(n) = 3 [9,10].
(5) (n + 1)#(m + 1) ≤ n + m + 1 − (α(n) + α(n − m) + min{k(n), k(m)}) if m, n are 

odd and n ≥ m, where k(n) is a nonnegative function depending only in the mod 8 
residue class of n with k(8a +1) = 0, k(8a +3) = k(8a +5) = 1 and k(8a +7) = 4 [23].

(6) d(h + 1)#(d(k − h) + τ(k, h)) ≤ dk for k > h ≥ 0 and d = 1, 2, 4, 8 [20].
(7) (n + 1)#(n + τ(2n, n)) ≤ 2n.

3. Absolutely full column rank tensors

For a tensor T of Rn ⊗ Rp ⊗ Rm, we define the rank of T , denoted by rankT , the 
minimal number r so that there exist ai ∈ Rn, bi ∈ Rp, and ci ∈ Rm for i = 1, . . . , r
such that

T =
r∑

i=1
ai ⊗ bi ⊗ ci.

The set Rn×p×m has an action of GL(m) × GL(p) × GL(n) as

(A,B,C) ·
r∑

i=1
ai ⊗ bi ⊗ ci =

r∑
i=1

Aai ⊗Bbi ⊗ Cci.

For tensors T1, T2 ∈ Rm×n×p, T1 and T2 are said to be equivalent if T1 = (A, B, C) · T2
for some (A, B, C) ∈ GL(n) × GL(p) × GL(m). The equivalence relation preserves the 
rank. For a subset U and an open semi-algebraic subset S of Rm×n×p, we say that 
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almost all tensors in S are equivalent to tensors in U if there exists a semi-algebraic 
subset S0 of S with dim S0 < mnp such that any tensor of S \ S0 is equivalent to 
a tensor of U . In particular, for a given tensor T0, if almost all tensors in Rm×n×p are 
equivalent to {T0}, then we say that any tensor is generically equivalent to T0.

An integer r is called a typical rank of n × p × m-tensors if there is a nonempty 
open subset O of Rn×p×m such that rankX = r for X ∈ O. Over the complex number 
field C, it is known that there is a unique typical rank, called the generic rank, of 
n × p × m-tensors for any n, p and m. The set of typical ranks of n × p × m-tensors 
over R is denoted by trank(n, p, m) and the generic rank of n × p ×m-tensors over C is 
denoted by grank(n, p, m).

We recall the following facts.

Theorem 3.1 ([12, Theorem 7.1]). The space Rm1×m2×m3 , m1, m2, m3 ∈ N, contains 
a finite number of open connected disjoint semi-algebraic sets O1, . . . , OM satisfying the 
following properties.

(1) Rm1×m2×m3\
⋃M

i=1 Oi is a closed semi-algebraic set Rm1×m2×m3 of dimension strictly 
less than m1m2m3.

(2) Each T ∈ Oi has rank ri for i = 1, . . . , M .
(3) min{r1, . . . , rM} = grank(m1, m2, m3).
(4) trank(m1, m2, m3) = {r ∈ Z | min{r1, . . . , rM} ≤ r ≤ max{r1, . . . , rM}}.

Let T = (A1; . . . ; Ap) be an m × n × p tensor over R. The tensor T is called an 
absolutely full column rank tensor if

rank(
p∑

j=1
yjAj) = n

for any (y1, . . . , yp)� ∈ Rp \ {0}.
From the definition of the absolutely full column rank property, we see the following 

fact.

Lemma 3.2. Let T be an m ×n ×p tensor over R and P ∈ GL(m, R). Then T is absolutely 
full column rank if and only if so is PT .

Lemma 3.3 (see Corollary 4.20 or [24, Theorem 3.6]). The set of m × n × p absolutely 
full column rank tensors is an open subset of Rm×n×p.

Let T = (A1; . . . ; Ap) be an m × n × p-tensor. We define fT : Rn × Rp → Rm as

fT (x,y) =
p∑

yjAjx,

j=1
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where y = (y1, . . . , yp)�. Then fT is a bilinear map. This assignment T �→ fT induces a 
bijection from Rm×n×p to the set of all bilinear maps Rn×Rp → Rm. It is easily verified 
that fT : Rn × Rp → Rm is nonsingular if and only if T is absolutely full column rank. 
Therefore

Corollary 3.4. There is an m × n × p absolutely full column rank tensor if and only if 
there is a nonsingular bilinear map Rn × Rp → Rm, i.e., n#p ≤ m.

Lemma 3.5. Let n, m, and u be positive integers with u ≤ mn. Set p = mn − u. Then 
the following conditions are equivalent.

(1) n#m ≤ u.
(2) There is a u × n ×m absolutely full column rank tensor.
(3) There is a u ×n ×m absolutely full column rank tensor Y such that p<fl1(Y ) = −Eu.

Proof. (1) ⇔ (2) follows from Corollary 3.4.
It is clear that (3) ⇒ (2).
(2) ⇒ (3): Let X = (X1; . . . ; Xm) be a u × n ×m absolutely full column rank tensor. 

By Lemma 3.3, we may assume that p<fl1(X) is nonsingular. Set Y = −p<fl1(X)X. 
Then Y satisfies the required conditions. �
4. Ideals of minors

In this section, we state some results on ideals of minors, which we use in the following 
of this paper and interesting in its own right.

First we recall the definition of normality of a ring.

Definition 4.1 (see [22, Section 9]). Let R be a commutative ring. We say that R is 
normal if RP is an integrally closed integral domain for any prime ideal P of R.

Remark 4.2.

(1) A Noetherian integral domain is normal if and only if it is integrally closed.
(2) If R is a Noetherian normal ring, then R � R/P1 ×· · ·×R/Pr, where P1, . . . , Pr are 

associated prime ideals of R.

We recall a criterion of normality in terms of Serre’s condition.

Definition 4.3 ([22, page 183]). Let R be a Noetherian ring and i a nonnegative integer.

(1) We say that R satisfies (Ri) if RP is regular for any prime ideal P of R with htP ≤ i.
(2) We say that R satisfies (Si) if depthRP ≥ min{i, htP} for any prime ideal P of R.
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Lemma 4.4 ([22, Theorem 23.8]). Let R be a Noetherian ring. Then R is normal if and 
only if R satisfies (R1) + (S2).

The condition (R1) + (S2) is restated as follows.

Lemma 4.5. Let R be a Noetherian ring. Then R satisfies (R1) + (S2) if and only if the 
following condition is satisfied: if P is a prime ideal of R with depthRP ≤ 1, then RP

is regular.

Proof. First assume that R satisfies (R1) + (S2). Let P be a prime ideal of R with 
depthRP ≤ 1. Since R satisfies (S2), we see that depthRP ≥ min{htP, 2}. Therefore, 
htP ≤ 1. Thus by (R1), we see that RP is regular.

Conversely, assume that RP is regular for any prime ideal P of R with depthRP ≤ 1. 
First we show that R satisfies (R1). If P is a prime ideal with htP ≤ 1, then 
depthRP ≤ htP ≤ 1. Thus by assumption, we see that RP is regular. Next we show 
that R satisfies (S2). Let P be an arbitrary prime ideal of R. If depthRP ≤ 1, then by 
assumption, RP is regular. Thus depthRP = htP = min{htP, 2}. If depthRP ≥ 2, then 
depthRP ≥ min{htP, 2} holds trivially. �

Next we state notations and definitions used in this section.

Definition 4.6. We denote by u, n, m, and t positive integers with t ≤ min{u, n} and 
set v = (u − t + 1)(n − t + 1). Let M = (mij) be a u × n matrix with entries in a 
commutative ring A. We denote by It(M)A, or simply It(M), the ideal of A generated 
by t-minors of M . For α(1), . . . , α(t) ∈ {1, . . . , u} and β(1), . . . , β(t) ∈ {1, . . . , n}, we set 
[α(1), . . . , α(t) | β(1), . . . , β(t)]M := det(mα(i)β(j)), and if u ≥ n and α(1), . . . , α(n) ∈
{1, . . . , u}, we set [α(1), . . . , α(n)]M := det(mα(i)j). For a tensor T = (T1; . . . ; Tm) and 
a = (a1, . . . , am) we set M(a, T ) :=

∑m
i=1 aiTi and we define Γ(u × n) = {[a1, . . . , an] |

1 ≤ a1 < · · · < an ≤ u, ai ∈ Z}. For γ = [a1, . . . , an] ∈ Γ(u × n), we set suppγ =
{a1, . . . , an}. If B is a ring, A is a subring of B and T is a tensor (resp. matrix, vector) 
with entries in B, we denote by A[T ] the subring of B generated by the entries of T
over A. If moreover, B is a field, we denote by A(T ) the subfield of B generated by the 
entries of T over A. If the entries of a tensor (resp. matrix, vector) T are independent 
indeterminates, we say that T is a tensor (resp. matrix, vector) of indeterminates.

Here we note the following fact, which is verified by using [3, Chapter 1 Exercise 2]
or [25, (6.13)].

Lemma 4.7. Let A be a commutative ring, X a square matrix of indeterminates. Then 
detX is a non-zerodivisor of A[X].

Next we recall the following fact.



418 T. Sumi et al. / Journal of Algebra 471 (2017) 409–453
Lemma 4.8 ([16, Theorem 1 and Corollaries 3 and 4]). (see also [4, (6.3) Theorem]). Let 
A be a Noetherian ring and X a u × n matrix of indeterminates.

(1) ht(It(X)A[X]) = grade(It(X)A[X]) = v.
(2) If A is a domain, then It(X)A[X] is a prime ideal of A[X].
(3) If A is a normal domain, then so is A[X]/It(X)A[X].

We also recall the following fact.

Lemma 4.9 ([16, Theorem 1 and Corollaries 2 and 4]). (see also [4, (2.1) Theorem]). 
Let A be a Noetherian commutative ring and M a u × n matrix with entries in A. If 
It(M) 
= A, then htIt(M) ≤ v. Moreover, if A is Cohen–Macaulay and htIt(M) = v, 
then It(M) is height unmixed.

The following Lemma is a generalization of [4, (12.4) Lemma].

Lemma 4.10. Let u, n, m, t and v be as in Definition 4.6, A a commutative Noetherian 
ring, T = (tijk) a u × n × m tensor of indeterminates and f1, . . . , fm elements of A. 
Suppose that (f1, . . . , fm) 
= A. Set g = grade(f1, . . . , fm)A, f = (f1, . . . , fm) and M =
M(f , T ) = (mij).

(1) grade It(M)A[T ] = min{g, v}.
(2) If g ≥ v + 1 and A is a domain, then It(M)A[T ] is a prime ideal.
(3) If g ≥ v + 2 and A is a Cohen–Macaulay normal domain, then A[T ]/It(M)A[T ] is 

a normal domain.

Remark 4.11. If g ≥ v, then grade It(M) = ht It(M) = v by Lemma 4.10 (1) and [16, 
Theorem 1 and Corollary 4].

Proof of Lemma 4.10. Set R = A[T ].
First we prove (1). Set v′ = min{g, v}. Since It(M) ⊂ (f1, . . . , fm)R, we see that 

grade It(M)R ≤ grade(f1, . . . , fm)R = g. Thus we see by Lemma 4.9, grade It(M)R ≤ v′.
To prove the converse inequality, it is enough to show that if P be a prime ideal of 

R with P ⊃ It(M), then depthRP ≥ v′. Since if P ⊃ (f1, . . . , fm)R, then depthRP ≥
g ≥ v′, we may assume that P 
⊃ (f1, . . . , fm)R. Take l with fl /∈ P . Then M is essentially 
a matrix of indeterminates over A[f−1

l ][tijk | k 
= l]. Thus grade(It(M)R[f−1
l ]) = v by 

Lemma 4.8. Since RP is a localization of R[f−1
l ], we see that depthRP ≥ v ≥ v′.

Next we prove (2). We may assume f1, . . . , fm 
= 0. Set B = R/It(M)R. Since It(M)R
is grade unmixed by (1) and [16, Theorem 1 Corollaries 2 and 4] (see also [27, Corollary 
of Theorem 1.2] or [22, Exercise 16.3]), we see that every associated prime ideal of 
It(M)R is of grade v. In particular any associated prime ideal of It(M)R does not 
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contain (f1, . . . , fm)R, since g > v by assumption. Thus (f̄1, . . . , f̄m)B has grade at 
least 1, where f̄k denote the natural image of fk in B for 1 ≤ k ≤ m.

Since A[f−1
l ][tijk | k 
= l] is an integral domain and M is essentially a matrix of 

indeterminates over A[f−1
l ][tijk | k 
= l], we see that B[f̄l

−1] = R[f−1
l ]/It(M)R[f−1

l ]
is an integral domain for any l. Thus we see that f̄l is contained in all associated 
prime ideals of B but one. We denote this prime ideal by Pl. Since B[(f̄lf̄l′)−1] =
R[(flfl′)−1]/It(M)R[(flfl′)−1] is not a zero ring by the same reason as above, we see 
that Pl = Pl′ for any l and l′. In particular, Pl = P1 for any l with 1 ≤ l ≤ m. 
Since grade(f̄1, . . . , f̄m)B ≥ 1 and any associated prime of B other than P1 contains 
(f̄1, . . . , f̄m)B, we see that P1 is the only associated prime ideal of B.

Therefore, B ⊂ B[f̄1
−1] and we see that B is a domain.

Finally we prove (3). Assume that P is a prime ideal of B with depthBP ≤ 1. Since B
is Cohen–Macaulay by (1) and [16, Theorem 1 and Corollary 4] and ht(f̄1, . . . , f̄m)B ≥ 2, 
we see that P 
⊃ (f̄1, . . . , f̄m)B.

Take l with f̄l /∈ P . Then B[f̄−1
l ] is a normal domain by Lemma 4.8 and the same 

argument as above. Since BP is a localization of B[f̄−1
l ], we see that BP is regular by 

Lemmas 4.4 and 4.5. Thus B is normal by Lemmas 4.4 and 4.5. �
Here we note the following fact, which can be verified by considering the associated 

prime ideals of I and using [22, Theorems 15.5, 15.6].

Lemma 4.12. Let K be a field, x = (x1, . . . , xm) a vector of indeterminates and I a proper 
ideal of K[x]. Then

dimK[x]/I = max
{
r

∣∣∣∣ ∃i1, . . . , ir; x̄i1 , . . . , x̄irare algebraically
independent over K

}
,

where x̄i denote the natural image of xi in K[x]/I.

Lemma 4.13. Let K be a field, T = (tijk) a u × n × m-tensor of indeterminates, and 
x = (x1, . . . , xm) a vector of indeterminates. Set R = K[T ], L = K(T ), M = M(x, T )
and v′ = min{m, v}. Then

L[x1, . . . , xm−v′ ] ∩ It(M)L[x] = (0), R[x1, . . . , xm−v′ ] ∩ It(M)R[x] = (0),

L[x]/It(M)L[x] is algebraic over the natural image of L[x1, . . . , xm−v′ ] in L[x]/
It(M)L[x] and R[x]/It(M)R[x] is algebraic over the natural image of R[x1, . . . , xm−v′ ]
in R[x]/It(M)R[x].

Proof. Since It(M)L[x] is generated by homogeneous polynomials of positive degree with 
respect to x1, . . . , xm, we see that L ∩ It(M)L[x] = (0).

By Lemma 4.10, we see that It(M) is an ideal of height v′. Thus by Lemma 4.12, we 
see
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tr.deg
L
L[x]/It(M)L[x] = m− v′.

Thus there is a permutation i1, . . . , in of 1, . . . , n such that x̄i1 , . . . , ̄xim−v′ are alge-
braically independent over L and L[x]/It(M)L[x] is algebraic over L[x̄i1 , . . . , ̄xim−v′ ], 
where x̄i denote the natural image of xi in L[x]/It(M)L[x]. By symmetry, we see that 
x̄1, . . . , ̄xm−v′ are algebraically independent over L and L[x]/It(M)L[x] is algebraic over 
L[x̄1, . . . , ̄xm−v′ ]. We also see that R[x]/It(M)R[x] is algebraic over R[x̄1, . . . , ̄xm−v′ ].

Since x̄1, . . . , ̄xm−v′ are algebraically independent over L, we see that

L[x1, . . . , xm−v′ ] ∩ It(M)L[x] = (0)

and therefore R[x1, . . . , xm−v′ ] ∩ It(M)R[x] = (0). �
Lemma 4.14. Let L/K be a field extension with charK = 0, x = (x1, . . . , xm) a vector of 
indeterminates and Y a u ×n ×m tensor with entries in L. Set M = M(x, Y ). Suppose 
that the entries of Y are algebraically independent over K. Then the following hold.

(1) If m ≥ v+1, then L[x1, . . . , xm−v] ∩It(M)L[x] = (0) and L[x]/It(M)L[x] is algebraic 
over the natural image of L[x1, . . . , xm−v].

(2) If m ≥ v + 2, then L[x]/It(M)L[x] is a normal domain. In particular, It(M)L[x] is 
a prime ideal of L[x] of height v.

Proof. Since the entries of Y are algebraically independent over K, we see by Lemma 4.13
that K(Y )[x]/It(M)K(Y )[x] is algebraic over K(Y )[x1, . . . , xm−v]. Thus L[x]/It(M)L[x]
is algebraic over L[x1, . . . , xm−v] since L[x]/It(M)L[x] = (K(Y )[x]/It(M)K(Y )[x])
⊗K(Y ) L. On the other hand, since tr.deg

L
L[x]/It(M)L[x] = dimL[x]/It(M)L[x] ≥

m − v, by Lemmas 4.9 and 4.12, we see that x̄1, . . . , ̄xm−v are algebraically inde-
pendent over L, where x̄i denote the natural image of xi in L[x]/It(M)L[x]. Thus 
L[x1, . . . , xm−v] ∩ It(M)L[x] = (0). This proves (1).

Next we prove (2). Take a transcendence basis S of L/K(Y ) and put

A = K(Y )[x]/It(M)K(Y )[x],

C = K(Y )(S)[x]/It(M)K(Y )(S)[x] and

B = L[x]/It(M)L[x].

By Lemma 4.10 (3), we see that A is a normal domain.
Since

K(Y )[S][x]/It(M)K(Y )[S][x] = (K(Y )[x]/It(M)K(Y )[x]) ⊗K(Y ) K(Y )[S] = A[S]

is a polynomial ring (with possibly infinitely many variables) over A, it is an integrally 
closed integral domain. Since C is a localization of the above ring, C is a normal domain.
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Now let P be a prime ideal of B with depthBP ≤ 1. By Lemmas 4.4 and 4.5, it is 
enough to show that BP is regular. Set Q = C ∩ P . Then since B = C ⊗K(Y )(S) L is flat 
over C, we see that depthCQ ≤ 1 by [22, Theorem 23.3 Corollary]. Thus CQ is regular 
since C is normal. The fiber ring CQ/QCQ ⊗C BP is a localization of

CQ/QCQ ⊗C B = CQ/QCQ ⊗K(Y )(S) L

which is a 0-dimensional reduced ring, thus regular, since L is separably algebraic over 
K(Y )(S). (Note that L is an inductive limit of finitely generated algebraic extension 
fields of K(Y )(S). Or see [25, Theorem 3.2.6 and Theorem 3.2.8 (i)] and note the as-
sumption of the existence of a field containing M and N is not used in the proof of [25, 
Theorem 3.2.8 (i)].) Thus by [22, Theorem 23.7], we see that BP is regular.

Thus, B is a normal ring. Since B is a nonnegatively graded ring whose degree 0 
component is a field, B is not a direct product of 2 or more rings. Therefore, B is a 
domain by Remark 4.2. Moreover, we see by (1), that htIt(M)L[x] = v. �
Definition 4.15. Let u, n, m, t and v be as in Definition 4.6. We set

A u×n×m
t := {Y ∈ Ru×n×m | It(M(a, Y )) 
= (0) for any a ∈ R1×m \ {0}},

C u×n×m
t := Ru×n×m \ A u×n×m

t ,

I := {Y ∈ Ru×n×m | the entries of Y are algebraically independent over Q},

and for Y = (Y1; . . . ; Ym) ∈ Ru×n×m and for integers k, k′ with t ≤ k ≤ u and t ≤ k′ ≤ n, 
we set

μk,k′(x, Y ) := [1, . . . , t− 1, k | 1, . . . , t− 1, k′]M(x,Y ),

where x is a vector of indeterminates. We also define

Jt(x, Y ) = ∂(μtt, μt,t+1, . . . , μtn, μt+1,t, . . . , μt+1,n, . . . , μu,t, . . . , μun)
∂(xm−v+1, . . . , xm) (x, Y ),

St(Y ) :=
{
a ∈ R1×m

∣∣∣∣∣ detM(a, Y )<t
<t 
= 0, Jt(a, Y ) 
= 0 and

It(M(a, Y )) = (0)

}
,

Pt := {Y ∈ Ru×n×m | St(Y ) 
= ∅}.

Remark 4.16.

(1) A u×n×m
1 ⊃ A u×n×m

2 ⊃ · · · ⊃ A u×n×m
min{u,n}.

(2) A u×n×m
t is stable under the action of GL(u, R) for any t.

(3) C u×n×m
t 
= ∅ for any t.

(4) Pt is a subset of C u×n×m
t and
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St(Y ) =

⎧⎪⎨
⎪⎩a ∈ R1×m

∣∣∣∣∣∣∣
detM(a, Y )<t

<t 
= 0, Jt(a, Y ) 
= 0 and there exist
linearly independent vectors bt, . . . , bn ∈ Rn

such that M(a, Y )bj = 0 for any t ≤ j ≤ n

⎫⎪⎬
⎪⎭

Lemma 4.17. Let u, n and t be as in Definition 4.6, A an integral domain and M a 
u ×n matrix with entries in A. Suppose that detM<t

<t 
= 0 and [1, . . . , t − 1, k | 1, . . . , t −
1, k′]M = 0 for any integer with t ≤ k ≤ u and t ≤ k′ ≤ n. Then It(M) = (0). In 
particular,

St(Y ) =

⎧⎪⎨
⎪⎩a ∈ R1×m

∣∣∣∣∣∣∣
detM(a, Y )<t

<t 
= 0, Jt(a, Y ) 
= 0 and
[1, . . . , t− 1, k | 1, . . . , t− 1, k′]M = 0

for any integer with t ≤ k ≤ u and t ≤ k′ ≤ n.

⎫⎪⎬
⎪⎭

Proof. Set

ξl :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(−1)t+1[1, . . . , t− 1 | 2, . . . , t− 1, l]M
(−1)t+2[1, . . . , t− 1 | 1, 3, . . . , t− 1, l]M

...
(−1)2t−1[1, . . . , t− 1 | 1, . . . , t− 2, l]M

0
(−1)2t[1, . . . , t− 1 | 1, . . . , t − 2, t − 1]M

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ An

for each l with t ≤ l ≤ n ((−1)2t[1, . . . , t − 1 | 1, . . . , t − 2, t − 1]M in the l-th position). 
Then, since [1, . . . , t −1 | 1 . . . , t −1]M = detM<t

<t 
= 0, we see that ξt, . . . , ξn are linearly 
independent over A. Since the k-th entry of Mξl is [1, . . . , t − 1, k | 1, . . . , t − 1, l]M , we 
see, by assumption, that Mξl = 0 for t ≤ l ≤ n. Thus, rankM < t and we see that 
It(M) = (0). �

It is verified the following fact, since Q is a countable field.

Lemma 4.18. I is a dense subset of Ru×n×m.

We also see that A u×n×m
t is an open subset of Ru×n×m. First note the following fact, 

which is easily verified.

Lemma 4.19. Let X and Y be topological spaces with X compact and f : X × Y → R is 
a continuous map. Set g : Y → R by g(y) := minx∈X f(x, y). Then, g is a continuous 
map.

Corollary 4.20. A u×n×m
t is an open subset of Ru×n×m.
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Proof. Since A u×n×m
t is the set consisting of Y ∈ Ru×n×m such that

min
a∈Sm−1

(the maximum of the absolute values of t-minors of M(a, Y )) > 0,

we see the result by the previous lemma. �
Lemma 4.21. If v < m, then Pt is a dense subset of C u×n×m

t . In particular, Pt 
= ∅.

Proof. Let Y ∈ C u×n×m
t and U an open neighborhood of Y in Ru×n×m. In order to 

prove the first assertion, it suffices to show that Pt ∩ U 
= ∅.
There exist a nonzero vector a ∈ R1×m and linearly independent vectors bt, . . . , bn ∈

Rn such that M(a, Y )bj = 0 for t ≤ j ≤ n. Let g3 ∈ GL(m) and g2 ∈ GL(n) such 
that the first entry of g�3 a is nonzero, t≤(g�2 bt, . . . , g�2 bn) is nonsingular and sufficiently 
close to Em and En respectively so that (1, g−1

2 , g−1
3 ) · Y ∈ U . By replacing Y , a and 

bt, . . . , bn by (1, g−1
2 , g−1

3 ) ·Y , g�3 a and g�2 bt, . . . , g�2 bn respectively, we may assume that 
the first entry of a is nonzero and t≤(bt, . . . , bn) is nonsingular.

Let e ∈ R. We take a tensor P (e) = (pijk) ∈ Ru×n×m as follows. For any i, j, k with 
j < t or k 
= 1, we put

pijk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

eij (k = 1, i < t, j < t),
e ((i, j, k) = (t + l, t + l′,m− v + 1 + l + l′(u− t + 1)),

0 ≤ l ≤ u− t, 0 ≤ l′ ≤ n − t),
0 (otherwise)

and take pij1 for 1 ≤ i ≤ u and t ≤ j ≤ n so that M(a, P (e))bj = 0 for t ≤ j ≤ n. 
Note that we can take such pij1 since the first entry of a is nonzero and t≤(bt, . . . , bn)
is nonsingular.

Then we have

detM(a, Y + P (e))<t
<t 
= 0 and Jt(a, Y + P (e)) 
= 0

for e � 0.
Therefore, since the entries of P (e) are polynomials of e, we see that for a real number 

e0 
= 0 which is sufficiently closed to 0,

detM(a, Y + P (e0))<n
<n 
= 0, (4.1)

Jt(a, Y + P (e0)) 
= 0, (4.2)

Y + P (e0) ∈ U . (4.3)
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(4.1), (4.2) and the fact M(a, Y + P (e0))bj = M(a, Y )bj + M(a, P (e0))bj = 0 for 
t ≤ j ≤ n imply that a ∈ S(Y + P (e0)). Thus we have Y + P (e0) ∈ Pt and we see that 
Pt ∩ U 
= ∅.

The latter assertion follows from Remark 4.16. �
Lemma 4.22. Suppose that v < m. Then the set Pt is an open subset of Ru×n×m and 
for any Y ∈ Pt and a = (a1, a2) ∈ St(Y ), where a1 ∈ R1×(m−v) and a2 ∈ R1×v, there 
exists an open neighborhood O(a, Y ) of a1 ∈ R1×(m−v) such that for any b1 ∈ O(a, Y ), 
there exists b2 ∈ R1×v such that (b1, b2) ∈ St(Y ).

Proof. Assume that Y ∈ Pt and a = (a1, a2) ∈ St(Y ). Then μkk′(a, Y ) = 0 for any 
t ≤ k ≤ u and t ≤ k′ ≤ n. Thus by implicit function theorem, we see that there is an open 
neighborhood U of (a1, Y ) in R1×(m−v) ×Ru×n×m and a continuous map ν : U → R1×v

such that ν(a1, Y ) = a2, and μkk′(b, Z) = 0 for any (b1, Z) ∈ U and any k, k′ with 
t ≤ k ≤ u and t ≤ k′ ≤ n, where b := (b1, ν(b1, Z)). By replacing U by a smaller 
neighborhood if necessary, we may assume that detM(b, Z)<t

<t 
= 0 and Jt(b, Z) 
= 0 for 
any (b1, Z) ∈ U .

Assume (b1, Z) ∈ U . Put b = (b1, ν(b1, Z)). By Lemma 4.17, we see that b ∈ St(Z). 
Thus it suffices to set O(a, Y ) := {b1 ∈ R1×(m−v) | (b1, Y ) ∈ U}. Moreover, since 
{Z ∈ Ru×n×m | (a1, Z) ∈ U} is an open subset of Pt containing Y , we see that Pt is 
an open subset of Ru×n×m. �

By Corollary 4.20 and Lemmas 4.21 and 4.22, we see the following:

Corollary 4.23. If v < m, then Pt ⊂ int C u×n×m
t and Pt = intC u×n×m

t = C u×n×m
t .

Definition 4.24. We set P̃t := {PY | P ∈ GL(u, R), Y ∈ Pt}.

Lemma 4.25. P̃t is an open subset of Ru×n×m, stable under the action of GL(u, R) and 

P̃t = C u×n×m
t .

Proof. Since P̃t =
⋃

P∈GL(u,R) PPt and PPt is an open subset of Ru×n×m for any 
P ∈ GL(u, R) by Lemma 4.22 and the fact that multiplication of a nonsingular matrix 
is a homeomorphism on Ru×n×m. Therefore, P̃t is an open subset of Ru×n×m. The fact 
that P̃t is stable under the action of GL(u, R) is clear from the definition of P̃t. Finally, 
since A u×n×m

t is stable under the action of GL(u, R), we see, by Remark 4.16, that 
P̃t ⊂ C u×n×m

t . Therefore, we see that P̃t = C u×n×m
t by Lemma 4.21. �

Lemma 4.26. Let L be an infinite field and x = (x1, . . . , xm) a vector of indeterminates. 
Set v′ = min{m, v} and v′′ = min{m, (u− t + 2)(n − t + 2)}. Then there is a Zariski 
dense open subset Q1 of Lu×n×m such that if Y ∈ Q1, then L[x]/It(M(x, Y ))L[x]
is algebraic over the natural image of L[x1, . . . , xm−v′ ], L[x1, . . . , xm−v′ ] ∩
It(M(x, Y ))L[x] = (0), htIt(M)L[x] = v′, L[x]/It−1(M(x, Y ))L[x] is algebraic over 
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the natural image of L[x1, . . . , xm−v′′ ], L[x1, . . . , xm−v′′ ] ∩ It−1(M(x, Y ))L[x] = (0) and 
htIt−1(M(x, Y ))L[x] = v′′.

Proof. Let T = (tijk) be the u ×n ×m tensor of indeterminates. Then by Lemma 4.13, we 
see that L[T ][x]/It(M(x, T ))L[T ][x] is algebraic over the natural image of
L[T ][x1, . . . , xm−v′ ]. Denote the natural image of xl in L[T ][x]/It(M(x, T ))L[T ][x]
by x̄l. Take a nonzero polynomial fl(t) with coefficient in L[T ][x1, . . . , xm−v′ ] such that 
fl(x̄l) = 0 for each l with m −v′+1 ≤ l ≤ m. Let g be the product of all nonzero elements 
of L[T ] appearing as the coefficient of at least one of fl and set Q′

1 = Lu×n×m \ V(g). 
Then Q′

1 is a Zariski dense open subset of Lu×n×m.
Suppose that Y ∈ Q′

1. And let x̃i be the natural image of xi in L[x]/It(M(x, Y ))L[x]
and f̃l be an element of L[x1, . . . , xm−v′ ] obtained by substituting Y to T . Then f̃l is 
a nonzero element of L[x1, . . . , xm−v′ ] and f̃l(x̃l) = 0 for m − v′ + 1 ≤ l ≤ m. There-
fore, L[x]/It(M(x, Y ))L[x] is algebraic over the natural image of L[x1, . . . , xm−v′ ]. Thus 
htIt(M(x, Y ))L[x] = m −dimL[x]/It(M)L[x] = m −tr.deg

L
L[x]/It(M)L[x] ≥ v′. Thus, 

htIt(M(x, Y ))L[x] = v′ by Lemma 4.9 and we see that tr.deg
L
L[x]/It(M(x, Y ))L[x] =

m − v′. Therefore x̃1, . . . , ̃xm−v′ are algebraically independent over L, that is,
L[x1, . . . , xm−v′ ] ∩ It(M(x, Y ))L[x] = (0).

We see by the same way that there is a Zariski dense open subset Q′′
1 of 

Lu×n×m such that if Y ∈ Q′′
1 , then L[x]/It−1(M(x, Y ))L[x] is algebraic over the 

natural image of L[x1, . . . , xm−v′′ ], L[x1, . . . , xm−v′′ ] ∩ It−1(M(x, Y ))L[x] = (0) and 
htIt−1(M(x, Y ))L[x] = v′′. Thus it is enough to set Q1 = Q′

1 ∩ Q′′
1 . �

Let L be a field, x = (x1, . . . , xm) a vector of indeterminates and M a u × n ma-
trix with entries in L[x]. Suppose that htIt(M) = v and det(M<t

<t ) /∈
√

It(M). Then 
It(M)L[x][det(M<t

<t )−1] is a proper ideal of L[x][det(M<t
<t )−1] and M is equivalent to 

the matrix of the following form in L[x][(det(M<t
<t )−1].

(
Et−1 O
O ∗

)

In particular, It(M) is a complete intersection ideal in L[x][(det(M<t
<t )−1]. By symmetry, 

we see that if htIt−1(M) > v, then It(M) is a generically complete intersection ideal.
We use the notation of [11, p. 219]. Let L be a field of characteristic 0, T a 

u × n × m tensor of indeterminates and x = (x1, . . . , xm) a vector of indeterminates. 
Set M = L(T ). Suppose that m > v. Then It(M(x, T ))M[x] is a prime ideal and 
htIt−1(M(x, T ))M[x] > v by Lemma 4.10. Thus

It(M(x, T )) : Jm−v(It(M(x, T ))) = It(M(x, T ))

by [11, Theorem 2.1] and the argument above. Thus if we set I ′ = It(M(x, T )) +
Jm−v(It(M(x, T ))), then htI ′ > v. Therefore the natural images of x1, . . . , xm−v in 
M[x]/I ′ are algebraically dependent over M by Lemma 4.12. Take a transcendence basis 
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xi1 , . . . xid of M[x]/I ′ over M. By symmetry, we may assume that ik = k for 1 ≤ k ≤ d. 
Since htI ′ > v, we see that d < m − v. Take a nonzero polynomial f(t) with coefficients 
in L[T ][x1, . . . , xd] such that f(xm−v) ∈ I ′ and let g be the product of all nonzero ele-
ments of L[T ] which appear in some nonzero coefficient of f . Set Q2 = Lu×n×m \ V(g). 
Then Q2 is a Zariski dense open subset of Lu×n×m and if Y ∈ Q1 ∩ Q2, where 
Q1 is the one in Lemma 4.26, then ht(It(M(x, Y )) + Jm−v(It(M(x, Y )))) > v since 
tr.deg

L
L[x]/(It(M(x, Y )) + Jm−v(It(M(x, Y )))) < m − v.

Until the end of this section, assume that m ≥ v + 2 and let U be the m ×m matrix 
of indeterminates, T the u ×n ×m tensor of indeterminates, x = (x1, . . . , xm) the vector 
of indeterminates and L the algebraic closure of R(U).

Set

⎛
⎝ x′

1
...

x′
m

⎞
⎠ = U

⎛
⎝ x1

...
xm

⎞
⎠ .

Then L(T )[x′
1, . . . , x

′
m] = L(T )[x] and L(T )[x′

1, . . . , x
′
m−v+1] ∩ It(M(x, T )) is a prin-

cipal ideal generated by a polynomial F called the ground form of It(M(x, T )), since 
It(M(x, T )) is a prime ideal therefore is unmixed of height v. See [29, parts 28 and 29].

Since L(T )[x′
1, . . . , x

′
m−v+1] ∩ It(M(x, T )) is the elimination ideal, F is obtained by 

the Buchberger’s algorithm. Let g3 be the products of all elements of L[T ] which appear 
as a numerator or a denominator of a nonzero coefficient of at least one polynomial in the 
process of Buchberger’s algorithm to obtain the reduced Gröbner basis of It(M(x, T )) in 
L[T ][x]. Set Q3 = Lu×n×m \ V(g3). Then Q3 is a Zariski dense open subset of Lu×n×m

and if Y ∈ Q3, then the Buchberger’s algorithm to obtain the reduced Gröbner basis 
of It(M(x, Y ))L[x] in L[x] is identical with that of It(M(x, T ))L(T )[x] in L(T )[x]. In 
particular, L[x′

1, . . . , x
′
m−v+1] ∩ It(M(x, Y )) is a principal ideal generated by FY , the 

polynomial obtained by substituting Y in T in the coefficients of F .
Let d = degF and let PL(d, m −v+1) (resp. PR(d, m −v+1)) be the set of homogeneous 

polynomials with coefficients in L (resp. R) with variables x′
1, . . . , x

′
m−v+1 and degree d. 

Since m − v + 1 ≥ 3 and L is an algebraically closed field containing R, we see by [14]
that

{G ∈ PR(d,m − v + 1) | G is absolutely irreducible}

= PR(d,m− v + 1) ∩ {G ∈ PL(d,m − v + 1) | G is irreducible}

is a Zariski dense open subset of PR(d, m − v + 1).

Definition 4.27. Set

Q = {Y ∈ Q1 ∩ Q2 ∩ Q3 ∩ Ru×n×m | FY is absolutely irreducible},
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where Q1 is the one in Lemma 4.26 and Q2, Q3 and FY are the ones defined after the 
proof of Lemma 4.26.

Remark 4.28. Q is a Zariski open subset of Ru×n×m, since the correspondence Y to FY

is a rational map whose domain contains Q3.

Moreover, we see the following fact.

Lemma 4.29. Q ⊃ I ∩ Q1 ∩ Q2 ∩ Q3. In particular, Q is not an empty set.

Proof. Suppose that Y ∈ I ∩ Q1 ∩ Q2 ∩ Q3. Then we see, by applying Lemma 4.14
to L/Q, that It(M(x, Y ))L[x] is a prime ideal. Thus the elimination ideal is also prime 
and therefore the generator FY of the elimination ideal is an irreducible polynomial 
in L[x′

1, . . . , x
′
m−v+1]. Therefore, Y ∈ Q. Since I is a dense subset of Ru×n×m by 

Lemma 4.18, we see that I ∩ Q1 ∩ Q2 ∩ Q3 
= ∅. Thus, Q 
= ∅. �
Thus we see that Q is a non-empty Zariski open subset of Ru×n×m. In particular, Q

is dense.

Lemma 4.30. If Y ∈ Q, then It(M(x, Y ))R[x] is a prime ideal of height v.

Proof. Since Y ∈ Q, htIt(M(x, Y ))R[x] = v and L[x′
1, . . . , x

′
m−v+1] ∩It(M(x, Y ))L[x] =

(FY )L[x′
1, . . . , x

′
m−v+1]. Thus

R(U)[x′
1, . . . , x

′
m−v+1] ∩ It(M(x, Y ))R(U)[x] = (FY )R(U)[x′

1, . . . , x
′
m−v+1]

since L is faithfully flat over R(U). Thus we see that FY is the ground form of 
It(M(x, Y ))R[x] [29, part 28]. Since FY is an irreducible polynomial in L[x′

1, . . . , x
′
m−v+1]

and therefore in R(U)[x′
1, . . . , x

′
m−v+1], we see by [29, part 31], that It(M(x, Y ))R[x] is 

a primary ideal.
On the other hand, since Y ∈ Q1 ∩ Q2, we see that

ht(It(M(x, Y )) + Jm−v(It(M(x, Y )))) > v.

Since It(M(x, Y )) is a primary ideal of height v, we see that

It(M(x, Y )) : Jm−v(It(M(x, Y ))) = It(M(x, Y )).

Therefore, by [11, Theorem 2.1], we see that It(M(x, Y )) is a radical ideal. Thus 
It(M(x, Y )) is a prime ideal. �

Now we show the following result.
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Theorem 4.31. Suppose that m ≥ v+2. Set O1 = Q∩P̃t and O2 = Q∩A u×n×m
t . Then 

the following hold.

(1) O1 and O2 are disjoint open subsets of Ru×n×m and O1 
= ∅.
(2) O1 ∪ O2 is a dense subset of Ru×n×m.
(3) O1 = C u×n×m

t = Ru×n×m \ A u×n×m
t .

(4) If Y ∈ O1 ∪ O2, then It(M(x, Y ))R[x] is a prime ideal of height v.
(5) If Y ∈ O1, then I(V(It(M(x, Y )))) = It(M(x, Y )).
(6) If Y ∈ O2, then I(V(It(M(x, Y )))) = (x1, . . . , xm).

Proof. The set A u×n×m
t is an open subset of Ru×n×m by Corollary 4.20 and P̃t is a 

nonempty open subset of Ru×n×m with A u×n×m
t ∩ P̃t = ∅ by Lemmas 4.21 and 4.25. 

Further Q is a Zariski open subset. Thus (1) holds.
(2): Since Q and A u×n×m

t ∪ P̃t are dense open subsets of Ru×n×m by Corollary 4.20
and Lemma 4.25, we see that O1 ∪O2 ⊃ Q∩ (A u×n×m

t ∪Pt) is also a dense open subset 
of Ru×n×m.

(3): Since Q is a dense subset of Ru×n×m, and P̃t is an open set, we see that O1 =
Q ∩ P̃t = P̃t = C u×n×m

t by Lemma 4.25.
(4) follows from Lemma 4.30.
(5): Assume the contrary and take g ∈ I(V(It(M(x, Y )))) with g /∈ It(M(x, Y )). Set 

J = (g)R[x] +It(M(x, Y )). Then J � It(M(x, Y ))R[x]. Since It(M(x, Y ))R[x] is a prime 
ideal of height v by Lemma 4.30, we see that htJ > v and therefore R[x1, . . . , xm−v] ∩
J 
= (0).

Take 0 
= f ∈ J ∩ R[x1, . . . , xm−v]. Since Y ∈ P̃t, we can take P ∈ GL(u, R)
such that PY ∈ Pt. Take b ∈ St(PY ). Since O(b, PY ) defined in Lemma 4.22 is an 
open set and f is a non-zero polynomial, we can take (a1, . . . , am−v) ∈ O(b, PY ) with 
f(a1, . . . , am−v) 
= 0. On the other hand, we see that there are am−v+1, . . . , am ∈ R
such that It(M(a, Y )) = It(PM(a, Y )) = It(M(a, PY )) = (0) by Lemma 4.22, where 
a = (a1, . . . , am). Thus by assumption, we see that g(a) = 0. This contradicts to the 
fact that f ∈ J = (g)R[x] + It(M(x, Y ))R[x] and f(a1, . . . , am−v) 
= 0.

Finally, (6) is clear from the definition of A u×n×m
t . �

5. Monomial preorder

In this section, we introduce the notion of monomial preorder and prove a result about 
ideals of minors by using it.

First we recall the notion of preorder.

Definition 5.1. Let S be a nonempty set and � a binary relation on S. We say that � is 
a preorder on S or (S, �) is a preordered set if the following two conditions are satisfied.
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(1) a � a for any a ∈ S.
(2) a � b, b � c ⇒ a � c.

If moreover,

(3) a � b or b � a for any a, b ∈ S.

is satisfied, then we say that (S, �) is a totally preordered set or � is a total preorder .

Notation. Let (S, �) be a preordered set. We denote by b � a the fact a � b. We denote 
by a ≺ b or by b � a the fact that a � b and b � a. We also denote by a ∼ b the fact 
that a � b and b � a.

Remark 5.2. The binary relation ∼ defined above is an equivalence relation and if a ∼ a′

and b ∼ b′, then

a � b ⇐⇒ a′ � b′.

In particular, we can define a binary relation ≤ on the quotient set P = S/ ∼ by 

ā ≤ b̄
def⇐⇒ a � b, where ā is the equivalence class which a belongs to. It is easily 

verified that (P, ≤) is a partially ordered set and (S, �) is a totally preordered set if and 
only if (P, ≤) is a totally ordered set. As usual, we denote ā > b̄ the fact ā ≥ b̄ and ā 
= b̄.

Definition 5.3. Let x1, . . . , xr be indeterminates. We denote the set of monomials or 
power products of x1, . . . , xr by PP (x1, . . . , xr). A monomial preorder on x1, . . . , xr is a 
total preorder � on PP (x1, . . . , xr) satisfying the following conditions.

(1) 1 � m for any m ∈ PP (x1, . . . , xr).
(2) For m1, m2, m ∈ PP (x1, . . . , xr),

m1 � m2 ⇐⇒ m1m � m2m.

Let ∼ be the equivalence relation on PP (x1, . . . , xr) defined by the monomial preorder �. 
We denote by P (x1, . . . , xr) the quotient set PP (x1, . . . , xr)/ ∼ and by qdegm the class 
of m in P (x1, . . . , xr) and call it the quasi-degree of m, where m ∈ PP (x1, . . . , xr).

Remark 5.4. Our definition of monomial preorder may seem to be different from that 
of [19], but it is identical except we allow m ∼ 1 for a monomial m 
= 1.

Example 5.5 (cf. [19, Example 3.1]). Let x1, . . . , xr be indeterminates, W = (w1, . . . , ws)
an r× s matrix whose entries are real numbers such that the first nonzero entry of each 
row is positive. If one defines
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xa � xb def⇐⇒ (a ·w1, . . . ,a ·ws) ≤lex (b ·w1, . . . , b ·ws),

where · denotes the inner product and ≤lex denotes the lexicographic order, then � is a 
monomial preorder. In fact, one can prove by the same way as [28] that every monomial 
preorder is of this type.

Definition 5.6. Let K be a field and x1, . . . , xr indeterminates. If a monomial preorder 
on x1, . . . , xr is defined, we say that K[x1, . . . , xr] is a polynomial ring with monomial 
preorder. Let f be a nonzero element of K[x1, . . . , xr]. We say that f is a form if all the 
monomials appearing in f have the same quasi-degree. We denote by qdeg f the quasi-
degree of the monomials appearing in f . Let g be a nonzero element of K[x1, . . . , xr]. 
Then there is a unique expression

g = g1 + g2 + · · · + gt

of g, where gi is a form for 1 ≤ i ≤ t and qdeg g1 > qdeg g2 > · · · > qdeg gt. We define 
the leading form of g, denoted lf(g) as g1.

Remark 5.7. Let K[x1, . . . , xr] be a polynomial ring with monomial preorder and f , g
nonzero elements of K[x1, . . . , xr]. Then lf(fg) = lf(f)lf(g).

Remark 5.8. It is essential to assume both implications in (2) of Definition 5.3. For 
example, let x and y be indeterminates. We define total preorder on PP (x, y) by 1 ≺
y ≺ x and m1 ≺ m2 if the total degree of m1 is less than that of m2. Then it is easily 
verified that

(1) 1 ≺ m for any m ∈ PP (x, y) \ {1}.
(2) m1 � m2 ⇒ m1m � m2m.

Let f = x + y. Then lf(f) = x while lf(f2) = x2 + 2xy + y2 
= x2 = (lf(f))2.

Definition 5.9. Let x1, . . . , xr be indeterminates. Suppose that a total preorder on 
{x1, . . . , xr} is defined. Rewrite the set {x1, . . . , xr} as follows. {x1, . . . , xr} = {y11, . . . ,
y1s1 , y21, . . . , y2ss , . . . , yt1, . . . , ytst}, s1 + · · ·+ st = r, y11 ∼ · · · ∼ y1s1 � y21 ∼ · · · ∼ y2s2
� · · · � yt1 ∼ · · · ∼ ytst .

The lexicographic monomial preorder on PP (x1, . . . , xr) is defined as follows. ∏t
i=1

∏si
j=1 y

aij

ij �
∏t

i=1
∏si

j=1 y
bij
ij if and only if one of the following conditions is satisfied.

•
∑s1

j=1 a1j <
∑s1

j=1 b1j .
•

∑s1
j=1 a1j =

∑s1
j=1 b1j and 

∑s2
j=1 a2j <

∑s2
j=1 b2j .

•
∑s1

j=1 a1j =
∑s1

j=1 b1j , 
∑s2

j=1 a2j =
∑s2

j=1 b2j and 
∑s3

j=1 a3j <
∑s3

j=1 b3j .
...
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•
∑s1

j=1 a1j =
∑s1

j=1 b1j , 
∑s2

j=1 a2j =
∑s2

j=1 b2j , . . ., 
∑st−2

j=1 at−2,j =
∑st−2

j=1 bt−2,j and ∑st−1
j=1 at−1,j <

∑st−1
j=1 bt−1,j .

•
∑s1

j=1 a1j =
∑s1

j=1 b1j , 
∑s2

j=1 a2j =
∑s2

j=1 b2j , . . ., 
∑st−1

j=1 at−1,j =
∑st−1

j=1 bt−1,j and ∑st
j=1 at,j ≤

∑st
j=1 bt,j .

Remark 5.10. Suppose that x1, . . . , xr are indeterminates and total preorder � on 
{x1, . . . , xr} is defined. Suppose also that

x1 ∼ · · · ∼ xm1 � xm1+1 ∼ · · · ∼ xm2 � · · · � xmt−1+1 ∼ · · · ∼ xmt
,

mt = r. Then the lexicographic monomial preorder induced by this preorder on 
{x1, . . . , xr} is the one defined as in Example 5.5 by the r× t matrix whose j-th column 
has 1 in mj−1 + 1 through mj-th position and 0 in others, where we set m0 = 0.

Definition 5.11. We set

[a1, . . . ,
k
ai, . . . , an] := [a1, . . . , ai−1, k, ai+1, . . . , an]

and

[a1, . . . ,
k
ai, . . . ,

l
aj , . . . , an] := [a1, . . . , ai−1, k, ai+1, . . . , aj−1, l, aj+1, . . . , an].

Lemma 5.12. Let K be a field, K[x1, . . . , xr] a polynomial ring with monomial pre-
order, S a subset of {x1, . . . , xr} and g1, . . . , gt ∈ K[x1, . . . , xr]. Set L = K[S]. If 
lf(g1), . . . , lf(gt) are linearly independent over L, then g1, . . . , gt are linearly independent 
over L.

Proof. Assume the contrary and suppose that

∑
i

cigi = 0

is a non-trivial relation where ci ∈ L and ci 
= 0 for any i which appears in the above 
sum. Then

∑′
lf(ci)lf(gi) = 0,

where 
∑′ runs through i’s with qdeg lf(cigi) are maximal. Since lf(ci) ∈ L for any i, it 

contradicts the assumption. �
Lemma 5.13 (Plücker relations, see e.g. [4, (4,4) Lemma]). For every u × n-matrix M, 
u ≥ n, with entries in a commutative ring and all indices a1, . . . , ak, bl, . . . , bn, c1, . . . , cs ∈
{1, . . . , u} such that s = n − k + l − 1 > n, t = n − k > 0 one has
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∑
i1<···<it

it+1<···<is
{1,...,s}={i1,...,is}

sgn(i1, . . . , is)[a1, . . . , ak, ci1 , . . . , cit ]M [cit+1 , . . . , cis , bl, . . . , bn]M = 0,

where sgn(σ) is the signature of a permutation σ and the notations are defined in Defi-
nition 4.6.

An element a is called a non-zerodivisor if ab = 0 implies b = 0.

Lemma 5.14. Let A = A0 ⊕ A1 ⊕ · · · be a graded ring, X = (xij) a u × n matrix with 

u > n and entries in A1 and y = (y1, . . . , yn) ∈ A1×n
1 . Set X̃ =

(
X
y

)
and Γ = Γ(u ×n). 

Suppose that

• δ = [1, 2, . . . , n]X is a non-zerodivisor of A,
• for any k1 and k2 with 1 ≤ k1 < k2 ≤ n,

δXγX (γ ∈ Γ),

[1, . . . ,
n+1
k2 , . . . , n]XγX (γ ∈ Γ \ {δ}) and

[1, . . . ,
n+1
k1 , . . . , n]XγX (γ ∈ Γ, suppγ 
⊃ {1, . . . , k̂2, . . . , n})

are linearly independent over A0 and
• In(X̃) = In(X),

where the notations are defined in Definition 4.6. Then, y is an A0-linear combination 
of rows of X.

Proof. We denote γX̃ as γ and 
∑
γ∈Γ

as 
∑
γ

for simplicity. Set

[1, . . . ,
u+1
k , . . . , n] =

∑
γ

a(k)
γ γ

and

[1, . . . ,
n+1
k1 , . . . ,

u+1
k2 , . . . , n] =

∑
γ

a(k1,k2)
γ γ

where a(k)
γ , a(k1,k2)

γ ∈ A. By considering the degree, we may assume that a(k)
γ , 

a
(k1,k2)
γ ∈ A0.

[1, . . . ,
n+1
k1 , . . . ,

u+1
k2 , . . . , n]X̃Cof(X≤n)
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= det(Cof(X≤n))[1, . . . ,
n+1
k1 , . . . ,

u+1
k2 , . . . , n]

= δn−1
∑
γ

a(k1,k2)
γ γ,

where Cof(X≤n) denotes the matrix of cofactors of X≤n. On the other hand, since

X̃Cof(X≤n) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ
δ

. . .
δ

[
n+1
1 , 2 . . . , n] [1,

n+1
2 , . . . , n] · · · [1, 2, . . . , n+1

n ]
[
n+2
1 , 2 . . . , n] [1,

n+2
2 , . . . , n] · · · [1, 2, . . . , n+2

n ]
...

...
...

...
[
u+1
1 , 2 . . . , n] [1,

u+1
2 , . . . , n] · · · [1, 2, . . . , u+1

n ]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

we see that

[1, . . . ,
n+1
k1 , . . . ,

u+1
k2 , . . . , n]X̃Cof(X≤n)

= δn−2 det

⎛
⎝ [1, . . . ,

n+1
k1 , . . . , n] [1, . . . ,

n+1
k2 , . . . , n]

[1, . . . ,
u+1
k1 , . . . , n] [1, . . . ,

u+1
k2 , . . . , n]

⎞
⎠ .

Since δ is a non-zerodivisor, we see that

∑
γ

a(k1,k2)
γ δγ

= [1, . . . ,
n+1
k1 , . . . , n][1, . . . ,

u+1
k2 , . . . , n] − [1, . . . ,

n+1
k2 , . . . , n][1, . . . ,

u+1
k1 , . . . , n]

=
∑
γ

a(k2)
γ [1, . . . ,

n+1
k1 , . . . , n]γ −

∑
γ

a(k1)
γ [1, . . . ,

n+1
k2 , . . . , n]γ

= −a
(k1)
δ δ[1, . . . ,

n+1
k2 , . . . , n] −

∑
γ∈Γ\{δ}

a(k1)
γ [1, . . . ,

n+1
k2 , . . . , n]γ

+ a
(k2)
δ δ[1, . . . ,

n+1
k1 , . . . , n] +

∑
supp γ∩{1,...,n}
={1,...,k̂2,...,n}

a(k2)
γ [1, . . . ,

n+1
k1 , . . . , n]γ

+
∑

ˆ
a(k2)
γ [1, . . . ,

n+1
k1 , . . . , n]γ
supp γ 	⊃{1,...,k2,...,n}
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Suppose that suppγ∩{1, . . . , n} = {1, . . . , ̂k2, . . . , n}. Then γ = [1, . . . , ̂k2, . . . , n, l] for 

some l with n +1 ≤ l ≤ u. Thus γ = (−1)n−k2 [1, . . . , 
l

k2, . . . , n]. By applying Lemma 5.13
to

[1, . . . ,
l

k2, . . . , n][1, . . . ,
n+1
k1 , . . . , n],

by substituting u, n, k, s, l by u, n, k1 − 1, n + 1, k1 + 1 respectively, we see that

[1, . . . ,
l

k2, . . . , n][1, . . . ,
n+1
k1 , . . . , n]

= δ[1, . . . ,
n+1
k1 . . . ,

l

k2, . . . , n] + [1, . . . ,
n+1
k2 , . . . , n][1, . . . ,

l

k1, . . . , n]

= δ[1, . . . ,
n+1
k1 . . . ,

l

k2, . . . , n] + (−1)n−k1 [1, . . . ,
n+1
k2 , . . . , n][1, . . . , k̂1, . . . , n, l]

Therefore, if we set

b(k1)
γ =

{
a
(k1)
γ − (−1)k2−k1a

(k2)
[1,...,k̂2,...,n,l]

if γ = [1, . . . , k̂1 . . . , n, l]
a
(k1)
γ otherwise

for γ ∈ Γ \ {δ}, we see that there are bγ ∈ A0 such that

∑
γ

bγδγ −
∑

γ∈Γ\{δ}
b(k1)
γ [1, . . . ,

n+1
k2 , . . . , n]γ

+
∑

suppγ 	⊃{1,...,k̂2,...,n}

a(k2)
γ [1, . . . ,

n+1
k1 , . . . , n]γ = 0.

Thus we see, by the assumption, that

b(k1)
γ = 0 if γ ∈ Γ \ {δ}

and

a(k2)
γ = 0 if suppγ 
⊃ {1, . . . , k̂2, . . . , n}.

Therefore, by the definition of b(k1)
γ , we see that

(−1)n−k1a
(k1)
[1,...,k̂1,...,n,l]

= (−1)n−k2a
(k2)
[1,...,k̂2,...,n,l]

and

a(k1)
γ = 0 if suppγ 
⊃ {1, . . . , k̂1, . . . , n}.
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Since these hold for any k1, k2 with 1 ≤ k1 < k2 ≤ n, we see that if we set

cl = a
(n)
[1,...,n−1,l]

for l with n + 1 ≤ l ≤ u,

[1, . . . ,
u+1
k , . . . , n] = a

(k)
δ δ + (−1)n−k

u∑
l=n+1

cl[1, . . . , k̂, . . . , n, l]

= a
(k)
δ δ +

u∑
l=n+1

cl[1, . . . ,
l

k, . . . , n]

for any k with 1 ≤ k ≤ n.
Set

z = y −
n∑

s=1
a
(s)
δ X=s −

u∑
l=n+1

clX
=l

and

Z =
(
X
z

)
.

Then

[1, . . . ,
u+1
k , . . . , n]Z

= [1, . . . ,
u+1
k , . . . , n]X̃ −

n∑
s=1

a
(s)
δ [1, . . .

s

k, . . . n]X −
u∑

l=n+1

cl[1, . . .
l

k, . . . n]X

= 0

for any k with 1 ≤ k ≤ n. Thus zCof(X≤n) = 0 and we see that z = 0 since 
detCof(X≤n) = δn−1 is a non-zerodivisor. �
Lemma 5.15. Let L be a field, n, m integers with n ≥ m ≥ 3, x1, . . . , xm indetermi-
nates and α, β ∈ L with 0 
= α 
= β 
= 0. Then the following polynomials are linearly 
independent over L.

x2n
1

x2n−1
1 (x2 − βxm)

x2n−1
1 xs (3 ≤ s ≤ m− 1)

xn
1 (x2 − αxm)(x2 − βxm)xb1 · · ·xbn−2 (1 ≤ b1 ≤ · · · ≤ bn−2 ≤ 2)

xn
1 (x2 − αxm)xb1 · · ·xbn−2xs (1 ≤ b1 ≤ · · · ≤ bn−2 ≤ 2, 3 ≤ s ≤ m− 1)
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xn
1xb1 · · ·xbn (1 ≤ b1 ≤ · · · ≤ bn ≤ m− 1, bn−1 ≥ 3)

x2n−2
1 (x2 − βxm)2

x2n−2
1 (x2 − βxm)xs (3 ≤ s ≤ m− 1)

xn−1
1 (x2 − αxm)(x2 − βxm)2xb1 · · ·xbn−2 (1 ≤ b1 ≤ · · · ≤ bn−2 ≤ 2)

xn−1
1 (x2 − αxm)(x2 − βxm)xb1 · · ·xbn−2xs

(1 ≤ b1 ≤ · · · ≤ bn−2 ≤ 2, 3 ≤ s ≤ m − 1)

xn−1
1 (x2 − βxm)xb1 · · ·xbn (1 ≤ b1 ≤ · · · ≤ bn ≤ m− 1, bn−1 ≥ 3)

xn−2
1 (x2 − αxm)2(x2 − βxm)2xb1 · · ·xbn−2 (1 ≤ b1 ≤ · · · ≤ bn−2 ≤ 2)

xn−2
1 (x2 − αxm)2(x2 − βxm)xb1 · · ·xbn−2xs

(1 ≤ b1 ≤ · · · ≤ bn−2 ≤ 2, 3 ≤ s ≤ m − 1)

xn−2
1 (x2 − αxm)(x2 − βxm)xb1 · · ·xbn

(1 ≤ b1 ≤ · · · ≤ bn ≤ m − 1, bn−1 ≥ 3)

Proof. Set deg x1 = deg x2 = deg xm = 0 and deg x3 = · · · = deg xm−1 = 1. Then the 
polynomials under consideration are homogeneous. Thus it is enough to show that for 
each integer d, the polynomials of degree d in the above list are linearly independent 
over L.

First consider the polynomials with degree more than 1. They are

xn
1xb1 · · ·xbn (1 ≤ b1 ≤ · · · ≤ bn ≤ m− 1, bn−1 ≥ 3)

xn−1
1 (x2 − βxm)xb1 · · ·xbn (1 ≤ b1 ≤ · · · ≤ bn ≤ m − 1, bn−1 ≥ 3)

xn−2
1 (x2 − αxm)(x2 − βxm)xb1 · · ·xbn

(1 ≤ b1 ≤ · · · ≤ bn ≤ m− 1, bn−1 ≥ 3).

By first substituting β−1x2 to xm and next by substituting α−1x2 to xm one sees that 
these polynomials are linearly independent.

Next consider the polynomials with degree 1. They are

x2n−1
1 xs (3 ≤ s ≤ m− 1)

xn
1 (x2 − αxm)xb1 · · ·xbn−2xs (1 ≤ b1 ≤ · · · ≤ bn−2 ≤ 2, 3 ≤ s ≤ m − 1)

x2n−2
1 (x2 − βxm)xs (3 ≤ s ≤ m − 1)

xn−1
1 (x2 − αxm)(x2 − βxm)xb1 · · ·xbn−2xs

(1 ≤ b1 ≤ · · · ≤ bn−2 ≤ 2, 3 ≤ s ≤ m − 1)

xn−2
1 (x2 − αxm)2(x2 − βxm)xb1 · · ·xbn−2xs

(1 ≤ b1 ≤ · · · ≤ bn−2 ≤ 2, 3 ≤ s ≤ m − 1).
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By a similar but more subtle argument as above, one sees that these polynomials are 
linearly independent.

Finally consider the polynomials with degree 0. They are

x2n
1

x2n−1
1 (x2 − βxm)

xn
1 (x2 − αxm)(x2 − βxm)xb1 · · ·xbn−2 (1 ≤ b1 ≤ · · · ≤ bn−2 ≤ 2)

x2n−2
1 (x2 − βxm)2

xn−1
1 (x2 − αxm)(x2 − βxm)2xb1 · · ·xbn−2 (1 ≤ b1 ≤ · · · ≤ bn−2 ≤ 2)

xn−2
1 (x2 − αxm)2(x2 − βxm)2xb1 · · ·xbn−2 (1 ≤ b1 ≤ · · · ≤ bn−2 ≤ 2)

By a similar but more subtle argument, one sees that these polynomials are linearly 
independent. �
Lemma 5.16. Let K be a field, T = (T1; · · · ; Tm) = (tijk) a u × n ×m-tensor of indeter-
minates with u > n ≥ m ≥ u − n + 2, x = (x1, . . . , xm) a vector of indeterminates. Set 
X = M(x, T ) (cf. Definition 4.6), Γ = Γ(u × n), δ = δ0 = [1, . . . , n] and A = K[T ][x]. 
Then δX is a non-zerodivisor of A and for any k1, k2 with 1 ≤ k1, k2 ≤ n, k1 
= k2,

δXγX (γ ∈ Γ)

[1, . . . ,
n+1
k2 , . . . , n]XγX (γ ∈ Γ \ {δ})

[1, . . . ,
n+1
k1 , . . . , n]XγX (γ ∈ Γ, suppγ 
⊃ {1, . . . , k̂2, . . . , n})

are linearly independent over K[T ].

Proof. The first assertion is clear since A is an integral domain and δX 
= 0. Next we 
prove the second assertion. By symmetry, we may assume that k1 = n − 1 and k2 = n. 
Set δ1 = [1, 2, . . . , n − 1, n + 1] and δ2 = [1, 2, . . . , n − 2, n, n + 1]. We introduce the 
lexicographic monomial preorder induced by the preorder on the indeterminates defined 
as follows.

If one of the following is satisfied, we define tijk � ti′j′k′ .

• i < i′.
• i = i′ and j < j′.
• i = i′, j = j′, k < k′ and “i < j or i > j + u − n”.

In case 0 ≤ i − j ≤ u − n and (i, j) 
= (n, n − 1), (n + 1, n), we define

ti,j,i−j+1 � ti,j,i−j+2 � · · · � ti,j,m � ti,j,1 � · · · � ti,j,i−j .
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In case (i, j) = (n, n − 1) or (n + 1, n), we define

ti,j,2 ∼ ti,j,m � ti,j,1 � ti,j,3 � · · · � ti,j,m−1.

And

tijk � x1 ∼ x2 ∼ · · · ∼ xm

for any i, j and k.
Set

Γ0 = {[a1, . . . , an] ∈ Γ | an−1 = n − 1},

Γ1 = {[a1, . . . , an] ∈ Γ | an−1 = n},

Γ2 = {[a1, . . . , an] ∈ Γ | an−1 ≥ n + 1},

Γ00 = {[a1, . . . , an] ∈ Γ0 | an = n} = {δ0},

Γ01 = {[a1, . . . , an] ∈ Γ0 | an = n + 1} = {δ1},

Γ02 = {[a1, . . . , an] ∈ Γ0 | an ≥ n + 2},

Γ11 = {[a1, . . . , an] ∈ Γ1 | an = n + 1} = {δ2},

Γ12 = {[a1, . . . , an] ∈ Γ1 | an ≥ n + 2}.

Then

Γ = Γ0 � Γ1 � Γ2

Γ0 = Γ00 � Γ01 � Γ02

Γ1 = Γ11 � Γ12.

Set α1 = tn,n−1,2, α2 = tn,n−1,m, β1 = tn+1,n,2 and β2 = tn+1,n,m. Then for γ =
[a1, . . . , an] ∈ Γ, lf(γX) is, up to multiplication of nonzero element of K[T ], as follows.

xn
1 if γ ∈ Γ00

xn−1
1 (β1x2 + β2xm) if γ ∈ Γ01

xn−1
1 xan−n+1 if γ ∈ Γ02

xa1xa2−1 · · ·xan−2−n+3(α1x2 + α2xm)(β1x2+β2xm) if γ ∈ Γ11

xa1xa2−1 · · ·xan−2−n+3(α1x2 + α2xm)xan−n+1 if γ ∈ Γ12

xa1xa2−1 · · ·xan−n+1 if γ ∈ Γ2.

Therefore, for γ = [a1, . . . , an] ∈ Γ, lf(δXγX) is, up to multiplication of nonzero element 
of K[T ],
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x2n
1 if γ ∈ Γ00

x2n−1
1 (β1x2 + β2xm) if γ ∈ Γ01

x2n−1
1 xan−n+1 if γ ∈ Γ02

xn
1xa1xa2−1 · · ·xan−2−n+3(α1x2 + α2xm)(β1x2+β2xm) if γ ∈ Γ11

xn
1xa1xa2−1 · · ·xan−2−n+3(α1x2 + α2xm)xan−n+1 if γ ∈ Γ12

xn
1xa1xa2−1 · · ·xan−n+1 if γ ∈ Γ2.

For γ = [a1, . . . , an] ∈ Γ \ {δ}, lf((δ1)XγX) is, up to multiplication of nonzero element 
of K[T ],

x2n−2
1 (β1x2 + β2xm)2 if γ ∈ Γ01

x2n−2
1 (β1x2 + β2xm)xan−n+1 if γ ∈ Γ02

xn−1
1 xa1xa2−1 · · ·xan−2−n+3(α1x2 + α2xm)(β1x2+β2xm)2 if γ ∈ Γ11

xn−1
1 xa1xa2−1 · · ·xan−2−n+3(α1x2 + α2xm)(β1x2+β2xm)xan−n+1 if γ ∈ Γ12

xn−1
1 (β1x2+β2xm)xa1xa2−1 · · ·xan−n+1 if γ ∈ Γ2.

Finally, consider the leading form of (δ2)XγX , where γ = [a1, . . . , an] ∈ Γ and suppγ 
⊃
{1, . . . , n − 1}. It is easily verified that suppγ 
⊃ {1, . . . , n − 1} if and only if γ ∈ Γ1 �Γ2. 
Thus the leading form of (δ2)XγX is, up to multiplication of nonzero element of K[T ],

xn−2
1 xa1xa2−1 · · ·xan−2−n+3(α1x2 + α2xm)2(β1x2+β2xm)2 ifγ ∈ Γ11

xn−2
1 xa1xa2−1 · · ·xan−2−n+3(α1x2 + α2xm)2(β1x2+β2xm)xan−n+1 if γ ∈ Γ12

xn−2
1 (α1x2 + α2xm)(β1x2+β2xm)xa1xa2−1 · · ·xan−n+1 if γ ∈ Γ2.

Since

1 ≤ a1 ≤ a2 − 1 ≤ · · · ≤ an − n + 1 ≤ u− n + 1 ≤ m− 1

an−2 − n + 3 ≤ 2 if γ ∈ Γ1

an−1 − n + 2 ≥ 3 if γ ∈ Γ2

and

an − n + 1 ≥ 3 if γ ∈ Γ02 � Γ12,

we see by Lemma 5.15 that

lf(δXγX) (γ ∈ Γ)

lf((δ1)XγX) (γ ∈ Γ \ {δ})
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lf((δ2)XγX) (γ ∈ Γ, suppγ 
⊃ {1, . . . , n− 1})

are linearly independent over K[T ]. The assertion follows by Lemma 5.12. �
Corollary 5.17. Let K be a field, T a u × n × m tensor of indeterminates with u > n ≥
m ≥ u − n + 2, R a commutative ring containing K(T ), x = (x1, . . . , xm) a vector of 
indeterminates. Set M = M(x, T ) (cf. Definition 4.6) and B = R[x]. Then δM is a 
non-zerodivisor of B and for any k1, k2 with 1 ≤ k1, k2 ≤ n, k1 
= k2,

δMγM (γ ∈ Γ)

[1, . . . ,
n+1
k2 , . . . , n]MγM (γ ∈ Γ \ {δ})

[1, . . . ,
n+1
k1 , . . . , n]MγM (γ ∈ Γ, suppγ 
⊃ {1, . . . , k̂2, . . . , n})

are linearly independent over R.

Proof. Set A = K[T ][x]. Then B = A ⊗K[T ] R.
Since R is flat over K[T ], we see that B is flat over A. By Lemma 5.16, we see that 

δM is a non-zerodivisor of A and for any k1, k2 with 1 ≤ k1, k2 ≤ n, k1 
= k2,

δMγM (γ ∈ Γ)

[1, . . . ,
n+1
k2 , . . . , n]MγM (γ ∈ Γ \ {δ})

[1, . . . ,
n+1
k1 , . . . , n]MγM (γ ∈ Γ, suppγ 
⊃ {1, . . . , k̂2, . . . , n})

are linearly independent over K[T ]. Since R (resp. B) is flat over K[T ] (resp. A), we see 
that δM is a non-zerodivisor of B and for any k1, k2 with 1 ≤ k1, k2 ≤ n, k1 
= k2,

δMγM (γ ∈ Γ)

[1, . . . ,
n+1
k2 , . . . , n]MγM (γ ∈ Γ \ {δ})

[1, . . . ,
n+1
k1 , . . . , n]MγM (γ ∈ Γ, suppγ 
⊃ {1, . . . , k̂2, . . . , n})

are linearly independent over R. �
Corollary 5.18. Let x = (x1, . . . , xm) be a vector of indeterminates. Suppose that u > n

and Y ∈ I (cf. Definition 4.15) and set M = M(x, Y ). Then δM is a non-zerodivisor 
of R[x] and for any k1, k2 with 1 ≤ k1, k2 ≤ n, k1 
= k2,

δMγM (γ ∈ Γ)

[1, . . . ,
n+1
k2 , . . . , n]MγM (γ ∈ Γ \ {δ})
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[1, . . . ,
n+1
k1 , . . . , n]MγM (γ ∈ Γ, suppγ 
⊃ {1, . . . , k̂2, . . . , n})

are linearly independent over R.

Definition 5.19. Let x = (x1, . . . , xm) be a vector of indeterminates. We set Q′ :=

{Y ∈ Ru×n×m | δM 
= 0 and δMγM (γ ∈ Γ), [1, . . . , 
n+1
k2 , . . . , n]MγM (γ ∈ Γ \ {δ}), 

[1, . . . , 
n+1
k1 , . . . , n]MγM (γ ∈ Γ, suppγ 
⊃ {1, . . . , ̂k2, . . . , n}) are linearly independent 

over R for any k1, k2 with 1 ≤ k1 < k2 ≤ n, where M = M(x, Y )}.

Remark 5.20. Q′ is a Zariski open set of Ru×n×m and by Corollary 5.18, we see that 
Q′ ⊃ I . In particular, Q′ is a Zariski dense open subset of Ru×n×m.

By Lemma 5.14, we see the following fact.

Proposition 5.21. Let u, n and m be integers with u > n ≥ m ≥ u − n + 2 and let 
x = (x1, . . . , xm) be a vector of indeterminates. Suppose that Y ∈ Q′ and y ∈ R1×n×m. 
Set

Ỹ =
(
Y
y

)
.

If In(M(x, Ỹ )) = In(M(x, Y )), then fl1(y) is an R-linear combination of rows of fl1(Y ).

Proof. Set M = M(x, Y ). Since R[x] is a domain and δM 
= 0 by the definition of Q′, 
we see that δM is a non-zerodivisor of R[x]. Moreover,

δMγM (γ ∈ Γ)

[1, . . . ,
n+1
k2 , . . . , n]MγM (γ ∈ Γ \ {δ})

[1, . . . ,
n+1
k1 , . . . , n]MγM (γ ∈ Γ, suppγ 
⊃ {1, . . . , k̂2, . . . , n})

are linearly independent over R for any k1, k2 with 1 ≤ k1 < k2 ≤ n by the definition 
of Q′. Thus by Lemma 5.14, we see that M(x, y) is an R-linear combination of rows 
of M = M(x, Y ). Since x1, . . . , xm are indeterminates, we see that fl1(y) is an R-linear 
combination of rows of fl1(Y ). �
6. Tensor with rank p

Let 3 ≤ m ≤ n, (m − 1)(n − 1) + 1 ≤ p ≤ (m − 1)n and set l = (m − 1)n − p and 
u = n + l. In the following of this paper, we use the results of the previous sections by 
setting t = n. See Definition 4.6. Then v = l+1 and it follows that v < m since l ≤ m −2. 
Note also u + p = nm. We make bunch of definitions used in the sequel of this paper.
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Definition 6.1. We put

V = V n×p×m := {T ∈ Rn×p×m | fl2(T )≤p is nonsingular}

and define σ : V → Ru×p be a map defined as

σ(T ) = (p<fl2(T ))(fl2(T )≤p)−1.

We denote by A u×n×m the set of all u ×n ×m absolutely full column rank tensors and 
put C u×n×m = Ru×n×m \ A u×n×m. Note that A u×n×m = A u×n×m

n and C u×n×m =
C u×n×m
n in the notation of Definition 4.15.
Let M be the subset of Ru×nm consisting of all matrices W = (W1, . . . , Wm) satisfying 

that there are A = (a1, . . . , ap) ∈ Rn×p and p × p diagonal matrices D1, . . . , Dm such 
that Dk = Diag(d1k, . . . , dpk) for 1 ≤ k ≤ m, (dj1W1+· · ·+djmWm)aj = 0 for 1 ≤ j ≤ p, 
and

⎛
⎜⎜⎝

AD1
...

ADm−2
A≤n−lDm−1

⎞
⎟⎟⎠ (6.1)

is nonsingular. Let ι : Ru×p → Ru×nm be a map which sends A to (A, −Eu). Moreover 
put

C := {W ∈ Ru×nm | W /∈ fl1(A u×n×m)} = {W ∈ Ru×n×m | W ∈ fl1(C u×n×m)}.

We define φ : R1×m × Rn → Rp a map defined as

φ(a, b) =

⎛
⎜⎜⎝

a1b
a2b
...

am−1b
≤n−l

⎞
⎟⎟⎠ ∈ Rp, where a = (a1, . . . , am−1, am).

Recall that the set A u×n×m is an open subset of Ru×n×m by Lemma 3.3 or Corol-
lary 4.20.

Proposition 6.2. σ is an open, surjective and continuous map.

Proof. Clearly σ is surjective and continuous. Let O be an open subset of V and let 
h : Rnm×p → Rp×p ×Ru×p be a homeomorphism defined as h(M) = (M≤p, p<M). Then 
h(fl2(O)) can be written by

⋃
O1,λ × O2,λ
λ
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for some open subsets O1,λ ⊂ Rp×p and O2,λ ⊂ Ru×p and thus

σ(O) =
⋃
λ

⋃
A∈O1,λ

O2,λA
−1.

The set O2,λA
−1 is open and then σ(O) is open. �

The following fact follows from the definition.

Lemma 6.3. M is stable under the action of GL(u, R).

Lemma 6.4. M ⊂ C.

Proof. By observing the first column of (6.1), we see that a1 
= 0 and at least 

one of d11, d12, . . . , d1,m−1 is nonzero, since 

⎛
⎜⎜⎝

AD1
...

ADm−2
A≤n−lDm−1

⎞
⎟⎟⎠ is nonsingular, where 

Dk = Diag(d1k, . . . , dpk) for 1 ≤ k ≤ m − 1. Since d11W1 + · · · + d1mWm is singular, 
(W1; . . . ; Wm) is not absolutely full column rank, i.e., M ⊂ C. �
Theorem 6.5. Let X ∈ V ⊂ Rn×p×m. Put (W1, . . . , Wm−1, Wm) = ι(σ(X)), where 
W1, . . . , Wm ∈ Ru×n. The following four statements are equivalent.

(1) rankX = p.
(2) There are an n × p matrix A, and diagonal p × p matrices D1, . . . , Dm such that

W1AD1 + W2AD2 + · · · + Wm−1ADm−1 + WmADm = O (6.2)

and

N =

⎛
⎜⎜⎝

AD1
...

ADm−2
A≤n−lDm−1

⎞
⎟⎟⎠ (6.3)

is nonsingular.
(3) ι(σ(X)) ∈ M.

Proof. It holds that rankX ≥ p, since fl2(X)≤p has rank p. Put (S1; . . . ; Sm) =
X(fl2(X)≤p)−1 Then rankX = rank(S1; . . . ; Sm) and

(
n−l<Sm−1

S

)
= (W1,W2, . . . ,Wm−2, (Wm−1)≤n−l).
m



444 T. Sumi et al. / Journal of Algebra 471 (2017) 409–453
(1) ⇒ (2): Since rank(S1; . . . ; Sm) = p, there are an n ×p-matrix A, a p ×p-matrix Q, 
and p × p diagonal matrices D1, . . . , Dm such that

ADkQ = Sk for k = 1, . . . ,m.

Since

NQ =

⎛
⎜⎜⎝

AD1
...

ADm−2
A≤n−lDm−1

⎞
⎟⎟⎠Q =

⎛
⎜⎜⎝

S1
...

Sm−2
(Sm−1)≤n−l

⎞
⎟⎟⎠ = Ep,

we see that N and Q are nonsingular and Q−1 = N . Since
(

n−l<Sm−1
Sm

)
= σ(X) = (W1,W2, . . . ,Wm−2, (Wm−1)≤n−l),

and ADk = SkN for k = m − 1, m, we see that

Ou×p

=
(

n−l<Sm−1
Sm

)
N −

(
n−l<ADm−1

ADm

)
= W1AD1 + · · · + Wm−2ADm−2

+ (Wm−1)≤n−lA
≤n−lDm−1 +

(
−El

O

)
n−l<ADm−1 +

(
O

−En

)
ADm

= W1AD1 + · · · + Wm−2ADm−2 + Wm−1ADm−1 + WmADm.

Therefore the equation (6.2) holds.
(2) ⇒ (1): Set Q = N−1. Then, since NQ = Ep, we see that

ADkQ = Sk 1 ≤ k ≤ m− 2

and

A≤n−lDm−1Q = S≤n−l
m−1 .

Furthermore, since

W1AD1 + · · · + Wm−2ADm−2

+ (Wm−1)≤n−lA
≤n−lDm−1 +

(
−El

O

)
n−l<ADm−1 +

(
O

−En

)
ADm

= W1AD1 + · · · + WmADm

= Ou×p,
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we see that (
n−l<Sm−1

Sm

)
N=

(
El

O

)
n−l<ADm−1 +

(
O
En

)
ADm.

Thus (
n−l<ADm−1

ADm

)
Q =

(
n−l<Sm−1

Sm

)

and we see that ADkQ = Sk for k = m −1, m. Therefore, rankX = rank(S1; . . . ; Sm) ≤ p

and we see (1).
Finally it is easy to see that (2) ⇔ (3). �
Since M ⊂ C by Lemma 6.4, we see the following:

Proposition 6.6. For X ∈ V , if rankX = p, then ι(σ(X)) /∈ fl1(A u×n×m).

7. Contribution of absolutely full column rank property

Let m, n and p be integers with 3 ≤ m ≤ n and (m −1)(n −1) +1 ≤ p ≤ (m −1)n. We 
set u = nm − p and t = n and use the results of Sections 4 and 5. Note v = u − n + 1 =
(m − 1)n − p + 1 in the notation of Definition 4.6.

It is known that the generic rank grank(n, p, m) of n × p ×m tensors over C is equal 
to p ([5, Theorem 3.1] or [6, Theorem 2.4 and Remark 2.5]) and it is also equal to the 
minimal typical rank of n × p × m tensors over R. Thus if we discuss the plurality of 
typical ranks, it is enough to consider whether there exists a typical rank that is greater 
than p or not.

Definition 7.1. We set A := ι−1(fl1(A u×n×m)) ⊂ Ru×p, where ι and A u×n×m are defined 
in Definition 6.1.

Lemma 7.2. If Y ∈ V n×p×m and σ(Y ) ∈ A, then rankY > p.

Proof. This follows from the fact that rank Y ≥ p if Y ∈ V n×p×m and Proposi-
tion 6.6. �
Theorem 7.3. If A u×n×m 
= ∅, then there are plural typical ranks of n × p × m tensors 
over R.

Proof. By Lemma 3.5, we see that A 
= ∅. Since A u×n×m is an open subset of Ru×n×m, 
we see that A is an open subset of Ru×p. Moreover, since σ : V n×p×m → Ru×p is a 
surjective continuous map, we see that σ−1(A) is a nonempty open subset of V n×p×m. 
Thus, there is a typical rank greater than p by Lemma 7.2.
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Since p is a typical rank of n × p × m tensors over R, we see that there are plural 
typical ranks of n × p ×m tensors over R. �

From now on until the end of this section, we assume that p ≥ (m − 1)(n − 1) + 2. 
Thus, m ≥ v + 2.

Definition 7.4. Let Y ∈ Ru×n×m and let x = (x1, . . . , xm) be a vector of indeterminates. 
For i1, . . . , in−1 ∈ {1, . . . , u}, we set

ψi1,...,in−1(x, Y ) :=

⎛
⎜⎜⎜⎝

(−1)n+1[i1, . . . , in−1 | 2, . . . , n− 1, n]M(x,Y )
(−1)n+2[i1, . . . , in−1 | 1, 3, . . . , n− 1, n]M(x,Y )

...
(−1)2n[i1, . . . , in−1 | 1, . . . , n− 2, n − 1]M(x,Y )

⎞
⎟⎟⎟⎠ ∈ R[x]n.

For the definition [a1, . . . , at | b1, . . . , bt], see Definition 4.6. We define ψ̂i1,...,in−1 : R1×m×
Ru×n×m → R[x]p by

ψ̂i1,...,in−1(x, Y ) :=

⎛
⎜⎜⎝

x1ψi1,...,in−1(x, Y )
x2ψi1,...,in−1(x, Y )

...
xm−1ψi1,...,in−1(x, Y )

⎞
⎟⎟⎠

≤p

∈ R[x]p.

We also define the R-vector space U(Y ) by

U(Y ) := 〈ψ̂i1,...,in−1(u, Y ) | u ∈ V(In(M(x, Y ))),
i1, . . . , in−1 ∈ {1, . . . , u} 〉 ⊂ Rp.

For c = (c11, . . . , cn1, c12, . . . , cn2, . . . , c1m, . . . , cnm) ∈ R1×nm, we set Zk =(
Yk

c1k · · · cnk

)
for 1 ≤ k ≤ m, Z = (Z1; . . . ; Zm) ∈ R(u+1)×n×m and

gi1,...,in−1(x, Y, c) = [i1, . . . , in−1, u + 1]M(x,Z)

for any i1, . . . , in−1 ∈ {1, . . . , u}. For the definition [i1, . . . , in−1, u + 1]M(x,Z), see Defi-
nition 4.6.

Lemma 7.5. Suppose that Y ∈ Ru×n×m. Then the following claims are equivalent.

(1) dimU(Y ) = p.
(2) If c ∈ R1×nm satisfies the following conditions, then c = 0.

(∗) p<c = 0 and
(∗∗) gi1,...in−1(u, Y, c) = 0 for any u ∈ V(In(M(x, Y ))) and any i1, . . . , in−1 ∈

{1, . . . , u}.
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Proof. The vector d ∈ Rp is perpendicular to U(Y ) if and only if d is perpendicular 
to ψ̂i1,...,in−1(u, Y ) for any u ∈ V(In(M(x, Y ))) and any i1, . . . , in−1. Since the inner 
product of ψ̂i1,...,in(u, Y ) with d is gi1,...,in−1(u, Y, (d

�, 0)), the result follows. �
Next we show the following result. For the definition of M, see Definition 6.1.

Lemma 7.6. If dimU(Y ) = p, then fl1(Y ) ∈ M.

Proof. Set Y = (Y1; . . . ; Ym). Suppose that dimU(Y ) = p. Then there are u1, . . . , up ∈
V(In(M(x, Y ))) and t11, . . . , t1,n−1, . . . , tp1, . . . , tp,n−1 such that

ψ̂t11,...,t1,n−1(u1, Y ), . . . , ψ̂tp1,...,tp,n−1(up, Y )

are linearly independent over R. Set uj = (uj1, . . . , ujm) for 1 ≤ j ≤ p, Dk =
Diag(u1k, . . . , upk) for 1 ≤ k ≤ m and

A = (ψt11,...,t1,n−1(u1, Y ), . . . , ψtp1,...,tp,n−1(up, Y )).

Then,

⎛
⎜⎜⎝

AD1
...

ADm−2
A≤n−lDm−1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

AD1
...

ADm−2
ADm−1

⎞
⎟⎟⎠

≤p

= (ψ̂t11,...,t1,n−1(u1, Y ), . . . , ψ̂tp1,...,tp,n−1(up, Y ))

is a nonsingular matrix and

(uj1Y1 + · · · + ujmYm)ψtj1,...,tj,n−1(uj , Y ) =

⎛
⎜⎜⎝

[1, tj1, . . . , tj,n−1]M(uj ,Y )
[2, tj1, . . . , tj,n−1]M(uj ,Y )

...
[u, tj1, . . . , tj,n−1]M(uj ,Y )

⎞
⎟⎟⎠ = 0

since In(M(uj , Y )) = (0) for 1 ≤ j ≤ p. �
Definition 7.7. Set U := {Y ∈ Ru×n×m | p<fl1(Y ) is nonsingular}, O3 := U ∩ Q ∩ Q′ ∩
P̃n = O1 ∩U ∩Q′ and O4 := U ∩Q ∩Q′ ∩A u×n×m = O2 ∩U ∩Q′, where Q, Q′ and 
P̃n are the ones defined in Definitions 4.27, 5.19, and 4.24 and O1 and O2 are the ones 
in Theorem 4.31 under t = n. Define ν : U → Ru×p as ν(Y ) := −(p<fl1(Y ))−1fl1(Y )≤p

for i = 1, 2, where σ is the one defined in Definition 6.1. Set Oi = ν(Oi+2) ⊂ Ru×p and 
Ti = σ−1(Oi)⊂ V n×p×m for i = 1, 2.

The following fact is immediately verified.
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Lemma 7.8. ι(ν(Y )) = fl1(−(p<fl1(Y ))−1Y ).

By the same way as Theorem 4.31 (1), (2) and (3), we see the following fact.

Lemma 7.9. Then the following hold.

(1) O3 and O4 are disjoint open subsets of Ru×n×m and O3 is nonempty.
(2) O3 ∪ O4 is a dense subset of Ru×n×m.
(3) O3 = C u×n×m = Ru×n×m \ A u×n×m.

Lemma 7.10. fl1(O3) ⊂ M.

Proof. Let Y ∈ O3. By Lemmas 7.6 and 7.5, it is enough to show that if c ∈ R1×nm

satisfies (∗) and (∗∗), then c = 0.
Set c = (c1, . . . , cm), where cj ∈ R1×n, c′ = (c1; · · · ; cm) ∈ R1×n×m and Ỹ =(
Y
c′

)
. Then by (∗∗), gi1,...,in−1(x, Y, c) ∈ I(V(In(M(x, Y )))) for any i1, . . . , in−1 ∈

{1, . . . , u}. Therefore, by the definition of O3 and Theorem 4.31 (5), we see that 
gi1,...,in−1(x, Y, c) ∈ In(M(x, Y )) for any i1, . . . , in−1 ∈ {1, . . . , u}. Thus we see that 
In(M(x, Ỹ )) = In(M(x, Y )). Thus, by Proposition 5.21, we see that fl1(c) is an R-linear 
combination of rows of fl1(Y ). Since p<c = 0 and Y ∈ U , we see that c = 0. �

By the same way as Proposition 6.2, we see the following:

Proposition 7.11. ν is an open, surjective and continuous map.

We see the following fact.

Lemma 7.12. Then the following hold.

(1) Y ∈ A u×n×m if and only if ν(Y ) ∈ A for Y ∈ U .
(2) O1 and O2 are disjoint open subsets of Ru×p and O1 
= ∅.
(3) O1 ∪ O2 is a dense subset of Ru×p.
(4) O1 = Ru×p \ A.
(5) O2 ⊂ A and O2 = A.

Proof. (1): Suppose that Y ∈ U . Since A u×n×m and U are stable under the action of 
GL(u, R), we see that Y ∈ A u×n×m if and only if −(p<fl1(Y ))−1Y ∈ A u×n×m. Since 
ι(ν(Y )) = fl1(−(p<fl1(Y ))−1Y ) and fl1 is a bijection, we see (1).

We see (2) by the facts that P̃n and A u×n×m are stable under the action of GL(u, R), 
Lemma 7.9, and Proposition 7.11. (3) also follows from Lemma 7.9 and Proposition 7.11. 
We see by (1) that if Y ∈ O3, then ν(Y ) /∈ A. Thus O1 = ν(O3) ⊂ Ru×p \ A. Since
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O3 = Ru×n×m\A u×n×m by Lemmas 7.9 (3), we see that O1 ⊃ ν(O3∩U ) = ν((Ru×n×m\
A u×n×m) ∩ U ) = Ru×p \A by (1) and the surjectivity of ν. Thus we see (4). Therefore 
O2 ⊂ A by (2). Further, we see that O2 ⊃ A by (3) and (4). Thus we see (5). �

Lemma 7.13. Let X and Y be topological spaces, f : X → Y a mapping and B a subset 
of Y .

(1) If f is continuous, then f−1(B) ⊃ f−1(B).
(2) If f is an open map, then f−1(B) ⊂ f−1(B).

Proof. (1): Since f−1(B) is a closed subset of X containing f−1(B), we see that 
f−1(B) ⊃ f−1(B).

(2): Suppose that x ∈ f−1(B) and let U be an open neighborhood of x. We show that 
U ∩ f−1(B) 
= ∅.

Since f(x) ∈ B, f(x) ∈ f(U) and f(U) is an open subset of Y , we see that f(U) ∩B 
=
∅. Take b ∈ f(U) ∩ B and a ∈ U such that f(a) = b. Then, since f(a) ∈ B, we see that 
a ∈ f−1(B). Thus, a ∈ U ∩ f−1(B) and we see that U ∩ f−1(B) 
= ∅. �

Theorem 7.14. Let m, n and p be integers with 3 ≤ m ≤ n and (m − 1)(n − 1) + 2 ≤ p ≤
(m − 1)n. The following hold.

(1) T1 and T2 are disjoint open subsets of V n×p×m and T1 is nonempty.
(2) T1 ∪ T2 is a dense subset of Rn×p×m.
(3) T1 ∩ V n×p×m = V n×p×m \ σ−1(A) and T2 ∩ V n×p×m = σ−1(A) ∩ V n×p×m.
(4) If T ∈ T1, then rankT = p.
(5) If T ∈ T2, then rankT > p.

Proof. First note that σ−1(X ) ∩ V n×p×m = σ−1(X ) for any subset X of Ru×p by 
Lemma 7.13, since σ is an open continuous map.

(1) and (2) follow from Lemma 7.12 and the facts that σ is surjective and V n×p×m is 
a dense subset of Rn×p×m.

(3): We see by Lemma 7.12 that T 1 ∩ V n×p×m = σ−1(O1) = σ−1(Ru×p \ A) =
V n×p×m \ σ−1(A) and T 2 ∩ V n×p×m = σ−1(O2) = σ−1(A) ∩ V n×p×m.

(4): Suppose that T ∈ T1. Then σ(T ) ∈ O1. Thus there exists Y ∈ O3 such that 
ν(Y ) = σ(T ). By Lemma 7.10, we see that fl1(Y ) ∈ M. Hence ι(σ(T )) = ι(ν(Y )) =
−(p<fl1(Y ))−1fl1(Y ) ∈ M, since M is stable under the action of GL(u, R). Therefore 
rankT = p by Theorem 6.5.

(5): If T ∈ T2, then σ(T ) ∈ O2 ⊂ A by Lemma 7.12. Thus rankT > p by 
Lemma 7.2. �
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8. Upper bound for typical ranks

In Lemma 7.2, we see a class of tensors with rank greater than p. To complete the 
proof of Theorem 1.2, we give an upper bound of the set of typical ranks of Rn×p×m:

Theorem 8.1. Let 3 ≤ m ≤ n and (m − 1)(n − 1) + 1 ≤ p ≤ (m − 1)n. Any typical rank 
of Rn×p×m is less than or equal to p + 1.

We prepare the proof.
Let 3 ≤ m ≤ n, (m − 1)(n − 1) + 1 ≤ p < (m − 1)n and u = mn − p. Let 

σ′ : V n×(p+1)×m → R(u−1)×(p+1) be the counterpart of σ : V n×p×m → Ru×p. Also, 
let A′ ⊂ R(u−1)×(p+1) and T ′

1 ⊂ V n×(p+1)×m be the counterparts of A ⊂ Ru×p and 
T1 ⊂ V n×p×m respectively. Let π : Rn×(p+1)×m → Rn×p×m be a canonical projection 
defined as π(Y1; . . . ; Ym) = ((Y1)≤p; . . . ; (Ym)≤p). Clearly π is a continuous, surjective 
and open map.

Lemma 8.2. π(T ′
1 ) is an open dense subset of Rn×p×m.

Proof. Since T ′
1 is an open set and π is an open map, π(T ′

1 ) is an open subset of Rn×p×m. 
We show that π(T ′

1 ) is dense. Let X ∈ V n×p×m. Consider the map f : V n×p×m →
V n×(p+1)×m defined as

f(X1; . . . ;Xm−2;Xm−1;Xm) = ((X1,0); . . . ; (Xm−2,0); (Xm−1, e); (Xm,0))

where e is the (2n − u + 1)th column vector of the identity matrix En. Since the 
(p + 1)th column vector of the matrix σ′(f(X)) is zero, f(X) /∈ σ′ −1(A′) holds and 
by Theorem 7.14 (3), f(X) ∈ T ′

1 . Since π ◦ f is the identity map and π is continuous, 
X ∈ π(T ′

1 ) ⊂ π(T ′
1 ) holds. Therefore V n×p×m ⊂ π(T ′

1 ) and thus Rn×p×m = π(T ′
1 ). �

By Theorem 7.14 (5), and Lemma 8.2, we have immediately the following corollary.

Corollary 8.3. Let 3 ≤ m ≤ n and (m − 1)(n − 1) + 1 ≤ p < (m − 1)n. T2 
= ∅ if and 
only if T2 ∩ π(T ′

1 ) 
= ∅, and rank T = p + 1 for any T ∈ T2 ∩ π(T ′
1 ).

Note that arbitrary tensor of π(T ′
1 ) has rank less than or equal to p + 1 by Theo-

rem 7.14 (4).

Proof of Theorem 8.1. The assertion for p = (m − 1)n holds by [33]. Suppose that 
(m − 1)(n − 1) + 1 ≤ p < (m − 1)n. Then rank(T ) ≤ p + 1 for T ∈ π(T ′

1 ). Since π(T ′
1 )

is dense, arbitrary integer greater than p + 1 is not a typical rank. �
Recall that trank(m, n, p) = trank(n, p, m). We are ready to prove main theorems.

Proof of Theorem 1.1. (1) follows from Theorem 7.3 and Corollary 3.4.
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(2): We may assume that 3 ≤ m ≤ n without the loss of generality. Ten Berge [35]
showed that Rm×n×p has a unique typical rank for p ≥ (m − 1)n + 1. Therefore, we 
see that p ≤ (m − 1)n. Set u = mn − p. By Theorem 7.14 (2) and (4), we see that 
T2 
= ∅. Furthermore, T2 
= ∅ ⇒ O4 
= ∅ by definitions and the surjectivity of σ. Since 
O4 ⊂ A u×n×m, we see that there exists an absolutely full column rank u ×n ×m tensor. 
The result follows from Corollary 3.4. �
Proof of Theorem 1.2. We may assume that 3 ≤ m ≤ n. Note that

trank(m,n, p) = {min{p,mn}}

for k ≥ m [35]. Suppose that 2 ≤ k ≤ m − 1. By Theorem 8.1, the maximal typical rank 
of Rm×n×p is less than or equal to p +1. Since p is the minimal typical rank of Rm×n×p, 
trank(m, n, p) is {p} or {p, p + 1}. By Theorem 1.1, Rm×n×p has a unique typical rank 
if and only if m#n≥ mn − p + 1, equivalently, k≥ m + n − (m#n). This completes the 
proof. �

We immediately have Theorem 1.3 by Proposition 2.4 and Theorem 7.3. In the case 
where p = (m − 1)(n − 1) + 1, we have many examples for having plural typical ranks.

Corollary 8.4. Let m, n ≥ 3 and a ≥ 1. If m ≡ 2a−1 + s (mod 2a) and n ≡ 2a−1 + t

(mod 2a) for some integers s and t with 1 ≤ s, t ≤ 2a−1 then Rm×n×((m−1)(n−1)+1) has 
plural typical ranks.

Proposition 8.5. Let a = 4, 8. If m and n are divisible by a, then for each 1 ≤ k < a, 
Rm×n×((m−1)(n−1)+k) has plural typical ranks.

Proof. For a = 4, 8, if m and n are divisible by a, then m#n ≤ m + n − a by 
Proposition 2.3 and thus m + n − 1 − (m#n) ≥ a − 1. Then the assertion follows by 
Theorem 1.2. �
Corollary 8.6.

(1) R4×4×k has plural typical rank whenever 10 ≤ k ≤ 12.
(2) R8×8×k has plural typical rank whenever 50 ≤ k ≤ 56.

Proposition 8.7. Let m, n ≥ 3. If Rm×n×((m−1)(n−1)+1) has a unique typical rank, then 
trank(m, n, (m −1)(n −1) −k) = {(m −1)(n −1) +1} holds whenever 0 ≤ k < (m−1)(n−1)

m+n−1 .

Proof. Let 0 ≤ k < (m−1)(n−1)
m+n−1 , q = (m − 1)(n − 1) − k and p = (m − 1)(n − 1) + 1. 

Suppose that Rm×n×p has a unique typical rank. Then trank(n, p, m) = {p}. Since the 
set of all n ×p ×m tensors with rank p is a dense subset of Rn×p×m, the image of this set 
by a canonical projection Rn×p×m → Rn×q×m is also a dense subset of Rn×q×m. Thus 
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any typical rank of Rn×q×m is less than or equal to p. On the other hand, by elementary 
calculation, we see that (m −1)(n −1) < mnq

m+n+q−2 ⇔ k < (m−1)(n−1)
m+n−1 . Thus the minimal 

typical rank of Rn×q×m is greater than or equal to p. Therefore Rn×q×m has a unique 
typical rank p. �
Corollary 8.8. Let 3 ≤ m ≤ n. Suppose that Rm×n×((m−1)(n−1)+1) has a unique typical 
rank. If 0 ≤ k ≤ "m

2 # − 1 then trank(m, n, (m − 1)(n − 1) − k) = {(m − 1)(n − 1) + 1}.

Proof. Let 0 ≤ k ≤ "m
2 # − 1. Then (m +n − 1)(k+1) ≤ (m +n − 1)m2 ≤ (n +n − 1)m2 <

mn and thus (m + n − 1)k < (m − 1)(n − 1). Therefore the assertion follows from 
Proposition 8.7. �
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