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1. Introduction

The silting theory, which can be viewed as a generalization of the tilting theory in 
triangulated categories, originates from the study of t-structures in the representation 
theory (see, for example, [13,16]). A known disadvantage of tilting mutations for tilting 
objects is that, some direct summands of a tilting object cannot be replaced to get a new 
tilting object. To overcome this disadvantage, Aihara and Iyama introduced in [1] the 
notions of (pre)silting subcategories (objects) in triangulated categories. By extending 
the class of tilting objects to the wider class of silting objects, they define a concept of 
silting mutations that always works (see [1, Theorem 2.31]). According to [26], the silting 
objects play the same role in the bounded homotopy category of projective modules 
as the tilting modules in module categories. Silting subcategories (objects) are closely 
related to t-structures and co-t-structures in triangulated categories (see, for example, 
[15,21]). Thus one can better understand the structure of a triangulated category from 
the viewpoint of the silting theory.

Originated from the concept of injective envelopes, the approximation theory has at-
tracted increasing interest and, hence, obtained considerable development especially in 
the context of module categories (see, for example, [6,7,12]). Inspired by the ideas of 
injective envelopes and projective covers, Auslander and Buchweitz studied in [5] the 
maximal Cohen–Macaulay approximations for certain modules. Indeed, they established 
their theory in the context of abelian categories, and provided several important appli-
cations. Following their work, Mendoza Hernández, Sáenz Valadez, Santiago Vargas and 
Souto Salorio developed in [19,20] an analogous theory of approximations for triangulated 
categories. The main purpose of this manuscript is to apply this Auslander–Buchweitz 
approximation theory to investigate (pre)silting subcategories (objects) in triangulated 
categories.

Covariantly finite subcategories were firstly introduced by Auslander and Smalø [7]
(note that a subcategory is called covariantly finite precisely when it is preenveloping in 
the sense of Enochs and Jenda [12]). In 1991, Auslander and Reiten showed in [6, Theo-
rem 5.5] that there exists a one-to-one correspondence between certain covariantly finite 
subcategories of the module category and isomorphism classes of basic tilting modules. 
This result gives a characterization of tilting modules in terms of subcategories, and is 
known as the “Auslander–Reiten correspondence” in the literature. In 2013, Mendoza 
Hernández, Sáenz Valadez, Santiago Vargas and Souto Salorio established a bijective 
correspondence between bounded co-t-structures on T and silting subcategories of T
(see [20, Corollary 5.9]). By virtue of this bijection, we obtain the following result which 
gives the “Auslander–Reiten correspondence” for silting subcategories of T (see Corol-
lary 3.7). We refer the reader to Section 2 and Subsection 3.1 for unspecified notation 
and notions.

Theorem 1.1 (Auslander–Reiten correspondence for silting subcategories). Let T be a 
triangulated category. Then the assignments
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M �→ M⊥i>0 and H �→ ⊥i>0H ∩ H

give mutually inverse bijections between the following classes:
(1) Silting subcategories M of T .
(2) Subcategories H of T , which is specially covariantly finite and coresolving in T , 

such that qH = T and for any object H ∈ H, there exists an integer i making 
HomT (H, H[� i]) = 0.

This result gives a new characterization of a silting subcategory M, and reflects more 
homological properties of M. In particular, subcategories of T satisfying the conditions in 
Theorem 1.1(2) can be used to obtain bounded co-t-structures on T (see Proposition 3.6).

Recall that a complex is called silting [16] (resp., tilting [23]) if it is a silting (resp., 
tilting) object in Kb(projR) (here, the symbol Kb(projR) denotes the bounded ho-
motopy category of finitely generated projective modules). It is easy to see that every 
tilting complex in Kb(projR) is always silting. However, the converse does not hold true 
in general (see [26, Section 6] for examples). As a consequence of Theorem 1.1, we get 
the following Auslander–Reiten type correspondence for silting complexes (see Corol-
lary 3.13 and Subsection 3.3 for unspecified notation and notions). We thank the referee 
for pointing out to us an interesting work of Marks and Vitória, who proved that there 
exists a bijection between silting complexes up to equivalence and co-intermediate and 
coresolving subcategories of Kb(projR) (see [18, Theorem 3.6]).

Corollary 1.2 (Auslander–Reiten correspondence for silting complexes). Let R be an ar-
bitrary ring. Then for any integer n, the assignments

T �→ T⊥i>0 and H �→ N,

where addN = ⊥i>0H∩H, give mutually inverse bijections between the following classes:
(1) Equivalent classes of silting complexes T in K�n(projR).
(2) Subcategories H of K�n(projR), which is specially covariantly finite and coresolv-

ing in Kb(projR), such that qH = Kb(projR).

Recently, Angeleri Hügel, Marks and Vitória [3] introduced and subsequently studied 
in [2,4] the notion of silting modules. These modules generalize large tilting modules in 
the sense of Colpi and Trlifaj [11]. They showed that there exists a bijective correspon-
dence between equivalence classes of silting modules and equivalence classes of 2-term 
“silting complexes”. Note that, in this case, a “silting complex” C is defined as a bounded 
complex of large projective modules satisfying that HomKb(Proj R)(C, C(I)[� 1]) = 0 for 
all sets I and 〈AddC〉 = Kb(ProjR) (here, the symbol Kb(ProjR) denotes the bounded 
homotopy category of large projective modules, and 〈AddC〉 denotes the smallest thick 
subcategory of Kb(ProjR) containing AddC). To avoid confusion, we call such a “silt-
ing complex” a large silting complex. In 2013, an Auslander–Reiten type correspondence 
for large silting complexes was established in [26, Theorem 5.3]. In terms of this corre-
spondence, Angeleri Hügel, Marks and Vitória obtained a bijection between equivalence 



Z. Di et al. / Journal of Algebra 525 (2019) 42–63 45
classes of large silting complexes and certain intermediate co-t-structures (see [3, Theo-
rem 4.6]). It is worth mentioning, by a careful reading of [3] and [26], that if one wants 
to get our Corollary 1.2 by the method in the proof of [3, Theorem 4.6] or [26, Theo-
rem 5.3], then the condition that HomKb(proj R)’s are finitely generated is necessary (see 
[26, Remark 3.3, Remark 5.4 and Lemma 3.11]).

In 2004, Bazzoni [8] proved a very interesting characterization for infinitely gener-
ated tilting modules of finite projective dimension. More precisely, she showed that for 
a non-negative integer n, a module L is n-tilting if and only if L⊥i>0 = Presn(AddL), 
where Presn(AddL) denotes the category of all modules K such that there is an ex-
act sequence Ln−1 → · · · → L0 → K → 0 with each Li ∈ AddL and L⊥i>0 stands 
for the right orthogonal category of L with respect to ‘Ext’. This result is known as 
the “Bazzoni’s characterization” in the literature. Motivated by her contribution, the 
fourth author gave corresponding characterizations for several important tilting objects 
in different categories, such as classical n-tilting modules [24], tilting pairs [27], tilting 
complexes and large silting complexes [26]. In particular, the Bazzoni’s characterization 
for large silting complexes [26, Theorem 4.4] holds true for an arbitrary ring. However, 
the corresponding result for tilting complexes [26, Corollary 4.5] holds under the condi-
tion that HomKb(proj R)’s are finitely generated (see [26, Remark 3.3 and Lemma 3.11]). 
To remove this condition, we introduce in this manuscript a relation ‘�n’ of presilting 
subcategories of T .

Let M and N be two presilting subcategories of T . We write ‘M �n N ’ pro-
vided that every object in M has a finite resolution of length n by objects in N
and every object in N has a finite coresolution by objects in M (see Definition 4.1). 
Note that if T is a silting complex in Kb(projR) with inf{s ∈ Z | Ts 	= 0} = l and 
sup{s ∈ Z | Ts 	= 0} = k, then one has addR �k−l add (T [k]) (see Corollary 4.8). 
Let E and F be two finitely generated modules over an artin algebra R. If the pair 
(E, F ) forms an n-tilting pair, then addE �n addF in Db(modR) whenever we con-
sider both E and F as stalk complexes (see Example 4.2(2) for more details). Thus, 
such a relation is a common generalization of silting complexes and tilting pairs. One 
can obtain a silting subcategory from another one by means of such a relation (see 
Proposition 4.4). In particular, we obtain the following result, which gives a Bazzoni’s 
characterization for two presilting subcategories satisfying the relation ‘�n’ (see Theo-
rem 4.7). We refer the reader to Section 2 and Section 4 for unspecified notation and 
notions.

Theorem 1.3. Let M,N be two presilting subcategories of T and n a non-negative integer. 
Suppose that M is silting. Then M �n N if and only if Presn

M⊥i>0 (N ) = NX and 
N ⊆ M⊥i>0 .

As an application of Theorem 1.3, we obtain the next result (see Corollary 4.9), which 
improves [26, Corollary 4.5] by removing the condition that HomKb(proj R)’s are finitely 
generated.
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Corollary 1.4 (Bazzoni’s characterization for tilting complexes). Let R be an arbitrary 
ring and T a pretilting complex in Kb(projR). Suppose that supT = n and inf T = l, 
where n and l are two integers. Then the following statements are equivalent:

(1) T is a tilting complex.
(2) addR �n−l add (T [n]).
(3) Presn−l

R⊥i>0 (add (T [n])) = add (T [n])X .

We conclude the section by summarizing the contents of this article. Section 2 con-
tains necessary notions and results for the later sections. In Section 3, we establish 
Auslander–Reiten type correspondences for silting subcategories and objects, and prove 
Theorem 1.1 and Corollary 1.2. The relation ‘�’ on presilting subcategories is introduced 
and investigated in Section 4, where we also prove Theorem 1.3 and Corollary 1.4.

2. Preliminaries

In this section, we fix some notation. We recall the Auslander–Buchweitz approxi-
mation triangles in a triangulated category. We also recall the definitions of (pre)silting 
subcategories (objects) and (bounded) co-t-structures, and give some necessary facts 
about these notions.

2.1. Some notation

Throughout this article, by the term “subcategory” we always mean a full additive 
subcategory of an additive category closed under isomorphisms and direct summands.

Throughout this article, let R be an associative ring with identity. Denote by modR

the category of all finitely generated right R-modules, by ProjR the category of all 
projective right R-modules, and by projR the category of all finitely generated projective 
right R-modules.

Throughout this article, let T be a triangulated category. We will denote by [1] the 
shift functor of any triangulated category. Suppose that C is a subcategory of T . Denote 
by 〈C〉 the smallest thick subcategory of T containing C. For any integer n, set

C⊥i>n = {N ∈ T |HomT (M,N [> n]) = 0 for all M ∈ C},
⊥i>nC = {N ∈ T |HomT (N,M [> n]) = 0 for all M ∈ C}.

Following the notions in [26], the subcategory C is called extension-closed if for any 
triangle

U → V → W → U [1]

in T with U, W ∈ C, it holds that V ∈ C. It is resolving (resp., coresolving) if it is further 
closed under the functor [−1] (resp., [1]). Note that C is resolving (resp., coresolving) if 
and only if, for any triangle
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U → V → W → U [1] (resp., W → V → U → W [1])

in T with W ∈ C, it holds that U ∈ C ⇔ V ∈ C. It is easy to see that C⊥i>0 (resp., 
⊥i>0C) is coresolving (resp., resolving).

For two subcategories S and S ′ of T , define

S ∗ S ′ = S ∗T S ′ = {X ∈ T | there is a triangle

S → X → S′ → S[1] in T with S ∈ S and S′ ∈ S ′}.

In case S = {S}, we use the notation S ∗Y instead of {S} ∗Y. There are some analogues 
such as S ∗ S′ and S ∗ S′.

Let A be an abelian category. A complex X is often displayed as a sequence

· · · Xn−1
δXn−1

Xn

δXn
Xn+1 · · ·

of objects in A with δXn δXn−1 = 0 for all n ∈ Z. Set inf X = inf{s ∈ Z | Xs 	= 0} and 
supX = sup{s ∈ Z | Xs 	= 0}. We say that two complexes X and Y are equivalent, 
and denoted by X 
 Y [10, A.1.11, p. 164], if they can be linked by a sequence of 
quasi-isomorphisms with arrows in alternating directions.

Let E be a subcategory of A. Denote by Db(A) the bounded derived category of A
and by Kb(E) the bounded homotopy category with each complex constructed by objects 
in E .

2.2. Auslander–Buchweitz approximation triangles

We describe in this subsection the Auslander–Buchweitz approximation triangles es-
tablished by Mendoza Hernández, Sáenz Valadez, Santiago Vargas and Souto Salorio 
in [19].

Let W and X be subcategories of T . For a non-negative integer n, denote by (X̂ )n
(resp., ( qX )n) the subclass of T consisting of all objects T satisfying that there exists a 
series of triangles

Ti+1 → Xi → Ti → Ti+1[1] (resp., Ti → Xi → Ti+1 → Ti[1])

in T with 0 � i � n such that T0 = T , Tn+1 = 0 and each Xi ∈ X . We use the symbol 
X̂ (resp., qX ) to denote the subclass of T consisting of all objects K satisfying that there 
is a non-negative integer m such that K ∈ (X̂ )m (resp., K ∈ ( qX )m). Note that 0 ∈ X
by assumption. It is easy to see that X̂ (resp., qX ) is closed under the functor [1] (resp., 
[−1]).

Recall that W is called a weak-cogenerator in X [19, Definition 5.1] if W ⊆ X and 
X ⊆ X [−1] ∗ W, that is, for any object X ∈ X , there exists a triangle
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X → W → X ′ → X[1]

in T with X ′ ∈ X and W ∈ W. Dually, one has the notion of a weak-generator. The 
subcategory W is said to be X -injective (resp., X -projective) if HomT (X, W [� 1]) = 0
(resp., HomT (W, X[� 1]) = 0) for any object W ∈ W and object X ∈ X . We say that 
W is a weak-generator-cogenerator in X if it is both an X -projective weak-generator and 
an X -injective weak-cogenerator in X .

The following two results will be used frequently in the sequel.

Theorem 2.1. ([19, Theorem 5.4]) Let W ⊆ X be subcategories of T . Suppose that X is 
closed under extensions and W is a weak-cogenerator in X . Then for any object M ∈ X̂ , 
there exist triangles

KM → XM → M → KM [1] and M → KM → XM → M [1]

in T with XM , XM ∈ X and KM , KM ∈ Ŵ.

Dually, one has

Theorem 2.2. Let V ⊆ Y be subcategories of T . Suppose that Y is closed under extensions 
and V is a weak-generator in Y. Then for any object N ∈ qY, there exist triangles

N → Y N → LN → N [1] and YN → LN → N → YN [1]

in T with Y N , YN ∈ Y and LN , LN ∈ qV.

2.3. (Pre)silting and thick subcategories

In this subsection, we mainly recall the definitions of (pre)silting subcategories (ob-
jects) and give some necessary facts on subcategories arising from a presilting subcate-
gory.

Definition 2.3. ([1, Definition 2.1]) Let M be a subcategory of T and M an object in T .
(1) M is called presilting (resp., pretilting) if

HomT (M,M[� 1]) = 0 (resp.,HomT (M,M[ 	= 0]) = 0).

(2) M is called silting (resp., tilting) if it is presilting (resp., pretilting) and T = 〈M〉.
(3) M is called silting (resp., tilting) if the subcategory addM is silting (resp., tilting).

The following result is easy to obtain.

Lemma 2.4. Let M be a presilting subcategory of T . Then HomT ( |M, M⊥i>0 [� 1]) = 0.
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Triangulated categories with silting subcategories have the following property.

Lemma 2.5. ([14, Lemma 2.4]) Let T be a triangulated category with a silting subcate-
gory M.

(1) For all objects X, Y ∈ T , there exists an integer i such that HomT (X, Y [� i]) = 0.
(2) For any object X ∈ T , there exist integers j and k such that

HomT (M, X[� j]) = 0 and HomT (X,M[� k]) = 0.

By virtue of [1, Proposition 2.17] and [15, Proposition 3.3], we see that for any silting 
subcategory M of T ,

M⊥i>0 =
⋃
l�0

M∗M[1] ∗ · · · ∗M[l].

This leads to the following lemma.

Lemma 2.6. Let M be a silting subcategory of T . Then M is a weak-generator in M⊥i>0 .

Proof. Let N be an object in M⊥i>0 . According to [1, Proposition 2.17] and [15, 
Proposition 3.3], we know that there exists a non-negative integer l such that N ∈
M ∗M[1] ∗ · · · ∗M[l]. This induces a triangle

N ′ → M → N → N ′[1]

in T with M ∈ M and N ′ ∈ M ∗M[1] ∗ · · · ∗ M[l − 1]. Clearly, N ′ ∈ M⊥i>0 as well. 
Therefore, the result follows. �

Let M be a presilting subcategory of T . We use the symbol MX (resp., XM) to 
denote the subcategory of M⊥i>0 (resp., ⊥i>0M) consisting of all objects N such that 
there exist triangles

Ni+1 → Mi → Ni → Ni+1[1] (resp., Ni → Mi → Ni+1 → Ni[1])

in T such that N0 = N , Ni ∈ M⊥i>0 (resp., Ni ∈ ⊥i>0M) and Mi ∈ M for all i � 0. It 
is easy to see that M̂ ⊆ MX ⊆ M⊥i>0 and |M ⊆ XM ⊆ ⊥i>0M.

Lemma 2.7. ([25, Lemma 2.2]) Let M be a presilting subcategory of T . Then the following 
statements hold:

(1) |M and XM are resolving.
(2) M̂ and MX are coresolving.

Next, we consider some thick subcategories of T . Let H be a subcategory of T . Define
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(H)+ := {N ∈ T | N ∼= L[i]for some object L ∈ H and some integer i � 0}.
(H)− := {N ∈ T | N ∼= L[i] for some object L ∈ H and some integer i � 0}.

Lemma 2.8. [25, Lemma 2.1] Let H be a subcategory of T .
(1) If H is resolving, then 〈H〉 = (H)+ = Ĥ.
(2) If H is coresolving, then 〈H〉 = (H)− = qH.

Corollary 2.9. Let C be a subcategory of T closed under extensions. If C admits a weak-
generator-cogenerator, then 〈C〉 = ( qC)+ = (Ĉ)−.

Proof. Note that C admits a weak-generator-cogenerator by assumption. It is easy to see 
that both qC and Ĉ are closed under extensions and direct summands. Hence, qC (resp., Ĉ) 
is resolving (resp., coresolving), and so ( qC)+ = 〈qC〉 and (Ĉ)+ = 〈Ĉ〉 by Lemma 2.8. 
However, it is clear that 〈qC〉 = 〈C〉 (resp., 〈Ĉ〉 = 〈C〉). Therefore, the result follows. �

Suppose that M is a presilting subcategory of T . According to [20, Lemma 5.3(2)], 
we know that M is closed under extensions. Moreover, it is obvious that M admits itself 
as a weak-generator-cogenerator. Thus, by Corollary 2.9, we obtain

Corollary 2.10. Let M be a presilting subcategory of T . Then 〈M〉 = ( |M)+ = (M̂)−.

Finally, we recall the definition of a (bounded) co-t-structure.

Definition 2.11. [9,22] A co-t-structure on T is a pair (A,B) of subcategories of T such 
that

(1) A[−1] ⊆ A and B[1] ⊆ B,
(2) HomT (A[−1],B) = 0, and
(3) T = A[−1] ∗ B.
In this case, the co-heart is defined as the intersection A ∩ B, which is a presilting 

subcategory of T .
A co-t-structure (A,B) is said to be bounded if

⋃
n∈Z

A[n] = T =
⋃
n∈Z

B[n].

Fact 2.12. Let D be a presilting subcategory of T . According to [20, Theorem 5.5], we 
know that the pair (DU , UD) forms a bounded co-t-structure on 〈D〉. Here, the symbol DU
(resp., UD) stands for the smallest extension closed subcategory of T containing D[� 0]
(resp., D[� 1]).

3. Auslander–Reiten type correspondences

In this section, we apply the bijective correspondence between bounded co-t-structures 
on T and silting subcategories of T established by Mendoza Hernández, Sáenz Valadez, 
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Santiago Vargas and Souto Salorio in [20] to obtain Auslander–Reiten type correspon-
dences for silting subcategories and objects of T (Corollary 3.7 and Corollary 3.8). As 
an application, the Auslander–Reiten type correspondence for silting complexes in [26] is 
improved by removing the condition that HomKb(proj R)’s are finitely generated (Corol-
lary 3.13).

We begin with the following subsection, which shows that certain specially covariantly 
finite and coresolving subcategories of T can be used to construct silting subcategories 
(Corollary 3.4).

3.1. Specially covariantly finite and coresolving subcategories

Let H be a subcategory of T . Recall that H is said to be covariantly finite in T [7]
provided that for any object T ∈ T , there is a morphism f : T → H with H ∈ H such 
that HomT (f, H ′) is surjective for any object H ′ ∈ H (see also [6]). The subcategory H
is called specially covariantly finite in T [26] provided that for any object T ∈ T , there 
is a triangle

T → H → K → T [1]

in T such that H ∈ H and HomT (K, H[1]) = 0. Clearly, if H is closed under [1], then 
HomT (K, H[� 1]) = 0 in this case.

Proposition 3.1. Let M be a silting subcategory of T . Then M⊥i>0 is specially covariantly 
finite and coresolving in T such that ­M⊥i>0 = T .

Proof. Firstly, we show that ­M⊥i>0 = T . To this end, let X be an object of T . Then 
in view of Lemma 2.5(2), we see that there exists an integer i such that HomT (M, X[�
i]) = 0. If i � 1 then X ∈ M⊥i>0 . Hence, X ∈ ­M⊥i>0 , as desired. Assume now that 
i > 1. Then X[1 −i] ∈ M⊥i>0 , which implies that X ∈ ­M⊥i>0 by noting that 0 ∈ M⊥i>0 .

Next, we show that M⊥i>0 is specially covariantly finite in T = ­M⊥i>0 . Note that 
M is a weak-generator in M⊥i>0 by Lemma 2.6. Then Theorem 2.2 tells us that there 
exists a triangle

X → Y → Z → X[1]

in T with Y ∈ M⊥i>0 and Z ∈ |M. To complete the proof, we need Z ∈ ⊥i>0(M⊥i>0), 
which is guaranteed by Lemma 2.4.

Finally, it is easy to see that M⊥i>0 is coresolving. �
One can conclude from the following result that any specially covariantly finite and 

coresolving subcategory of T admits a projective weak-generator. It will be used in the 
proofs of Corollary 3.4 and Lemma 3.12.
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Lemma 3.2. Let H be a subcategory of T . Suppose that H is specially covariantly finite 
and coresolving in T . Set M = ⊥i>0H ∩H. Then

(1) M is presilting.
(2) For each object H ∈ H, there exists a triangle

H ′ → M → H → H ′[1]

in T with M ∈ M and H ′ ∈ H.
In particular, M is an H-projective weak-generator in H.

Proof. (1) It is obvious.
(2) Since H is specially covariantly finite and coresolving in T by assumption, there 

exists a triangle

H[−1] → H ′ → M → H

in T such that H ′ ∈ H and M ∈ ⊥i>0H. This induces the triangle H ′ → M → H → H ′[1]
in T . Note that H is closed under extensions. It follows that M is also in H. Thus, 
M ∈ ⊥i>0H ∩H. This completes the proof of (2).

The last statement follows from (2) and the trivial fact H ∈ M⊥i>0 . �
The following result, which is the dual version of [19, Proposition 5.9(b)], will play a 

key role in the proof of Corollary 3.4.

Lemma 3.3. Let M ⊆ H be subcategories of T . Suppose that H is coresolving and M is 
an H-projective weak-generator in H. Then for any object K ∈ qH, K ∈ |M if and only 
if K ∈ ⊥i>0H ∩ qH.

We present a method to construct silting subcategories in the next corollary.

Corollary 3.4. Let H be a subcategory of T . Suppose that H is specially covariantly finite 
and coresolving in T such that qH = T and for any object H ∈ H there exists an integer 
i making HomT (H, H[� i]) = 0. Then ⊥i>0H ∩H is a silting subcategory of T .

Proof. Let M = ⊥i>0H ∩ H for convenience. It is clear that M is presilting. Hence, it 
remains to show 〈M〉 = T .

To this end, let X be an object of T = qH. Since H is closed under extensions and 
admits a weak-generator M by Lemma 3.2, it follows from Theorem 2.2 that there exists 
a triangle

X → H → K → X[1]

in T with H ∈ H and K ∈ |M ⊆ 〈M〉. To complete the proof, we only need to show 
that H ∈ 〈M〉.
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Indeed, note that there exists an integer i such that HomT (H, H[� i]) = 0 by assump-
tion. If i � 1, then H ∈ ⊥i>0H. This yields that H ∈ H∩⊥i>0H = M ⊆ 〈M〉, as desired. 
Assume now that i > 1. Then HomT (H[−i + 1], H[� 1]) ∼= HomT (H, H[� i]) = 0. This 
implies that H[−i + 1] ∈ ⊥i>0H. Meanwhile, we see that H[−i + 1] ∈ qH as well. Hence, 
in view of Lemma 3.3, we have H[−i + 1] ∈ |M ⊆ 〈M〉. This yields also H ∈ 〈M〉, as 
needed. �
3.2. Auslander–Reiten type correspondence for silting subcategories

Mendoza Hernández, Sáenz Valadez, Santiago Vargas and Souto Salorio established 
in [20] the following bijective correspondence between bounded co-t-structures on T
and silting subcategories of T . By virtue of this bijection, we give in this subsection a 
generalized version of the Auslander–Reiten type correspondence for silting subcategories 
of T .

Theorem 3.5. [20, Corollary 5.9] The assignments

M �→ ( |M,M⊥i>0) and (A,B) �→ A ∩ B

give mutually inverse bijections between the following classes:
(1) Silting subcategories M of T .
(2) Bounded co-t-structures (A,B) on T .

Now, we give a new description for bounded co-t-structures on T , which will play a 
key role in obtaining Corollary 3.7.

Proposition 3.6. The assignments

(A,B) �→ B and H �→ ( |M,H),

where M = ⊥i>0H ∩H, give mutually inverse bijections between the following classes:
(1) Bounded co-t-structures (A,B) on T .
(2) Subcategories H of T , which is specially covariantly finite and coresolving in T , 

such that qH = T and for any object H ∈ H, there exists an integer i making 
HomT (H, H[� i]) = 0.

Proof. Let (A,B) be a bounded co-t-structure on T . Then for any object X ∈ T , there 
exists a triangle X → B → A → X[1] in T with B ∈ B and A ∈ A. This implies that 
B is specially covariantly finite in T . Note that B is obviously coresolving in T . In view 
of Lemma 2.8(2), we see that qB =

⋃
n�0 B[n] = T . Thus, to prove that B satisfies the 

requirements in (2), it remains to show that for any object B ∈ B, there exists an integer 
i such that HomT (B, B[� i]) = 0. Indeed, since B ∈

⋃
n�0 A[n] as well, it follows that 

there exist an object A ∈ A and a nonnegative integer n such that B ∼= A[n]. This yields 
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that HomT (B, B[n + 1]) ∼= HomT (A[n], B[n + 1]) = 0. Clearly, the integer n + 1 is the 
appropriate candidate for the required i.

Assume now that H is a subcategory of T satisfying the conditions in (2). Since qH = T
and M is a weak-generator in H (see Lemma 3.2), it follows from Theorem 2.2 that for 
any object X ∈ T there exists a triangle

K → X → H → K[1]

in T with K ∈ |M[−1] and H ∈ H. This implies that T = |M[−1] ∗ H. Moreover, it 
is clear that H ⊆ M⊥i>0 . Hence, we have HomT ( |M,H[1]) = 0 by Lemma 2.4. Thus, 
( |M, H) forms a co-t-structure on T . On the other hand, note that H is coresolving by 
assumption. We see that T = qH =

⋃
n�0 H[n] by Lemma 2.8(2) again. According to 

Corollary 3.4, we know that M is a silting subcategory of T . Hence, T = 〈M〉, and so 
T =

⋃
n�0

|M[n] by Corollary 2.10. Thus, the co-t-structure ( |M, H) is bounded. This 
completes the proof. �

As a consequence of Theorem 3.5 and Proposition 3.6, we obtain the following 
promised Auslander–Reiten type correspondence for silting subcategories of T .

Corollary 3.7. The assignments

M �→ M⊥i>0 and H �→ ⊥i>0H ∩H

give mutually inverse bijections between the following classes:
(1) Silting subcategories M of T .
(2) Subcategories H of T , which is specially covariantly finite and coresolving in T , 

such that qH = T and for any object H ∈ H, there exists an integer i making 
HomT (H, H[� i]) = 0.

3.3. Auslander–Reiten type correspondences for silting objects

We say that two objects M and M ′ in T are equivalent provided that addM = addM ′. 
The following result is a consequence of Corollary 3.7, which gives an Auslander–Reiten 
type correspondence for silting objects in T .

Corollary 3.8. The assignments

M �→ M⊥i>0 and H �→ N

where addN = ⊥i>0H∩H, give mutually inverse bijections between the following classes:
(1) Equivalent classes of silting objects M in T .
(2) Subcategories H of T , which is specially covariantly finite and coresolving in T , 

such that qH = T , ⊥i>0H ∩ H is additively generated by an object N , and for any object 
H ∈ H, there exists an integer i making HomT (H, H[� i]) = 0.
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Recall that a complex T ∈ Kb(projR) is called silting [26] (resp., tilting [23]) if T is 
a silting (resp., tilting) object in Kb(projR). It is easy to see that every tilting complex 
in Kb(projR) is always silting. However, the converse does not hold true in general (see 
[26, Section 6]).

Suppose that T is a presilting complex in Kb(projR). According to [26, Corol-
lary 2.6(1) and Remark 2.9], we know that ­addT = ⊥i>0T ∩ 〈addT 〉. This gives a 
characterization for a silting complex in Kb(projR).

Proposition 3.9. Let T be a presilting complex in Kb(projR). Suppose that supT = n

for some integer n. Then T is a silting complex if and only if R[−n] ∈ ­addT .

Proof. (⇐) Note that T is a presilting complex in Kb(projR) by assumption. We need 
only to show that Kb(projR) ⊆ 〈addT 〉. Indeed, since R[−n] ∈ ­addT by assumption, we 
see that R ∈ 〈addT 〉. Hence, addR ⊆ 〈addT 〉. This yields that Kb(projR) = 〈addR〉 ⊆
〈addT 〉, as desired.

(⇒) Since T is silting, we see that R ∈ Kb(projR) = 〈addT 〉. This implies that 
R[−n] ∈ 〈addT 〉. On the other hand, it is obvious that R[−n] ∈ ⊥i>0(addT ) because 
supT = n by assumption. Thus, by [26, Corollary 2.6(1) and Remark 2.9], we conclude 
that R[−n] ∈ ­addT . �

As an immediate consequence of Proposition 3.9, we obtain the following characteri-
zation for a tilting complex in Kb(projR).

Corollary 3.10. Let T be a pretilting complex in Kb(projR). Suppose that supT = n for 
some integer n. Then T is a tilting complex if and only if R[−n] ∈ ­addT .

For an integer n, denote by K�n(projR) the subcategory of Kb(projR) consisting of 
all complexes T such that Ti = 0 for all i > n.

Lemma 3.11. Let T be a silting complex in Kb(projR). Suppose that T ∈ K�n(projR)
for some integer n. Then we have T⊥i>0 ⊆ K�n(projR).

Proof. In view of Proposition 3.9, we see that R[−n] ∈ ­addT . This implies that

T⊥i>0 ⊆ (R[−n])⊥i>0 = R⊥i>n .

On the other hand, it is easy to check that R⊥i>n = K�n(projR). Thus, we obtain 
T⊥i>0 ⊆ K�n(projR), as desired. �

Let T be a presilting complex in Kb(projR). By [26, Corollary 2.6 (2) and Remark 2.9], 
we have âddT = T⊥i>0 ∩ 〈addT 〉.
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Lemma 3.12. Let H be a subcategory of K�n(projR), where n is an integer. Suppose that 
H is specially covariantly finite and coresolving in Kb(projR) such that qH = Kb(projR). 
Then ⊥i>0H ∩ H = addN for some silting complex N in Kb(projR).

Proof. Let M = ⊥i>0H ∩ H. Since H is specially covariantly finite and coresolving in 
Kb(projR) by assumption, it follows from Lemma 3.2 that M is a projective weak-
generator in H. Note that R[−n] ∈ Kb(projR) = qH. It follows from Theorem 2.2 that 
there exists a family of triangles

{Xi → Ni → Xi+1 → Xi[1] }ri=0

in Kb(projR), where r is the coresolution dimension of R[−n] with respect to H, such 
that X0 = R[−n], X1 ∈ |M, Xr+1 = 0, N0 ∈ H and Ni ∈ M for all 1 � i � r. Since 
H ⊆ K�n(projR) by assumption, we see that R[−n] ∈ ⊥i>0H. Note that X1 is also in 
⊥i>0H (see Lemma 2.4). It follows that N0 ∈ M.

Take N = ⊕r
i=0Ni. Then N is a presilting complex in Kb(projR). Moreover, according 

to the above argument, we see that R[−n] ∈ ­addN ⊆ 〈addN〉. Hence, R ∈ 〈addN〉. 
This implies that Kb(projR) = 〈addN〉. Thus, N is a silting complex in Kb(projR).

Next, we show that M ⊆ addN , which yields our desired result M = addN . To this 
end, let L be a complex in M. Then N ⊕L is also a silting complex in Kb(projR). This 
implies that 〈addN〉 = 〈add (N ⊕ L)〉. It follows from [26, Corollary 2.6 and Remark 
2.9] that

L ∈ N⊥i>0 ∩ 〈add (N ⊕ L)〉 = N⊥i>0 ∩ 〈addN〉 = âddN.

Now, it is easy to check that L ∈ addN by noting that L is also in ⊥i>0N . Hence, 
M ⊆ addN , as desired. �

In 2013, an Auslander–Reiten type correspondence for silting complexes in Kb(projR)
was established by the fourth author of this paper under the condition that
HomKb(proj R)’s are finitely generated (see [26, Remark 3.3, Theorem 5.3 and Re-
mark 5.4]). Now, we can remove this additional condition.

Corollary 3.13. For any integer n, the assignments

T �→ T⊥i>0 and H �→ N,

where addN = ⊥i>0H∩H, give mutually inverse bijections between the following classes:
(1) Equivalent classes of silting complexes T in K�n(projR).
(2) Subcategories H of K�n(projR), which is specially covariantly finite and coresolv-

ing in Kb(projR), such that qH = Kb(projR).



Z. Di et al. / Journal of Algebra 525 (2019) 42–63 57
Proof. Based on Corollary 3.8, Lemma 3.11 and Lemma 3.12, we only need to show 
that for any complex H ∈ H, there exists an integer i such that HomKb(proj R)(H, H[�
i]) = 0. To this end, suppose that inf H = l for some integer l. Note that H is contained 
in K�n(projR) by assumption. It is easy to check that the integer ‘n − l + 1’ is the 
appropriate candidate for the required i. This completes the proof. �
4. A relation on presilting subcategories

In this section, we introduce a relation on presilting subcategories of T (Definition 4.1). 
One can obtain another silting subcategory from a given one by means of such a relation 
(Proposition 4.4). We give a Bazzoni’s characterization for two presilting subcategories 
satisfying this relation (Theorem 4.7). As an application, we obtain a Bazzoni’s char-
acterization for tilting complexes so that a corresponding result of the fourth author 
can be improved by removing the condition that HomKb(proj R)’s are finitely generated 
(Corollary 4.9).

Definition 4.1. Let M and N be two presilting subcategories of T . We write “M � N ” 
provided that they satisfy the conditions

(1) M ⊆ qN and
(2) N ⊆ M̂.
If in addition there exists a non-negative integer n such that M ⊆ ( qN )n (that is, for 

each object M ∈ M, M ∈ ( qN )n), then we write “M �n N ”.

Example 4.2. (1) Let T be a silting complex in Kb(projR). Suppose that supT = n

for some integer n. Then it is easy to see that T [n] ∈ âddR. Therefore, add (T [n]) ⊆
âddR. On the other hand, according to Proposition 3.9, we know that R[−n] ∈ ­addT , 
which implies that R ∈ ­add (T [n]). This yields that addR ⊆ ­add (T [n]). Thus, we have 
addR � add (T [n]).

(2) Let R be an artin algebra and E, F two finitely generated right R-modules. Recall 
that the pair (E, F ) is called n-tilting [17], where n is a non-negative integer, provided 
that both E and F are selforthogonal such that F ∈ (âddE)n and E ∈ (­addF )n (here, 
the symbol (âddE)n (resp., (­addF )n) denotes the subcategory of R-mod consisting of 
all modules N such that there exists an exact sequence

0 → En → En−1 → · · · → E0 → N → 0 (resp., 0 → N → F0 → · · · → Fn−1 → Fn → 0)

with each Ei ∈ addE (resp., Fi ∈ addF )). We refer the reader to [27, Example 3.2] for 
more examples of tilting pairs.

Let (E, F ) be an n-tilting pair in mod R. Consider both E and F as stalk complexes. 
We see that addE �n addF in Db(modR).

Proposition 4.3. Let M and N be two presilting subcategories of T such that M � N . 
Then for a non-negative integer n, N ⊆ (M̂)n if and only if M ⊆ ( qN )n.
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Proof. We only show the only-if-part. The if-part can be proved by a dual argument.
Let M be an object in M. We want to prove that M ∈ ( qN )n. Indeed, since M � N

by assumption, we know that M ∈ qN . Hence, there exists a non-negative r such that 
M ∈ ( qN )r. If r � n then we are done. Suppose that r > n, and consider a family of 
triangles

{Mi → Ni → Mi+1 → Mi[1] }ri=0

in T with each Ni ∈ N , M0 = M and Mr+1 = 0. Apply the functor HomT (Mr, −) to 
these triangles. Note that Mr

∼= Nr ∈ N and N is presilting. It follows that

HomT (Mr,Mr−1[1]) ∼= HomT (Mr,Mr−2[2])
∼= · · ·
∼= HomT (Mr,M0[r]) = HomT (Mr,M [r]).

Since N ⊆ (M̂)n by assumption, we deduce that N ⊆ ⊥i>n(M⊥i>0). This yields that 
HomT (Mr, M [r]) = 0 as Mr ∈ N and M ∈ M⊥i>0 . Hence, the triangle

Mr−1 → Nr−1 → Mr → Mr−1[1]

splits. This shows that M ∈ ( qN )r−1.
Repeating the above process, we can finally obtain that M ∈ ( qN )n. Thus, M ⊆ ( qN )n. 

This completes the proof. �
Motivated by Example 4.2(1), we obtain the following result. It gives us a way to 

obtain a silting subcategory from another one.

Proposition 4.4. Let M and N be two presilting subcategories of T such that M � N . 
Then M is silting if and only if N is silting.

Proof. We only deal with the if-part. The only-if-part is dual.
To prove that M is a silting subcategory, we need only to show that T ⊆ 〈M〉. Indeed, 

since N ⊆ M̂, it follows that N ⊆ 〈M〉. This yields 〈N〉 ⊆ 〈M〉. Note that N is silting 
by assumption. We have T = 〈N〉. Thus, T ⊆ 〈M〉, as desired. �

Next, we give a Bazzoni’s characterization for two presilting subcategories M and N
of T satisfying M �n N . To archive the goal, we introduce the following subcategory 
of T .

Let n be a non-negative integer. We use the symbol PresnM⊥i>0 (N ) to denote the 
subcategory of T consisting of all objects T such that there exists a family of triangles

{Ti+1 → Ni → Ti → Ti+1[1] }n−1
i=0

in T with each Ni ∈ N , Tn ∈ M⊥i>0 and T0 = T .
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By noting that 0 ∈ N and M⊥i>0 is coresolving, we have the next result.

Lemma 4.5. Let M,N be two subcategories of T and n a non-negative integer. Then
(1) If M is presilting, then (M⊥i>0)[n] ⊆ PresnM⊥i>0 (N ).
(2) If N ⊆ M⊥i>0 , then PresnM⊥i>0 (N ) ⊆ M⊥i>0 .

The proof of the following lemma is almost the same as in [26, Proposition 2.3 (1)].

Lemma 4.6. Let M be a presilting subcategory of T and n a non-negative integer. Then 
we have

(M̂)n = MX ∩ ⊥i>n(M⊥i>0).

We present now the promised Bazzoni’s characterization for presilting subcategories.

Theorem 4.7. Let M,N be two presilting subcategories of T and n a non-negative integer. 
Suppose that M is silting. Then M �n N if and only if Presn

M⊥i>0 (N ) = NX and 
N ⊆ M⊥i>0 .

Proof. (⇐) Firstly, let N be an object in N . We wish to show that N ∈ (M̂)n, which 
will imply that N ⊆ (M̂)n. To this end, in view of Lemma 4.6, it suffices to prove 
that N ∈ MX ∩ ⊥i>n(M⊥i>0). Indeed, on the one hand, since N ∈ M⊥i>0 and M is 
a silting subcategory of T by assumption, it follows from Lemma 2.6 that N ∈ MX . 
On the other hand, in view of Lemma 4.5, we know that (M⊥i>0)[n] ⊆ PresnM⊥i>0 (N ). 
Therefore, (M⊥i>0)[n] ⊆ NX ⊆ N⊥i>0 , and so M⊥i>0 ⊆ (N⊥i>0)[−n] = N⊥i>n . It 
follows that ⊥i>n(N⊥i>n) ⊆ ⊥i>n(M⊥i>0). It is clear that N ∈ ⊥i>n(N⊥i>n) as N is 
presilting. Thus, N ∈ ⊥i>n(M⊥i>0), as desired.

Next, we show that M ⊆ ( qN )n. To this end, let M be an object in M. Since M is 
presilting by assumption, it follows from Lemma 4.5 that M [n] ∈ PresnM⊥i>0 (N ). Hence, 
M [n] ∈ NX . This yields that M ∈ (~NX )n. Note that NX admits a weak-generator N . 
It follows from Theorem 2.2 that there exists a triangle

M [−1] → X → K → M (∗)

in T with X ∈ NX = PresnM⊥i>0 (N ) and K ∈ ( qN )n. In view of Lemma 4.5, we deduce 
that X ∈ M⊥i>0 . This implies that (∗) splits, and hence, M is a direct summand of K. 
Consequently, we have M ∈ ( qN )n, as desired.

(⇒) Since M is presilting and N ⊆ M̂ by assumption, we conclude that N ⊆ M⊥i>0 . 
Note that M ⊆ qN . It follows that N⊥i>0 ⊆ M⊥i>0 . Hence, NX ⊆ PresnM⊥i>0 (N ).

For the other containment, let T be an object in PresnM⊥i>0 (N ) and N an object 
in N . Then there exists a family of triangles

{Ti+1 → Ni → Ti → Ti+1[1] }n−1
i=0
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in T with each Ni ∈ N , Tn ∈ M⊥i>0 and T0 = T . Applying the functor HomT (N, −) to 
these triangles, we obtain

HomT (N,T [i]) ∼= HomT (N,N1[i + 1])
∼= HomT (N,N2[i + 2])
∼= · · ·
∼= HomT (N,Nn[i + n])

for i � 1. Note that N ∈ (M̂)n and Tn ∈ M⊥i>0 . It is easy to check that 
HomT (N, Nn[i + n]) = 0, which yields that T ∈ N⊥i>0 . Hence, T ∈ N⊥i>0 . This shows 
that PresnM⊥i>0 (N ) ⊆ N⊥i>0 = NX because N is also a silting subcategory of T (see 
Proposition 4.4 and Lemma 2.6). This completes the proof. �

In view of Proposition 3.9 and Theorem 4.7, we obtain the following Bazzoni’s char-
acterization for any silting complex in Kb(projR).

Corollary 4.8. Let T be a presilting complex in Kb(projR). Suppose that supT = n and 
inf T = l, where n and l are two integers. Then the following statements are equivalent:

(1) T is a silting complex.
(2) addR �n−l add (T [n]).
(3) Presn−l

R⊥i>0 (add (T [n])) = add (T [n])X .

Proof. Since supT = n by assumption, we see that T [n] ∈ R⊥i>0 . This implies that 
add (T [n]) ⊆ (addR)⊥i>0 . Thus, the equivalence of (2) and (3) follows from Theorem 4.7
by noting that addR is obviously a silting subcategory of Kb(projR).

(1) ⇒ (2) According to Proposition 3.9, we know that R[−n] ∈ ­addT . This im-
plies that R ∈ ­add (T [n]). Hence, addR ⊆ ­add (T [n]). On the other hand, note that 
supT = n and inf T = l by assumption. It is easy to check that T [n] ∈ (âddR)n−l, 
which implies that add (T [n]) ⊆ (âddR)n−l. Thus, addR � add (T [n]). In particu-
lar, by Proposition 4.3, we conclude that addR ⊆ ( ­add (T [n]))n−l. This yields that 
addR �n−l add (T [n]), as desired.

(2) ⇒ (1) To prove that T is a silting complex, by Proposition 3.9, it is enough to 
show that R[−n] ∈ ­addT . Indeed, it follows from the fact that R ∈ ­add (T [n]) since we 
have addR � add (T [n]) by assumption. �

As an immediate consequence of Corollary 4.8, we obtain the following Bazzoni’s 
characterization for a tilting complex. It improves the corresponding result [26, Corol-
lary 4.5] by removing the condition that HomKb(proj R)’s are finitely generated (see [26, 
Remark 3.3]).

Corollary 4.9. Let T be a pretilting complex in Kb(projR). Suppose that supT = n and 
inf T = l, where n and l are two integers. Then the following statements are equivalent:
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(1) T is a tilting complex.
(2) addR �n−l add (T [n]).
(3) Presn−l

R⊥i>0 (add (T [n])) = add (T [n])X .

Lemma 4.10. Let (A,B) be a co-t-structure on T with co-heart S and n a non-negative 
integer. Then there exists an equality (Ŝ)n = A[n] ∩ B.

Proof. We proceed by induction on n. Note that the equality (Ŝ)i = S ∗ S[1] ∗ · · · ∗ S[i]
holds for all i � 0.

If n = 1, then the result follows from [14, Lemma 2.1]. Suppose now that the conclusion 
holds for n −1, that is, there exist equalities (Ŝ)n−1 = S∗S[1] ∗· · ·∗S[n −1] = A[n −1] ∩B. 
We show next that the conclusion also holds for n.

It is easy to see that the containment (Ŝ)n ⊆ A[n] ∩B holds true since S[i] ⊆ A[n] ∩B
for all 0 � i � n by the condition (1) of Definition 2.11. To prove the other containment, 
let K be an object in A[n] ∩B. Then K[−1] ∈ A[n − 1] ∩B[−1]. By the condition (3) of 
Definition 2.11, there exists a triangle

A[−1] → K[−1] → B → A

in T with A ∈ A and B ∈ B. Since both B[−1] and K[−1] belong to B[−1], we deduce 
that A[−1] ∈ B[−1]. This implies that A[−1] ∈ A[−1] ∩ B[−1]. Hence, A ∈ A ∩ B = S. 
On the other hand, since both K[−1] and A belong to A[n −1], we see that B ∈ A[n −1]
as well. Hence, B ∈ A[n − 1] ∩B = S ∗ S[1] ∗ · · · ∗ S[n − 1] by the induction assumption. 
This yields that B[1] ∈ S[1] ∗ · · · ∗ S[n]. Thus, we have K ∈ S ∗ S[1] ∗ · · · ∗ S[n] = (Ŝ)n, 
which implies that A[n] ∩ B ⊆ (Ŝ)n. This completes the proof. �

We conclude the article by the following result, which gives some equivalent conditions 
for two silting subcategories to satisfy the relation “�n”.

Theorem 4.11. Let M,N be two silting subcategories of T and n a non-negative integer. 
Suppose that (A,B) (resp., (A′,B′)) is the bounded co-t-structure corresponding to M
(resp., N ). Then the following conditions are equivalent:

(1) M �n N .
(2) N ⊆ (M̂)n.
(3) M ⊆ ( qN )n.
(4) A ⊆ A′ ⊆ A[n].
(5) B[n] ⊆ B′ ⊆ B.

Proof. It suffices to prove that the consitions (2), (3) and (4) are equivalent. We show in 
the following (2) ⇔ (4), the equivalence of (3) and (4) can be proved by a dual argument.

(2) ⇒ (4) Note that A′ (resp., A) is the smallest extension closed subcategory of T
containing N [� 0] (resp., M[� 0]) and B′ (resp., B) is the smallest extension closed 
subcategory of T containing N [� 1] (resp., M[� 1]) (see Fact 2.12).
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Since N ⊆ (M̂)n = M ∗M[1] ∗ · · · ∗M[n] by assumption, we see that A′ is contained 
in the smallest extension closed subcategory of T containing M[� n]. Hence, we have 
A′ ⊆ A[n]. On the other hand, by a similar argument, one can obtain that B′ ⊆ B. This 
implies that A ⊆ A′. Thus, we have A ⊆ A′ ⊆ A[n], as desired.

(4) ⇒ (2) Since A ⊆ A′ ⊆ A[n] by assumption, we see that B[n] ⊆ B′ ⊆ B. Hence, 
N = A′ ∩ B′ ⊆ A[n] ∩ B = (M̂)n, where the last equality holds by Lemma 4.10. �

Let (A,B) be a bounded co-t-structure on T with co-heart S. Following [14], a 
bounded co-t-structure (A′,B′) is said to be intermediate (with respect to (A,B)) if 
A ⊆ A′ ⊆ A[1]. A subcategory S ′ of T is called a two-term silting subcategory of T
(with respect to S) if it is a silting subcategory of T satisfying S ′ ⊆ S ∗ S[1].

Recently, Iyama, Jørgensen and Yang showed that the assignment (A′, B′) �→ S ′

gives a bijective correspondence between the intermediate co-t-structures on T and the 
two-term silting subcategories of T (with respect to the given co-t-structure), where S ′

is the co-heart of (A′, B′) (see [14, Theorem 2.3]).
Note that the condition N ⊆ (M̂)n in the above theorem is equivalent to

N ⊆ M∗M[1] ∗ · · · ∗M[n].

We see that Theorem 4.11 extends [14, Theorem 2.3] to the (n + 1)-term case.
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