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1. Introduction

Throughout this paper, p is a prime and O is a complete discrete valuation ring with 
residue field k and with fraction field K; we always assume that K is of characteristic 
0 and big enough for finite groups discussed below and that k is algebraically closed of 
characteristic p.

Let G be a finite group and b a block (idempotent) of G over O. Let (P, bP ) be 
a maximal b-Brauer pair. Denote by Q the hyperfocal subgroup of P with respect to 
(P, bP ) (see [9]), which is generated by the subsets [U, x], where (U, bU ) runs on the 
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set of b-Brauer pairs such that (U, bU ) ⊆ (P, bP ), x runs on the set of p′-elements of 
NG(U, bU ) and [U, x] denotes the set of commutators uxu−1x−1 for u ∈ U .

Let c be the Brauer correspondent of b in NG(Q). Rouquier conjectures that the block 
algebras OGb and ONG(Q)c are basically Rickard equivalent when Q is abelian (see [8]). 
Denote by l(b) and k(b) the number of irreducible Brauer and ordinary characters belong-
ing to the block b respectively. The conjecture implies that l(b) = l(c) and k(b) = k(c)
when the hyperfocal subgroup Q is abelian. The two equations have been investigated 
by Watanabe when Q is cyclic (see [13]) and by us when Q is Z2n ×Z2n (see [6]), where 
Z2n denotes the cyclic group of order 2n. In the latter case, we only get a partial result.

In this paper, we continue to investigate the two equations when Q is an abelian 
2-group of rank 3. We use the strategy in [6,13], but the computation here is more 
difficult. In order to state our main result, we need the Brauer category of the block b
and the fusion control. The Brauer category F(P, bP )(G, b) of the block b is a category 
with objects all b-Brauer pairs contained in (P, bP ) and with morphisms induced by 
conjugations of elements of G. The block b is controlled by a subgroup H of G if any 
morphism in F(P, bP )(G, b) is induced by the conjugation of some element in H (see [12, 
§49]).

Theorem 1.1. Keep the notation as above and assume that Q is an abelian 2-group of 
rank 3. Then the block b is controlled by NG(P, bP ) and the inertial index of the block b
has only two possibilities: 7 or 21. Moreover, supposing |Q| ≤ |Z(P )| and denoting by b0
the Brauer correspondent of b in NG(P ), we have

(i) l(b) = l(b0) = 7 and k(b) = k(b0), if the inertial index of the block b is 7;

(ii) l(b) = l(b0) = 5 and k(b) = k(b0), if the inertial index of the block b is 21.

Remark 1.2. By Propositions 4.1 and 5.1 below, the condition |Q| ≤ |Z(P )| in The-
orem 1.1 is automatically satisfied when Q is an elementary abelian 2-group of order 
8.

Example 1.3. There are examples where the hypotheses of Theorem 1.1 are not satisfied. 
Assume that Q is Z4×Z4×Z4. There is an involution t in the center of the automorphism 
group Aut(Q) of Q, of which the fixed points are the subgroup Z2 × Z2 × Z2 of Q. Let 
F7 be a Sylow 7-subgroup of Aut(Q). Set L = Q � (F7 × 〈t〉). Take any 2′-group H. 
Denote by G the wreath product H �L. Let b be the principal block of G and P a Sylow 
2-sugbroup containing Q. Then Q is a hyperfocal subgroup of the block b and the inertial 
index of the block b is 7. But it is easy to check that Z(P ) is Z2 × Z2 × Z2.

Similarly, with the notation above, there is a subgroup of Aut(Q) of order 21. Denote 
it by F21. Set K = Q � (F21 ×〈t〉). Denote by G̃ the wreath product H �K. Consider the 
principal block b̃ of G̃ and a Sylow 2-subgroup P̃ containing Q. Then Q is a hyperfocal 
subgroup of the block b̃ and the inertial index of the block b̃ is 21. But the center Z(P̃ )
of P̃ is Z2 × Z2 × Z2.
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The notation and assumption in this section will be kept in the rest of the paper. In 
particular, p is 2.

2. Preliminaries

Denote by Q0 the subgroup of Q which is Z2 × Z2 × Z2. The following lemma is 
well-known.

Lemma 2.1. ([2, Chapter 6, 6.2]) The automorphism group Aut(Q0) of Q0, denoted by 
A, is isomorphic to GL(3, 2), the simple group of order 168. Denote by A2, A3, A7 a 
Sylow 2-subgroup and Sylow 3-subgroup and Sylow 7-subgroup of A respectively. Then 
the following holds.

(1). If θ ∈ Aut(Q0) has order 7, then θ acts freely on Q0 − {1};

(2). |NA(A2)| = 8, |NA(A3)| = 6 and |NA(A7)| = 21;

(3). A2 is isomorphic to the dihedral group D8, and NA(A3) is isomorphic to the sym-
metric group S3 on 3 symbols;

(4). A has no proper subgroup of index less than 7;

(5). A has no element of order 6;

(6). Let U be a Klein four group of A2. Then NA(U) ∼= S4, the symmetric group on 4
symbols;

(7). A has two isomorphism classes of maximal subgroups, one of which is S4, another 
one of which has order 21.

As in [13], a p-complement of NG(P, bP )/CG(P ) is called an inertial group of the 
block b. Inertial groups of the block b are isomorphic to NG(P, bP )/PCG(P ) and their 
order is the inertial index of the block b. Let R be a normal p-subgroup of G such that 
|G : CG(R)| is a p-power. For any subset X of G, denote by X̄ the image of X under the 
canonical surjective G −→ G/R.

Lemma 2.2. Keep the notation and the assumption in the paragraph above. Let b̄ be the 
block of Ḡ determined by the block b. Then Q̄ is a hyperfocal subgroup of the block b̄ and 
an inertial group of the block b̄ is isomorphic to that of the block b. Moreover, the block 
b is controlled by the normalizer of its maximal Brauer pair if and only if the block b̄ is 
controlled by the normalizer of its maximal Brauer pair.

Proof. It is well known that P̄ is a defect group of the block b̄. For any subgroup T
of P containing R, by the proof of [13, Lemma 8] the b-Brauer pair (T, bT ) deter-
mines a unique b̄-Brauer pair (T̄ , b̄T̄ ). Let ĈG(T ) be the preimage of CḠ(T̄ ) in G and 
N̂G(T, bT ) the preimage of NḠ(T̄ , b̄T̄ ) in G. Put Q̄′ be the hyperfocal subgroup of P̄
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with respect to (P̄ , b̄P̄ ). Then by [9, 1.7], Q̄′ = 〈[T̄ , Op
(
NḠ(T̄ , b̄T̄

)
] | R ≤ T ≤ P 〉

and Q = 〈[T, Op
(
NG(T, bT )

)
] | R ≤ T ≤ P 〉 since R is normal in G. It is clear that 

Op
(
NG(T, bT )

)
≤ Op

(
N̂G(T, bT )

)
. We have Q̄ ≤ Q̄′. At the same time Q̄′ ≤ Q̄ by the 

proof of [13, Lemma 8]. So we have Q̄′ = Q̄.
It is clear that CG(T ) ≤ ĈG(T ) and |ĈG(T ) : CG(T )| is a p-power and N̂G(T, bT ) =

ĈG(T )NG(T, bT ) (see [13, Lemma 8]). So an inertial group of the block b̄ is isomorphic 
to NG(P, bP )/

(
NG(P, bP ) ∩ PĈG(P )

)
. Since PCG(P )/CG(P ) is a Sylow p-subgroup of 

NG(P, bP )/CG(P ) and ĈG(P )/CG(P ) is a p-group, we have NG(P, bP ) ∩ PĈG(P ) =
PCG(P ). So the two blocks b and b̄ have isomorphic inertial groups.

Suppose that the block b is controlled by NG(P, bP ). Assume that (S̄, b̄S̄) is an es-
sential b̄-Brauer pair which is contained in (P̄ , b̄P̄ ). Then the b̄-Brauer pair (S̄, b̄S̄) is 
uniquely determined by a b-Brauer pair (S, bS) such that R ≤ S ≤ P . Since the block b
is controlled by NG(P, bP ), we have

N̂G(S, bS) = ĈG(S)NG(S, bS) = ĈG(S)
(
NG(P, bP ) ∩NG(S)

)
.

This implies that NP̄ (S̄)CḠ(S̄)/CḠ(S̄) is a normal p-subgroup of NḠ(S̄, b̄S̄)/CḠ(S̄). 
Then we have NP̄ (S̄)CḠ(S̄) = S̄CḠ(S̄). Since CP̄ (S̄) ≤ S̄, we have NP̄ (S̄) = S̄ which is 
impossible. So the block b̄ is controlled by NḠ(P̄ , b̄P̄ ). Conversely, assume that (D, bD)
is an essential b-Brauer pair. So R ≤ D since R is normal in G. Since the block b̄ is con-
trolled by NḠ(P̄ , b̄P̄ ), NḠ(D̄, b̄D̄) = CḠ(D̄)

(
NḠ(P̄ , b̄P̄ ) ∩NḠ(D̄, b̄D̄)

)
. So N̂G(D, bD) =

ĈG(D)
(
N̂G(P, bP ) ∩N̂G(D, bD)

)
. This means that NP (D)

(
ĈG(D) ∩NG(D, bD)

)
/CG(D)

is a normal p-subgroup of NG(D, bD)/CG(D) since ĈG(D)/CG(D) is a p-group. So 
NP (D)

(
ĈG(D) ∩NG(D, bD)

)
= DCG(D). Hence NP (D) = D since CP (D) ≤ D. That 

is impossible. We are done. �
Lemma 2.3. The block bQ0 of CG(Q0) is nilpotent.

Proof. By the proof of [6, Lemma 2.2], we may assume that G is equal to NG(Q, bQ). 
Suppose that CG(Q0)/CG(Q) has a nontrivial 2′-subgroup F . The group F can be viewed 
as a subgroup of Aut(Q). By [5, Chapter 5, Theorem 2.3], Q = [Q, F ] × CQ(F ). But 
Q0 is contained in CQ(F ). That is impossible. So CG(Q0)/CG(Q) has to be a 2-group. 
Since the block bQ0 of CG(Q0) covers the block bQ of CG(Q) which is nilpotent by [9, 
Proposition 4.2], the block bQ0 is nilpotent. �

For any subgroup H of G and block d of H, denote by dG the induced block of d if it 
exists (see [1, §14]).

Lemma 2.4. Assume that the block b is controlled by NG(P, bP ) and Q0 is in the center 
of P . Let R be a subgroup of P . For any subgroup K of NG(R, bR) containing CG(R), 
set d = (bR)K . Then there exists an inertial group E/CG(P ) of the block b such that an 
inertial group of the block d is isomorphic to (K ∩ E)/CG(P ).
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Proof. Since the block b is controlled by NG(P, bP ), P ∩ K is a defect group of the 
block d. Set R̂ = P ∩ K. Denote by F the Brauer category of the block b with re-
spect to the maximal b-Brauer pair (P, bP ). Let NK

F (R) be the K-normalizer of R
in F (see [10, 2.14]). By [10, Corollary 3.6], we may choose a suitable dR̂, so that 
NK

F (R) is the Brauer category F(R̂, dR̂)(K, d). By the definition of NK
F (R), NK(R̂, dR̂) =

CK(R̂)
(
K ∩ NG(P, bP )

)
. Set X = K ∩ NG(P, bP ). Since NG(P, bP )/CG(P ) has a nor-

mal Sylow p-subgroup PCG(P )/CG(P ) and CG(P ) ≤ K, X/CG(P ) =
((

X/CG(P )
)
∩

(
PCG(P )/CG(P )

))
·
((

X/CG(P )
)
∩
(
E/CG(P )

))
for some inertial group E/CG(P ) of 

the block b. So X = (X ∩ P ) · (X ∩ E). Hence NK(R̂, bR̂)/R̂CG(R̂) is isomorphic to 
(K∩E)/

(
(K∩E) ∩ R̂CK(R̂)

)
. Since E/CG(P ) is a p′-group, E∩ R̂CK(R̂) = E∩CK(R̂). 

Since Q0 is in the center of P , Q0 belongs to R̂. By Lemma 2.3, we have E ∩CG(Q0) =
E∩NG(P, bP ) ∩CG(Q0) = E∩PCG(P ) = CG(P ). So E∩CK(R̂) ≤ E∩CG(Q0) = CG(P ). 
Therefore we have K ∩E ∩ R̂CK(R̂) = CG(P ). Then we can get NK(R̂, bR̂)/R̂CK(R̂) is 
isomorphic to (K ∩ E)/CG(P ). �

Let R be a lower defect group (see [4, Chapter V]) of b associated with the identity 
element of G, and denote by m(b, R) its multiplicity.

Lemma 2.5. ([11, Lemma 2.4]) If Q < P and |Q| ≤ |Z(P )|, then m(b, 1) = 0.

Proof. Suppose that there is a simple OGb-module M with a vertex R which is contained 
in Q. By [12, Theorem (41.6)], there exists a self-centralizing b-Brauer pair (R, h). So 
there is an element x of G such that (R, h)x ⊆ (P, bP ). Then |Z(P )| ≤ |CP (Rx)| ≤
|Rx| = |R| ≤ |Q| ≤ |Z(P )|. Hence Rx = Z(P ) which implies that R = P . This is a 
contradiction. By the proof of [13, Theorem 4], any Cartan integer of the block b is 
divisible by p. So we have m(b, 1) = 0. �

Let (Q, bQ) be the b-Brauer pair contained in (P, bP ). For simplicity, we will call 
|NG(Q, bQ)/CG(Q)|p′ the hyperfocal inertial index of the block b and denote it by f .

Lemma 2.6. Keep the notation and assumption above. If the block b is controlled by 
NG(P, bP ), the inertial index of the block b is equal to f .

Proof. Since the block bQ is nilpotent (see [9, Proposition 4.2]), we have NG(P, bP ) ∩
CG(Q) = CP (Q)CG(P ). At the same time, the block b is controlled by NG(P, bP ). Hence 
NG(Q, bQ)/CG(Q) = NG(P, bP )CG(Q)/CG(Q) ∼= NG(P, bP )/CP (Q)CG(P ). Then the 
inertial index of the block b is equal to f since PCG(P )/CG(P ) is the Sylow p-subgroup 
of NG(P, bP )/CG(P ). �

By assumption, Q is Z2n × Z2m × Z2s , where n, m, s are positive integers. If n, m, s
are different, Aut(Q) is a 2-group, and by [13, Theorem 2] the block b is nilpotent. That 
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contradicts with |Q| bigger than 1. So Q has to be Z2n ×Z2n ×Z2m . In this case, f has 
three possibilities: 3, or 7, or 21. In sequel, we treat the three cases separately.

3. The case f = 3

In this section, we show that the case f = 3 does not happen.

Proposition 3.1. The hyperfocal inertial index of the block b is not 3.

Proof. In order to prove the proposition, by [13, Theorem 2], we may assume that 
G = NG(Q, bQ) and b = bQ. In particular, CG(Q0) is normal in G. Suppose f = 3.

Firstly, we assume that the block b is controlled by NG(P, bP ). Let E be a subgroup 
of NG(P, bP ) such that E/CG(P ) is an inertial group of the block b. By Alperin’s fusion 
theorem, the hyperfocal subgroup Q is equal to [P, E]. By [5, Chapter 5, Theorem 3.6], 
[Q, E] = [P, E, E] = [P, E] = Q. Since the block bQ of CG(Q) is nilpotent, we have 
E ∩ CG(Q) = CG(P ). Since f = 3, ECG(Q)/CG(Q) has order 3. Hence CQ(E) is not 
trivial. But this contradicts Q = [Q, E].

Secondly, we assume that the block b is not controlled by NG(P, bP ). Let (S, bS) be an 
essential b-Brauer pair contained in (P, bP ). Since Q0 is normal in G, we have Q0 ≤ S. 
Set N = NG(S, bS) and P0 = CP (Q0). Since the block bQ0 is G-stable, P0 is a defect 
group of the block bQ0 . By Lemma 2.3, we have N ∩ CG(Q0) = NP0(S)CG(S). Since 
(S, bS) is essential, P0 has to be contained in S.

Suppose P0 < S. The inclusion N ⊂ G induces an injective homomorphism

N/NP0(S)CG(S) −→ G/CG(Q0).

Since N/P0CG(S) is not a 2-group and |G/CG(Q)|2′ equals 3, SCG(Q0)/CG(Q0) is a 
nontrivial proper subgroup of PCG(Q0)/CG(Q0) normalized by a Sylow 3-subgroup. By 
Lemma 2.1, G/CG(Q0) is isomorphic to S4, S/P0 is isomorphic to the Klein four group, 
P/P0 is isomorphic to D8, and the index of S in P is 2. So S is normal in P and the 
block bS is P -stable. Therefore PCG(S)/P0CG(S) is a Sylow 2-subgroup of N/P0CG(S). 
Then we can get N/P0CG(S) ∼= G/CG(Q0) ∼= S4. So there exists a subgroup K of N
such that K contains CG(S), K/CG(S) has order 3 and K ∩S = Z(S). Take an element 
x ∈ K such that xCG(S) has order 3 in N/CG(S). Then we have [s, x] ∈ Q for any s ∈ S

and [sCG(Q0), xCG(Q0)] = 1 in G/CG(Q0). But xCG(Q0) has order 3 in G/CG(Q0). 
This is impossible by Lemma 2.1.

Hence S = P0. Then (S, bS) is the unique essential b-Brauer pair contained in (P, bP ). 
Since the block bQ0 is nilpotent by Lemma 2.3, NG(P, bP ) ∩ CG(Q0) = P0CG(P ). The 
inclusion NG(P, bP ) ⊂ G induces an injective homomorphism NG(P, bP )/P0CG(P ) −→
G/CG(Q0). Suppose that the inertial index of the block b is not 1. Since |G/CG(Q0)|2′ =
3, the homomorphism is an isomorphism and PCG(Q0)/CG(Q0) is normal in G/CG(Q0). 
Since the preimage of PCG(Q0)/CG(Q0) in N/SCG(S) is PCG(S)/SCG(S), PCG(S)/
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SCG(S) is normal in N/SCG(S). This is impossible. So NG(P, bP ) = PCG(P ). Then 
the block b is controlled by NG(S) by Alperin’s fusion theorem. Consequently, we have 
N/SCG(S) ∼= G/CG(Q0) since N ∩CG(Q0) = NP0(S)CG(S) = SCG(S). There is a sub-
group F of N such that F contains CG(S), F/CG(S) is a Sylow 3-subgroup of N/CG(S)
and F ∩ S = Z(S). By [9, 1.7], the hyperfocal subgroup Q is equal to [S, F ], which is 
equal to [Q, F ] by [5, Chapter 5, Theorem 3.6]. But this is impossible since CQ(F ) is 
nontrivial. We are done. �
4. The case f = 7

In this section, we always assume that f is equal to 7. Then the hyperfocal subgroup 
Q has to be Z2n × Z2n × Z2n for some positive integer n.

Proposition 4.1. The block b is controlled by NG(P, bP ), Q0 ≤ Z(P ) and the inertial 
index of the block b is 7.

Proof. In order to prove the proposition, by [13, Theorem 2] we may assume that G =
NG(Q, bQ) and b = bQ. Then CG(Q0) is normal in G. Since f = 7, G/CG(Q0) is a 
{2, 7}-subgroup of Aut(Q0). By Lemma 2.1, the order of G/CG(Q0) is either 7 or 14. 
If G/CG(Q0) has order 14, the Sylow 7-subgroup of G/CG(Q0) has to be normal. That 
contradicts Lemma 2.1 (2). So G/CG(Q0) is a 7-group. Since the block bQ0 of CG(Q0)
is nilpotent by Lemma 2.3, the block b is inertial by [16, Theorem]. In particular, the 
block b is controlled by NG(P, bP ). Again, since the block bQ0 of CG(Q0) is nilpotent, 
NG(P, bP ) ∩CG(Q0) = P0CG(P ), where P0 is CP (Q0). So the inclusion NG(P, bP ) ⊂ G

induces an injective homomorphism NG(P, bP )/P0CG(P ) → G/CG(Q0), which has to 
be an isomorphism. Consequently, P0 = P and the inertial index of the block b is 7 by 
Lemma 2.6. �
Lemma 4.2. For any subgroup R of P , let K be a subgroup of NG(R, bR) containing 
CG(R). Set d = (bR)K . Then the hyperfocal subgroup Q̂ of the block d is either trivial or 
Z2m ×Z2m ×Z2m , where m is a positive integer not more than n. Furthermore the block 
d has the hyperfocal inertial index either 1 or 7.

Proof. By [6, Lemmas 2.5 and 2.6], the block d has a defect group R̂ = P ∩ K and a 
hyperfocal subgroup Q̂ contained in Q, and it is controlled by NK(R̂). By Lemma 2.4, 
there exists an inertial group E/CG(P ) of the block b such that (E ∩ K)/CG(P ) is 
isomorphic to an inertial group of the block d. By Proposition 4.1, the inertial index of 
the block b is 7. So the inertial index of the block d is 1 or 7. Hence Q̂ is either trivial or 
Z2m × Z2m × Z2m for a suitable positive integer n, and the hyperfocal inertial index of 
the block d is 1 or 7 by Lemma 2.6. �
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Lemma 4.3. Assume that P = Q. For a subgroup R of P , we have

m(b, R) =

⎧⎪⎨
⎪⎩

1 if R is conjugate to P ;
6 if R is equal to 1;
0 otherwise.

Proof. Since Q �= 1, l(b) = 7 by [3, Corollary 1.2] and [14, Corollary]. In order to prove 
the lemma, by [6, Equation (3.2)] it suffices to prove m

(
(bR)NG(R, bR), R

)
= 0 for any 

nontrivial proper subgroup R of P . Let R be a nontrivial proper subgroup of P . Suppose 
that m

(
(bR)NG(R, bR), R

)
≥ 1. Set d = (bR)NG(R, bR) and g = (bR)RCG(R). Clearly the 

block g is nilpotent, l(g) = 1 and m(g, R) = 0. By [7, Theorem 5.12], m(d, R) ≤ m(g, R). 
This is a contradiction. �

Let E be a subgroup of NG(P, bP ) such that E/CG(P ) is an inertial group of the block 
b. Then we have P = [P, E] � CP (E). By Proposition 4.1, E/CG(P ) has order 7. Since 
the block b is controlled by NG(P, bP ) and f = 7, ECG(Q)/CG(Q) has to be of order 7. 
Then Q = [P, E] = [Q, E] since ECG(Q)/CG(Q) acts freely on the set of nonidentity 
elements of Q.

Lemma 4.4. Set R = CP (E), N = NG(R, bR) and d = (bR)N . Then m(d, R) = 6.

Proof. Set R̂ = NP (R). Then R̂ is a defect group of the block d and N = CG(R)R̂
by Proposition 4.1. By Lemma 2.4, the inertial index of the block d is 7. So by [6, 
Lemma 3.1], m(d, R) = m(d̄, 1), where d̄ is the block of N/R determined by the block 
d. The block d̄ has a defect group R̂/R, which is isomorphic to NQ(R). By Lemma 2.2, 
the inertial index of the block d̄ is 7. Then by Lemma 2.1, R̂/R is a hyperfocal subgroup 
of the block d̂. By Lemma 4.3, we are done. �
Lemma 4.5. Assume that |Q| ≤ |Z(P )|. We have l(b) = l(b0) = 7.

Proof. By [13, Theorem 2] and Proposition 4.1, the blocks b and b0 have equivalent 
Brauer categories. So in order to prove the lemma, it suffices to prove that l(b) = 7. By 
[3, Corollary 1.2] and [14, Corollary], we have l(b) = 7 when Q = P . So we assume that 
Q is a proper subgroup of P . We prove l(b) = 7 by induction on |G|.

Let R be a proper subgroup of P such that m
(
(bR)NG(R, bR), R

)
�= 0. We set N =

NG(R, bR) and d = (bR)NG(R, bR). By Proposition 4.1, R̂ = NP (R) is a defect group 
of the block d. Since m(d, R) �= 0, the block d is not nilpotent. By Lemma 4.2, the 
hyperfocal subgroup Q̂ of the block d is Z2m ×Z2m ×Z2m for a suitable positive integer 
and the hyperfocal inertial index of it is 7. Then by Proposition 4.1, the inertial index 
of the block d is 7. By Lemma 2.4, there is a suitable inertial group E/CG(P ) of the 
block b such that (E∩N)/CG(P ) is isomorphic to an inertial group of the block d. Since 
the two blocks b and d have the same inertial index, we have E ⊆ N and E/CG(P ) is 
isomorphic to an inertial group of the block d.
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Suppose that N < G. By induction, we have l(d) = 7. Then by Lemma 4.4 and [6, 
Equation (3.2)], R = CR̂(E) = NCP (E)(R). Hence R = CP (E). Again, by Lemma 4.4
and [6, Equation (3.2)], we have l(b) = 7.

Assume that G = N and b = d. Set C = CG(R) and R̃ = CP (R). Then R̃ is a 
defect group of the block bR by Proposition 4.1. By [6, Lemma 2.6] and Lemma 2.4, the 
block bR is controlled by NC(R̃) and the inertial group of the block bR is isomorphic to 
CE(R)/CG(P ) for some inertial group E/CG(P ) of the block b.

If CE(R) is equal to CG(P ), the block bR is nilpotent and so is the block (bR)PCG(R). 
Since the block b is controlled by NG(P, bP ), we have G = PCG(R) ·E. So G/PCG(R) is 
a 2′-group. Then by [16, Theorem], the block b is inertial. In particular, we have l(b) = 7.

If CE(R) is not equal to CG(P ), then CE(R) = E and G = PCG(R). Set Ḡ = G/R. 
For any subgroup X of G, denote by X̄ the image of X in Ḡ. Denote by b̄ the unique 
block of Ḡ determined by the block b. By Lemma 2.2, the block b̄ has a hyperfocal 
subgroup which is contained in Q̄ and inertial index 7. Since the block b is controlled by 
NG(P, bP ), by Lemma 2.2, the block ̄b is also controlled by the normalizer of its maximal 
Brauer pair. Hence the hyperfocal inertial index of the block b̄ is 7. Since |Q| ≤ |Z(P )|
and m(d, R) �= 0, by Lemma 2.5 R �= 1 and thus |Ḡ| < |G|. Then by induction, we have 
l(b) = l(b̄) = 7. The proof is done. �
Lemma 4.6. Assume that |Q| ≤ |Z(P )|. We have k(b) = k(b0).

Proof. For any u ∈ P , set bu = b〈u〉. Denote by eu the inertial index of the block bu. 
NG(P, bP ), CP (u) is a defect group of the block bu. Set Pu = CP (u). By [6, Lemma 2.6], 
the block bu is controlled by NCG(u)(Pu). So by Lemma 2.4, eu is either 1 or 7. If eu is 
1, the block bu is nilpotent. So l(bu) = 1. If eu is 7, we have l(bu) = 7 by Lemma 4.5. 
In conclusion, l(bu) = eu. On the other hand, denote by b◦u the block of CNG(P )(u)
satisfying that (u, b◦u) belongs to the maximal b0-Brauer pair (P, bP ). Since the block b
is controlled by NG(P, bP ), the blocks b and b0 have the same Brauer categories. This 
means that for any u, v ∈ P , (u, bu) and (v, bv) are G-conjugate if and only if (u, b◦u) and 
(v, b◦v) are NG(P )-conjugate. By [10, Corollary 3.6], the blocks bu and b◦u have the same 
Brauer categories. In particular they have the same inertial index eu. By the structure 
theorem of the blocks with normal defect group, the equation l(b◦u) = eu holds. Hence 
we have l(bu) = l(b◦u) for any u ∈ P . Therefore k(b) = k(b0). �
5. The case f = 21

In this section, we always assume that f is equal to 21. In this case, the hyperfocal 
subgroup Q is Z2n × Z2n × Z2n for some positive integer n. We borrow the notation in 
Section 4.

Proposition 5.1. The block b is controlled by NG(P, bP ), Q0 ≤ Z(P ) and the inertial 
index of the block b is 21.
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Proof. In order to prove the proposition, by [13, Theorem 2], we may assume that 
G = NG(Q, bQ) and b = bQ. Then Q0 is normal in G, the block bQ0 is G-stable, and 
P0 = CP (Q0) is a defect group of the block bQ0 . Since f = 21, |G/CG(Q0)| is divided by 
21. By Lemma 2.1, we have |G/CG(Q0)| is 21 or 168.

Suppose that G/CG(Q0) is of order 168. Then G/CG(Q0) is the simple group of order 
168. Set Ḡ = G/CG(Q0). For any subset X of G, denote by X̄ the image of X in Ḡ. It is 
clear that P̄ is a Sylow 2-subgroup of Ḡ, which is isomorphic to P/P0. Let R be a normal 
subgroup of P such that R contains P0 and R/P0 is the Klein four group. By Lemma 2.1, 
NḠ(R̄) is S4. Take an element x̄ of Ḡ such that 〈x̄〉 is a Sylow 3-subgroup of NḠ(R̄). 
Then we have x belongs to NG

(
RCG(Q0)

)
. Set e = (bQ0)RCG(Q0). Since R contains P0, 

(R, bR) is a maximal e-Brauer pair. Since the block bQ0 is G-stable, by the Frattini 
argument, there exist an element y of NG(R, bR) and an element z of CG(Q0) such that 
x = yz. So ȳ = x̄ is an element of Ḡ of order 3. Since NG(R, bR) ∩ CG(Q0) = P0CG(R)
by Lemma 2.3, the inclusion NG(R, bR) ⊂ G induces an injective group homomorphism 
NG(R, bR)/P0CG(R) → Ḡ. Therefore there is an integer t such that ytCG(R) is of order 
3 in NG(R, bR)/CG(R). By the definition of the hyperfocal subgroup, [r, yt] belongs to 
Q for any r ∈ R. Therefore [r̄, ȳt] = 1. But ȳt has order 3 in Ḡ. By Lemma 2.1, the 
equality [r̄, ȳt] = 1 is impossible.

So the order of Ḡ is 21. Then the block b is inertial by [16, Theorem]. In particular 
the block b is controlled by NG(P, bP ). Since P̄ is a Sylow 2-subgroup of Ḡ, this forces 
P = P0, namely, Q0 is in the center of P . By Lemma 2.6, the inertial index of the block 
b is 21. �

Let E/CG(P ) be an inertial group of the block b. We have P = [P, E] � CP (E). Set 
H = NG(Q, bQ). The inclusion E ⊂ H induces homomorphisms E/CG(P ) → H/CG(Q)
and E/CG(P ) → H/CH(Q0) such that the following diagram commutes

E/CG(P )

H/CG(Q) H/CH(Q0)

where the bottom homomorphism is the canonical homomorphism. By the last para-
graph, the homomorphism E/CG(P ) → H/CH(Q0) is an isomorphism. So the homo-
morphism E/CG(P ) → H/CG(Q) must be injective. Viewing E/CG(P ) as a subgroup 
of the automorphism group Aut(Q) of Q, we have Q = [P, E] = [Q, E] since CQ(E) = 1. 
Let E3 and E7 be subgroups of E such that E3/CG(P ) and E7/CG(P ) are Sylow 3- and 
Sylow 7-subgroups of E/CG(P ) respectively.

Lemma 5.2. Keep the notation as above. Then CP (E7) = CP (E).
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Proof. Obviously CP (E) ≤ CP (E7). Since P = [P, E] � CP (E) = Q � CP (E), we have 
CP (E7) = CQ(E7) � CP (E). Since E7/CG(P ) is a subgroup of Aut(Q) of order 7, by 
Lemma 2.1 we have CQ(E7) = 1. The proof is done. �
Lemma 5.3. Assume that P = Q. For a subgroup R of P , we have

m(b, R) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if R is conjugate to P ;
2 if R is equal to 1;
2 if R is conjugate to CP (E3);
0 otherwise.

Proof. By [3, Corollary 1.2] and [14, Corollary], l(b) = 5 because the block b is not 
nilpotent. Set R = CP (E3) and N = NG(R, bR). Then R is a cyclic 2-group and NE7(R)
must be CG(P ) since E7/CG(P ) acts freely on Q0 − {1}. So we have N = CG(R). The 
block bR has defect group P and its inertial index is index 3. Denote by b̄R the block of 
N/R determined by the block bR. Then m(bR, R) = m(b̄R, 1) by [6, Lemma 3.1]. The 
block b̄R has a defect group P/R isomorphic to Z2n × Z2n and inertial index 3. Hence 
m(bR, R) = m(b̄R, 1) = 2 by [6, Lemma 3.2]. Suppose that there is another block b′R of 
CG(R) associated with the block b. We have N ′ = NG(R, bR′) = CG(R) and the inertial 
group of the block b′R is 1 or cyclic of order 3. If the inertial index of the block b′R is 1, 
then the block b′R is nilpotent and thus m(b′R, R) = 0. If the inertial index of the block 
b′R is 3, we have m(b′R, R) = 2 as above. In conclusion, we have m(b, R) is a nonzero 
even positive integer by [13, Equation (7)].

Let T be a nontrivial proper subgroup of P which is not CP (E3), up to conju-
gation. By Lemma 2.4 the inertial block of the block bT of CG(T ) is isomorphic to 
CE(T )/CG(P ). By Lemma 2.1 (1), |CE(T )/CG(P )| is either 1 or 3. If |CE(T )/CG(P )| is 
1, the block bT is nilpotent and thus m(bT , T ) = 0. Then by [7, Theorem 5.12], we have 
m
(
(bT )NG(T, bT ), T

)
= 0. If |CE(T )/CG(P )| is 3, we have T ≤ CP (E3), up to conjuga-

tion. Then it is easily concluded that T is a cyclic 2-group, that NE7(T ) = CG(P ) (see 
Lemma 2.1), that E3/CG(P ) is isomorphic to an inertial group of the block (bT )NG(T, bT ), 
and that the hyperfocal subgroup of the block (bT )NG(T, bT ) with respect to the maxi-
mal (bT )NG(T, bT )-Brauer pair (P, bP ) is isomorphic to Z2n × Z2n . By the proof of [6, 
Lemma 4.1], m

(
(bT )NG(T, bT ), T

)
= 0 if T < CP (E3), up to conjugation.

By [3, Corollary 1.2] and [14, Corollary], the block b and b0 are derived equivalent. 
It is well known that the derived equivalence preserves the elementary divisors of the 
Cartan matrices (see [15, Proposition 6.8.9]). It is straightforward to calculate that 1
appears as an elementary divisor of the Cartan matrix of the block b0 by the structure 
theorem of the blocks with normal defect group. So m(b, 1) �= 0.

By [13, Equations (7), (9) and (10)], we have m
(
b, CP (E3)

)
= l(b) − m(b, P ) −

m(b, 1) ≤ 3. Since m
(
b, CP (E3)

)
is a nonzero even positive integer, it has to be 2. Then 

m(b, 1) = 2. We are done. �
Lemma 5.4. Set R = CP (E). Then m

(
(bR)NG(R, bR), R

)
= 2.
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Proof. Set N = NG(R, bR) and d = (bR)NG(R, bR). Then R̂ = NP (R) is a defect group 
of the block d and N = CG(R)

(
NG(R) ∩NG(P, bP )

)
= R̂CG(R) by Proposition 5.1. By 

[6, Lemma 3.1], m(d, R) = m(d̄, 1), where d̄ is the unique block of N̄ = N/R determined 

by the block d. The block d̄ has a defect group ¯̂
R = R̂/R which is isomorphic to a 

subgroup of Q. By Lemma 2.4, an inertial group of the block d is E/CG(P ). So the 
block d has inertial index 21. Then by Lemma 2.2, the block d̄ still has inertial index 21. 
This implies that ¯̂

R is isomorphic to Z2m × Z2m × Z2m for some positive integer m. So 
¯̂
R is a hyperfocal subgroup of the block d̄. Then by Lemma 5.3, we have m(d, R) =
m(d̄, 1) = 2. �
Lemma 5.5. Set R = CP (E3). Then m

(
(bR)NG(R, bR), R

)
= 2.

Proof. Set N = NG(R, bR) and d = (bR)NG(R, bR). By Lemma 2.4, there exists an inertial 
group E′/CG(P ) such that (E′ ∩ N)/CG(P ) is isomorphic to an inertial group of the 
block d. Without loss of generality, we may assume that E′ = E. Since P = Q �CP (E), 
R = CQ(E3) �CP (E). By Lemma 2.1, E7/CG(P ) acts freely on Q0−{1}. Since CQ(E3) �=
1, NE(R) has to be E3. So the inertial index of the block d is 3.

By Proposition 5.1 R̂ = NP (R) is a defect group of the block f . By [6, Lemmas 2.5 
and 2.6], we may assume that there is a hyperfocal subgroup of the block d contained 
in Q and that the block d is controlled by NN (R̂). By Proposition 3.1, the hyperfocal 
subgroup of the block d has to be isomorphic to Z2s × Z2s for some positive integer s. 
Since CR̂(E3) = NCP (E3)(R) = R, we have m(d, R) = 2 by [6, Lemma 3.3]. �
Lemma 5.6. Assume that |Q| ≤ |Z(P )|. We have l(b) = l(b0) = 5.

Proof. By [13, Theorem 2] and Proposition 4.1, the blocks b and b0 have equivalent 
Brauer categories. So in order to prove the lemma, it suffices to prove that l(b) = 5. By 
[3, Corollary 1.2] and [14, Corollary], we have l(b) = 5 when Q = P . So we assume that 
Q is a proper subgroup of P . We prove l(b) = 5 by induction on |G|.

Let R be a proper subgroup of P such that m
(
(bR)NG(R, bR), R

)
�= 0. Set N =

NG(R, bR) and d = (bR)NG(R, bR). By Proposition 5.1 R̂ = NP (R) is a defect group 
of the block d. By Lemma 2.4, (E ∩ N)/CG(P ) is an inertial group of the block d
for some suitable inertial group E/CG(P ) of the block b. We are going to prove that 
R ≤ CP (E3). Assume that R � CP (E3).

Suppose that E∩N = CG(P ). The inertial index of the block d is 1. By [6, Lemma 2.6], 
the block d is controlled by NN (R̂). So the block d is nilpotent. This is a contradiction.

Suppose that (E∩N)/CG(P ) has order 3. Then by Lemma 2.6, the hyperfocal inertial 
index of the block d is 3 since the block d is controlled by NN (R̂). By [6, Lemma 2.5]
and Proposition 3.1, the hyperfocal subgroup of the block d is isomorphic to Z2m ×Z2m

for some positive integer m. By the proof of [6, Lemma 4.1], we have R = CP (E3). This 
is a contradiction.
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Suppose that (E∩N)/CG(P ) has order 7. Then by Lemma 2.6, the hyperfocal inertial 
index of the block d is 7. By [6, Equation (3.2)], Lemmas 4.4 and 4.5, we have R =
CR̂(E7) = CP (E7). Then by Lemma 5.2, we have R = CP (E). This is a contradiction.

Suppose that (E ∩N)/CG(P ) has order 21. Then we have E ∩N = E. We divide the 
proof of the case into two cases. Suppose that N < G. By induction, we have l(d) = 5. 
By Lemmas 5.4 and 5.5 R = CR̂(E3) or R = CR̂(E). In both cases, we have R ≤ CP (E3). 
This is a contradiction. Suppose that G = N and b = d. Set C = CG(R) and R̃ = CP (R). 
Then the block bR is controlled by NC(R̃) by [6, Lemma 2.6]. The inertial group of the 
block bR is isomorphic to CE(R)/CG(P ). Since R � CP (E3), the order of CE(R)/CG(P )
is either 1 or 7. If CE(R) is equal to CG(P ), the block bR is nilpotent and so is the block 
(bR)PCG(R). Since the block b is controlled by NG(P, bP ), we have G = PCG(R) ·E. Then 
by [16, Theorem], the block b is inertial. In particular l(b) = 5. Then by Lemmas 5.4 and 
5.5, we have R ≤ CP (E3). This is a contradiction.

Up to now, we proved that R ≤ CP (E3). Next we prove that R is either CP (E3) or 
CP (E).

Suppose that R < CP (E3). Assume that N < G. The inertial index of the block d is 
either 3 or 21. If the inertial index of the block d is equal to 3, the hyperfocal subgroup of 
the block d is Z2t×Z2t for some positive integer t by [6, Lemma 2.5] and Proposition 3.1. 
By the proof of [6, Lemma 4.1], R has to be CP (E3). This is a contradiction. So the 
inertial index of the block d is 21. Then by induction, we have l(d) = 5. By Lemmas 5.4
and 5.5 and [6, Equation (3.2)], we have R = CNP (R)(E) = NCP (E)(R) = CP (E).

Assume that N = G and b = d. Suppose that R ≤ CP (E7). Then we have G =
PCG(R) since the block b is controlled by NG(P, bP ) by Proposition 5.1 and Lemma 5.2. 
By Lemma 2.5, we have R �= 1. Let b̄ be the block of G/R determined by the block b. By 
the proof of [13, Lemma 8], there is a hyperfocal subgroup of the block b̄ contained in Q̄. 
Then by Lemma 2.2 and induction, we have l(b̄) = 5 and hence l(b) = 5. By Lemmas 5.4
and 5.5 and [6, Equation (3.2)], we have R = CP (E).

Suppose that R � CP (E7). Set C = RCG(R) and g = (bR)C . By Proposition 5.1, 
RCP (R) is a defect group of the block g. By Lemma 2.4, the block g has an inertial 
group isomorphic to 

(
E ∩RCG(R)

)
/CG(P ) which has order 3. Then by [6, Lemmas 2.5 

and 2.6] and Proposition 3.1, the hyperfocal subgroup of the block g is Z2s × Z2s for 
some positive integer s and the block g is controlled by the normalizer of its defect group. 
So by [6, Theorem 1.1], we have l(g) = 3. On the other hand, by [7, Theorem 5.12] we 
have m(g, R) ≥ m(d, R) ≥ 1. By [6, Lemma 3.2] and the equality l(g) = 3, we deduce 
that R = CP (E3). This is a contradiction.

Summarizing the above, the subgroup R such that m
(
(bR)NG(R, bR), bR

)
�= 0 is ei-

ther CP (E3) or CP (E) for some suitable inertial group E/CG(P ) of the block b. By 
Lemmas 5.4 and 5.5 and [6, Equation (3.2)], l(b) = 5. We are done. �

Lemma 5.7. Assume that |Q| ≤ |Z(P )|. We have k(b) = k(b0).
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Proof. We will borrow the notation in the proof of Lemma 4.6. Similar to the proof of 
Lemma 4.6, the block bu has the following properties: Pu is a defect group; there is a 
hyperfocal subgroup contained in Q; the block is controlled by NCG(u)(Pu); the inertial 
index eu is 1, 3, 7 or 21. If eu is 1, the block bu is nilpotent. So l(bu) = 1. If eu is 3, 
by Lemma 2.6 the hyperfocal inertial index of the block bu is 3. By Proposition 3.1, the 
hyperfocal subgroup of the block bu is isomorphic to Z2s ×Z2s for some positive integer 
s. By [6, Theorem 1.1], l(eu) = 3. If eu is 7, the hyperfocal subgroup of the block bu
is isomorphic to Z2t × Z2t × Z2t for some positive integer t and the hyperfocal inertial 
index is 7 by Lemma 2.6. By Lemma 4.5, l(bu) = 7. If eu is 21, the hyperfocal subgroup 
of the block bu is isomorphic to Z2l × Z2l × Z2l for some positive integer l and the 
hyperfocal inertial index is 21 by Lemma 2.6. By Lemma 5.6, we have l(bu) = 5. On the 
other hand, by the structure theorem of the blocks with normal defect group, l(b◦u) = 1
if its inertial index is 1; l(b◦u) = 3 if its inertial index is 3; l(b◦u) = 7 if its inertial index is 
7; l(b◦u) = 5 if its inertial index is 21. By [10, Corollary 3.6], the blocks bu and b◦u have 
the same Brauer categories from which we can deduce that both have the same inertial 
indices. Hence we have l(bu) = l(b◦u) for any u ∈ P . Since the block b is controlled by 
NG(P, bP ), the blocks b and b0 have the same Brauer categories. This means that for 
any u, v ∈ P , (u, bu) and (v, bv) are G-conjugate if and only if (u, b◦u) and (v, b◦v) are 
NG(P )-conjugate. Therefore k(b) = k(b0). �

Then we can prove Theorem 1.1.

Proof of Theorem 1.1. We denote by e the inertial index of the block b with respect to 
the maximal b-Brauer pair (P, bP ). By Lemma 2.6 and Propositions 4.1 and 5.1, we have 
e = f . Hence Theorem 1.1 will follow from Proposition 3.1 and Lemmas 4.5, 4.6, 5.6, 
5.7. �
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