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Locally Nilpotent Skew Derivations with Central

Invariants
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Abstract

Let δ be a locally nilpotent q-skew derivation of an algebra R such that the invariants
are central. With some natural assumptions on the q-characteristic, we show that if R is
semiprime then R is commutative. We also examine other conditions which imply, even
when R is not commutative, that the commutator ideal is contained in the prime radical.
These results extend previous work of the authors and of Osterburg and may shed some
light on a conjecture of Herstein.
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1. Introduction

In [1] it is shown that if δ is an algebraic skew derivation of a semiprime algebra R, such
that the invariants are central, then R must be commutative. This generalized a result in
[7] on automorphisms of prime order.

In this paper we turn our attention to locally nilpotent q-skew derivations with central
invariants. When contrasting the structure of an algebra to the invariants of a transformation
such as an automorphism, derivation, or skew derivation, one typically assumes that the
transformation is algebraic. One of the surprising aspects of this paper is that we only need
assume that our q-skew derivations are locally nilpotent. Along these lines, the main result
of this paper is
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Theorem 3. Let δ be a locally nilpotent q-skew derivation of a semiprime algebra R such
that the invariants of δ are central. If δN = 0, assume charq(R) ≥ N or charq(R) = 0,
whereas if δ is not nilpotent, assume charq(R) = 0. Then R is commutative.

In Theorems 4 and 6, we also consider the situation where R need not be semiprime.
Starting in the 1970’s, a great deal of machinery, such as the Bergman-Isaacs Theorem [4]
and Kharchenko’s work [6] on inner and outer actions, was developed and used to contrast
the structure of algebras to the invariants under the actions of groups and Lie algebras. A
second surprising aspect of this paper is that our arguments are self-contained and do not
require any previous results on invariants of automorphisms, derivations, or skew derivations.

In [2] a strong connection is shown between skew polynomial rings and rings with locally
nilpotent skew derivations. Motivated by the ideas in that paper, we show that, in many
cases, if an algebra R has a locally nilpotent q-skew derivation with central invariants, then
there is a large subset C of the center such that if a, b ∈ R, then there exists c ∈ C such that
c[a, b] = 0. Therefore, the proofs in this paper deal primarily with proving the existence of
such central elements c and then examining their annihilators.

We will now introduce the terminology that will be used throughout this paper. R will
be an algebra over a field K and q will be a nonzero element of K. If σ is a K-linear
automorphism of R, we say that a K-linear map δ is a q-skew derivation if

δ(rs) = δ(r)s+ σ(r)δ(s) and δ(σ(r)) = qσ(δ(r)),

for all r, s ∈ R. Observe that if σ = 1, then δ is an ordinary derivation, whereas if δ = σ−1,
then δ is q-skew with q = 1.

We say that δ is locally nilpotent, if for each r ∈ R, there exists n = n(r) ≥ 1 such that
δn(r) = 0. It then follows that if we let Rn = {r ∈ R | δn+1(r) = 0}, then

R0 ⊆ R1 ⊆ R2 ⊆ · · · ,

R =
⋃
n≥0

Rn, R0 is the invariants of δ, and R1 is the kernel of δ2.

Since δσ = qσδ, σ restricts to an automorphism of the K-subalgebra R0. We let δ(R) =
{δ(r) | r ∈ R} and will let A denote the set δ(R)∩R0. Observe that A is an ideal of R0 and
we let Aσ = {a ∈ A | σ(a) = a}.

We let char(R) denote the ordinary characteristic of the field K. However, we define the
q-characteristic of R, denoted as charq(R), as the smallest n ≥ 1 such that 1+q+· · ·+qn−1 =
0. If no such n exists, we say charq(R) = 0. The center of R will be denoted as Z(R). If
B ⊆ Z(R) and S ⊆ R, we let annS(B) = {s ∈ S | Bs = 0}.

2. The results

We begin our work with
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Lemma 1. Let x ∈ R1 such that 0 �= δ(x) ∈ Aσ and then let α = δ(x). If m ≥ 1 and either
charq(R) = 0 or m < charq(R), then

αRm ⊆ xRm−1 +Rm−1.

and
αmRm ⊆ R0 +R0x+ · · ·+R0x

m.

Proof. Let γ = 1+q+ · · ·+qm−1; using our assumption on charq(R), we know that γ �= 0.
For the first set containment, it suffices to show that if w ∈ Rm, then αw ∈ xRm−1 +Rm−1.
Observe that δ(w) ∈ Rm−1 and δm+1(w) = 0. Therefore

δm(γαw) = γαδm(w)

and
δm(xδ(w)) = γσm−1(δ(x))δm(w) = γαδm(w).

Hence δm(γαw− xδ(w)) = 0 and γαw− xδ(w) ∈ Rm−1. Since γ is an invertible element
of the ground field, this immediately implies that αw ∈ xRm−1 +Rm−1, as needed.

We will prove the second set inclusion using Mathematical Induction. Observe that the
first part of this lemma handles the m = 1 case. Therefore it suffices to assume the result
for m and then prove it for m+ 1. By the first part of this lemma,

αRm+1 ⊆ xRm +Rm.

Multiplying the above by αm and applying the induction hypothesis, we obtain

αm+1Rm+1 ⊆ αm(xRm +Rm) ⊆ x(R0 +R0x+ · · ·+R0x
m) + (R0 +R0x+ · · ·+R0x

m) ⊆

R0 +R0x+ · · ·+R0x
m +R0x

m+1,

concluding the proof. �

Next we prove a simple but extremely useful result about Aσ in the semiprime case.

Lemma 2. If R is semiprime, then A = Aσ.

Proof. It suffices to show that if a ∈ A, then σ(a) = a. If r ∈ R, since a is central and
δ(a) = 0, we have

0 = δ(ar − ra) = δ(a)r + σ(a)δ(r)− δ(r)a− σ(r)δ(a) = σ(a)δ(r)− δ(r)a.

As a result, (σ(a)− a)δ(R) = 0.

Since a ∈ δ(R), let x ∈ R such that δ(x) = a. Therefore

σ(a)− a = σ(δ(x))− δ(x) = q−1δ(σ(x))− δ(x) = δ(q−1σ(x)− x).
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As a result, σ(a)− a ∈ δ(R). This tells us that

(σ(a)− a)2 ∈ (σ(a)− a)δ(R) = 0.

Since R is semiprime, the center of R does not contain any nonzero nilpotent elements.
However σ(a)−a belongs to the center of R and has square zero, thus σ(a)−a = 0. Therefore
σ(a) = a, concluding the proof. �

We can now prove the first main result of this paper. The special case of Theorem 3
where δ is nilpotent was proved in [1]. However, the argument here is more elementary.

Theorem 3. Let δ be a locally nilpotent q-skew derivation of a semiprime algebra R such
that the invariants of δ are central. If δN = 0, assume charq(R) ≥ N or charq(R) = 0,
whereas if δ is not nilpotent, assume charq(R) = 0. Then R is commutative.

Proof. If a, b ∈ R, let i, j ≥ 0 be the smallest integers such that a ∈ Ri and b ∈ Rj.
Observe that if δN = 0, then i, j ≤ N − 1. Therefore, regardless of whether δ is nilpotent,
Lemma 1 asserts that if α ∈ Aσ and α = δ(x), then

αia ∈ R0 +R0x+ · · ·+R0x
i

and
αjb ∈ R0 +R0x+ · · ·+R0x

j.

Since R0 is central, the set R0+R0x+R0x
2+· · · is a commutative subring of R. Therefore

αia and αjb belong to the same commutative subring of R. Hence

0 = [αia, αjb] = αi+j[a, b] = 0.

Since R is semiprime, αi+j and α have the same annihilator. As a result, α[a, b] = 0.
The previous equation holds for all α ∈ Aσ and a, b ∈ R, therefore

Aσ[R,R] = 0.

In addition, since R is semiprime, Lemma 2 asserts that A = Aσ. Therefore A[R,R] = 0.

Next, let B = annR(A); we claim that B is stable under δ. Note that since A is central,
B is both the left and right annihilator of A. Observe that if a ∈ A, b ∈ B, we have

0 = δ(ba) = δ(b)a+ σ(b)δ(a) = δ(b)a,

hence δ(B) annihilates A and δ(B) ⊆ B.

We now consider the case where δ(B) �= 0. Since δ is locally nilpotent, the set δ(B)∩R0

is nonzero. Furthermore, δ(B) ∩R0 ⊆ δ(R) ∩R0 = A. Therefore

(δ(B) ∩R0)
2 ⊆ AB = 0.
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However, this is a contradiction as δ(B) ∩R0 is contained in the center of a semiprime ring
and cannot contain nonzero nilpotent elements.

In light of the above, it must be the case that δ(B) = 0, hence B is contained in the
center of R. Recall that A[R,R] = 0, hence B contains the set [R,R]. Therefore

[[R,R], R] ⊆ [B,R] = 0.

As a result, all commutators in R are central. Therefore if r, s ∈ R, then [r, s] and [r, rs] =
r[r, s] must be central and we have

0 = [[r, rs], s] = [r[r, s], s] = [r, s]2.

Since [r, s] is both central and nilpotent, the ideal of R generated by [r, s] is nilpotent.
However R is semiprime, therefore [r, s] = 0 and we see that R is commutative. �

The reason we can use self-contained arguments to obtain results for q-skew derivations
which are not algebraic is due to the strength of the assumption that R0 is central. In [3], it
is shown that if R is a domain and d is an algebraic skew derivation (not necessarily q-skew)
then R satisfies a polynomial identity if and only if the invariants of d satisfy a polynomial
identity.

We can contrast this to the case for locally nilpotent derivations where we only assume
the invariants are commutative. Let R = K[x, y | [x, y] = 1] be the first Weyl algebra
in characteristic 0. In this case, the derivation d defined as d(r) = [r, y], for all r ∈ R,
is locally nilpotent. The invariants of d are the commutative polynomial ring K[y] but R
does not satisfy a polynomial identity. Therefore, even for domains, the commutativity of
the invariants of a locally nilpotent derivation is not sufficient to force the ring to satisfy a
polynomial identity.

In light of this, our results for locally nilpotent q-skew derivations cannot be extended to
the case where the invariants are commutative. We now show that there are assumptions,
other than R being semiprime, strong enough to force R to be commutative. The assumption
that char(R) �= 2 may seem surprising but, after the proof of Corollary 5, we will see that
it is necessary.

Theorem 4. Let δ be a locally nilpotent q-skew derivation of an algebra R such that the
invariants of δ are central and char(R) �= 2. If δN = 0, assume char(R), charq(R) ≥ N or
char(R) = charq(R) = 0, whereas if δ is not nilpotent, assume char(R) = charq(R) = 0. If
the set δ(R) ∩R0 ∩Rσ has zero annihilator, then R is commutative.

Proof. The beginning of the proof is quite similar to the proof of Theorem 3. If a, b ∈ R,
let i, j ≥ 0 be the smallest integers such that a ∈ Ri and b ∈ Rj. Observe that if δN = 0,
then i, j ≤ N − 1. Therefore, regardless of whether δ is nilpotent, Lemma 1 asserts that if
α, β ∈ Aσ and α = δ(x), β = δ(y), then

αia ∈ R0 +R0x+ · · ·+R0x
i
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and
βjb ∈ R0 +R0y + · · ·+R0y

j

Next, suppose γ ∈ Aσ and γ = δ(z). By Lemma 1,

γx, γy ∈ R0 +R0z.

Therefore
0 = [γx, γy] = γ2[x, y].

Observe that, for any s, t ≥ 1, [xs, yt] is a sum of terms of the form c[x, y]e, where
c, d ∈ R. Since γ is central, it now follows that

γ2[xs, yt] = 0.

The previous equation asserts that

[γαia, γβjb] = γ2[αia, βjb] ∈ γ2[R0 +R0x+ · · ·+R0x
i, R0 +R0y + · · ·+R0y

j] = 0.

Hence
αiβjγ2[a, b] = 0.

Let B1 = {r ∈ Aσ | rβjγ2[a, b] = 0}. Observe that, for every α ∈ Aσ, αi ∈ B1. Since the
characteristic of R is either 0 or exceeds i, we can linearize the expression ri (or apply the
commutative version of the Nagata Higman theorem), to show that (Aσ)i ⊆ B1. Therefore

(Aσ)iβjγ2[a, b] = 0.

If we now let B2 = {r ∈ Aσ | (Aσ)irγ2[a, b] = 0}, reasoning as above shows that (Aσ)j ⊆ B2,
hence

(Aσ)i(Aσ)jγ2[a, b] = 0.

If charR �= 2, we can let B3 = {r ∈ R | (Aσ)i(Aσ)jr[a, b] = 0}. Reasoning as above
shows that (Aσ)2 ⊆ B3, therefore

(Aσ)i+j+2[a, b] = (Aσ)i(Aσ)j(Aσ)2[a, b] = 0.

However we are assuming that Aσ = δ(R) ∩ R0 ∩ Rσ has zero annihilator, therefore
[a, b] = 0. Therefore [R,R] = 0 and R is commutative

�

In [5], Herstein conjectured if σ is an automorphism of prime order p of a ring R such
that pR = 0 and the invariants of R are central, must the commutator ideal of R be nil.
Specializing Theorem 4 to the case where δ = σ − 1 and R is an algebra over Zp, we have
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Corollary 5. Let R be a ring with an automorphism σ of prime order p > 2 such that
pR = 0. If the invariants Rσ are central and the set Rσ ∩ {σ(r) − r | r ∈ R} has zero
annihilator in R, then R is commutative.

When σp = 1, δ = σ − 1, and pR = 0, then the functions δp−1 is the same as the trace
map σp−1 + · · · + σ + 1. In [7], a corollary of the main result on central invariants shows
that if there exists a ∈ R such that δp−1(a) is regular in R, then the commutator ideal is
contained in the prime radical of R. Observe that Corollary 5 obtains a stronger conclusion
with a weaker assumption than the corollary in [7].

It is interesting to note that Herstein’s conjecture predated the enormous progress made
in the 1970’s and 1980’s in the study of finite groups acting on associative rings. Yet the
problem remains unsolved. We hope that the techniques in Theorems 3 and 4 might result in
additional progress towards solving this problem. We now give an example which illustrates
that the assumption that char(R) �= 2 in Theorem 4 is necessary.

Example. Let K be a field of characteristic 2 and let R be the K-algebra generated by the
set {xi}i≥1 ∪ {zi}i≥1 subject to the relations

1. xi
2 = zi

2 = 0, for all i ≥ 1,

2. each zi is central,

3. [xi, xj] = zizj, for all i, j ≥ 1.

We then define the derivation d on R as d(xi) = zi and d(zi) = 0, for all i ≥ 1. Since
2R = 0, d preserves the defining relations for R, therefore d is a derivation of R such that
d2 is also a derivation. Observe that R is generated by R1, therefore d2 vanishes on all the
generators of R, hence d2 = 0.

Every element of R can be written uniquely as a linear combination of monomials of the
form zi1 · · · zinxji · · · xjm , where the subscripts of the zi’s and xj’s are both strictly increasing
and the number of zi

′s and xj
′s occurring can be any integer greater than or equal to 0. In

this example, σ = 1 and δ(R) ⊆ R0, therefore Aσ = δ(R), hence each zi ∈ Aσ, for i ≥ 1.
Thus the set δ(R) ∩ R0 ∩ Rσ does indeed have zero annihilator in R. Since R is certainly
not commutative, to conclude the example, it suffices to show that R0 ⊆ Z(R).

Suppose for the moment, that d(R) ⊆ Z(R). Then, if b ∈ R0, we have

d(Rb) = d(R)b.

Since d(R) ⊆ Z(R) taking the commutator of both sides of the previous equation with R,
we obtain

0 = [d(R)b, R] = d(R)[b, R].

However, d(R) has zero annihilator, therefore [b, R] = 0, hence b ∈ Z(R). Therefore R0 ⊆
Z(R) and it now suffices to show that d(R) ⊆ Z(R).

By re-ordering the xi’s, it suffices to show that if x1, r ∈ R, then [d(r), x1] = 0. Since
d(x1) is central, this is equivalent to showing d([r, x1]) = 0. We only need to consider the
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case where r is a monomial in the zi’s and xj’s. But since each zi is a central invariant, we
only need to consider the case where r is a monomial in the xj’s. One possibility is that
r = x1Δ, where x1 does not appear in Δ. Then

d([x1Δ, x1]) = d(x1[Δ, x1]) = z1[Δ, x1] + x1d([Δ, x1]).

When expanding [Δ, x1], each term contains a factor of z1. Therefore z1[Δ, x1] = 0. As
a result, it now suffices to show that d([Δ, x1]) = 0.

In light of our reductions, we may assume that r = x2x3 · · · xn. For 2 ≤ i ≤ n, let Δi be
r with xi removed. Then

d(r) =
∑

2≤i≤n
ziΔi.

Next, if 2 ≤ i �= j ≤ n, let Δi,j be r with both xi and xj removed. For fixed (but
arbitrary) i, we have

[Δi, x1] =
∑

2≤i �=j≤n
z1zjΔi,j.

Now, summing over all i, we obtain

[d(r), x1] = [
∑

2≤i≤n
ziΔi, x1] =

∑

2≤i �=j≤n
ziz1zjΔi,j.

Observe that since Δi,j = Δj,i, terms with Δi,j occur twice, once preceded by ziz1zj and
once preceded by zjz1zi. Therefore

0 = [d(r), x1],

hence d(R) ⊆ Z(R), concluding the example. �
In light of the above, when char(R) = 2, the other hypotheses in Theorem 5 are not

sufficient to force R to be commutative, However, if δ is a derivation (as in the example
above) or of the form σ−1, it can be shown that [R,R] ⊆ Z(R). Furthermore, if δ is neither
a derivation nor of the form σ − 1, it can be shown that [[R,R], [R,R]] ⊆ Z(R).

In Lemma 1, we see that the subalgebra of R generated by R1 represents a large piece
of R. In our final result, we consider the case where R is generated by R1. Recall that the
prime radical is the intersection of all the prime ideals of R, the nil radical is a nil ideal
containing all the nil ideals of R, and the prime radical is always contained in the nil radical.

Theorem 6. Let R be an algebra with a locally nilpotent q-skew derivation δ such that
char(R), charq(R) �= 2. If the invariants of δ are central and R is generated by R1 = {r ∈
R | δ2(r) = 0}, then the commutator ideal R[R,R]R is contained in the prime radical.

Proof. Suppose β ∈ A and β = δ(y). If z ∈ R1, since β, δ(z) ∈ R0 and R0 is central, we
have

δ(βz − δ(z)y) = δ(zβ − yδ(z)) = δ(z)β − δ(y)δ(z) = βδ(z)− βδ(z) = 0.
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Therefore βz − δ(z)y ∈ R0, hence βz ∈ δ(z)y +R0 ⊆ R0 +R0y.

As a result,
βR1 ⊆ R0 +R0y

and
β2[R1, R1] = [βR1, βR1] ⊂ [R0 +R0y, R0 +R0y] = 0.

Since R is generated by R1, it follows that if r, s ∈ R, then [r, s] is a sum of terms of the
form a[b, c]d, where b, c ∈ R1 and a, d ∈ R. Since β is central, we see that β2[r, s] = 0. As a
result,

β2[R,R] = 0.

Since the characteristic of R is not 2, we can once again linearize β2[R,R] = 0 to obtain

A2[R,R] = 0.

Let B = annR(A
2); observe that B contains the commutator ideal R[R,R]R. Since δ

is q-skew, both δ(R) and R0 are σ-stable, hence σ(A2) = A2. It immediately follows that
σ(B) = B. Furthermore, if b ∈ B, a ∈ A2, we have

0 = δ(ba) = δ(b)a+ σ(b)δ(a) = δ(b)a.

Therefore δ(B) ⊆ annR(A
2) = B and B is δ-stable.

In light of the above, δ restricts to B as a locally nilpotent q-skew derivation with
invariants which are central in R. Since δ(R1) ⊆ A ⊆ Z(R) and δ2(R1) = 0, it follows that
if r1, r2, . . . , rn ∈ R1, with n ≥ 3, then

δ2(r1r2 · · · rn) ∈ A2R.

Therefore
δ2(B3) ⊆ A2B = 0.

As a result, δ(B3) is contained in the invariants, hence δ(B3) ⊆ Z(R)

If a, b ∈ B3, we have

0 = δ2(ab) = δ2(a)b+ (1 + q)σ(δ(a))δ(b) + σ2(a)b = (1 + q)σ(δ(a))δ(b).

Since 1 + q �= 0, it follows from the previous equation that

δ(B3)δ(B3) = σ(δ(B3))δ(B3) = 0.

Furthermore, if a, b ∈ B3, it follows that

δ(aδ(b)) = δ(a)δ(b) + σ(a)δ2(b) = 0,

9



hence aδ(b) is also contained in the invariants of δ. As a result B3δ(B3) ⊆ R0 ⊆ Z(R).

Since δ(B3) and B3δ(B3) are both central,

0 = [B3δ(B3), B3] = [B3, B3]δ(B3).

We now let C = annB3(δ(B3)); observe that C contains the ideal R[B3, B3]R. Since σ(C) =
C, we have

δ(C2) ⊆ δ(C)C + σ(C)δ(C) ⊆ δ(B3)C + Cδ(B3) = 0.

Therefore C2 is also in the invariants of δ, hence C2 ⊆ Z(R).

In order to show that the commutator ideal R[R,R]R is in the prime radical, we need
to show that, for every prime ideal P of R, we have R[R,R]R ⊆ P . Suppose there exists
a prime ideal P such that R[R,R]R �⊂ P . Since R[R,R]R ⊆ B, it follows that B �⊂ P .
Furthermore, since P is prime, B3 �⊂ P .

As a result, B3 + P/P is a nonzero ideal of the prime ring R/P . Since R[R,R]R �⊂ P ,
the prime ring R/P is not commutative. Therefore, every nonzero ideal of R/P is not
commutative. Hence B3 + P/P is not commutative and it follows that [B3, B3] �⊂ P .

In light of the above, R[B3, B3]R �⊂ P and since R[B3, B3]R ⊆ C, we have C �⊂ P . Since
P is prime, C2 �⊂ P . Therefore C2 + P/P is a nonzero ideal of the prime ring R/P . Since
R/P is not commutative, C2 + P/P is also not commutative, therefore [C2, C2] �⊆ P . But
this contradicts the fact that [C2, R] = 0.

Thus R[R,R]R is indeed contained in each prime ideal of R and is therefore contained
in the prime radical. �

To this point, the only example we have given where central invariants do not imply
commutativity is in characteristic 2. In light of this, we conclude this paper with an example
of an algebra R in characteristic 0 with a locally nilpotent derivation d such that d is not
nilpotent, R0 is central, but R is not commutative. Observe that R will be a direct sum of
noncommutative algebras on which d acts nilpotently with central invariants.

Example. If n ≥ 2, let K be a field of characteristic 0 and let R(n) be the K-algebra
generated by x1, x2, y1, y2 such that

1. x1, x2 are central,

2. xi1 · xi2 · · · xin = 0, where each xij ∈ {x1, x2},
3. [y1, y2] = x1

n−1,
4. the derivation dn is defined as dn(x1) = dn(x2) = 0, dn(y1) = x1, and dn(y2) = x2.

Since dn
n−1(y1) = (n − 1)!x1

n−1, we see that dn
n−1 �= 0. Let Δ1, . . . ,Δm be all the

products of length n in x1 and x2. Observe that dn(R(n)) ⊆ x1R(n) + x2R(n), hence
dn

n(R(n)) ⊆∑m
i=1 ΔiR(n). However, in R(n) each Δi = 0, hence dn

n(R(n)) = 0.
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If r ∈ R(n) is an invariant, we can write r =
∑

i,j≥0 y1
iy2

j +w, where every monomial in
w has at least one x1 or x2. Observe that

dn(
∑

i,j≥0
y1

iy2
j) =

∑

i≥1,j≥0
ix1y1

i−1y2j +
∑

i≥0,j≥1
jx2y1

iy2
j−1.

On the other hand, every monomial in dn(w) must have degree at least 2 in the x’s. There-
fore, if dn(r) = 0, then r = w ∈ x1R(n) + x2R(n). However, [R(n), R(n)] ⊆ x1

n−1R(n),
hence [w,R(n)] = 0. Therefore w is central and so, dn has central invariants.

Therefore dn is nilpotent on R(n) with central invariants, however R(n) is not commuta-
tive. Finally let R = ⊕∞n=2R(n) and we can define the derivation d on R as d((r1, r2, . . .)) =
(d1(r1), d2(r2), . . .), where each ri ∈ R(i). Certainly R is not commutative, d has central
invariants, and d is not nilpotent. However, each element of R only has a finite number
of nonzero components, therefore d is locally nilpotent. Finally, as in Theorem 6, R is
generated by R1. �
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