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POINCARÉ SERIES OF FIBER PRODUCTS AND WEAK

COMPLETE INTERSECTION IDEALS

HAMIDREZA RAHMATI, JANET STRIULI, AND ZHENG YANG

Abstract. We study the Poincaré series of modules over a fiber product of

commutative local rings. We introduce the notion of a weak complete inter-

section ideal; these are the ideals with the property that every differential in

their minimal free resolutions can be represented by a matrix whose entries

are in the ideal itself. We show that many properties of the Poincaré series

that are known to hold for a fiber product over the maximal ideal also hold

for those over weak intersection ideals.

1. Introduction

Given a commutative local ring R, with residue field k, the growth of a free
resolution of an R-module M is encoded in the formal power series

PR
M =

∞∑
i=0

rankk Tor
R
i (M,k)zi ∈ Z[[z]],

known as the Poincaré series of M . Formulas involving Poincaré series and change
of rings have been studied extensively. For example, suppose that Q and R are
local rings with the same residue field k and ϕ : Q → R is a local homomorphism,
Serre shows that for every finite R-module M , there is a coefficientwise inequality
of formal power series

(1.0.1) PR
M � PQ

M

1 + z − zPQ
R

,

see [2, 3.3.2] for a proof. Specialization of the ring homomorphism yields more
accurate formulas. In [5], Dress and Krämer study the Poincaré series of modules
over the fiber product R ×k S of two commutative local rings R and S over the
common residue field k. They give a formula that allows one to compute the
Poincaré series of an S-module M when considered as a R×k S-module:

PR×kS
M =

PS
MPR

k

PR
k + PS

k − PR
k PS

k

.

Our goal, in this paper, is to investigate the Poincaré series of modules over a fiber
product in a more general setting. In Section 3, we prove that similar formulas hold
if the fiber product is over a weak complete intersection ideal; see Section 2 for the
definition. In particular, we prove the following; see Theorem 3.12.
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morphism, Golod ring, fiber product.

1



2 H. RAHMATI, J. STRIULI, AND Z. YANG

Theorem A. Let R, S and T be commutative local rings such that there are surjec-
tive ring homomorphisms S → R → T . If the kernel of R → T is a weak complete
intersection ideal in R, then the equality

PR×TS
M =

PS
MPR

T

PR
T + PS

T − PR
T PS

T

holds for every finitely generated S-module M .

We introduce the notion of a weak complete intersection ideal in Section 2. These
are the ideals with the property that the R/I-modules TorRi (R/I,R/I) are free for
every i. Clearly the maximal ideal satisfies this property. Also, if I is a complete
intersection ideal in R, then R/I is resolved by the Koszul complex and therefore
I is a weak complete intersection ideal. The following theorem provides a family of
weak complete intersection ideals; see Theorem 2.5.

Theorem B. Let S be a commutative local ring, let I be a complete intersection
ideal in S and let s ≥ 2 be an integer. If R = S/Is, then I/Is is a weak complete
intersection ideal in R.

Other useful tools in computing Poincaré series are the notions of a Golod ho-
momorphism, which was introduced by Levin [14], and of a Golod ring, introduced
by Golod [6]. Golod homomorphisms are ring homomorphisms over which the
Poincaré series of the residue field has the fastest growth allowed by 1.0.1. It is
known that if R is I is a complete intersection ideal in R then the natural surjection
R → R/Is is a Golod homomorphism, for all s ≥ 2 and if in addition R is regular
then R/Is is a Golod ring; see [11, Folgerung 2]. The following statement, which
we prove in Section 4, provides families of Golod rings and Golod homomorphisms;
see Theorem 4.7 and Corollary 4.8.

Theorem C. Let R be a commutative local ring and let I be a complete intersection
ideal in R. For all integers s ≥ 2, and t ≥ 2 the following statements hold.

(i) The homomorphism

R×R/I R → R/Is ×R/I R/It

induced by the natural surjections, is a Golod map.
(ii) If R is regular then R/Is ×R/I R/Is is a Golod ring.

The relevance of Theorem C also comes from the fact that the fiber products of
Golod rings over the residue field are Golod; see [12, 4.1].

We finish the introduction by recalling some notations and definitions. The rank
of the vector space TorRi (M,k) is called the ith Betti number of M and is denoted
by βi(M). We will denote the ith syzygy of M by ΩR

i (M).
Given a sequence x = x1, . . . , xn of elements in R, we denote by K(x;R) the

Koszul complex of x with coefficients in R. If I is an ideal of R, the Koszul
complex of I, with coefficients in R, is computed using a minimal set of generators
of I and is denoted by K(I;R).

We denote by R̂ the m-adic completion of R and by M̂ the R̂-module M ⊗R R̂.

Note that, since R̂ is a faithfully flat R-module, we have PR
M = P R̂

M̂
.

The embedding dimension of a local ring is the minimal number of generator of
the maximal ideal. If R is a complete ring, then by Cohen’s Structure Theorem,
there is a surjective map ϕ : Q → R such that Q is a regular local ring; this map
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is called a Cohen presentation of R. A Cohen presentation is minimal if R and Q
have the same embedding dimension.

2. Weak Complete intersection ideals

In this section, we introduce the notion of a weak complete intersection ideal
and provide a family of examples.

Definition 2.1. Let R be a commutative local ring and let I be an ideal of R.
We say that I is a weak complete intersection ideal, if TorRi (R/I,R/I) is a free
R/I-module for all i.

The next lemma shows that weak complete intersection ideals are exactly the
ideals with the property that every differential in their minimal free resolutions can
be represented by a matrix whose entries are in I.

Lemma 2.2. Let (R,m) be a commutative local ring, let M be a finite R-module
and let F be the minimal free resolution of M . If I is an ideal of R, the following
conditions are equivalent.

(i) Every differential ∂i of F satisfies ∂i(Fi) ⊆ IFi−1.

(ii) The module TorRi (M,R/I) is a free R/I-module for every i.

Proof. Clearly (i) implies (ii). Now, suppose that the module TorRi (M,R/I) is
a free R/I-module for all i. We show, by induction, that Im ∂F

i ⊆ IFi−1. Since

TorR0 (M,R/I) ∼= M/IM is a free, one has F0 ⊗ R/I ∼= M/IM and ∂1 ⊗ R/I = 0,
which imply that Im ∂F

1 ⊆ IF0.

Now, assume that Im ∂F
n ⊆ IFn−1. Since TorRn (M,R/I) is a free R/I- module

and ∂F
n ⊗R/I = 0, the map ∂F

n+1⊗R/I must split. However, the image of ∂F
n+1⊗R/I

is in mFn⊗R/I and hence it must be the zero map. Therefore, Im ∂F
n+1 ⊆ IFn. �

Recall that an ideal I of a commutative local ring R is a complete intersection
ideal if it is generated by a regular sequence.

Example 2.3. (i) The maximal ideal is weak complete intersection.
(ii) If I is complete intersection then R/I is resolved by the Koszul complex on a

minimal set of generators of I, hence I is weak complete intersection.
(iii) Let R = k[x]/(x5), where k is a field. If I is the ideal generated by x2 then

the minimal free resolution of R/I is of the form

· · · x2

−→ R
x3

−→ R
x2

−→ R → 0.

Thus I is weak complete intersection.
(iv) Ulrich ideals are weak complete intersection. An ideal in a Cohen-Macaulay

local ring R is called an Ulrich ideal if I/I2 is a free R/I-module and I2 = JI
where J is a parameter ideal in I that is a reduction of I; see [7, 7.1].

Remark 2.4. In [18, Corollary 1], Vasconcelos shows that I is a complete intersection
ideal if and only if I/I2 is free and the projective dimension of I is finite. Since

I/I2 is isomorphic to TorR1 (R/I,R/I), the ideal I is complete intersection if and
only if I is weak complete intersection and the projective dimension of I is finite.

The next theorem gives a family of weak complete intersection ideals.
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Theorem 2.5. Let S be a commutative local ring, let I be an ideal of S that
is generated by a regular sequence of length c. Let s ≥ 2 be an integer and let
R = S/Is. Then the image of I in R is weak complete intersection. Moreover, the
Poincaré series of this ideal is given by

PR
R/IR = (1 + z)c(1− z2PS

Is)−1

= (1 + z)c

(
1−

c∑
i=1

(
c+ s− 1

s+ i− 1

)(
s+ i− 2

s− 1

)
zi+1

)−1

.

We devote the rest of this section to proving this theorem. In fact, we prove a
more general statement; see Theorem 2.9. The main ingredient in our proof is the
notion of a trivial Massey operation on a differential graded algebra.

Definition 2.6. A differential graded algebra over R is a complex A of R-modules
equipped with a morphism of complexes, called the product of the differential
graded algebra

A⊗R A → A, a⊗ b → ab

that satisfies the following properties.

i) The equality Ai = 0 holds for all i < 0.
ii) The product is associative.
iii) There is an element 1 ∈ A0 such that 1a = a1 = a for all a ∈ A.
iv) If a, b ∈ A then ab = (−1)|a||b|ba and a2 = 0 if the degree of a is odd.
v) The differential of A satisfies the Leibniz rule; that is

∂(ab) = ∂(a)b+ (−1)|a|a∂(b), for all a, b ∈ A.

Here |a| denotes the degree of a. Note that if A is a differential graded algebra,
then H(A) is a graded H0(A)-algebra.

An example of a differential graded algebra, that we use in this paper, is the
Koszul complex K(I;R) of an ideal I in R. In this case, H(K(I;R)) forms a graded
R/I-algebra.

Definition 2.7. Let R be a commutative local ring and let A be a differential
graded algebra over R such that H0(A) ∼= R/I for some ideal I of R and that
Hi(A) is a free R/I-module for every i ≥ 1. We say that A admits a trivial Massey
operation, if for some R/I-basis B = {hλ}λ∈Λ of H≥1(A) there exists a function

μ :
∞⊔

n=1

Bn → A

such that

μ(hλ) = zλ ∈ Z(A) where cls(zλ) = hλ,

∂Aμ(hλ1
, · · · , hλp

) =

p−1∑
j=1

μ(hλ1
, · · · , hλj

)μ(hλj+1
, · · · , hλp

),

where Z(A) denotes the set of cycles of A, and a = (−1)|a|+1a.

If I is an ideal of a commutative local ring R with the property that I/I2 is a free
R/I-module, the existence of a trivial Massey operation guarantees that I is weak
complete intersection. This is the content of Theorem 2.9, whose proof requires the
following lemma.
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Lemma 2.8. Let (R,m) be a commutative local ring and I be an ideal of R. Let
K = K(I, R) with differentials ∂ and let i be a positive integer. The following
statements hold.

(i) If y ∈ Ki satisfies ∂i(y) ∈ mIKi−1, then y ∈ mKi.
(ii) Suppose that I/I2 is free as an R/I-module and y ∈ Ki. If ∂i(y) ∈ I2Ki−1

then y ∈ IKi.

Proof. (i) Let x1, · · · , xc be a minimal set of generators for I and let y ∈ Ki then

y =
∑

J ′⊂{1,...,c},
|J ′|=i

bJ ′eJ ′ ,

where bJ ′ ∈ R and the elements eJ ′ form a basis of Ki. Then

∂i(y) =
∑

J⊆{1,...,c},
|J|=i−1

aJeJ ,

where aJ ∈ R and the elements eJ form a basis for Ki−1. In particular, aJ =∑c
i=1,i/∈J ±bJixi, where the Ji = J ∪{i}. Since ∂i(y) ∈ mIKi−1, and Ki−1 is a free

module, aJ ∈ mI for all J ⊆ {1, . . . , c} such that |J | = i − 1. This implies that∑c
i=1,i/∈J ±bJi

xi ∈ mI and bJi
∈ m, since the elements xi are minimal generators for

the ideal I. Since this holds for every J we obtain that bJ′ ∈ m for all J ′ ⊂ {1, . . . , c}
and |J ′| = i.

(ii) The argument is similar to the proof of part (i), as
∑c

i=1,i/∈J ±bJi
xi ∈ I2

implies that bJi
∈ I, since I/I2 is a free R/I module. �

In the proof of the next theorem, we use an analogue of a construction of free
resolutions first introduced by Eagon. Eagon’s resolution, which can be found in
[2], [8], and [17], uses the Koszul complex of the maximal ideal, whose homology
modules are clearly vector spaces. Our proof is modeled after the proofs that can
be found in the references mentioned above, but new difficulties arise since we are
not working with vector spaces.

Theorem 2.9. Let R be a commutative local ring, let I be an ideal of R such that
I/I2 is a free R/I-module and let K = K(I,R). If Hi(K) is a free R/I-module
for every i and if K admits a trivial Massey operation μ, then I is weak complete
intersection. Moreover, one has

PR
R/I =

(1 + z)c

1− ε1z2 − ε2z3 − · · · − εczc+1
,

where c is the minimal number of generators of I and εi is the rank of the free
R/I-module Hi(K).

Proof. First recall that H0(K) ∼= R/I and that Hi(K) is a free R/I-module for
every i ≥ 1. Let {hλ}λ∈Λ be a basis for H≥1(K). For every i ≥ 2, let Vi be a free
R-module with basis Bi = {vλ | |hλ| = i− 1}. Note that the rank of Vi is the same
as the rank of Hi−1(K).
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We construct the free resolution F of R/I recursively. Set F0 = K0, F1 = K1

and ∂F
1 = ∂K

1 . For n ≥ 2, let

Fn = Kn ⊕ (Fn−2 ⊗R V2)⊕ (Fn−3 ⊗R V3)⊕ · · · ⊕ (F1 ⊗R Vn−1)⊕ (F0 ⊗R Vn)

=
⊕

i+i1+···+ip=n

Ki ⊗R Vi1 ⊗R · · · ⊗R Vip

and define the differential as

∂F
n (a⊗ vλ1

⊗ · · · ⊗ vλp
) = ∂K

i (a)⊗ vλ1
⊗ · · · ⊗ vλp

+ (−1)i
p∑

j=1

aμ(hλ1 , · · · , hλj )⊗ vλj+1 ⊗ · · · ⊗ vλp ,

where vλj
∈ Bij for each j = 1, . . . , p and a ∈ Ki. First, we show that (F, ∂F ) is a

complex and the composition of differential is the zero homomorphism:

∂F
n−1(∂

F
n (a⊗ vλ1 ⊗ · · · ⊗ vλp)) = ∂K(∂K(a))⊗ vλ1 ⊗ · · · ⊗ vλp

+ (−1)i−1

p∑
j=1

∂K(a)μ(hλ1
, · · · , hλj

)⊗ vλj+1
⊗ · · · ⊗ vλp

+ (−1)i
p∑

j=1

∂K(a)μ(hλ1
, · · · , hλj

)⊗ vλj+1
⊗ · · · ⊗ vλp

+

p∑
j=1

a∂K(μ(hλ1 , · · · , hλj ))⊗ vλj+1 ⊗ · · · ⊗ vλp

−
p∑

j=1

p∑
l=j+1

aμ(hλ1
, · · · , hλj

)μ(hλj+1
, · · · , hλl

)⊗ vλl+1
⊗ · · · ⊗ vλp

= 0.

To prove further that the complex F is a free resolution of R/I, we first note that
K is a subcomplex of F , and F/K ∼= F ⊗ V , where V is the complex

· · · 0−→ Vn
0−→ Vn−1

0−→ · · · 0−→ V2 → 0 → 0.

The short exact sequence of complexes

0 → K → F → F ⊗ V → 0

yields a long exact sequence on homology

· · · →
⊕
i

(Hn+1−i(F )⊗R Vi)
ðn+1−−−→ Hn(K) → Hn(F )

→
⊕
i

(Hn−i(F )⊗R Vi)
ðn−−→ Hn−1(K) → · · · .

First note that the equalities H0(F ) = R/I and H1(F ⊗R V ) = 0 holds. Also, one
can easily see ðn(1 ⊗ vλ) = hλ, thus ðn is a surjective homomorphism, which is
split since the module Hn(K) is free.

Now we prove, by induction, that Hi(F ) = 0 for all i ≥ 1. Since H0(K)⊗ V2
∼=

H1(K) and ð2 is surjective, the exact sequence

0 → H2(F ) → H0(K)⊗ V2
ð2−→ H1(K) → H1(F ) → 0
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yields the equalities H1(F ) = 0 = H2(F ).
Suppose that n ≥ 3 and Hi(F ) = 0 for all 1 ≤ i < n. The short exact sequence

0 → Hn(F ) → H0(K)⊗ Vn
ðn−−→ Hn−1(K) → 0

and the isomorphism H0(K) ⊗ Vn
∼= Hn−1(K) imply the equality Hn(F ) = 0.

Therefore, F is a free resolution of R/I.
To show the inclusion ∂(F ) ⊆ IF , it suffices to prove that μ(hλ1

, · · · , hλp
) is

in IK for all p ≥ 1. We prove this by induction on p. If p = 1, then μ(hλ1
) ∈

Z(K) ⊆ IK, by Lemma 2.8. Suppose p > 1 and μ(hλ1
, · · · , hλj

) ∈ IK for all

1 ≤ j ≤ p − 1 then by the definition ∂K(μ(hλ1 , · · · , hλp)) ∈ I2K. Therefore, by
Lemma 2.8, μ(hλ1

, · · · , hλp
) is in IK.

Finally, note that, by the construction of the resolution, one has

PR
R/I = (1 + z)c + ε1z

2PR
R/I + ε2z

3PR
R/I + · · ·+ εcz

c+1PR
R/I

which implies the last assertion of the theorem. �
Remark 2.10. Note that if I/I2 ∼= TorR1 (R/I,R/I) is a free R/I-module, then I
is not necessarily weak complete intersection. Indeed, if R = Q[x, y]/(x4, x3y3, y4)
and I = (x2, y2), one can see that the minimal free resolution of R/I has the form
of

· · · → R8 d3−→ R4 d2−→ R2 d1−→ R → 0

with differentials d1 =
[
x2 y2

]
and

d2 =

[
0 −y2 x2 xy3

y2 x2 0 0

]
, d3 =

⎡
⎢⎢⎣
y2 −x2 0 0 0 0 x3y 0
0 y2 x2 0 0 x2y 0 x3y
0 0 y2 x2 0 0 0 0
0 0 0 0 y x 0 0

⎤
⎥⎥⎦

Therefore, TorR1 (R/I,R/I) is free but TorR2 (R/I,R/I) is not, by Lemma 2.2, .

We use the next lemma to show existence of trivial Massey operations on the
Koszul complex of certain ideals.

Lemma 2.11. Let R be a commutative local ring, let I be an ideal of R that is
generated by a regular sequence and let M be an R-module such that IM = 0. Let
(F, ∂) be a free resolution of M . For every positive integers i and every integer s
such that s ≥ 2, one has

IsFi−1 ∩ Im ∂i ⊆ ∂i(I
s−1Fi).

Proof. First note that if J is ideal in R then for every integer i, there is an isomor-
phism

(2.11.1) TorRi (M,R/J) ∼= Im ∂F
i ∩ JFi−1

J Im ∂i
.

Let I be minimally generated by a regular sequence x1, . . . , xc, let Ij denote the
ideal generated by xj , . . . , xc for all j = 1, . . . , c and let s ≥ 2 be an integer. We
first show that for every j, the inclusion

(2.11.2) IsjFi−1 ∩ Im ∂i ⊆ Is−1
j Im ∂i + (Isj+1Fi−1 ∩ Im ∂i)

holds. If y ∈ IsjFi−1 ∩ Im ∂i, then by 2.11.1, xjy is in Isj Im ∂i. So, we can write

(2.11.3) xjy = xju+ v,
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where u ∈ Is−1
j Im ∂i and v ∈ Isj+1 Im ∂i. So, one has

xj(y − u) ∈ Isj+1Fi−1 ∩ (xj)Fi−1 = (Isj+1 ∩ (xj))Fi−1 = Isj+1(xj)Fi−1,

which implies that xj(y − u) = xjw for some w ∈ Isj+1Fi−1. Since xj is a non-
zerodivisor, one must have

y = u+ w ∈ (Is−1
j Im ∂i + Isj+1Fi−1) ∩ Im ∂i

⊆ Is−1
j Im ∂i + (Isj+1Fi−1 ∩ Im ∂i),

which proves the inclusion 2.11.2. Now, using 2.11.2, c times, we get the following
sequence of inclusions

IsFi−1 ∩ Im ∂i ⊆ Is−1 Im ∂i + (Is2Fi−1 ∩ Im ∂i)

⊆ Is−1 Im ∂i + Is−1
2 Im ∂i + (Is3Fi−1 ∩ Im ∂i)

...

⊆ Is−1 Im ∂i + Is−1
2 Im ∂i + · · ·+ Isc Im ∂i.

Therefore, IsFi−1 ∩ Im ∂i ⊆ Is−1 Im ∂i = ∂i(I
s−1Fi). �

Remark 2.12. Let I is an ideal in R generated by be a regular sequence and let M
be an R-module such that IM = 0. Lemma 2.11 implies that the map

TorRi (M, Is) → TorRi (M, Is−1)

induced by the inclusion map Is → Is−1 is zero for all i and s ≥ 2. Thus the map

TorRi (M, Is) → TorRi (M, I)

induced by the inclusion map Is → I is also zero. Therefore, for every s ≥ 2 the
short exact sequence

0 → Is → I → I/Is → 0

gives a short exact sequence

0 → TorRi (M, I) → TorRi (M, I/Is) → TorRi−1(M, Is) → 0

for all i.

2.13. Let I be an ideal of R that is generated by a regular sequence of length
c and let s be a positive integer. In [3], Buchsbaum and Eisenbud show that

TorRi (R/Is, R/I) is a free R/I-module; see [3, 3.2]. They also show that the Betti
numbers of R/Is are given by

βi(R/Is) =

(
c+ s− 1

s+ i− 1

)(
s+ i− 2

s− 1

)
, for i ≥ 1

see [3, 2.5(c)].

Now, we give the proof of Theorem 2.5.

Proof of Theorem 2.5. Let Ī denote the image of I in R and note that, by [16,
Theorem 16.2], the R/Ī-module Īn/Īn+1 is free for every n ≥ 0, in particular, Ī/Ī2

is free. Now, let K = K(Ī;R). Since K ∼= K(I;S) ⊗S R, for every integer i, the

R-modules Hi(K) and TorSi (S/I,R) are isomorphic. Hence, by 2.13, Hi(K) is a
free R/Ī-module. Also, applying Lemma 2.11 to K, one can choose a set of cycles
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{zλ}λ∈Λ with zλ ∈ Īs−1K such that the set B = {hλ = cls(zλ)}λ∈Λ forms a basis
for H≥1(K). So, the function μ :

⊔∞
n=1 Bn → K defined by

μ(hλ) = zλ and μ(hλ1
, · · · , hλp

) = 0 for p ≥ 2

trivially satisfies the equalities in Definition 2.7. Thus K admits a trivial Massey
operation and therefore, by Theorem 2.9, Ī is weak complete intersection.

Finally, the formulas for the Poincaré series of R/Ī can be obtained from Theo-
rem 2.9 and 2.13. �

We finish this section, in view of 2.13, by raising the following question.

Question 2.14. Let I be a weak complete intersection ideal of R given in Theo-
rem 2.5 and let s ≥ 2 be a positive integer. Are the R/I-modules TorRi (R/Is, R/I)
free, for all i?

3. Fiber products

In this section, we study fiber products over a weak complete intersection ideal.
In particular, we are interested in Poincaré series of modules over such fiber products
and the connections to the Poincaré series over the individual rings. Many of the
results in this section are analogues of statements that are known to hold for fiber
products over the maximal ideal.

Definition 3.1. Let R, S, and T be commutative rings. The fiber product of the
diagram of ring homomorphisms

(3.1.1)

R
εR

��

T

S
εS

��

is the subring of R× S, defined as

(3.1.2) R×T S = {(x, y) ∈ R× S | εR(x) = εS(y)} .
In this paper we assume that the rings R, S, and T are local rings with the same

residue field k and εR and εS are surjective local homomorphisms. In this case, if
r, s and t are maximal ideals of R, S and T , respectively, then R×T S is local, with
maximal ideal

r×t s = {(x, y) ∈ r× s | εR(x) = εS(y)}
see [1, 1.2].

Remark 3.2. Let R ×T S → R × S and R × S → R be the canonical maps. The
composition of these maps gives a ring homomorphism πR : R ×T S → R. Thus
everyR-module has aR×TS-module structure. Also, there is a short exact sequence
of R×T S-modules

(3.2.1) 0 → Ker εS → R×T S
πR−−→ R → 0

Similarly, every S-module has a R×T S-module structure and there is a correspond-
ing short exact sequence for S.
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Lemma 3.3. Let P = R ×T S be the fiber product of the diagram R
εR−−→ T

εS←− S
and let I = Ker εR be a weak complete intersection ideal in R. If n is a nonnegative
integer and {x1, · · · , xβn

} is a minimal set of generators of ΩR
n (I) then

ΩP
1 (Ω

R
n (I)) = {

βn∑
i=1

ei(ri, 0)|
βn∑
i=1

rixi = 0, ri ∈ I}+ {
βn∑
i=1

ei(0, si) | si ∈ Ker εS}

∼= ΩR
n+1(I)⊕ (⊕βn

i=1 Ker εS)

where {e1, · · · , eβn
} is the standard basis for the free module P βn .

Proof. Define the homomorphism φ : P βn → ΩR
n (I) by φ(ei(r, s)) = rxi. Since εR

is surjective, it is straightforward to verify that φ is surjective and

ΩP
1 (Ω

R
n (I)) = Ker(φ) = {Σei(ri, si) | ri ∈ R, si ∈ S, εR(ri) = εS(si), and Σrixi = 0}

= {Σei(ri, si) | ri ∈ I, si ∈ S, εS(si) = 0, and Σrixi = 0}
= {Σei(ri, 0)| Σrixi = 0, ri ∈ I}+ {Σei(0, si) | si ∈ Ker εS}

where the third equality holds because R/I ⊗R ΩP
n (R/I) is a free, as I is a weak

complete intersection ideal. �

Lemma 3.4. Let R ×T S be the fiber product of the diagram R
εR−−→ T

εS←− S. If
I = Ker εR is a weak complete intersection ideal in R then the following equalities
hold

(i) PR×TS
I = PR

I PR×TS
R , and

(ii) PR×TS
S = 1 + PR

T PR×TS
R − PR×TS

R .

Proof. Let PR
I =

∑
βiz

i, let P = R×T S and let J = Ker εS . Thus by Lemma 3.3
one has

ΩP
1 (Ω

R
n (I))

∼= ΩR
n+1(I)⊕ (⊕βn

i=1J)

for every nonnegative n. Thus

PP
I = β0 + z(PP

ΩR
1 (I) + β0P

P
J ) = β0(1 + zPP

J ) + zPP
ΩR

1 (I) = β0P
P
R + zPP

ΩR
1 (I),

where the last equality follows from 3.2.1. Repeating this process one gets

PP
ΩR

n (I) = βnP
P
R + zPP

ΩR
n+1(I)

,

for all n and therefore

PP
I =

∞∑
n=0

znβnP
P
R = PR

I PP
R .

which completes the proof of part (i). Now by 3.2.1 and part (i), one has

PP
S = 1 + zPP

I = 1 + zPR
I PP

R = 1 + (PR
T − 1)PP

R = 1 + PR
T PP

R − PP
R

�
As a corollary we get the following statement.

Corollary 3.5. Let R×T S be the fiber product of the diagram R
εR−−→ T

εS←− S. If
I = Ker εR and J = Ker εS are weak complete intersections in R and S, respectively,
then the equality

PR×TS
R =

PS
T

PR
T + PS

T − PR
T PS

T

holds.
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Proof. Let P denote the fiber product R×T S. By Lemma 3.4(ii), there are equali-
ties PP

R = 1+PS
T PP

S −PP
S and PP

S = 1+PR
T PP

R −PP
R . Now, substituting PP

S from
the second equality into the first one and then solving for PP

R yields the desired
equality. �

Using the proof of Lemma 3.4 we obtain new weak complete intersection ideals
in the fiber product.

Proposition 3.6. Let R ×T S be the fiber product of the diagram R
εR−−→ T

εS←− S.
Let I = ker εR and J = ker εS be weak complete intersection ideals of R and S,
respectively. The ideal I ×T J is weak complete intersection in R×T S.

Proof. Let P = R ×T S and observe that I ×T J = I × J ∼= (I × {0})⊕ ({0} × J)
as ideals of P . Since I and J are weak complete intersection ideals, by Lemma 3.3,
one has

ΩP
1 (Ω

R
n (I))

∼= ΩR
n+1(I)⊕ (⊕βn

i=1J) and ΩP
1 (Ω

S
n(J))

∼= ΩS
n+1(J)⊕ (⊕γn

i=1I)

for every integer n ≥ 0, where βn and γn are the minimal number of generators
of ΩR

n (I) and ΩS
n(J), respectively. Again by Lemmas 3.3 every differential in the

minimal free resolution of I as a P -module can be represented by a matrix whose
entries are in I×J . Hence the P/(I×T J)-module TorPi (I, P/(I×T J)) is free for all

i. Similarly one can show that TorPi (J, P/(I×T J)) is also a free P/(I×T J)-module
for all i. Therefore, I ×T J is a weak complete intersection ideal in P . �

Example 3.7. Let k be a field. Consider

R = k[a, b]/(a2, b2)2, S = k[a, b]/(a2, b2)3, and T = k[a, b]/(a2, b2)

and let εR : R → T and εS : S → T be the natural surjections. By Theorem 2.5,
the ideals I = ker εR and J = ker εS are weak complete intersection in R and S,
respectively.

Set P = R ×T S. It is straightforward to show that P is generated by (a, a),
(b, b), (b2, 0), and (a2, 0). Now, consider the ring Q = k[x, y, z, w]/L where

L = (x6, x4y2, x2y4, y6, z2, zw,w2, x2z − y2w, x2w, y2z, x2z)

Let φ : Q → P be the map defined by

x �→ (a, a), y �→ (b, b), z �→ (b2, 0), and w �→ (a2, 0)

Clearly, φ is a surjective ring homomorphism. It is an easy computation to see that
the length of Q is 32 and by [1, 1.1], the length of P is given by

length(P ) = length(R) + length(S)− length(T ) = 32

Therefore, P is isomorphic to Q.
Now, the ideal I×T J is generated by (a2, 0), (b2, 0), (0, a2) and (0, b2) and under

φ, corresponds to the ideal (x2, y2, z, w) in S. Therefore, (x2, y2, z, w) is a weak
complete intersection ideal in Q.

We recall some definitions that we use in the rest of this section. Suppose that
Q and R be local rings with the same residue field k and ϕ : Q → R is a local
homomorphism.
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Serre shows that for every finite R-module M , one has a coefficient-wise inequal-
ity of formal power series

(3.7.1) PR
M � PQ

M

1 + z − zPQ
R

see also [2, 3.3.2]. If equality holds for M = k then ϕ is called a Golod homomor-

phism. A finite R-module M is called a Golod R-module if equality holds for M̂
when ϕ is a minimal Cohen presentation of R̂. The ring R is called a Golod ring if
k is a Golod R-module.

Lescot, in [13, 2.7], shows that for every finite R-moduleM , there is an inequality

PQ
k PR

M � PR
k PQ

M

If equality holds, we say that M is inert by ϕ. We say that M is an inert R-
module if M̂ is inert by a minimal Cohen presentation of R̂; see Introduction for
the definition of a minimal Cohen presentation.

In general, if ϕ is surjective then for every finite R-module M , there is an in-
equality

PQ
M � PR

MPQ
R

If equality holds then ϕ is said to be large. See [15, 1.1].
We say that the homomorphism α : R → Q is an algebra retract if there is a ring

homomorphisms β : Q → R such that β ◦ α = idR. In this case, we say that R is
an algebra retract of Q.

In [11, Folgerung 2] , Herzog and Steurich give a family of Golod homomorphisms.
In particular, they show the following

3.8. If R is a local ring and if I is a complete intersection ideal in R, then the natural
surjection R → R/Is is a Golod homomorphism for all s ≥ 2. In particular, if R is
regular then R/Is is a Golod ring.

The next result, by Herzog, shows that there is always a large map from a ring
to an algebra retract of it; see [10, Theorem 1].

3.9. Let α : R → Q be an algebra retract and let β : Q → R be a homomorphism
such that β ◦ α = idR. Then β is large.

The next statement is proved by Lescot; see [13, 6.2].

3.10. For any local ring (R,m), R is Golod if and only if the maximal ideal m is an
inert R-module.

Our next goal is to study the fiber products in the following setup.

3.11. Consider the diagram

(3.11.1)

R
εR

��

T

S
π

�� R
εR

��

where π is a surjective homomorphism and set εS = εRπ. It is straightforward to
see that the map α : S → R ×T S defined by α(s) = (π(s), s) is an algebra retract
and πSα = idS . Therefore, by 3.9, the homomorphism πS is large.
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Using 3.11, we show that in this case Corollary 3.5 can be extended to every
S-module when only Ker εR is a weak complete intersection.

Theorem 3.12. If R ×T S is the fiber product of a diagram of the form 3.11.1
and if I = Ker εR is a weak complete intersection ideal in R, then for every finite
S-module M , the equality

PR×TS
M =

PS
MPR

T

PR
T + PS

T − PR
T PS

T

holds.

Proof. Set P = R×T S and J = Ker εS . If we show that

(3.12.1) PP
R = 1 + PS

T PP
S − PP

S and PP
S = 1 + PR

T PP
R − PP

R ,

then substituting PP
S from the second equality into the first one and then solving

for PP
R yields

PP
S =

PR
T

PR
T + PS

T − PR
T PS

T

which, using 3.11, yields PP
M = PS

MPP
S .

The second equality in 3.12.1 holds by Lemma 3.4 and the first equality holds
since

PP
R = 1 + zPP

J = 1 + zPS
J PP

S = 1 + (PS
T − 1)PP

S ,

where the first equality holds by 3.2.1, the second one follows from 3.11 and the
third one holds since J is the first syzygy of T over S. �

We give a family of inert modules that we use in this section to construct Golod
homomorphisms and Golod rings.

Theorem 3.13. Let R be a commutative local ring and let I be an ideal in R that
is generated by a regular sequence of length c. Let s ≥ 2 be an integer and let
π : R → R/Is be the natural surjection. The following statements hold.

(i) The R/Is-modules R/I and I/Is are inert by π; that is

PR
k P

R/Is

R/I = P
R/Is

k PR
R/I and PR

k P
R/Is

I/Is = P
R/Is

k PR
I/Is .

(ii) The R/I-module TorRi (R/I, I/Is) is free.

Proof. (i) Let I = (x1, . . . , xc), where x1, . . . , xc is a regular sequence. Let K =
K(x1, . . . , xc;R) and for i ≥ 1, let εi denote the rank of the free R/Is-module

Hi(K ⊗R R/Is) ∼= TorRi (R/I,R/Is).
By [3, 3.2], every differential in the minimal free resolution of R/Is, as an

R-module, can be represented by a matrix whose entries are in I, thus εi =
dimk Tor

R
i (k,R/Is) for all i ≥ 1 and hence

(3.13.1) PR
R/Is = 1 + ε1z + ε2z

2 + · · ·+ εcz
c

Since s ≥ 2, the map π is Golod by 3.8, thus one has

P
R/Is

k =
PR
k

1 + z − zPR
R/Is

=
PR
k

1− ε1z2 − ε2z3 − · · · − εczc+1
.
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So, using Theorem 2.5, we have

(3.13.2) P
R/Is

R/I =
(1 + z)c

1− ε1z2 − ε2z3 − · · · − εczc+1
= (1 + z)c

P
R/Is

k

PR
k

Therefore R/I is inert by π.
Now, by Remark 2.12, one has a short sequence

0 → TorRi (k, I) → TorRi (k, I/I
s) → TorRi−1(k, I

s) → 0,

for every i. Therefore, PR
I/Is = PR

I + zPR
Is and by 3.13.1 one has

(3.13.3) PR
I/Is =

(1 + z)c − (1− ε1z
2 − ε2z

3 − · · · − εcz
c+1)

z
,

and therefore

P
R/Is

k PR
I/Is = P

R/Is

R/I PR
k (1 + z)−c (1 + z)c − (1− ε1z

2 − ε2z
3 − · · · − εcz

c+1)

z

= PR
k (P

R/Is

R/I − 1)
1

z

= PR
k P

R/Is

I/Is ,

where the first equality follows from 3.13.2 and 3.13.3 and the second one follows
from 3.13.2. Therefore, I/Is is inert by π as desired.

(ii) Another application of Remark 2.12, gives a short sequence

0 → TorRi (R/I, I) → TorRi (R/I, I/Is) → TorRi−1(R/I, Is) → 0.

for every i. We know that the R/I-module TorRi (R/I, I) is free for all i because I

is complete intersection and TorRi (R/I, Is) is free for all i by 2.13. Therefore, the

R/I-module TorRi (R/I, I/Is) is free for all i. �

We give a formula for the Poincaré series of a fiber product over a weak complete
intersection ideal from Theorem 2.5. We use this formula in the next section.

Proposition 3.14. Let Q be a commutative local ring and let I be an ideal gen-
erated by a regular sequence of length c. Let R = Q/Is, S = Q/It, and T = Q/I,
where s ≥ 2 and t ≥ 2 are integers. If R ×T S is the fiber product of the diagram

R
εS−→ T

εS←− S, where εR and εS are natural surjections, then

(PR×TS
k )−1 = (PR

k )−1 + (PS
k )−1 − PQ

T (PQ
k )−1

= (PR
k )−1 + (PS

k )−1 − (1 + z)c(PQ
k )−1.

Proof. First note that the same argument used to show equality 3.13.2 in the proof
of Theorem 3.13 gives

(3.14.1) PR
T = PR

k (1 + z)c(PQ
k )−1 and PS

T = PS
k (1 + z)c(PQ

k )−1.

Now, the proposition follows from the equalities

(PR×TS
k )−1 =

PR
T + PS

T − PR
T PS

T

PR
k PS

T

=
PR
k + PS

k − PR
k PS

k (1 + z)c(PQ
k )−1

PR
k PS

k

= (PR
k )−1 + (PS

k )−1 − (1 + z)c(PQ
k )−1,
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where the first equality holds by 2.5 and 3.12, and the second one follows from the
equalities 3.14.1. �

Remark 3.15. The formula in Proposition 3.14 can be written more explicitly using
the equality

PR
k = PQ

k

(
1−

c∑
i=1

(
c+ s− 1

s+ i− 1

)(
s+ i− 2

s− 1

)
zi+1

)−1

see 3.8.

4. Golod rings

In this section we investigate conditions under which a fiber product is a Golod
ring or a homomorphism of fiber products is Golod.

4.1. Let α : R′ → R and β : S′ → S be algebra retracts and let α′ : R → R′ and
β′ : S → S′ be ring homomorphisms such that α′α = idR′ and β′β = idS′ . Consider
the diagram

R
α′

�� R′
εR′

��

T

S
β′

�� S′ εS′

��

where εR′ and εS′ are surjective local homomorphisms. If R′ ×T S′ and R ×T S
are fiber products obtained from this diagram then the induced homomorphism
α×T β : R′ ×T S′ → R×T S is an algebra retract. Indeed, it is straightforward to
show that (α′ ×T β′)(α×T β) = idR′×TS′ .

In [9, 5.5], Gupta proves that

4.2. For every commutative local ring R, the ring R ×T R is Golod if and only if
ker εR is a Golod R-module.

In particular, if R is a regular local ring then R ×T R is a Golod ring. Gupta
then asks the following question: If R and S are regular rings, is R ×T S a Golod
ring? By [4, 1.11] an algebra retract of a regular ring is regular, so the following
observation gives a partial answer to this question.

Proposition 4.3. If R and S are both algebra retracts of the same regular local
ring, then the fiber product R×T S is Golod.

Proof. Suppose that R and S are algebra retracts of a regular local ring Q. By
Remark 4.1, R×T S is an algebra retract of Q×T Q so, by 3.9 there is a large map
from Q ×T Q to R ×T S. By 4.2, Q ×T Q is a Golod ring and therefore, [9, 5.8]
implies that R×T S is also Golod. �

We prove that a similar formula, to that in Proposition 3.14, holds for a fiber
products of algebra retracts of a ring.

Proposition 4.4. Suppose that T is an algebra retract of both R and S and α : R →
T and β : S → T are the corresponding surjective homomorphisms. Let I be an ideal

of T and R ×T/I S be the fiber product of the diagram R
εR−−→ T/I

εS←− S where εR
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and εS are the compositions of α and β with the natural surjection, respectively.
Then T/I is inert by πR : R×T/I S → R and by πS : R×T/I S → S, and the equality

(P
R×T/IS

k )−1 = (PR
k )−1 + (PS

k )−1 − PT
T/I(P

T
k )−1

holds.

Proof. Set Q = T ×T/I T and P = R ×T/I S. By 3.11, T is an algebra retract of
Q with the corresponding surjective map φ : Q → T define by φ((a, b)) = a. By
4.1, Q is an algebra retract of P with the corresponding surjective map ψ : P → Q
defined as ψ((r, s)) = (α(r), β(s)). Therefore, T is an algebra retract of P with the
corresponding surjective map φψ. Note that φψ = απR. By 3.9 the map απR is
large so, [13, 3.3] implies that T/I is inert by απR. Thus it follows from [13, 3.6(1)]
that T/I is inert by πR. Similarly, one can show that T/I is inert by πS . Now [13,
7.1] yields the equality

(PP
k )−1 = (PR

k )−1 + (PS
k )−1 − PS

T/I(P
S
k )−1.

and the desired equality follows since

PS
T/I(P

S
k )−1 = PT

T/IP
S
T (PT

k PS
T )−1 = PT

T/I(P
T
k )−1 .

�

Remark 4.5. Let I be an ideal of R and letM be a finite R-module. Set P = R×TR.
By 3.11 and 3.9, the map πR is large and hence, by [13, 3.3], R/I is inert by πR.
Thus one has PP

MPR
k = PR

MPP
k . On the other hand, it follows from 4.4 that

PP
k =

PR
k

2− PR
R/I

.

Therefore, there is an equality

PP
M =

PR
M

2− PR
R/I

.

Proposition 4.6. Consider the following diagram of local homomorphisms

S
ϕ

�� R
εR

��

T

S
ϕ

�� R
εR

��

where ϕ is a surjective map. Let S ×T S and R ×T R be fiber products obtained
from this diagram and let ϕ×T ϕ be the map induced by ϕ . Suppose that T is inert
by ϕ. The map ϕ×T ϕ is Golod if and only if ϕ is Golod.

Proof. Set J = Ker(ϕ) and note that Ker(ϕ ×T ϕ) ∼= J ⊕ J as S ×T S-modules.
Then one has

PS×TS
R×TR = 1 + z(2PS×TS

J )

= 1 + 2z

(
PS
J

2− PS
T

)

= 1 + 2
PS
R − 1

2− PS
T

,

(4.6.1)
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where the second equality holds by 4.5. Since T is inert by ϕ, another application
of 4.5 gives the equalities

1

PR×TR
k

=
2− PR

T

PR
k

=
2PS

k − PS
k PR

T

PS
k PR

k

=
2PS

k − PR
k PS

T

PS
k PR

k

,(4.6.2)

1 + z − zPS×TS
R×TR

PS×TS
k

=
2− PS

T − 2zPS
R + 2z

PS
k

.(4.6.3)

Now, ϕ×T ϕ is Golod if and only if the leftmost expressions in 4.6.2 and 4.6.3 are
equal if and only if the rightmost expressions are equal if and only if ϕ is Golod. �

Specialization of T in the proposition above gives a more general result about
the induced homomorphism of fiber products.

Theorem 4.7. Let Q be a commutative local ring, let I be a complete intersection
ideal in Q. Set R = Q/Is, S = Q/It, and T = Q/I where s ≥ 2 and t ≥ 2 are
integers. Consider the fiber products obtained from the diagram

Q
π1

�� R
εR

��

T

Q
π2

�� S
εR

��

where all maps are natural surjections. Then the induced homomorphism

π1 ×T π2 : Q×T Q → R×T S

is a Golod map.

Proof. Since s and t are at least 2, by 3.8, the homomorphisms π1 and π2 are
Golod. Also, by 3.13, T is inert by π1 and π2. It is straightforward to show that
Ker(π1 ×T π2) ∼= Is ⊕ It, as Q×T Q-modules. A computation similar to the proof
in 4.6 gives the equality

PQ×TQ
R×TS = 1 +

PQ
R + PQ

S − 2

2− PQ
T

.

This equality, combined with 4.5, gives

1 + z − zPQ×TQ
R×TS

PQ×TQ
k

=
2− PQ

T − z(PQ
R + PQ

S − 2)

PQ
k

On the other hand, from 3.13, we obtain

(PR×TS
k )−1 = (PR

k )−1 + (PS
k )−1 − PQ

T (PQ
k )−1

=
1 + z − zPQ

R

PQ
k

+
1 + z − zPQ

S

PR
k

− PQ
T (PQ

k )−1

=
2 + 2z − z(PQ

R + PQ
S )− PQ

T

PQ
k

.

So π1 ×T π2 is Golod by comparing the two equalities above. �
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Recall that Lescot [12] shows that one can construct Golod rings by taking the
fiber product of two Golod rings over the residue field. We construct new Golod
rings using fiber products over weak complete intersection ideals from Theorem 2.5.

Corollary 4.8. Let Q be a regular local ring, let I be a complete intersection ideal
in Q. Let R = Q/Is, where s ≥ 2 is an integer, and T = Q/I. Let R ×T R be

the fiber product of the diagram R
εR−−→ T

εR←−− R where εR is the natural surjection.
Then the ring R×T R is Golod.

Proof. By 4.2, it is enough to show I/Is is a Golod R-module. By 3.13, I/Is is
inert by Q → R and by 3.8 the natural surjection Q → R is a Golod map. Thus
there are equalities

PR
I/Is =

PR
k PQ

I/Is

PQ
k

=
PQ
k PQ

I/Is

PQ
k (1 + z − zPQ

R )
=

PQ
I/Is

1 + z − zPQ
R

.

Therefore, I/Is is a Golod R-module. �

Remark 4.9. In [9, 5.6], Gupta shows that 4.2 can be extended to the fiber product
R ×T · · · ×T R and hence 4.8 can also be extended to the fiber product of finitely
many copies of R over T .

Example 4.10. Let k be a field. Consider

R = k[a, b]/(a2, b2)s and T = k[a, b]/(a2, b2).

Let εR : R → T be the natural surjection. If s = 2, a similar argument as in
Example 3.7 shows that R×T R is isomorphic to S = k[x, y, z, w]/J where

J = (x4, x2y2, y4, z2, zw,w2, x2z − y2w, x2w, y2z, x2z).

Therefore, by Theorem 4.8, S is a Golod ring.
In fact, Macaulay2 computations suggest that for s ≥ 2, the ring R ×T R is

isomorphic to S = k[x, y, z, w]/J where J is the ideal generated by

{{x2s−2iy2i}si=0, {zs−iwi}si=0, x
2z − y2w, x2w − w2, y2z − z2, x2z − zw}.

When k is of characteristic zero, [9, 5.5 and 3.6] imply that S is Golod but it follows
from Corollary 4.8 that S is Golod in positive characteristic too.

We end this section by raising the following question.

Question 4.11. Let R be a regular local ring, let I be a complete intersection
ideal in R and let s and t be integers greater than or equal to 2. Is the ring
R/Is ×R/I R/It Golod?
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[5] A. Dress, H. Krämer, Bettireihen von Faserprodukten lokaler Ringe, Math. Ann. 215 (1975),

79–82.

[6] E. S. Golod, On the homologies of certain local rings, Soviet Math. Dokl. 3 (1962), 745-748;

[translated from:] Dokl. Akad. SSSR, 144 (1962), 479-482 [Russian].

[7] S. Goto, K. Ozeki, R. Takahashi, K. Watanabe and K. Yoshida Ulrich ideals and modules,

Math. Proc. Cambridge Philos. Soc. 156 (2014), no. 1, 137-166.

[8] T. H. Gulliksen, G. Levin, Homology of local rings, Queen’s Paper in Pure and Applied

Mathematics, No. 20, (1969), x+192.

[9] A. Gupta, Ascent and descent of the Golod property along algebra retracts, J. Algebra 480

(2017), 124–143.
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