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L.A. Shemetkov’s theorem on the complementability of the 
F-residual of a finite group is developed in the article. For 
an ω-local Fitting formation F, it is proved that, if G is a 
finite group generated by subnormal subgroups A1, ..., An, the 
subgroups AF

1 , ..., AF
n are ω-soluble, and Sylow p-subgroups 

of AF
1 , ..., AF

n are abelian for every p ∈ ω, then each 
ωF-normalizer of G is an ω-complement of GF in G.
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1. Introduction

All groups considered in the paper are finite.
One of the interesting applications of the theory of formations is the finding of suffi-

cient conditions for a group to split over its F-residual subgroup. The most significant 
result in this direction is the following theorem of Shemetkov [1] (see also [2, Theo-
rems 4.2.19 and 4.2.20]).
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Theorem 1.1. Let F be a local formation, and G is a group. Suppose that Sylow 
p-subgroups of GF are abelian for every prime p dividing |G : GF|. Then GF has a 
complement in G.

The condition in Theorem 1.1 that Sylow p-subgroups of GF are abelian is essential 
(the corresponding example see in [3, p. 135]). Therefore, one of the approaches aimed 
to weaken abelianity can be given by introducing additional restrictions either on the 
group G or the formation F.

In [4] Theorem 1.1 receives further development in two directions. Firstly, in [4, Corol-
lary 3.7] this theorem is generalized for an ω-local formation F, where ω ⊆ π(F) (if 
ω = π(F), the result implies Theorem 1.1). Secondly, in [4, Theorem 4.3] was obtained a 
weakening of the condition of Sylow p-subgroups of the F-residual GF being abelian in 
Theorem 1.1. Namely, for an ω-local Fitting formation F, was established the existence 
of an ω-complement of the F-residual GF in group G if G can be represented as a product 
of n subnormal subgroups whose F-residuals are ω-soluble and whose Sylow p-subgroups 
are abelian for any p ∈ ω.

The aforementioned results of [4] are developed in the article. The main purpose of 
our article is to prove the following theorem.

Theorem 1.2. Let F be a non-empty ω-local Fitting formation. Assume that:

1) G = <A1, A2, ..., An>, where Ai is a subnormal subgroup of G, for every i ∈
{1, 2, ..., n};

2) the F-residual AF
i is ω-soluble, for any i ∈ {1, 2, ..., n};

3) for any prime p ∈ ω a Sylow p-subgroup of the group AF
i is abelian, for any i ∈

{1, 2, ..., n}.

Then every ωF-normalizer of G is an ω-complement in G of the F-residual GF.

2. Definitions and preliminary results

The notation and terminology correspond to the books [5,6]. We refer the reader to 
these books for the results on formations and Fitting classes.

Our aim in this section is to collect some definitions and results that are needed 
subsequently.

Let’s recall that a formation is a class of groups which is closed under taking homo-
morphic images and finite subdirect products. If F is a non-empty formation, then each 
group has the F-residual GF, the smallest normal subgroup whose quotient belongs to F.

We write snF to denote the class of all groups G such that G � H ∈ F. If snF ⊆ F, 
then the class F is called sn-closed.
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A class F of finite groups is called a Fitting class if it satisfies the following conditions:

1) F is a sn-closed class;
2) any group G = AB, where A and B are normal F-subgroups of G, belongs to F.

If F is a Fitting class and G is a group, then the subgroup

GF = <S | S is subnormal F-subgroup of G>

is a normal F-subgroup of G, and it is called the F-radical of G.
A Fitting class which is also a formation is called a Fitting formation.

Lemma 2.1. [7, Lemma 2] Let F be a non-empty formation. Then F is a Fitting formation 
if and only if GF = AFBF for every subnormal subgroups A and B of each group G with 
G = AB.

Local formations occupy a central place in the theory of formations of finite groups. In 
the description of the structure of local formations, a substantial role is played by their 
satellites (see [2,5,6]). As a generalization of local formations, ω-local formations were 
introduced in [8] (the notion of ω-local formation was initially proposed by Shemetkov 
in [9] for p-local formations, and further developed in [10]).

Let ω be a non-empty set of primes, and ω′ is the complement of ω in the set of all 
primes. Following [4] to define an ω-local formation it is convenient to consider {ω′}, the 
one-element set consisting of the element ω′, that is in this case the symbol ω′ is used 
as one element in the domain of definition of a function f . Every function of the form

f : ω ∪ {ω′} → {formations}

is called an ω-local satellite.
If f is an ω-local satellite, define the class

LFω(f) = (G | G/Oω(G) ∈ f(ω′) and G/Fp(G) ∈ f(p) for all p ∈ ω ∩ π(G)).

The class LFω(f) is a formation. This formation is called an ω-local formation, and 
f is called its ω-satellite.

In general, the ω-local formation may have several ω-local satellites. Let f be an 
ω-local satellite, and F = LFω(f). Then f is called integrated if f(ω′) ⊆ F and f(p) ⊆ F, 
for every p ∈ ω. We say that an integrated ω-local satellite f of F is a maximal integrated 
ω-satellite if g ≤ f for each integrated ω-satellite g such that F = LFω(g). As shown in 
[8], every ω-local formation can be defined by a maximal integrated ω-satellite.

Let f be an ω-local satellite. A chief ωd-factor A/B of a group G is called fω-central
in G if G/CG(A/B) ∈ f(p), for any p ∈ ω ∩ π(A/B). Otherwise it is called fω-eccentric.
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Lemma 2.2. [4, Lemma 2.8] Let F = LFω(f) be an ω-local formation with integrated 
ω-satellite f . If for some prime p ∈ ω a Sylow p-subgroup of GF is abelian, then G does 
not have chief fω-central pd-factors below GF.

Let F be a non-empty formation and G be a group. A maximal subgroup M of G is 
called F-critical in G if G = MR for some normal subgroup R ⊆ GF of G such that 
R/R ∩ Φ(G) is a chief factor of G.

Let F be an ω-local formation. Following [4, Definition 4.3], a subgroup F of G is said 
to be an ωF-normalizer of G if F/Φ(F ) ∩Oω′(F ) ∈ F and there exists a maximal chain 
of G of the form

F = Fn ⊂ Fn−1 ⊂ ... ⊂ F1 ⊂ F0 = G

such that Fi is an F-critical subgroup of Fi−1 for each i ∈ {1, 2, ..., n}. As shown in [4, 
Lemma 4.9], for every ω-local formation F, a group G contains at least one ωF-normalizer 
F and G = GFF .

Let A/B a factor of a group G, i.e., A and B are subgroups of G and B is a normal 
subgroup of A. Let X be any subgroup of G. Then B(A ∩X) is a subgroup of G between B
and A. We say that X covers A/B if A = B(A ∩X) and X avoids A/B if B = B(A ∩X).

Lemma 2.3. [4, Lemma 4.11] Let F be an ω-local formation with an integrated ω-satellite 
f , and G is a group with ω-soluble F-residual GF. If H is an ωF-normalizer of G, then 
H covers every fω-central and avoids every fω-eccentric chief ωd-factor of G.

One of the most important subgroup properties is the subnormality, i.e., transitive 
closure of the relation of normality. This property was extensively studied by H. Wielandt 
(see [11]).

A subgroup H of a group G is said to be subnormal in G if there are non-negative 
integer m and the series H = H0 � H1 � ... � Hm = G of subgroups of G.

We need the following information on the properties of subnormal subgroups. The set 
of all subnormal subgroups of group G is denoted by sn(G).

Lemma 2.4. [11]

1) Let H ∈ sn(G) and K be a subgroup of G. Then H ∩ K ∈ sn(K). In particular, 
H ∈ sn(L) whenever L is a subgroup of G containing H.

2) If Hi ∈ sn(G), for all i ∈ I, then 
⋂

i∈I Hi ∈ sn(G).
3) Let H ∈ sn(G) and N be a normal subgroup of G. Then HN/N ∈ sn(G/N).
4) Let H ∈ sn(G) and K ∈ sn(G). Then <H, K> ∈ sn(G).

Lemma 2.5. [2, Theorem 7.1] Let H ∈ sn(G), but H is non-normal subgroup of G. Then 
exists an element x ∈ G such that Hx 	= H, Hx ⊆ NG(H) and H ⊆ NG(Hx).
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Let ω be a non-empty set of prime numbers. We say that a subgroup K of a group G
has an ω-complement H in G if G = HK and |H ∩K| is not divisible by numbers in ω
([2], Definition 11.1).

Lemma 2.6. Let F = LFω(f) be an ω-local Fitting formation with maximal integrated 
ω-satellite f . Assume that:

1) G = <A, B>, where A and B are subnormal subgroups of G;
2) for some prime p ∈ π(F) ∩ω, AF does not contain A-chief fω-central pd-factors and 

BF does not contain B-chief fω-central pd-factors.

Then GF does not contain G-chief fω-central pd-factors.

Proof. Let’s assume, arguing by contradiction, that Lemma 2.6 is false. Suppose that G
does not satisfy for Lemma 2.6, and the number t = |G| + |G : A| + |G : B| is minimal. 
If t = 3, then G = 1 and GF = 1 does not contain G-chief fω-central pd-factors, which 
contradicts the choice of G.

Therefore t > 3 and GF 	= 1. If G = A, then, by hypothesis, GF = AF does not contain 
G-chief fω-central pd-factors, a contradiction. Thus we have that G 	= A. Analogously 
G 	= B.

Let N be a minimal normal subgroup of G. If N is not contained in GF, then (G/N)F =
GFN/N 
 GF. Since, by Lemma 2.4, subgroups AN/N and BN/N are subnormal in 
G/N and |G/N | + |G/N : AN/N | + |G/N : BN/N | < t, we have that the F-residual 
GF of G does not contain G-chief fω-central pd-factors, a contradiction. Hence every 
minimal normal subgroup N of G is contained in GF.

By properties of an F-residual, we have (AN/N)F = AFN/N and (BN/N)F =
BFN/N . Moreover, the group G/N is represented in the form G/N = <AN/N, BN/N>, 
where AN/N and BN/N are subnormal subgroups of G/N . Consequently, by the choice 
of G/N , the F-residual GF/N of G/N does not contain G-chief fω-central pd-factors.

If L is a minimal normal subgroup of G different from N , then it is proved similarly 
that the F-residual GF/L of G/L does not contain G-chief fω-central pd-factors. But 
then, by GF 
 GF/N ∩ L, it follows that the F-residual GF does not contain G-chief 
fω-central pd-factors. We get a contradiction with the choice of G.

Now we can conclude that N is unique minimal normal subgroup of G and every 
chief pd-factor of G in interval [N, GF] is fω-eccentric. Since for G Lemma 2.6 is false, 
the minimal normal subgroup N of G is an fω-central pd-factor in G. Since f is an 
integrated ω-satellite of the formation F, G/CG(N) ∈ f(p) ⊆ F. Therefore GF ⊆ CG(N), 
and N ⊆ Z(GF). Thus, it follows, in particular, that N is an elementary abelian p-group.

Let’s suppose that AF = 1. Since F is a Fitting formation, by subnormality of A
in G, we get A ⊆ GF and G = <A, B> = <GF, B> = GFB. Thus, by Lemma 2.1, 
GF = (GF)FBF = BF. Then, by hypothesis, GF does not contain G-chief fω-central 
pd-factors, a contradiction. So AF 	= 1. Analogously BF 	= 1.
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Denote AF∩N by D. Assume that D 	= 1. Since f is a maximal integrated ω-satellite of 
the formation F, by [4, Lemma 2.10], f(p) is a sn-closed formation. Thus, by G/CG(N) ∈
f(p) and subnormality of ACG(N)/CG(N) in G/CG(N), we have ACG(N)/CG(N) ∈
f(p). Then, by isomorphism

ACG(N)/CG(N) 
 A/A ∩ CG(N) = A/CA(N),

it follows that A/CA(N) ∈ f(p). Since CA(N) ⊆ CA(D), A/CA(D) ∈ f(p). Therefore all 
A-chief factors of AF in interval [1, N ] are fω-central in A, a contradiction. So AF∩N = 1. 
Analogously BF ∩N = 1.

Let’s assume that A is a normal subgroup of G. Since AF is characteristic in A, it 
follows that AF � G. Since N is an unique minimal normal subgroup of G and AF 	= 1, 
N ⊆ AF. This contradicts the condition that AF ∩ N = 1. Consequently, A is a not 
normal subgroup of G. Analogously B is a not normal subgroup of G.

Let |B| ≤ |A|. By Lemma 2.5, exists an element x in G such that Ax 	= A, Ax ⊆ NG(A)
and A ⊆ NG(Ax). Thus we have that <A, Ax> ⊆ NG(A) ⊂ G. Denote <A, Ax> by T . 
Since AF does not contain A-chief fω-central pd-factors, (Ax)F does not contain Ax-chief 
fω-central pd-factors. Moreover, by Lemma 2.4, A and Ax are subnormal subgroups of 
<A, Ax>. Since |G| + |G : T | + |G : B| < t, we have that TF does not contain T -chief 
fω-central pd-factors.

By Lemma 2.4, the subgroup T is subnormal in G. Since G = <T, B> and |T | + |T :
A| + |T : Ax| < t, it follows that GF does not contain G-chief fω-central pd-factors. 
A contradiction. The proof of Lemma 2.6 is complete. �

By induction for n, we have

Corollary 2.7. Let F = LFω(f) be an ω-local Fitting formation with maximal integrated 
ω-satellite f . Assume that:

1) G = <A1, A2, ..., An>, where Ai is a subnormal subgroup of G, for every i ∈
{1, 2, ..., n};

2) for some prime p ∈ π(F) ∩ ω and for every i ∈ {1, 2, ..., n}, AF
i does not contain 

Ai-chief fω-central pd-factors.

Then GF does not contain G-chief fω-central pd-factors.

3. Proof of Theorem 1.2 and corollaries

Obviously, the set H of all ω-soluble groups is a Fitting formation. Since AF
i is 

an ω-soluble subgroup for every i ∈ {1, 2, ..., n}, <AF
1 , A

F
2 , ..., A

F
n> ⊆ GH. More-

over AF
i ⊆ GF, for every i ∈ {1, 2, ..., n}, hence <AF

1 , A
F
2 , ..., A

F
n> ⊆ GF. Therefore 

<AF
1 , A

F
2 , ..., A

F
n> ⊆ GF ∩ GH. Denote GF ∩ GH by S. Then, by AF

i ⊆ S, we have that 
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AiS/S 
 Ai/Ai ∩ S ∈ F, for every i ∈ {1, 2, ..., n}. Since F is a Fitting formation, it fol-
lows that G/S = <A1S/S, A2S/S, ..., AnS/S> ∈ F. This implies that GF ⊆ GH. Thus, 
GF is an ω-soluble subgroup of G.

By [4, Lemma 4.9], G contains at least one ωF-normalizer H and G = GFH. By 
Lemma 2.3, H covers every fω-central and avoids every fω-excentric chief factor of G. 
Consequently, by Lemmas 2.2 and 2.6, H avoids every chief ωd-factor of G below GF.

Supposing that D = GF ∩H is an ωd-group, let’s consider a chief series of G passing 
through GF of the form

1 = G0 ⊂ ... ⊂ Gk = GF ⊂ Gk+1 ⊂ ... ⊂ Gt = G.

Then 1 = D ∩ G0 ⊆ ... ⊆ D ∩ Gk−1 ⊆ D ∩ Gk = D is a normal series of D, and |D| is 
equal to the product of all indices of this series. Since D is an ωd-group, it follows that 
D ∩Gi/D ∩Gi−1 is an ωd-group for some i ∈ {1, 2, ..., k}. Since (D ∩Gi)Gi−1 ⊆ Gi, it 
follows that

(D ∩Gi)Gi−1/Gi−1 ⊆ Gi/Gi−1,

and (D ∩Gi)Gi−1/Gi−1 
 D ∩Gi/D ∩Gi−1. Therefore Gi/Gi−1 is a chief ωd-factor of 
G below GF, and therefore H avoids the factor Gi/Gi−1. Thus, H ∩ Gi ⊆ Gi−1. Then 
D ∩Gi = (H ∩D) ∩Gi = H ∩ (D ∩Gi) ⊆ D ∩Gi−1. We have obtained a contradiction 
to the fact that D ∩Gi/D ∩Gi−1 is an ωd-group.

Consequently, D is an ω′-group. Since G = GFH, by definition of ω-complement, we 
obtain that the ωF-normalizer H of G is an ω-complement in G of the F-residual GF. 
The theorem is proved.

Corollary 3.1. [4, Theorem 4.3] Let F be an ω-local Fitting formation, and suppose that 
a group G = A1A2...An is a product of subnormal subgroups Ai, i = 1, 2, ..., n. If the 
F-residual AF

i is ω-soluble for any i = 1, 2, ..., n, and its Sylow p-subgroups are abelian for 
any p ∈ ω, then every ωF-normalizer of G is an ω-complement in G of the F-residual GF.

The class of local formations coincides with the class of saturated formations (see [6]). 
A formation F is called saturated if G/Φ(G) ∈ F always implies G ∈ F.

Corollary 3.2. Let F be a saturated Fitting formation. Assume that:

1) G = <A1, A2, ..., An>, where Ai is a subnormal subgroup of G, for every i ∈
{1, 2, ..., n};

2) for every i ∈ {1, 2, ..., n}, the F-residual AF
i of Ai is π(F)-soluble;

3) for every i ∈ {1, 2, ..., n} and for every prime p dividing |G : GF|, a Sylow p-subgroup 
of the group AF

i is abelian.



S.F. Kamornikov, O.L. Shemetkova / Journal of Algebra 533 (2019) 344–352 351
Then each Hall π(|G : GF|)-subgroup of every F-normalizer of G is a complement for 
GF in G.

Proof. Let ω = π(|G : GF|). Then F is an ω-local formation. By Theorem 1.2, every 
ωF-normalizer of G is an ω-complement of GF in G. Let H be an ωF-normalizer of G. 
Then G = GFH and |H ∩GF| is an ω′-number.

By Theorem 1.2, the subgroup GF is π(F)-soluble. Then G has a normal series

1 = G0 ⊆ G1 ⊆ ... ⊆ Gn = G,

such that every quotient factor Gi/Gi−1 is either an ω-group or an ω′-group. If 2 ∈ ω, 
then G is an ω′-soluble group. If 2 ∈ ω′, then G is an ω-soluble group. Applying Hall 
theorem, G (and every subgroup of G) has a Hall ω-subgroup. Then the subgroup H has 
a Hall ω-subgroup Hω.

By G = GFH and ω = π(|G : GF|), we obtain that G = GFHω. Since |H ∩ GF|
is an ω′-number, it follows that Hω ∩ GF = 1. Thus we have established that Hω is a 
complement of GF in G. The corollary is proved. �
Corollary 3.3. Let F be a saturated Fitting formation. Assume that:

1) G = <A1, A2, ..., An>, where Ai is a subnormal subgroup of G, for every i ∈
{1, 2, ..., n};

2) for every i ∈ {1, 2, ..., n}, the F-residual AF
i of Ai is π(F)-soluble;

3) for every i ∈ {1, 2, ..., n} and for every prime p ∈ π(F), a Sylow p-subgroup of the 
group AF

i is abelian.

Then every F-normalizer of G is a complement for GF in G.

Corollary 3.4. Let F be a saturated Fitting formation. Assume that:

1) G = <A1, A2, ..., An>, where Ai is a subnormal subgroup of G, for every i ∈
{1, 2, ..., n};

2) for every i ∈ {1, 2, ..., n}, the F-residual AF
i of Ai is abelian.

Then every F-normalizer of G is a complement for GF in G.

Corollary 3.5. [4, Corollary 4.1] Let F be a saturated Fitting formation. Assume that:

1) G = A1A2...An, where Ai is a subnormal subgroup of G, for every i ∈ {1, 2, ..., n};
2) for every i ∈ {1, 2, ..., n}, the F-residual AF

i of Ai is π(F)-soluble;
3) for every i ∈ {1, 2, ..., n} and for every prime p ∈ π(F), a Sylow p-subgroup of the 

group AF
i is abelian.
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Then every F-normalizer of G is a complement for GF in G.

Corollary 3.6. [12, Theorem 2.1] Let F be a saturated Fitting formation. Assume that:

1) G = A1A2...An, where Ai is a normal subgroup of G, for every i ∈ {1, 2, ..., n};
2) for every i ∈ {1, 2, ..., n}, the F-residual AF

i of Ai is π(F)-soluble;
3) for every i ∈ {1, 2, ..., n} and for every prime p ∈ π(F), a Sylow p-subgroup of the 

group AF
i is abelian.

Then every F-normalizer of G is a complement for GF in G.

Corollary 3.7. Let F be the formation of all p-groups for some prime p. Suppose 
G = <A1, A2, ..., An>, where Ai is a subnormal subgroup of a group G, for every 
i ∈ {1, 2, ..., n}. If the subgroup Op(G) is p-soluble with abelian Sylow p-subgroups for 
any i ∈ {1, 2, ..., n}, then every F-normalizer of G is a complement of Op(G) in G.

Corollary 3.8. Let F be a saturated Fitting formation containing all nilpotent groups, and 
suppose that G = <A1, A2, ..., An>, where Ai is a subnormal subgroup of a group G, for 
every i ∈ {1, 2, ..., n}. If the F-residual AF

i is soluble with abelian Sylow subgroups, for 
any i ∈ {1, 2, ..., n}, then the subgroup GF has a complement in G.
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