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we show that such a conformal module admits a nontrivial 
extension of a finite conformal module over NS if p = −1, 
where NS is a Neveu-Schwarz conformal subalgebra of S(p). 
As a byproduct, we also obtain the classification of finite 
irreducible conformal modules over a series of finite Lie 
conformal superalgebras s(n) for n ≥ 1.
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1. Introduction

Lie conformal superalgebras, introduced by Kac [9], encode the singular part of the 
operator product expansion of chiral fields in conformal field theory.

Many advances have been made in the theory of finite Lie conformal superalgebras 
over the years [1–5,7,8,10,15,16]. Finite simple Lie conformal superalgebras were classi-
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fied in [7]. The list consists of current Lie conformal superalgebras Curg over a simple 
finite-dimensional Lie superalgebra g, four series of Lie conformal superalgebras of Car-
tan type, and the exceptional Lie conformal superalgebra CK6. Their finite irreducible 
conformal modules (FICMs) were classified in a series of papers [1–5] by a description of 
extremal vectors and degenerate modules. Remarkably, the classification of FICMs over 
CK6 was also given by Martínez and Zelmanov [10] by a distinctive approach.

However, work towards the theory of infinite Lie conformal superalgebras is only at its 
initial level. Recently, in [13], we studied a class of infinite Lie conformal algebras B(p) of 
Block type, where p is a nonzero complex number. In this paper, we introduce the super 
analogue S(p) of B(p) by analyzing certain module structures of B(p), and then study 
its representation theory. Naturally, we refer to S(p)’s as Lie conformal superalgebras 
of Block type. As one can see later, S(p) = S(p)0̄ ⊕S(p)1̄ with S(p)0̄ = ⊕i∈Z+C[∂]Li, 
S(p)1̄ = ⊕i∈Z+C[∂]Gi and λ-brackets

[Li λ Lj ] = ((i + p)∂ + (i + j + 2p)λ)Li+j , (1.1)

[Li λ Gj ] = ((i + p)∂ + (i + j + 3
2p)λ)Gi+j , (1.2)

[Gi λ Gj ] = 2Li+j . (1.3)

Some interesting features of S(p) deserve to be mentioned. Firstly, each S(p) contains a 
Neveu-Schwarz conformal subalgebra. Set L = 1

pL0, G = 1√
pG0. By (1.1)–(1.3), one can 

check that the subalgebra

NS = C[∂]L⊕C[∂]G (1.4)

of S(p) is exactly the Neveu-Schwarz conformal algebra [7]. Secondly, there are embed-
ding relations among S(p)’s. For any integer n ≥ 1, S(p) can be embedded into S(np)
via Li �→ 1

nL
′
ni, Gi �→ 1√

n
G′

ni. Thirdly, S(−n) contains a series of finite Lie conformal 
quotient algebras (cf. (2.6))

s(n) = S(−n)/S(−n)〈n+1〉. (1.5)

Due to their interior conformal structures, the special cases s(1) and s(2) will be referred 
to as Heisenberg-Neveu-Schwarz conformal algebra and Schrödinger-Neveu-Schwarz con-
formal algebra, respectively. See Subsection 2.3 for more details.

Our main goal in this paper is to classify FICMs over S(p). Obviously, any conformal 
module over NS ⊂ S(p) can be trivially extended to a conformal module over S(p). Our 
main result indicates that a FICM over S(p) admits a nontrivial extension of a finite 
conformal module over NS if p = −1 (see Table 1). As a byproduct, we also obtain the 
classification of FICMs over the finite Lie conformal superalgebra s(n) (see Table 2).

In the process of our proof, we also give the classifications of all the free conformal 
modules of rank (1 + 1) over S(p) and s(n), and characterize their simplicities.
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Table 1
Nontrivial FICMs over S(p).

S(p) FICMs Reference
p �= −1 TΔ,α or T ′

Δ,α Theorem 6.1
p = −1 TΔ,α,β or T ′

Δ,α,β Theorem 6.1

Table 2
Nontrivial FICMs over s(n).

s(n) FICMs Reference
n > 1 TΔ,α or T ′

Δ,α Corollary 6.5
n = 1 TΔ,α,β or T ′

Δ,α,β Corollary 6.5

To achieve our goal, we need to adapt the techniques developed in [13] to super setting. 
Particularly, one of key steps will be proved in a more conceptual way (see Section 3). 
Besides, the Schur lemma for Lie superalgebras and some analytical techniques will be 
employed.

The rest of this paper is organized as follows. In Section 2, we first recall some basic 
definitions on Lie conformal superalgebras. Then, by analyzing certain module structures 
of B(p), we introduce its super analogue S(p). At last, we construct the quotient algebra 
s(n) of S(−n).

In Section 3, we classify the irreducible modules over a subquotient algebra g of the 
annihilation superalgebra of S(p). To do this in a more conceptual way (compare with 
the non-super case [13]), we introduce the so-called row, column and hook ideals of g
defined by (3.1)–(3.3), respectively.

In Section 4, we prove the equivalence between the finite conformal modules over S(p)
and those over its quotient algebra S(p)[n] (cf. (2.5)) by using the classification of FICMs 
over the Neveu-Schwarz conformal algebra NS.

In Section 5, by some analytical techniques, we classify all the free conformal modules 
of rank (1 +1) over S(p). The simplicities of these conformal modules will be also given.

Finally, in Section 6, we complete the classification of FICMs over S(p) by showing 
that they must be free of rank (1 +1) by using results in Sections 3–5. As an application 
of our main result, we also obtain the classification of FICMs over s(n) by the feature 
(1.5) of S(−n).

2. Preliminaries

2.1. Basic definitions

We first recall some basic definitions and notations for the sake of completeness, see 
[6,7,9] for more details.

Definition 2.1. A Lie conformal superalgebra R = R0̄⊕R1̄ is a Z/2Z-graded C[∂]-module 
endowed with a C-linear map R ⊗ R → C[λ] ⊗ R, a ⊗ b → [a λ b] called λ-bracket, and 
satisfying the following axioms (a, b, c ∈ R):
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(conformal sesquilinearity) [∂a λ b] = −λ[a λ b], [a λ ∂b] = (∂ + λ)[a λ b],

(skew-symmetry) [a λ b] = −(−1)|a||b|[b−λ−∂ a],

(Jacobi identity) [a λ [b μ c]] = [[a λ b] λ+μ c] + (−1)|a||b|[b μ [a λ c]].

Here and further, we use the notation |a| ∈ Z/2Z to denote the parity of a, and we 
always assume that a is homogeneous if |a| appears in an expression. Let R be a Lie 
conformal superalgebra. We call R finite if it is finitely generated over C[∂]; Z-graded if 
R = ⊕i∈ZRi, where Ri is a C[∂]-submodule and [Ri λ Rj ] ⊂ Ri+j [λ] for i, j ∈ Z.

Definition 2.2. A conformal module M = M0̄ ⊕ M1̄ over a Lie conformal superalgebra 
R is a Z/2Z-graded C[∂]-module endowed with a C-linear map R ⊗ M → C[λ] ⊗ M , 
a ⊗ v → a λ b called λ-action, such that (a, b ∈ R, v ∈ M)

(∂a) λ v = −λa λ v, a λ (∂v) = (∂ + λ)a λ v,

[a λ b] λ+μ v = a λ (b μ v) − (−1)|a||b|b μ (a λ v).

Let M = M0̄⊕M1̄ be a conformal R-module. We call M finite if it is finitely generated 
over C[∂]. As C[∂]-modules, if M0̄ has rank m and M1̄ has rank n, we say that M has 
rank (m + n). In case R is Z-graded, we call M Z-graded if M = ⊕i∈ZMi, where Mi

is a C[∂]-submodule and Ri λ Mj ⊂ Mi+j [λ] for i, j ∈ Z. Furthermore, if each Mi is 
freely generated by one element over C[∂], we call M a Z-graded free intermediate series 
module.

Obviously, for any fixed α ∈ C, the C[∂]-module Ccα with ∂cα = αcα, a λcα = 0 for 
a ∈ R, is a conformal R-module, which will be referred to as the even (respectively, odd) 
one-dimensional trivial module if |cα| = 0 (respectively, |cα| = 1).

Definition 2.3. The annihilation superalgebra A(R) of a Lie conformal superalgebra R is 
a Lie superalgebra with C-basis {an | a ∈ R, n ∈ Z+} and relations

[am, bn] =
∑
k∈Z+

(
m

k

)
(a(k)b)m+n−k, (∂a)n = −nan−1, (2.1)

where a(k)b is called the k-product, given by the following inversion formula:

[a λ b] =
∑
k∈Z+

λ(k)a(k)b with λ(k) = λk

k! .

Here, the reason why (2.1) gives a Lie superalgebra can be found in the book by 
Kac [9, pages 41 and 42]. The parity |an| of an ∈ A(R) is the same as |a| for any 
homogeneous element a ∈ R and n ∈ Z+. Note that A(R) admits a derivation T given 
by T (an) = −nan−1 for any an ∈ A(R).
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The extended annihilation superalgebra A(R)e of a Lie conformal superalgebra R is 
defined by A(R)e = CT �A(R) with [T, an] = −nan−1. The representation theory of R
is controlled by the representation theory of A(R)e in the following sense:

Proposition 2.4. A conformal module M over a Lie conformal superalgebra R is the same 
as a module over the Lie superalgebra A(R)e satisfying anv = 0 for a ∈ R, v ∈ M , n 	 0.

2.2. Construction of S(p)

The Lie conformal algebra B(p) defined by (1.1) was introduced in [13]. It is called a 
Lie conformal algebra of Block type due to its relation with some Lie algebras of Block 
type [11,12,14]. Let us now construct its nontrivial super analogue.

For any a, b ∈ C, one can easily check that the following C[∂]-module M(a, b) is a 
Z-graded free intermediate series module over B(p):

M(a, b) = ⊕i∈ZC[∂]mi with λ-action Li λ mj = ((i + j + a)λ + (i + p)(∂ + b))mi+j .

Motivated by this, we consider a Z/2Z-graded C[∂]-module

R(a, b, {φi,j}) = R0̄ ⊕R1̄ with R0̄ = B(p), R1̄ = ⊕i∈Z+C[∂]Gi,

and satisfying

[Li λ Gj ] = ((i + j + a)λ + (i + p)(∂ + b))Gi+j , [Gi λ Gj ] = φi,j(∂, λ)Li+j ,

where φi,j(∂, λ) ∈ C[∂, λ] with φi,j(∂, λ) 
= 0 for some i, j ∈ Z+.

Lemma 2.5. The Z/2Z-graded C[∂]-module R(a, b, {φi,j}) becomes a Lie conformal su-
peralgebra if and only if a = 3

2p, b = 0 and φi,j(∂, λ) = c is a constant for all i, j ∈ Z+. 
Up to isomorphism, we may assume that c = 2. Then the resulting algebra is exactly 
S(p).

Proof. The sufficiency can be checked by a direct computation.
Next, we consider the necessity. Assume that R(a, b, {φi,j}) is a Lie conformal super-

algebra. For any i, j ∈ Z+, using the Jacobi identity for triple (L0, Gi, Gj), we have

(p∂ + (i + j + 2p)λ)φi,j(∂ + λ, μ) = ((i + a− p)λ + p(b− μ))φi,j(∂, λ + μ)

+((j + a)λ + p(∂ + μ + b))φi,j(∂, μ). (2.2)

Taking λ = 0 in (2.2), we obtain 2pbφi,j(∂, μ) = 0. Hence, b = 0, since φi,j(∂, μ) 
= 0 for 
some i, j ∈ Z+. Then, taking μ = 0 in (2.2), we obtain
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(i + a− p)φi,j(∂, λ) = p∂
φi,j(∂ + λ, 0) − φi,j(∂, 0)

λ

+ (i + j + 2p)φi,j(∂ + λ, 0) − (j + a)φi,j(∂, 0).

Taking λ → 0, we obtain (2a
p − 3)φi,j(∂, 0) = ∂ d

d∂ (φi,j(∂, 0)). This differential equation 

has solution if and only if a = (n+3)p
2 , and in this case the solution is φi,j(∂, 0) = ei,j∂

n, 
where ei,j ∈ C. Note here that the degree of all φi,j(∂, 0) are equal to some fixed n ∈ Z+.

Using the Jacobi identity for triple (G0, Gi, Gj), we have

((a− p)∂ + (i + j + a)λ)φi,j(∂ + λ, μ) = ((i + j + a)(λ + μ) + (i + p)∂)φ0,i(−λ− μ, λ)

+((p− a− i)∂ − (i + j + a)μ)φ0,j(∂ + μ, λ).

In particular, taking λ = 0, we obtain

(a− p)∂φi,j(∂, μ) = ((i + j + a)μ + (i + p)∂)φ0,i(−μ, 0)

+ ((p− a− i)∂ − (i + j + a)μ)φ0,j(∂ + μ, 0). (2.3)

Furthermore, taking μ = i = 0, we have

2(a− p)φ0,j(∂, 0) = pφ0,0(0, 0). (2.4)

If n ≥ 1, then a −p = (n+1)p
2 
= 0 and φ0,0(0, 0) = e0,00n = 0. By (2.4) and then by (2.3), 

we obtain φi,j(∂, μ) = 0 for all i, j ∈ Z+. This contradicts to the nontrivial assumption 
that φi,j(∂, μ) 
= 0 for some i, j ∈ Z+. Hence n = 0, and so a = 3

2p. Denote φ0,0(0, 0) = c

(
= 0). By (2.4) and then by (2.3), we have φi,j(∂, μ) = c for any i, j ∈ Z+.
The last statement can be easily understood by the fact that if we replace Gi by √
c
2Gi in the Lie conformal superalgebra R(3

2p, 0, {φi,j}) with φi,j(∂, λ) = c (
= 0) for all 
i, j ∈ Z+, we obtain exactly S(p), given by (1.1)–(1.3). �
2.3. Quotient algebras of S(p)

One can construct many interesting finite Lie conformal superalgebras by considering 
the quotient algebras of S(p). For example, for n ∈ Z+, define a subspace S(p)〈n〉 of 
S(p) by

S(p)〈n〉 = (⊕i≥nC[∂]Li) ⊕ (⊕j≥nC[∂]Gj).

Clearly, S(p)〈n〉 is a (Lie conformal superalgebra) ideal of S(p). For n ∈ Z+, define 
S(p)[n] by

S(p)[n] = S(p)/S(p)〈n+1〉. (2.5)
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Then, S(p)[0] ∼= NS. The special cases p = −n with 1 ≤ n ∈ Z supply a series of new 
finite non-simple Lie conformal superalgebras:

s(n) = S(−n)[n] = S(−n)/S(−n)〈n+1〉. (2.6)

Here, we write out the explicit conformal structures of s(1) and s(2).

Example 1. Set L = −L̄0, M = L̄1, G =
√
−1Ḡ0, H =

√
−1Ḡ1 ∈ s(1). We have

[L λ L] = (∂ + 2λ)L, [L λ M ] = (∂ + λ)M, [M λ G] = −1
2λH, [G λ G] = 2L,

[L λ G] = (∂ + 3
2λ)G, [L λ H] = (∂ + 1

2λ)H, [G λ H] = −2M.

Other components vanish or are given by skew-symmetry. One can see that C[∂]L ⊕C[∂]G
is a Neveu-Schwarz conformal subalgebra [7], and C[∂]L ⊕ C[∂]M is a Heisenberg-
Virasoro conformal subalgebra [13]. Thus we refer to s(1) as Heisenberg-Neveu-Schwarz 
conformal algebra.

Example 2. Set L = −1
2 L̄0, Y = L̄1, M = −L̄2, G =

√
−2
2 Ḡ0, Z =

√
−2
2 Ḡ1, H =

−
√
−2Ḡ2 ∈ s(2). We have

[L λ L] = (∂ + 2λ)L, [L λ Y ] = (∂ + 3
2λ)Y, [L λ M ] = (∂ + λ)M, [M λ G] = −1

2λH,

[L λ G] = (∂ + 3
2λ)G, [L λ H] = (∂ + 1

2λ)H, [L λ Z] = (∂ + λ)Z, [G λ G] = 2L,

[Y λ Y ] = (∂ + 2λ)M, [Y λ G] = −(∂ + 2λ)Z, [Y λ Z] = 1
2(∂ + λ)H, [G λ Z] = −Y,

[G λ H] = −2M, [Z λ Z] = M.

Other components vanish or are given by skew-symmetry. One can see that C[∂]L ⊕C[∂]G
is a Neveu-Schwarz conformal subalgebra [7], and C[∂]L ⊕ C[∂]Y ⊕ C[∂]M is a 
Schrödinger-Virasoro conformal subalgebra [13]. Thus we refer to s(2) as Schrödinger-
Neveu-Schwarz conformal algebra.

3. Annihilation superalgebra and related representations

In this section, we classify the irreducible modules over a subquotient algebra of the 
annihilation superalgebra A(S(p)) of S(p). Let us first give the explicit super-brackets 
of A(S(p)).

Lemma 3.1. The Lie superalgebra A(S(p)) is isomorphic to the Lie superalgebra which 
has a basis over C:
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{Li,m, Gj,n | i, j ∈ Z+, m ∈ Z≥−1, n ∈ 1
2 + Z≥−1}

with super-brackets

[Li,m, Lj,n] = ((j + p)(m + 1) − (i + p)(n + 1))Li+j,m+n,

[Li,m, Gj,n] = ((j + p

2)(m + 1) − (i + p)(n + 1
2))Gi+j,m+n,

[Gi,m, Gj,n] = 2Li+j,m+n.

Proof. By the inversion formula in Definition 2.3, one can first transfer the λ-brackets 
of S(p) to k-products:

Li(k)Lj =

⎧⎪⎨
⎪⎩

(i + p)∂Li+j , if k = 0,
(i + j + 2p)Li+j , if k = 1,
0, if k ≥ 2.

Li(k)Gj =

⎧⎪⎨
⎪⎩

(i + p)∂Gi+j , if k = 0,
(i + j + 3

2p)Gi+j , if k = 1,
0, if k ≥ 2.

Gi(k)Gj =
{

2Li+j , if k = 0,
0, if k ≥ 1.

Then, by the first formula in Definition 2.3, we essentially obtain the super-brackets of 
A(S(p)):

[(Li)m, (Lj)n] = (m(j + p) − n(i + p))(Li+j)m+n−1,

[(Li)m, (Gj)n] = (m(j + 1
2p) − n(i + p))(Gi+j)m+n−1,

[(Gi)m, (Gj)n] = 2(Li+j)m+n.

Finally, making the shift Li,m = (Li)m+1, Gj,n = (Gj)n+ 1
2

for i, j ∈ Z, m ∈ Z≥−1, 
n ∈ 1

2 + Z≥−1, we complete the proof of this lemma. �
Next, we construct a subquotient algebra of A(S(p)). Clearly,

A(S(p))+ = spanC{Li,m, Gj,n ∈ A(S(p)) | i, j,m ∈ Z+, n ∈ 1
2 + Z+}

is a subalgebra of A(S(p)). For any fixed k, N ∈ Z+,

I(k,N) = spanC{Li,m, Gj,n ∈ A(S(p))+ | i, j > k, m > N, n > N + 1
2}

is an ideal of A(S(p))+. Let

g(k,N) = A(S(p))+/I(k,N).
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We will classify the finite-dimensional irreducible modules over g(k, N). To conceptualize 
the proof, we construct the following ideals of g(k, N) for k, N ≥ 1:

r(k,N) = spanC{L̄k,m, Ḡk,n ∈ g(k,N) |m ≤ N, n ≤ N + 1
2}, (3.1)

c(k,N) = spanC{L̄i,N , Ḡj,N+ 1
2
∈ g(k,N) | i, j ≤ k}, (3.2)

h(k,N) = spanC{L̄k,m, Ḡk,n, L̄i,N , Ḡj,N+ 1
2
∈ g(k,N) |m ≤ N, n ≤ N + 1

2 ,

i, j ≤ k − 1}, (3.3)

which will be referred to as the row, column and hook ideals of g(k, N), respectively. Let 
V = V0̄ ⊕ V1̄ be a nontrivial finite-dimensional irreducible module over g(k, N).

Theorem 3.2. We have dimV0̄ = dimV1̄ = 1.

To prove this theorem, let us first introduce some auxiliary sets:

Ω = {(j, n) | L̄j,n, Ḡj,n+ 1
2
∈ g(k,N)}\{(0, 0)},

Ω0 = {(j, n) ∈ Ω | j − pn = 0},

Ω1 = {(j, n) ∈ Ω | j − p(n + 1
2) = 0}.

We remark here that if k, N ≥ 1 and Ω1 
= ∅, then p ∈ 2Z≥1 and Ω0 
= ∅.

Lemma 3.3. If Ω0 = Ω1 = ∅, then dimV0̄ = dimV1̄ = 1.

Proof. Let us consider the following decomposition of g(k, N):

g(k,N) = CL̄0,0 + ǧ(k,N), where ǧ(k,N) = g(k,N)\CL̄0,0.

Clearly, ǧ(k, N) is a nilpotent ideal of g(k, N). Consider the action of L̄0,0 on ǧ(k, N):

[L̄0,0, L̄j,n] = (j − pn)L̄j,n, [L̄0,0, Ḡj,n′+ 1
2
] = (j − p(n′ + 1

2))Ḡj,n′+ 1
2
,

where 0 ≤ j ≤ k, 0 ≤ n, n′ ≤ N . Since Ω0 = Ω1 = ∅, it follows from the above two for-
mulas that ǧ(k, N) is a completely reducible CL̄0,0-module with no trivial summand. By 
[4, Lemma 1], ǧ(k, N) acts trivially on V . Hence, V can be viewed as a finite-dimensional 
CL̄0,0-module, and so dimV0̄ = dimV1̄ = 1. �
Lemma 3.4. Suppose k, N ≥ 1 and Ω0 
= ∅, Ω1 = ∅. Let

j0 = max{j | (j, n) ∈ Ω0}, n0 = max{n | (j, n) ∈ Ω0}.
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(1) If j0 < k, then the row ideal r(k, N) of g(k, N) acts trivially on V ;
(2) If n0 < N , then the column ideal c(k, N) of g(k, N) acts trivially on V ;
(3) If j0 = k, n0 = N , then the hook ideal h(k, N) of g(k, N) acts trivially on V .

Proof. (1) Assume that r(k, N) acts non-trivially on V . By the irreducibility of V , we 
have V = r(k, N)V . Consider the action of L̄0,0 on r(k, N):

[L̄0,0, L̄k,n] = (k − pn)L̄k,n, [L̄0,0, Ḡk,n′+ 1
2
] = (k − p(n′ + 1

2))Ḡk,n′+ 1
2
, (3.4)

where 0 ≤ n, n′ ≤ N . Note that k−pn 
= 0, since k > j0. Note also that k−p(n′+ 1
2 ) 
= 0, 

since Ω1 = ∅. Hence, both L̄k,n and Ḡk,n′+ 1
2

acts nilpotently on V . Since r(k, N) is 
abelian, r(k, N) acts nilpotently on V , which contradicts to V = r(k, N)V .

(2) Assume that c(k, N) acts non-trivially on V . By the irreducibility of V , we have 
V = c(k, N)V . Consider the action of L̄0,0 on c(k, N):

[L̄0,0, L̄j,N ] = (j − pN)L̄j,N , [L̄0,0, Ḡj,N+ 1
2
] = (j − p(N + 1

2))Ḡj,N+ 1
2
, (3.5)

where 0 ≤ j ≤ k. Note that j − pN 
= 0, since N > n0. Note also that j − p(N + 1
2 ) 
= 0, 

since Ω1 = ∅. Hence, both L̄j,N and Ḡj,N+ 1
2

acts nilpotently on V . Since c(k, N) is 
abelian, c(k, N) acts nilpotently on V , which contradicts to V = c(k, N)V .

(3) Assume that h(k, N) acts non-trivially on V . By the irreducibility of V , we have 
V = h(k, N)V . Consider the decomposition of h(k, N):

h(k,N) = spanC{L̄j0,n0 , Ḡj0,n0+ 1
2
} + ȟ(k,N), where

ȟ(k,N) = h(k,N)\spanC{L̄j0,n0 , Ḡj0,n0+ 1
2
}.

As in (1) and (2), by considering the action of L̄0,0 on ȟ(k, N), we see that every element 
in ȟ(k, N) acts nilpotently on V . Note that ȟ(k, N) is almost abelian, except (note that 
p > 0, since Ω0 
= ∅)

[L̄j0,0, L̄0,n0 ] = b1L̄j0,n0 , where b1 = −(j0 + p)n0 − j0 < 0, (3.6)

[L̄j0,0, Ḡ0,n0+ 1
2
] = b2Ḡj0,n0+ 1

2
, where b2 = −(j0 + p)n0 − j0 −

p

2 < 0, (3.7)

[L̄0,n0 , Ḡj0,
1
2
] = b3Ḡj0,n0+ 1

2
, where b3 = j0(n0 + 1) + p

2(n0 − 1) > 0. (3.8)

Thus, to show that h(k, N) acts nilpotently on V (and then arrive at a contradiction to 
V = h(k, N)V ), we only need to show that the actions of L̄j0,n0 and Ḡj0,n0+ 1

2
on V are 

trivial. One can derive the triviality of the action of L̄j0,n0 as in the non-super setting 
[13] by comparing traces: Consider the action of (3.6) on V , and then compare the traces 
of the matrices of both sides with respect to a basis of V . The right hand side equals 
cb1(dimV ), where c is a scalar (since L̄j0,n0 is an even central element of g(k, N)). While 
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the left hand side equals zero, since the corresponding matrix has the form AB − BA. 
Hence, c = 0, i.e., the action of L̄j0,n0 is trivial. For the action of Ḡj0,n0+ 1

2
, by relation

[L̄0,0, Ḡj0,n0+ 1
2
] = b4Ḡj0,n0+ 1

2
, where b4 = j0 − p(n0 + 1

2) 
= 0,

we first see that Ḡj0,n0+ 1
2

acts nilpotently on V . Here the reason for b4 
= 0 is that 
Ω1 = ∅. Further, since Ḡj0,n0+ 1

2
is an odd central element of g(k, N), by Schur lemma 

for Lie superalgebras, Ḡj0,n0+ 1
2

must act trivially on V . �
Lemma 3.5. Suppose k, N ≥ 1 and Ω1 
= ∅. Let

j1 = max{j | (j, n) ∈ Ω1}, n1 = max{n | (j, n) ∈ Ω1}.

(1) If j1 < k, then the row ideal r(k, N) of g(k, N) acts trivially on V ;
(2) If n1 < N , then the column ideal c(k, N) of g(k, N) acts trivially on V ;
(3) If j1 = k, n1 = N , then the row ideal r(k, N) of g(k, N) acts trivially on V .

Proof. First, recalling the remark before Lemma 3.3, we have p ∈ 2Z≥1 and Ω0 
= ∅. 
Furthermore, if we denote j0 and n0 as in Lemma 3.4, then we have j0 = j1 − p

2 and 
n0 = n1.

The statements (1) and (2) can be proved in a similar way as Lemmas 3.4(1) and (2). 
The differences lie in the reasons for the non-trivialities of the actions of L̄0,0 on r(k, N)
and c(k, N). For the statement (1), we still have (3.4), the reason for k − pn 
= 0 is 
k > j1 = j0 + p

2 > j0; while the reason for k− p(n′ + 1
2) 
= 0 is k > j1. For the statement 

(2), we still have (3.5), the reason for j − pN 
= 0 is N > n1 = n0; while the reason for 
j − p(N + 1

2 ) 
= 0 is N > n1.
Next, we prove the statement (3). Assume that r(k, N) acts non-trivially on V . By 

the irreducibility of V , we have V = r(k, N)V . Consider the decomposition of r(k, N):

r(k,N) = spanC{L̄j1,n1 , Ḡj1,n1+ 1
2
} + ř(k,N), where

ř(k,N) = r(k,N)\spanC{L̄j1,n1 , Ḡj1,n1+ 1
2
}.

Note that L̄j1,n1 is an even central element of g(k, N). By comparing traces, one can 
prove the triviality of its action as in Lemma 3.4(3). Furthermore, the following relation 
(note that j1 = p(n1 + 1

2 ), since (j1, n1) ∈ Ω1)

[L̄j1,n1 , Ḡ0, 12 ] = b5Ḡj1,n1+ 1
2
, where b5 = −p(1 + n1

2 ) < 0,

implies that the action of Ḡj1,n1+ 1
2

is also trivial. Hence, V = ř(k, N)V . Consider the 

action of L̄0,0 on ř(k, N):
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[L̄0,0, L̄k,n] = (k − pn)L̄k,n, [L̄0,0, Ḡk,n′+ 1
2
] = (k − p(n′ + 1

2))Ḡk,n′+ 1
2
,

where 0 ≤ n, n′ ≤ N − 1. Note that k = j1 = p(n1 + 1
2 ) and n, n′ ≤ N − 1 < N = n1, we 

have k − pn > 0 and k − p(n′ + 1
2 ) > 0. Hence, both L̄k,n and Ḡk,n′+ 1

2
act nilpotently 

on V . Since ř(k, N) is abelian, ř(k, N) acts nilpotently on V , which contradicts to V =
ř(k, N)V . �

Now, we can give the proof of Theorem 3.2.

Proof of Theorem 3.2. If k = 0, then Ω0 = Ω1 = ∅, and the result follows from 
Lemma 3.3.

If k ≥ 1 and N = 0, then Ω0 = ∅ and

Ω1 
= ∅ ⇐⇒ p ∈ 2Z≥1.

So, if p /∈ 2Z≥1, then the result follows from Lemma 3.3. In case p ∈ 2Z≥1, let us consider 
the action of the row ideal r(k, 0) of g(k, 0) on V (note that r(k, 0) given by (3.1) still 
make sense). The two generators of r(k, 0) are L̄k,0 and Ḡk, 12

. On one hand, since L̄k,0

is an even central element of g(k, 0), its action is a scalar, say c. On the other hand, the 
relation

[L̄0,0, L̄k,0] = kL̄k,0, where k > 0,

implies that the action of L̄k,0 is nilpotent. Hence, c = 0, i.e., the action of L̄k,0 is trivial. 
Furthermore, the relation

[L̄k,0, Ḡ0, 12 ] = −(k + p

2)Ḡk, 12
, where k + p

2 > 0,

implies that the action of Ḡk, 12
is also trivial. Therefore, V is simply an irreducible 

module over g(k − 1, 0). By induction on k, we must have dimV0̄ = dimV1̄ = 1.
Next, we assume that k, N ≥ 1. Note that if the row ideal r(k, N) (respectively, 

column ideal c(k, N), hook ideal h(k, N)) of g(k, N) acts trivially on V , then V can be 
viewed as an irreducible module over g(k−1, N) (respectively, g(k, N−1), g(k−1, N−1)). 
By simultaneous induction on k and N , using Lemmas 3.3–3.5, we must have dimV0̄ =
dimV1̄ = 1. �
4. Equivalence of representations

In this section, we prove the equivalence between the finite conformal modules over 
S(p) and those over its quotient algebra S(p)[n] for some n ∈ Z+. The following classi-
fication of FICMs over NS will be used.



C. Xia / Journal of Algebra 531 (2019) 141–164 153
Lemma 4.1 ([4]). Let V be a finite irreducible conformal module over NS. Then V is 
isomorphic to one of the following (|cα| = |v0̄| = |v′0̄| = 0̄, |εα| = |v1̄| = |v′1̄| = 1̄):

(1) even one-dimensional module Ccα with L λ cα = G λ cα = 0, ∂cα = αcα for some 
α ∈ C;

(2) odd one-dimensional module Cεα with L λ εα = G λ εα = 0, ∂εα = αεα for some 
α ∈ C;

(3) NΔ,α = C[∂]v0̄ ⊕C[∂]v1̄ with
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L λ v0̄ = (∂ + Δλ + α)v0̄,

L λ v1̄ = (∂ + (Δ + 1
2 )λ + α)v1̄,

G λ v0̄ = v1̄,

G λ v1̄ = (∂ + 2Δλ + α)v0̄,

(4.1)

for some Δ 
= 0 and α ∈ C;
(4) N ′

Δ,α = C[∂]v′0̄ ⊕C[∂]v′1̄ with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L λ v
′
0̄ = (∂ + (Δ + 1

2 )λ + α)v′0̄,
L λ v

′
1̄ = (∂ + Δλ + α)v′1̄,

G λ v
′
0̄ = (∂ + 2Δλ + α)v′1̄,

G λ v
′
1̄ = v′0̄,

(4.2)

for some Δ 
= 0 and α ∈ C.

Theorem 4.2. Let M be a nontrivial finite conformal module over S(p). Then the 
λ-actions of Li, Gi ∈ S(p) on M are trivial for all i 	 0. In particular, a finite con-
formal module over S(p) is simply a finite conformal module over S(p)[n] for some big 
enough integer n, where S(p)[n] is defined by (2.5).

Proof. Since M can be viewed as a finite conformal module over S(p)0̄, it follows from 
[13] that the λ-action of Li ∈ S(p)0̄ on M is trivial for all i 	 0. Next, we only need to 
show that the λ-action of Gi ∈ S(p)1̄ on M is also trivial for all i 	 0.

By regarding M as a module over NS ⊂ S(p), we can choose a composition series

M = MN ⊃ MN−1 ⊃ · · · ⊃ M1 ⊃ M0 = 0,

such that for each 1 ≤ k ≤ N , the composition factor Mk = Mk/Mk−1 is one of the 
modules in Lemma 4.1. Denote by c̄αk

, ε̄αk
or {v̄0̄(k), v̄1̄(k)} a C[∂]-generating set of 

Mk according to its type, and cαk
, εαk

, v0̄(k), v1̄(k) the corresponding preimages. Then 
the set of all cαk

, εαk
, v0̄(k), v1̄(k), 1 ≤ k ≤ N , is a C[∂]-generating set of M .

We first claim that the λ-action of Gi on M1 is trivial for all i 	 0. Namely,

Gi λ v = 0 for all i 	 0, v ∈ M1. (4.3)



154 C. Xia / Journal of Algebra 531 (2019) 141–164
Fix i 	 0 and assume that Gi λ v 
= 0 for some v ∈ M1. Let ki ≥ 1 be the largest 
integer such that Gi λ v /∈ Mki−1 for some v ∈ M1. We proceed to derive a contradiction. 
According to Lemma 4.1, we need to consider the following cases:

Case 1: Both M1 and Mki
have the form NΔ,α or N ′

Δ,α.
We only give the proof for the case M1 = NΔ1,α1 and Mki

= NΔki
,αki

; other cases 
can be proved in a similar way. In this case, by assumption, we can write

Gi λ v0̄(1) ≡ gi(∂, λ)v1̄(ki)(mod Mki−1), (4.4)

Gi λ v1̄(1) ≡ hi(∂, λ)v0̄(ki)(mod Mki−1), (4.5)

where gi(∂, λ) 
= 0 or hi(∂, λ) 
= 0. Let us consider the action of the operator G0 μ on 
(4.4). By the definition of conformal module, on one hand, we have (note that G0 = √

pG, 
cf. (1.4))

G0 μ(Gi λ v0̄(1)) ≡ G0 μ(gi(∂, λ)v1̄(ki))(mod Mki−1)

≡ gi(∂ + μ, λ)√p(∂ + 2Δki
μ + αki

)v0̄(ki)(mod Mki−1).

On the other hand, we have

G0 μ(Gi λ v0̄(1)) = [G0 μ Gi] λ+μ v0̄(1) −Gi λ(G0 μv0̄(1))

= 2Li λ+μ v0̄(1) −Gi λ(√p v1̄(1))

≡ −√
phi(∂, λ)v0̄(ki)(mod Mki−1).

Then, hi(∂, λ) = −(∂ + 2Δki
μ + αki

)gi(∂ + μ, λ). In particular, hi(∂, λ) = −(∂ +
αki

)gi(∂, λ). Similarly, by considering the action of the operator G0 μ on (4.5), one 
can obtain hi(∂ + μ, λ) = −(∂ + λ + 2Δ1μ + α1)gi(∂, λ). In particular, hi(∂, λ) =
−(∂ + λ + α1)gi(∂, λ). Hence, we must have gi(∂, λ) = hi(∂, λ) = 0, a contradiction.

Case 2: M1 has the form Ccα or Cεα, and Mki
has the form NΔ,α or N ′

Δ,α.
We only give the proof for the case M1 = Ccα1 , Mki

= NΔki
,αki

; other cases can be 
proved in a similar way. In this case, by assumption, we can write

Gi λ cα1 ≡ gi(∂, λ)v1̄(ki)(mod Mki−1), (4.6)

where gi(∂, λ) 
= 0. Considering the action of the operator G0 μ on (4.6), on one hand, 
we have

G0 μ(Gi λ cα1) ≡ G0 μ(gi(∂, λ)v1̄(ki))(mod Mki−1)

≡ gi(∂ + μ, λ)√p(∂ + 2Δki
μ + αki

)v0̄(ki)(mod Mki−1).

On the other hand, we have
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G0 μ(Gi λ cα1) = [G0 μ Gi] λ+μ cα1 −Gi λ(G0 μcα1)

= 2Li λ+μ cα1 = 0.

Then, (∂ + 2Δki
μ + αki

)gi(∂ + μ, λ) = 0. Taking μ = 0, we see that gi(∂, λ) = 0, a 
contradiction.

Case 3: M1 has the form NΔ,α or N ′
Δ,α, and Mki

has the form Ccα or Cεα.
We only give the proof for the case M1 = NΔ1,α1 , Mki

= Ccαki
; other cases can be 

proved in a similar way. In this case, since ∂ acts on cαki
as the scalar αki

, by assumption, 
we can write

Gi λ v1̄(1) ≡ gi(λ)cαki
(mod Mki−1), (4.7)

where gi(λ) 
= 0. Considering the action of the operator L0 μ on (4.7), on one hand, we 
have

L0 μ(Gi λ v1̄(1)) ≡ L0 μ(gi(λ)cαki
)(mod Mki−1) ≡ 0(mod Mki−1).

On the other hand, we have (note that L0 = p L, cf. (1.4))

L0 μ(Gi λ v1̄(1)) = [L0 μ Gi] λ+μ v1̄(1) + Gi λ(L0 μv1̄(1))

=
(

(p∂ + (i + 3
2p)μ)Gi

)
λ+μ v1̄(1)

+ Gi λ

(
p(∂ + (Δ1 + 1

2)μ + α1)v1̄(1)
)

≡
(
((i + 1

2p)μ− pλ)gi(λ + μ)

+ p(∂ + λ + (Δ1 + 1
2)μ + α1)gi(λ)

)
cαki

(mod Mki−1).

Then, ((i + 1
2p)μ − pλ)gi(λ + μ) + p(∂ + λ + (Δ1 + 1

2 )μ + α1)gi(λ) = 0. Equating the 
coefficients of ∂, we see that gi(λ) = 0, a contradiction.

Case 4: Both M1 and Mki
have the form Ccα or Cεα.

We only give the proof for the case M1 = Ccα1 , Mki
= Cεαki

; other cases are trivial 
or can be proved in a similar way. In this case, by assumption, we can write

Gi λ cα1 ≡ gi(λ)εαki
(mod Mki−1), (4.8)

where gi(λ) 
= 0. Considering the action of the operator L0 μ on (4.8), on one hand, we 
have

L0 μ(Gi λ cα1) ≡ L0 μ(gi(λ)εαk
)(mod Mki−1) ≡ 0(mod Mki−1).
i
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On the other hand, we have

L0 μ(Gi λ cα1) = [L0 μ Gi] λ+μ cα1 + Gi λ(L0 μcα1)

=
(

(p∂ + (i + 3
2p)μ)Gi

)
λ+μ cα1

≡ ((i + 1
2p)μ− pλ)gi(λ + μ)εαki

(mod Mki−1).

Then, ((i + 1
2p)μ −pλ)gi(λ +μ) = 0. Taking μ = 0, we see that gi(λ) = 0, a contradiction.

Now, start from (4.3), one can inductively show that the λ-action of Gi on Mk is 
trivial for 1 ≤ k ≤ N . Hence, the λ-action of Gi on M (= MN ) is trivial. This completes 
the proof. �
5. Free conformal modules of rank (1 + 1)

In this section, we classify all the free conformal modules of rank (1 + 1) over S(p). 
Obviously, the following two C[∂]-modules are such conformal modules.

(1) TΔ,α = C[∂]v0̄ ⊕C[∂]v1̄ with

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L0 λ v0̄ = p(∂ + Δλ + α)v0̄,

L0 λ v1̄ = p(∂ + (Δ + 1
2)λ + α)v1̄,

G0 λ v0̄ = √
p v1̄,

G0 λ v1̄ = √
p (∂ + 2Δλ + α)v0̄,

Li λ vs = Gi λ vs = 0, i ≥ 1, s ∈ Z/2Z,

(5.1)

where Δ, α ∈ C;
(2) T ′

Δ,α = C[∂]v′0̄ ⊕C[∂]v′1̄ with

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L0 λ v
′
0̄ = p(∂ + (Δ + 1

2)λ + α)v′0̄,
L0 λ v

′
1̄ = p(∂ + Δλ + α)v′1̄,

G0 λ v
′
0̄ = √

p (∂ + 2Δλ + α)v′1̄,
G0 λ v

′
1̄ = √

p v′0̄,

Li λ v
′
s = Gi λ v

′
s = 0, i ≥ 1, s ∈ Z/2Z,

(5.2)

where Δ, α ∈ C.

In fact, TΔ,α and T ′
Δ,α are respectively trivial extensions of the conformal NS-modules 

NΔ,α and N ′
Δ,α (cf. (4.1), (4.2), and note that L0 = pL, G0 = √

pG). For S(−1), TΔ,α

and T ′
Δ,α can be generalized to the following TΔ,α,β and T ′

Δ,α,β, which are respectively 
non-trivial extensions of the conformal NS-modules NΔ,α and N ′

Δ,α if β 
= 0.
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(3) TΔ,α,β = C[∂]v0̄ ⊕C[∂]v1̄ with
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L0 λ v0̄ = −(∂ + Δλ + α)v0̄,

L0 λ v1̄ = −(∂ + (Δ + 1
2 )λ + α)v1̄,

L1 λ v0̄ = βv0̄,

L1 λ v1̄ = βv1̄,

G0 λ v0̄ =
√
−1 v1̄,

G0 λ v1̄ =
√
−1 (∂ + 2Δλ + α)v0̄,

G1 λ v0̄ = 0,
G1 λ v1̄ = −2

√
−1βv0̄,

Li λ vs = Gi λ vs = 0, i ≥ 2, s ∈ Z/2Z,

(5.3)

where Δ, α, β ∈ C;
(4) T ′

Δ,α,β = C[∂]v′0̄ ⊕C[∂]v′1̄ with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L0 λ v
′
0̄ = −(∂ + (Δ + 1

2 )λ + α)v′0̄,
L0 λ v

′
1̄ = −(∂ + Δλ + α)v′1̄,

L1 λ v
′
0̄ = βv′0̄,

L1 λ v
′
1̄ = βv′1̄,

G0 λ v
′
0̄ =

√
−1 (∂ + 2Δλ + α)v′1̄,

G0 λ v
′
1̄ =

√
−1 v′0̄,

G1 λ v
′
0̄ = −2

√
−1βv′1̄,

G1 λ v
′
1̄ = 0,

Li λ v
′
s = Gi λ v

′
s = 0, i ≥ 2, s ∈ Z/2Z,

(5.4)

where Δ, α, β ∈ C.

Theorem 5.1. Let M be a nontrivial free conformal module of rank (1 + 1) over S(p).

(1) If p 
= −1, then M ∼= TΔ,α or T ′
Δ,α defined by (5.1) and (5.2) for some Δ, α ∈ C.

(2) If p = −1, then M ∼= T ′
Δ,α,β or T ′

Δ,α,β defined by (5.3) and (5.4) for some Δ, α, β ∈
C.

Proof. Let M = C[∂]v0̄ ⊕C[∂]v1̄. By regarding M as a conformal module over NS, we 
see that (cf. (4.1) and (4.2))

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L0 λ v0̄ = p(∂ + Δλ + α)v0̄,

L0 λ v1̄ = p(∂ + (Δ + 1
2 )λ + α)v1̄,

G0 λ v0̄ = √
p v1̄,

G0 λ v1̄ = √
p (∂ + 2Δλ + α)v0̄,

or

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L0 λ v0̄ = p(∂ + (Δ + 1
2 )λ + α)v0̄,

L0 λ v1̄ = p(∂ + Δλ + α)v1̄,

G0 λ v0̄ = √
p (∂ + 2Δλ + α)v1̄,

G0 λ v1̄ = √
p v0̄,

(5.5)

where Δ, α ∈ C. By Theorem 4.2, Li λ vs = Gi λ vs = 0 for i 	 0, s ∈ Z/2Z. Note that 
S(p) is Z-graded in the sense that S(p) = ⊕i∈Z+S(p)i, where S(p)i = C[∂]Li⊕C[∂]Gi. 
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Assume that k ∈ Z+ is the largest integer such that the action of S(p)k on M is 
nontrivial.

If k = 0, then M is simply a conformal NS-module. Then,

M ∼=
{

TΔ,α or T ′
Δ,α, if p 
= −1;

TΔ,α,0 or T ′
Δ,α,0, if p = −1.

Next, consider the case k > 0. Without specification, we always assume that the 
λ-actions of L0 and G0 have the first form of (5.5) (the case for the second form can be 
treated in a similar way). By the assumption of k, we can suppose

Lk λ v0̄ = a(∂, λ)v0̄, Lk λ v1̄ = b(∂, λ)v1̄, Gk λ v0̄ = c(∂, λ)v1̄, Gk λ v1̄ = d(∂, λ)v0̄,

where a(∂, λ), b(∂, λ), c(∂, λ), d(∂, λ) ∈ C[∂, λ] and at least one of them is nonzero. 
Considering the actions of the zero operator [Lk λ Lk] λ+μ = 0 on v0̄ and v1̄, respectively, 
we obtain

a(∂, λ)a(∂ + λ, μ) = a(∂, μ)a(∂ + μ, λ),

b(∂, λ)b(∂ + λ, μ) = b(∂, μ)b(∂ + μ, λ).

Comparing the coefficients of λ in the above equations, we see that a(∂, λ) and b(∂, λ)
are independent of the variable ∂, and so we can denote a(λ) = a(∂, λ), b(λ) = b(∂, λ). 
Then, considering the actions of the operator [L0 λ Lk] λ+μ = ((k + p)λ − pμ)Lk λ+μ on 
v0̄ and v1̄, respectively, we obtain

(pμ− (k + p)λ)a(λ + μ) = pμa(μ), (5.6)

(pμ− (k + p)λ)b(λ + μ) = pμb(μ). (5.7)

If k 
= −p, then k + p 
= 0. By (5.6) and (5.7) with μ = 0, we obtain a(λ) = b(λ) = 0. 
Hence, the action of Lk on M is trivial. Furthermore, since ((k + p)∂ + (k + 3

2p)λ)Gk =
[Lk λ G0], we see that the action of Gk on M is also trivial. This contradicts to the 
assumption that the action of S(p)k is nontrivial.

If k = −p, then p ∈ Z<0 is a negative integer. By (5.6) and (5.7), we see that a(λ)
and b(λ) are independent of the variable λ, and so we can denote a = a(λ), b = b(λ).

If p ≤ 2, then k ≥ 2. Let us prove that the action of S(p)k−1 is trivial. First, we 
consider the action of Lk−1 on v0̄. Suppose Lk−1 λ v0̄ = f(∂, λ)v0̄, where f(∂, λ) ∈
C[∂, λ]. On one hand, we have

[L0 λLk−1] λ+μ v0̄ = L0 λ Lk−1 μ v0̄ − Lk−1 μ L0 λ v0̄

= L0 λ(f(∂, μ)v0̄) − Lk−1 μ(p(∂ + Δλ + α)v0̄)

= (p(∂ + Δλ + α)f(∂ + λ, μ) − p(∂ + μ + Δλ + α)f(∂, μ))v0̄.
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On the other hand, we have

[L0 λLk−1] λ+μ v0̄ = ((p∂ + (p− 1)λ)Lk−1) λ+μ v0̄

= −(λ + pμ)f(∂, λ + μ)v0̄.

Then, p(∂ + μ + Δλ + α)f(∂, μ) − p(∂ + Δλ + α)f(∂ + λ, μ) = (λ + pμ)f(∂, λ + μ). In 
particular, taking μ = 0, we have p(∂ + Δλ + α)(f(∂, 0) − f(∂ + λ, 0)) = λf(∂, λ), i.e.,

f(∂, λ) = −p(∂ + Δλ + α)f(∂ + λ, 0) − f(∂, 0)
λ

. (5.8)

Taking λ → 0 in (5.8), we obtain

f(∂, 0) = lim
λ→0

f(∂, λ) = −p(∂ + α) lim
λ→0

f(∂ + λ, 0) − f(∂, 0)
λ

= −p(∂ + α) d

d∂
f(∂, 0).

Since p ≤ 2, the above formula implies that f(∂, 0) = 0. Then, by (5.8), we have 
f(∂, λ) = 0. Namely, the action of Lk−1 on v0̄ is trivial. Similarly, by relation 
[L0 λLk−1] = (p∂ + (p − 1)λ)Lk−1, one can prove that the action of Lk−1 on v1̄ is 
also trivial. Furthermore, by relation [Lk−1 λG0] = −(∂ + (1 − 1

2p)λ)Gk−1, we see that 
the action of Gk−1 on vs̄, s ∈ Z/2Z is also trivial. So, the action of S(p)k−1 is trivial. 
Then, we have

0 = [L1 λLk−1] λ+μvs =
{

− (λ + (1 + p)μ) av0̄, if s = 0̄,
− (λ + (1 + p)μ) bv1̄, if s = 1̄,

0 = [L1 λGk−1] λ+μvs =
{

−
(
(1 + p

2 )λ + (1 + p)μ
)
c(∂, λ)v0̄, if s = 0̄,

−
(
(1 + p

2 )λ + (1 + p)μ
)
d(∂, λ)v1̄, if s = 1̄.

These imply that a = b = c(∂, λ) = d(∂, λ) = 0, a contradiction.
If p = −1, then k = 1. As a conformal NS-module, if M ∼= NΔ,α, then the actions of 

L0 and G0 have the first form of (5.5). Applying the operator [L1 λG0] λ+μ = −1
2λG1 λ+μ

on v0̄, we obtain

√
−1(a− b)v1̄ = 1

2λ c(∂, λ + μ)v1̄,

which implies that a = b and c(∂, λ) = 0. Denote β = a = b. Furthermore, applying the 
above operator on v1̄, we obtain

√
−1βλ v0̄ = −1

2λ d(∂, λ + μ)v0̄,

which implies that d(∂, λ) = −2
√
−1β. Hence, M ∼= TΔ,α,β . Similarly, if M ∼= N ′

Δ,α

as a conformal NS-module, then one can show that M ∼= T ′
Δ,α,β . This completes the 

proof. �
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The simplicities of conformal S(p)-modules in Theorem 5.1 can be easily determined.

Proposition 5.2. Let M = C[∂]v0̄ ⊕C[∂]v1̄ be a conformal S(p)-module in Theorem 5.1.

(1) If M ∼= TΔ,α, then M is simple if and only if Δ 
= 0. More precisely, T0,α contains 
a unique nontrivial submodule C[∂](∂ + α)v0̄ ⊕C[∂]v1̄

∼= T ′
1
2 ,α

.
(2) If M ∼= T ′

Δ,α, then M is simple if and only if Δ 
= 0. More precisely, T ′
0,α contains 

a unique nontrivial submodule C[∂]v0̄ ⊕C[∂](∂ + α)v1̄
∼= T 1

2 ,α
.

(3) If M ∼= TΔ,α,β, then M is simple if and only if (Δ, β) 
= (0, 0). More precisely, T0,α,0
contains a unique nontrivial submodule C[∂](∂ + α)v0̄ ⊕C[∂]v1̄

∼= T ′
1
2 ,α,0

.
(4) If M ∼= T ′

Δ,α,β, then M is simple if and only if (Δ, β) 
= (0, 0). More precisely, T ′
0,α,0

contains a unique nontrivial submodule C[∂]v0̄ ⊕C[∂](∂ + α)v1̄
∼= T 1

2 ,α,0.

6. Classification theorems

6.1. Main result

Our main result in this paper is as follows:

Theorem 6.1. Let M be a nontrivial finite irreducible conformal module over S(p).

(1) If p 
= −1, then M ∼= TΔ,α or T ′
Δ,α defined by (5.1) and (5.2) for some Δ, α ∈ C

with Δ 
= 0.
(2) If p = −1, then M ∼= TΔ,α,β or T ′

Δ,α,β defined by (5.3) and (5.4) for some Δ, α, β ∈ C

with (Δ, β) 
= (0, 0).

Let M be a nontrivial FICM over S(p). The outline of our proof is as follows: First, 
by Theorem 4.2, we may view M as a FICM over a quotient algebra of S(p). Next, 
by Proposition 2.4, M can be further viewed as certain module over a Lie superalgebra. 
Then, by Theorem 3.2 and another key lemma (cf. Lemma 6.2), we show that M must be 
free of rank (1 +1) (cf. Lemma 6.3), and so the main result will follow from Theorem 5.1
and Proposition 5.2.

Lemma 6.2 ([4]). Let L be a Lie superalgebra with a descending sequence of subspaces 
L ⊃ L0 ⊃ L1 ⊃ . . . and an element T satisfying [T, Ln] = Ln−1 for n ≥ 1. Let V be an 
L-module and let

Vn = {v ∈ V | Lnv = 0}, n ∈ Z+.

Suppose that Vn 
= 0 for n 	 0, and that the minimal N ∈ Z+ for which VN 
= 0 is 
positive. Then C[T ]VN = C[T ] ⊗C VN . In particular, VN is finite-dimensional if V is a 
finitely generated C[T ]-module.
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Lemma 6.3. The conformal S(p)-module M must be free of rank (1 + 1).

Proof. First, by Theorem 4.2, the λ-actions of Li and Gi on M are trivial for all i 	 0. 
Assume that k ∈ Z+ is the largest integer such that the λ-action of S(p)k on M is 
nontrivial. Then M is simply a nontrivial FICM over S(p)[k], where S(p)[k] is defined 
by (2.5). Furthermore, by Proposition 2.4, as a conformal S(p)[k]-module, M can be 
viewed as a module over the associated extended annihilation algebra L = A(S(p)[k])e
satisfying

L̄i,mv = Ḡj,nv = 0 for v ∈ M, 0 ≤ i, j ≤ k, 0 � m ∈ Z,
1
2 � n ∈ 1

2 +Z. (6.1)

Let

Lz = spanC{L̄i,m, Ḡj,n ∈ L | 0 ≤ i, j ≤ k, z−1 ≤ m ∈ Z, z− 1
2 ≤ n ∈ 1

2 +Z}, z ∈ Z+.

Then L0 = A(S(p)[k]) and L ⊃ L0 ⊃ L1 ⊃ . . .. By the definition of extended annihilation 
superalgebra, we see that the element T ∈ L satisfies [T, Lz] = Lz−1 for z ≥ 1. Let

Mz = {v ∈ M | Lzv = 0}, z ∈ Z+.

By (6.1), Mz 
= 0 for z 	 0. Assume that N ∈ Z+ is the smallest integer such that 
MN 
= ∅.

If N = 0, we can take 0 
= v ∈ M0. Then U(L)v = C[T ]U(L0)v = C[T ]v. So, 
M = C[T ]v by the irreducibility of M . Since L0 is an ideal of L, we see that L0
acts trivially on M . Hence, M is simply an irreducible C[T ]-module, and so M is 
one-dimensional. Equivalently, M is a one-dimensional trivial conformal S(p)-module, a 
contradiction.

Next, consider the case N ≥ 1. By the definition of extended annihilation superalgebra 
and the shift used in the proof of Lemma 3.1, we have

[T, L̄i,m] = −(m + 1)L̄i,m−1, [T, Ḡj,n] = −(n + 1
2)Ḡj,n−1.

It follows that T − 1
p L̄0,−1 ∈ L is an even central element, and so T − 1

p L̄0,−1
acts on M as a scalar. Therefore, L0 acts irreducibly on M . Furthermore, by rela-
tions

L̄i,−1 = 1
p
[L̄i,0, L̄0,−1], Ḡi,− 1

2
= 1

p
[Ḡi, 12

, L̄0,−1],

we see that the action of L0 is determined by L1 and L̄0,−1 (or equivalently, determined 
by L1 and T ). Note that MN is L1-invariant. By the irreducibility of M and Lemma 6.2, 
we see that M = C[T ] ⊗C MN and MN is a nontrivial irreducible finite-dimensional 
L1-module.
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If N = 1, then by the definition of M1, we see that M1 is a trivial L1-module, a 
contradiction.

If N ≥ 2, then by the definition of MN , we see that MN is simply a L1/LN -module. 
Note that L1/LN

∼= g(k, N−2). By Theorem 3.2, we have that MN is (1 +1)-dimensional. 
Equivalently, M is free of rank (1 + 1) as a conformal S(p)-module. �
6.2. Applications

By (2.6), we see that s(n) has a C[∂]-basis {L̄i, Ḡj | 0 ≤ i, j ≤ n}. In case i + j ≤ n, 
the λ-brackets are as follows:

[L̄i λ L̄j ] = ((i− n)∂ + (i + j − 2n)λ)L̄i+j ,

[L̄i λ Ḡj ] = ((i− n)∂ + (i + j − 3
2n)λ)Ḡi+j ,

[Ḡi λ Ḡj ] = 2L̄i+j .

In case i + j > n, the above λ-brackets are trivial. The following two C[∂]-modules are 
conformal modules over s(n) (here, we adopt the same notations as in (5.1) and (5.2)
for S(−n)).

(1) TΔ,α = C[∂]v0̄ ⊕C[∂]v1̄ with

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L̄0 λ v0̄ = −n(∂ + Δλ + α)v0̄,

L̄0 λ v1̄ = −n(∂ + (Δ + 1
2)λ + α)v1̄,

Ḡ0 λ v0̄ =
√
−n v1̄,

Ḡ0 λ v1̄ =
√
−n (∂ + 2Δλ + α)v0̄,

L̄i λ vs = Ḡi λ vs = 0, 1 ≤ i ≤ n, s ∈ Z/2Z,

(6.2)

where Δ, α ∈ C;
(2) T ′

Δ,α = C[∂]v′0̄ ⊕C[∂]v′1̄ with

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L̄0 λ v
′
0̄ = −n(∂ + (Δ + 1

2)λ + α)v′0̄,
L̄0 λ v

′
1̄ = −n(∂ + Δλ + α)v′1̄,

Ḡ0 λ v
′
0̄ =

√
−n (∂ + 2Δλ + α)v′1̄,

Ḡ0 λ v
′
1̄ =

√
−n v′0̄,

L̄i λ v
′
s = Ḡi λ v

′
s = 0, 1 ≤ i ≤ n, s ∈ Z/2Z,

(6.3)

where Δ, α ∈ C.

The following TΔ,α,β and T ′
Δ,α,β are more general conformal modules over s(1) (here, we 

adopt the same notations as in (5.3) and (5.4) for S(−1)).
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(3) TΔ,α,β = C[∂]v0̄ ⊕C[∂]v1̄ with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L̄0 λ v0̄ = −(∂ + Δλ + α)v0̄,

L̄0 λ v1̄ = −(∂ + (Δ + 1
2 )λ + α)v1̄,

L̄1 λ v0̄ = βv0̄,

L̄1 λ v1̄ = βv1̄,

Ḡ0 λ v0̄ =
√
−1 v1̄,

Ḡ0 λ v1̄ =
√
−1 (∂ + 2Δλ + α)v0̄,

Ḡ1 λ v0̄ = 0,
Ḡ1 λ v1̄ = −2

√
−1βv0̄,

(6.4)

where Δ, α, β ∈ C;
(4) T ′

Δ,α,β = C[∂]v′0̄ ⊕C[∂]v′1̄ with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L̄0 λ v
′
0̄ = −(∂ + (Δ + 1

2 )λ + α)v′0̄,
L̄0 λ v

′
1̄ = −(∂ + Δλ + α)v′1̄,

L̄1 λ v
′
0̄ = βv′0̄,

L̄1 λ v
′
1̄ = βv′1̄,

Ḡ0 λ v
′
0̄ =

√
−1 (∂ + 2Δλ + α)v′1̄,

Ḡ0 λ v
′
1̄ =

√
−1 v′0̄,

Ḡ1 λ v
′
0̄ = −2

√
−1βv′1̄,

Ḡ1 λ v
′
1̄ = 0,

(6.5)

where Δ, α, β ∈ C.

Since s(n) is a quotient algebra of S(−n) (cf. (1.5)), by Theorem 5.1 and Proposi-
tion 5.2, we have that

Corollary 6.4. Let M be a nontrivial free conformal module of rank (1 + 1) over s(n).

(1) If n > 1, then M ∼= TΔ,α or T ′
Δ,α defined by (6.2) and (6.3) for some Δ, α ∈ C.

(2) If n = 1, then M ∼= TΔ,α,β or T ′
Δ,α,β defined by (6.4) and (6.5) for some Δ, α, β ∈ C.

Furthermore, for the above modules we have the same simplicity assertions as those for 
S(−n)-modules in Proposition 5.2.

Furthermore, by Theorem 6.1, we have that

Corollary 6.5. The irreducible modules in Corollary 6.4 exhaust all nontrivial finite ir-
reducible conformal modules over s(n).
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