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1. Introduction

Multiple zeta values (MZVs in short) are real numbers defined by the convergent series

ζ(k1, . . . , kd) =
∑

0<m1<···<md

1
mk1

1 · · ·mkd

d
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where (k1, . . . , kd) is a d-tuple of positive integers such that kd > 1, and the sum is taken 
over all d-tuples of positive integers satisfying the inequality. MZVs are, as obvious from 
their definition, multiple series generalizations of the Riemann zeta function evaluated 
at positive integers.

Despite their simple and elementary appearance, the algebraic nature of the space 
spanned by MZVs is surprisingly rich and mysterious. In fact, MZVs arise in various 
areas of mathematics and particle physics, such as in the Kontsevich integrals of knots 
([12], [13], [14]), or in the evaluation of scattering amplitudes ([2], [16]), and are periods 
of mixed Tate motives over Z ([3], [7]).

A particularly important aspect of MZVs is their iterated integral representation due 
to Kontsevich, i.e.,

(−1)dζ(k1, . . . , kd) = I(0;
k1︷ ︸︸ ︷

1, 0, . . . , 0,
k2︷ ︸︸ ︷

1, 0, . . . , 0, . . . ,
kd︷ ︸︸ ︷

1, 0, . . . , 0; 1)

where I(s; a1, . . . , ak; t) :=
ˆ

s<t1<···<tk<t

dt1
t1 − a1

∧ · · · ∧ dtk
tk − ak

,

which (also occurs as the coefficients of the KZ-associator) provides a geometric point 
of view on MZVs. To describe the algebraic structure of the space spanned by such 
iterated integrals, Hoffman [10] introduced the non-commutative polynomial algebra 
generated by two indeterminates e0, e1 which correspond to the differential one-forms 
dt
t and dt

t−1 , respectively. This algebraic setup gives a fundamental tool to study MZVs. 
In [8], [9], the authors consider more general iterated integrals I(0; a1, . . . , ak; 1) with 
a1, . . . , ak ∈ {0, 1, z}, where z is a complex variable. For this purpose, they extended 
Hoffman’s algebraic setup by adding another generator ez corresponding to the one-
form dt

t−z to Hoffman’s algebra. More precisely, let A{0,1,z} = Z 〈e0, e1, ez〉 (resp. 
A{0,1} = Z 〈e0, e1〉) be the non-commutative polynomial algebra over Z generated by 
the indeterminates e0, e1 and ez (resp. e0 and e1). Let A0

{0,1,z} denote the subspace of 
admissible elements

A0
{0,1,z} := Z⊕ Zez ⊕

⊕
a∈{1,z}
b∈{0,z}

eaA{0,1,z}eb,

A0
{0,1} its subspace

A0
{0,1} = A0

{0,1,z} ∩ A{0,1} = Z⊕ e1A{0,1}e0

and L a linear map from A0
{0,1,z} to the space of holomorphic functions of z ∈ C \ [0, 1]

defined by

L(ea1 · · · ean
) =

ˆ n∏
j=1

dtj
tj − aj

.

0<t1<···<tn<1
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Then L satisfies the following differential formula [8]

d

dz
L(w) =

∑
c∈{0,1}

1
z − c

L(∂z,cw), (1.1)

where ∂α,β : A{0,1,z} → A{0,1,z} is a linear map defined by

∂α,β(ea1 · · · ean
) =

n∑
i=1

(
δ{ai,ai+1},{α,β} − δ{ai−1,ai},{α,β}

)
ea1 · · · êai

· · · ean
(1.2)

with a0 = 0, an+1 = 1. Here, δS,T is the Kronecker delta for two sets S and T . These 
∂α,β ’s are the algebraic counterpart of the usual differentiation d/dz, and have funda-
mental importance in the study of iterated integrals. For example, in [8], the authors 
proved a “sum formula” for iterated integrals, which generalizes the classical sum formula 
for MZVs, by using its inductive structure with respect to the algebraic differentiation. 
Also, in [9], the authors exploited the differential structure of A0

{0,1,z} to construct a 
class of (presumably exhausting all the) relations among MZVs, which they called the 
confluence relation. The purpose of this paper is to investigate the relationships between 
∂α,β and other basic algebraic operations.

We denote the shuffle product, the stuffle product and the duality map by ∃ , ∗ and 
τz, respectively (here, the precise definition of ∗ and τz will be explained later). Then, 
L satisfies the “shuffle relation”

L(u ∃

v) = L(u)L(v)
(
u, v ∈ A0

{0,1,z}

)
, (1.3)

the “stuffle relation” [1, Section 5.2]

L(u ∗ v) = L(u)L(v)
(
u ∈ A0

{0,1}, v ∈ A0
{0,1,z}

)
, (1.4)

and the “duality relation” [8, Theorem 1.1]

L(τz(u)) = L(u)
(
u ∈ A0

{0,1,z}

)
. (1.5)

By differentiating the equalities (1.3), (1.4) and (1.5) with respect to z and applying 
(1.1), we obtain1

1 One may wonder why there is no such term as 1
z−cL(∂z,cu)L(v) on the right-hand side of (1.7). This is 

because we have assumed u ∈ A0
{0,1} and thus ∂z,cu vanishes identically.

For readers who are interested in the regularizations of L, we make a few remarks here. By similar 
arguments as in [11], it can be shown that there exist unique extensions L∃

and L∗ of L to A{0,1,z}
characterized by the linearity together with the conditions L∃

|A0
{0,1,z}

= L∗|A0
{0,1,z}

= L, L∃

(e0

∃

u) =
L

∃

(e1

∃

u) = L∗(e0 ∗ u) = L∗(e1 ∗ u) = 0 for u ∈ A{0,1,z}. Then L∃

satisfies (1.1) and (1.6), whereas L∗

does not satisfy (1.1) and (1.7) in general. For example, L∗(e0ez) = 0, while L∗(∂z,0(e0ez)) = L(ez) �= 0. 
These facts can be checked by careful applications of Theorem 10.
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∑
c∈{0,1}

1
z − c

L(∂z,c(u ∃

v)) =
∑

c∈{0,1}

1
z − c

(L(∂z,cu)L(v) + L(u)L(∂z,cv)), (1.6)

∑
c∈{0,1}

1
z − c

L(∂z,c(u ∗ v)) =
∑

c∈{0,1}

1
z − c

L(u)L(∂z,cv), (1.7)

∑
c∈{0,1}

1
z − c

L(∂z,cτz(u)) =
∑

c∈{0,1}

1
z − c

L(τz(∂z,cu)). (1.8)

Therefore, it is natural to ask whether these equalities in complex numbers lift to the 
equalities in A{0,1,z}. In this paper we shall show that the answers to all these three 
questions are “Yes”. More precisely, we shall prove the following theorem.

Theorem. For c ∈ {0, 1},

∂z,c(u ∃

v) = (∂z,cu) ∃ v + u

∃ (∂z,cv)
(
u, v ∈ A0

{0,1,z}

)
∂z,c(u ∗ v) = u ∗ (∂z,cv)

(
u ∈ A0

{0,1}, v ∈ A0
{0,1,z}

)
∂z,cτz(u) = τz(∂z,cu)

(
u ∈ A0

{0,1,z}

)
.

The first two equalities state that the linear operator ∂z,c is a derivation with respect 
to both the shuffle and the stuffle products (the second equality can also be written as 
∂z,c(u ∗ v) = (∂z,cu) ∗ v + u ∗ (∂z,cv) since ∂z,cu = 0 for u ∈ A0

{0,1}).
These formulas provide fundamental and useful tools in the study of MZVs and it-

erated integrals. Let us discuss some significance of them. First of all, the formulas are 
purely algebraic and therefore have wide applications. One of such important applica-
tions is given in [9], where the authors have proved that the confluence relation implies 
the regularized double shuffle and the duality relations. Recently, the confluence relation 
was proved to be equivalent to the associator relation by Furusho [5], and so this result 
can also be viewed as an alternative proof of the main result of [4]. Furthermore, let γ
be a general path from 0 to 1, and Lγ denote the map similarly defined as L, where the 
defining iterated integral is replaced with that along γ. By applying Lγ to the algebraic 
differential formula of the stuffle product, one can obtain

d

dz
Lγ(u ∗ v) =

∑
c∈{0,1}

1
z − c

Lγ(u ∗ ∂z,cv). (1.9)

Note that for the trivial path γ(t) = t, this identity gives an alternative proof of the 
stuffle relation (1.4). Thus, we may naturally expect that (1.9) would serve as a first 
step to discover and prove the counterpart of (1.4) for Lγ with more general γ. We also 
define a natural generalization of the stuffle product and prove the three formulas above 
in far more general forms (see Theorems 3, 8, 9). It is quite likely that these formulas 
have wide applications in general iterated integrals, for instance, for proving analogous 
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results as in [9] (i.e., the implication of the regularized double shuffle and the duality 
relations by the confluence relation) for Euler sums, multiple L-values and even more 
general iterated integrals.

This paper is organized as follows. In Section 2, we introduce some basic settings 
and state a useful lemma used in the proof of the theorem. In Section 3, we prove 
the algebraic differential formula for the shuffle product (Theorem 3). In Section 4, we 
prove the algebraic differential formula for the stuffle product (Theorem 8). In Section 5, 
we introduce algebraic Möbius transformations as a generalization of the duality map, 
and prove their algebraic differential formula (Theorem 9). In Section 6, we derive the 
theorem above as special cases of Theorems 3, 8, 9.

2. Basic settings

Let F be a field and A = AF be the non-commutative free algebra over Z generated 
by the indeterminates {ep | p ∈ F}. For s, t ∈ F , we denote by A0

(s,t) = A0
F,(s,t) the 

subalgebra

A0
F,(s,t) = Z⊕

⊕
z∈F\{s,t}

Zez ⊕
⊕

x∈F\{s}
y∈F\{t}

exAF ey ⊂ AF .

In particular, we put A0
F = A0

F,(0,1).
We fix a homomorphism F : F× → Z. For x ∈ F , define [x] ∈ Z by

[x] =
{
F(x) x �= 0
0 x = 0.

Note that since Z is torsion-free, [−x] = [x] for x ∈ F×. We define an algebraic differential 
operator ∂s,t = ∂s,t

F
: A → A by2

∂s,t(ea1 · · · ean
) :=

n∑
i=1

([ai+1−ai]− [ai−ai−1])ea1 · · · êai
· · · ean

((a0, an+1) = (s, t)) .

2 The motivation to consider such an operator comes from the following differential formula (Goncharov 
[6, Theorem 2.1], Panzer [15, Lemma 3.3.30])

dI(s; a1, . . . , an; t) =
∑

1≤i≤n
ai �=ai+1

I(s; a1, . . . , âi, . . . , an; t) d log(ai+1 − ai)

−
∑

1≤i≤n
ai �=ai−1

I(s; a1, . . . , âi, . . . , an; t) d log(ai − ai−1) ((a0, an+1) = (s, t)) ,

where I is the iterated integral symbol by Goncharov [6].
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In particular, we put ∂ = ∂0,1. The following lemma provides a useful technique in later 
sections.

Lemma 1. Let a0, . . . , an+1 ∈ F (with (a0, an+1) = (s, t)) and f : {0, . . . , n} → Z be any 
map such that

f(i) = [ai+1 − ai] for all i ∈ {0 ≤ j ≤ n | aj �= aj+1}.

Then, we have

∂s,t(ea1 · · · ean
) =

n∑
i=1

(f(i) − f(i− 1)) ea1 · · · êai
· · · ean

+ δs,a1f(0) ea2 · · · ean
− δan,tf(n) ea1 · · · ean−1 .

The proof follows directly from the definition of ∂s,t. Note that the right-hand side 
in the above equality does not depend on the choice of f and so we choose suitable f
which is convenient for the situation.

As a general notation, for a given function f : S → A on a finite set S, we define

f(T ) :=
∑
x∈T

f(x)

for T ⊂ S. We often use this notation in the following sections.

3. Differential formula for the shuffle product

In this section, we shall prove the derivation property of the algebraic differential 
operator with respect to the shuffle product.

Definition 2. We define the shuffle product ∃ : A ×A → A inductively by w ∃ 1 = 1 ∃ w =
w for w ∈ A and

eau

∃

ebv = ea(u ∃

ebv) + eb(eau ∃

v) (u, v ∈ A).

As is well known, the shuffle product can also be defined in a more combinatorial way 
as

a1 · · · an ∃ an+1 · · · an+m =
∑

σ∈S(n,m)

aσ(1) · · · aσ(n+m) (a1, . . . , an+m ∈ {ep | p ∈ F}),

where S(n, m) is a set of all permutations σ’s of {1, 2, . . . , n + m} such that σ−1(1) <
σ−1(2) < · · · < σ−1(n) and σ−1(n + 1) < σ−1(n + 2) < · · · < σ−1(n + m).

Theorem 3. For u, v ∈ A, ∂(u ∃ v) = (∂u) ∃ v + u ∃ (∂v).
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Proof. It is sufficient to show the equality for monomials u and v. Put u = a1 · · · an, 
v = an+1 · · · an+m (a1, . . . , an+m ∈ {ep | p ∈ F}) and X = S(n, m) × {0, 1, . . . , n + m}. 
Let ai = epi

for i = 1, . . . , n + m. Then, by definition,

∂(u ∃

v) = f(X) :=
∑

(σ,i)∈X

f(σ, i),

where f(σ, i) := f+(σ, i) − f−(σ, i) with

f+(σ, i) :=
{

[pσ(i+1) − pσ(i)]aσ(1) · · · âσ(i) · · · aσ(n+m) (i �= 0)
0 (i = 0),

f−(σ, i) :=
{

[pσ(i+1) − pσ(i)]aσ(1) · · · âσ(i+1) · · · aσ(n+m) (i �= n + m)
0 (i = n + m),

where we put pσ(0) = 0 and pσ(n+m+1) = 1. Put I := {1, . . . , n}, J := {n +1, . . . , n +m}
and

XAB := {(σ, i) ∈ X | 0 < i < n + m, σ(i) ∈ A, σ(i + 1) ∈ B}

for A, B ∈ {I, J}. Further, we put

X̃II : = XII � {(σ, 0) ∈ X | σ(1) ∈ I} � {(σ, n + m) ∈ X | σ(n + m) ∈ I}

X̃JJ : = XJJ � {(σ, 0) ∈ X | σ(1) ∈ J} � {(σ, n + m) ∈ X | σ(n + m) ∈ J} .

Then we have

X = XIJ �XJI � X̃II � X̃JJ .

Define a bijection τ : XIJ → XJI by τ(σ, i) = (σ◦τi, i), where τi denotes the transposition 
of i and i + 1. Since f± ◦ τ = f∓, we have f ◦ τ = −f . Thus

f(XIJ) + f(XJI) = 0.

Let us further decompose XII as XII = �n−1
j=1 XII,j where

XII,j := {(σ, i) ∈ X | 0 < i < n + m, σ(i) = j, σ(i + 1) = j + 1}.

Then

f+(XII,j) = [pj+1 − pj ]a1 · · · âj · · · an ∃ an+1 · · · an+m,

f−(XII,j) = [pj+1 − pj ]a1 · · · âj+1 · · · an ∃ an+1 · · · an+m,
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f({(σ, 0) ∈ X | σ(1) ∈ I}) = −[p1 − 0]a2 · · · an ∃ an+1 · · · an+m,

f({(σ, n + m) ∈ X | σ(n + m) ∈ I}) = [1 − pn]a1 · · · an−1

∃

an+1 · · · an+m.

Thus

f(X̃II) = (∂u) ∃ v,

and similarly

f(X̃JJ) = u

∃ (∂v).

This completes the proof. �
4. Differential formula for the stuffle product

In this section, we shall prove the derivation property of the algebraic differential 
operator with respect to the stuffle product.

4.1. Definition of the generalized stuffle product

Definition 4. We define the (generalized) stuffle product ∗ : A × A → A inductively by 
w ∗ 1 = 1 ∗ w = w and

eau ∗ ebv = eab(u ∗ ebv + eau ∗ v − e0(u ∗ v)) (u, v ∈ A).

Note that in our definition of the stuffle product, e0 plays a particular role. Thus, 
we check the compatibility of our definition with the usual one ([1, Section 5], [11, 
Section 1]) in the first place. Let h1 be the non-commutative free algebra generated by 
infinitely many formal indeterminates {zk,a | k ∈ Z≥1, a ∈ F×}. Define a binary operator 
∗̄ : h1 × h1 → h1 by 1 ̄∗ w = w ∗̄ 1 = w for w ∈ h1 and

zk,au ∗̄ zl,bv = zk,ab(u ∗̄ zl,bv) + zl,ab(zk,au ∗̄ v) + zk+l,ab(u ∗̄ v) (u, v ∈ h1).

We define an embedding i : h1 ↪→ A of algebra by i(uv) = i(u)i(v) and i(zk,a) = −eae
k−1
0 . 

By our notation, the multiple polylogarithms defined in [1] and [6] are expressed as

l

(
kd, . . . , k1
ad, . . . , a1

)
= L(i(zk1,a1 · · · zkd,ad

))

and

Lik1,...,kd
(a1, . . . , ad) = L(i(zk1,(a1···ad)−1zk2,(a2···ad)−1 · · · zk ,a−1)),
d d
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respectively. The following proposition assures that our stuffle product is a generalization 
of the usual stuffle products.

Proposition 5.

(i) For u, v ∈ h1, i(u ̄∗ v) = i(u) ∗ i(v).
(ii) The stuffle product ∗ is commutative and associative.

Proof of (i). It is sufficient to show the equality for monomials u and v. First of all, one 
can easily check that

e0u ∗ v = e0(u ∗ v)

holds for any monomials u, v by induction on the degree of v. Now we shall prove the 
proposition by induction. Set u = zk,au

′, v = zl,bv
′. Then we get

i(u) ∗ i(v) =(eaek−1
0 i(u′)) ∗ (ebel−1

0 i(v′))

=eab(ek−1
0 i(u′) ∗ ebel−1

0 i(v′)) + eab(eaek−1
0 i(u′) ∗ el−1

0 i(v′))

− eabe0(ek−1
0 i(u′) ∗ el−1

0 i(v′))

= − eabe
k−1
0 (i(u′) ∗ i(v)) − eabe

l−1
0 (i(u) ∗ i(v′))

− eabe
k+l−1
0 (i(u′) ∗ i(v′)).

Using the induction hypothesis, the last quantity is equal to

− eabe
k−1
0 i(u′ ∗̄ v) − eabe

l−1
0 i(u ∗̄ v′) − eabe

k+l−1
0 i(u′ ∗̄ v′)

= i(zk,ab(u′ ∗̄ v) + zl,ab(u ∗̄ v′) + zk+l,ab(u′ ∗̄ v′))
= i(u ∗̄ v)

which proves the proposition. �
Proof of (ii). The commutativity of the stuffle product is obvious from the definition. 
Let us prove the associativity. We define a trilinear map f : A ×A ×A → A inductively 
by

f(u, v, 1) = f(u, 1, v) = f(1, u, v) = u ∗ v

and

f(u, v, w) :=eabc (f(u′, v, w) + f(u, v′, w) + f(u, v, w′))

− eabce0 (f(u′, v′, w) + f(u′, v, w′) + f(u, v′, w′))

+ eabce
2
0f(u′, v′, w′) (u = eau

′, v = ebv
′, w = ecw

′).
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Then we can show (u ∗ v) ∗ w = f(u, v, w) by the induction since

(u ∗ v) ∗ w =eab(u ∗ v′ + u′ ∗ v − e0(u′ ∗ v′)) ∗ w

=eabc((u ∗ v) ∗ w′) + eabc ((u ∗ v′ + u′ ∗ v − e0(u′ ∗ v′)) ∗ w)

− eabce0((u ∗ v′ + u′ ∗ v − e0(u′ ∗ v′)) ∗ w′)

=eabc((u ∗ v) ∗ w′ + (u ∗ v′) ∗ w + (u′ ∗ v) ∗ w)

− eabce0((u′ ∗ v′) ∗ w + (u ∗ v′) ∗ w′ + (u′ ∗ v) ∗ w′)

+ eabce
2
0(u′ ∗ v′ ∗ w′) (u = eau

′, v = ebv
′, w = ecw

′).

Since f(u, v, w) is a symmetric function by definition, we have

(u ∗ v) ∗ w = f(u, v, w) = f(v, w, u) = (v ∗ w) ∗ u = u ∗ (v ∗ w)

for u, v, w ∈ A. This is the associativity of ∗. �
4.2. Combinatorial description of the stuffle product

The stuffle product as well as the shuffle product enjoys an interesting combinatorial 
structure. In this section, we give such a description of the stuffle product. This descrip-
tion will be useful in the proof of the algebraic differential formula stated in the next 
section.

Fix positive integers m and n. Let G = (V, E) be a directed graph whose vertex set 
V and edge set E are given by

V =
{

(x, y) ∈ 1
2Z× 1

2Z
∣∣∣∣ 1 ≤ x ≤ n + 1,

1 ≤ y ≤ m + 1,
x− y ∈ Z

}
�
{(

1
2 ,

1
2

)}

and by

E = {((x, y), (x + 1, y)) ∈ V 2 | x, y ∈ Z}

� {((x, y), (x, y + 1)) ∈ V 2 | x, y ∈ Z}

�
{(

(x, y), (x + 1
2 , y + 1

2)
)

∈ V 2
∣∣∣∣x, y ∈ 1

2Z
}
,

respectively (see Fig. 4.1). We denote by P the set of paths from (1/2, 1/2) to (n + 1,
m + 1), i.e.,

P : =
{
p = (p0, p1, . . . , pn+m+1)

∣∣∣∣∣ p0 = (1/2, 1/2) ,
pn+m+1 = (n + 1,m + 1),

(pi, pi+1) ∈ E

for 0 ≤ i ≤ n + m

}
.



M. Hirose, N. Sato / Journal of Algebra 556 (2020) 363–384 373
(2, 1) (2, 2) (2, 3)

(1 1
2 , 1

1
2 ) (1 1

2 , 2
1
2 )

(1, 1) (1, 2) (1, 3)

( 1
2 ,

1
2 )

Fig. 4.1. The graph G for the case (n,m) = (1, 2).

Hereafter, for a path p ∈ P , we denote by pi the (i + 1)-th entry of p, i.e., p =
(p0, p1, . . . , pn+m+1). Furthermore we define sgn : P → {±1} by

sgn
(
p
)

=
∏

1≤i≤n+m
pi /∈Z2

(−1).

For monomials u = ea1 · · · ean
and v = eb1 · · · ebm of degree n and m respectively, define 

fu,v : V → F by

fu,v(x, y) =
{
axby (x, y) ∈ Z2

0 (x, y) /∈ Z2.

Here, we set an+1 = bm+1 = 1. Then, we have the following combinatorial expression for 
the stuffle product.

Proposition 6. For monomials u and v of degree n and m respectively,

u ∗ v =
∑
p∈P

sgn(p) efu,v(p1) · · · efu,v(pn+m)

One can easily check that this expression is equivalent to Definition 4.

Remark 7. The vertices p0 = (1
2 , 

1
2 ) and pn+m+1 = (n + 1, m + 1) do not appear in 

Proposition 6, but it is convenient in the description of the proof of Theorem 8.

4.3. An algebraic differential formula of the stuffle product

Put

A1 = A1
F = Z⊕

⊕
ezAF ⊂ AF
z∈F×
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a2b1
[b2−b1]+[a2]

a2b2
[b3−b2]+[a2]

a2b3

0

[a2]+[b2]

0

[a2]+[b3]

a1b1
[b2−b1]+[a1]

[a1]+[b1]

[a2−a1]+[b1]

a1b2
[b3−b2]+[a1]

[a1]+[b2]

[a2−a1]+[b2]

a1b3

[a2−a1]+[b3]

0

[a1]+[b1]

Fig. 4.2. Values of f : V → Z and h : E → Z (a2 = b3 = 1).

(note that A0 ⊂ A1). In this section, we prove the following identity:

Theorem 8. For non-constant monomials u, v ∈ A, we have

∂(u ∗ v) = (∂u) ∗ v + u ∗ ∂v + δa,0[b](u′ ∗ v) + δb,0[a](u ∗ v′),

where u = eau
′, v = ebv

′. In particular, for u, v ∈ A1,

∂(u ∗ v) = (∂u) ∗ v + u ∗ ∂v.

Proof. It is sufficient to show the identity for non-constant monomials u and v. Put 
u = ea1 · · · ean

and v = eb1 · · · ebm . Let P be the set of paths as defined in Section 4.2. 
Put f = fu,v and Q = P × {1, · · · , n + m}. Define h : E → Z by

h(p, p′) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[ax+1 − ax] + [by] if (p, p′) = ((x, y), (x + 1, y))
[by+1 − by] + [ax] if (p, p′) = ((x, y), (x, y + 1))

[ax] + [by] if (p, p′) =
{

((x, y), (x + 1
2 , y + 1

2 ))
or ((x− 1

2 , y −
1
2 ), (x, y))

for x, y ∈ Z. Then [f(p) − f(p′)] = h(p, p′) for all (p, p′) ∈ E such that f(p) �= f(p′) (see 
Fig. 4.2).

We define s : Q → AF by

s(p, i) = sgn(p) (h(pi, pi+1) − h(pi−1, pi)) ef(p1) · · · êf(pi) · · · ef(pn+m)

for p ∈ P and i ∈ {1, . . . , n + m}. Then, by Lemma 1, we have

∂(u ∗ v) =s(Q) +
∑
p∈P

δf(p0),f(p1)h(p0, p1)sgn(p)ef(p2) · · · ef(pn+m)
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−
∑
p∈P

δf(pn+m),f(pn+m+1)h(pn+m, pn+m+1)sgn(p)ef(p1) · · · ef(pn+m−1),

where s(Q) :=
∑

(p,i)∈Q s(p, i). Since

δf(p0),f(p1)h(p0, p1) = δ0,a1b1h((1
2 ,

1
2), (1, 1)) = δ0,a1b1([a1] + [b1])

and

δf(pn+m),f(pn+m+1)h(pn+m, pn+m+1)

=

⎧⎪⎪⎨⎪⎪⎩
δan,1([1 − an] + [1]) if pn+m = (n,m + 1)
δbm,1([1 − bm] + [1]) if pn+m = (n + 1,m)
0 if pn+m = (n + 1

2 ,m + 1
2 )

= 0,

we have

∂(u ∗ v) = s(Q) + Λ, (4.1)

where

Λ := δa1b1,0([a1] + [b1])
∑
p∈P

sgn(p)ef(p2) · · · ef(pn+m).

Since f(p1) = a1b1, δa1b1,0e0 = δa1b1,0ef(p1) and thus

e0Λ = δa1b1,0([a1] + [b1])u ∗ v.

Noting δab,0[a] = δb,0[a],

e0Λ = δb1,0[a1]u ∗ v + δa1,0[b1]u ∗ v
= δb1,0[a1]u ∗ e0v

′ + δa1,0[b1] e0u
′ ∗ v

= δb1,0[a1] e0(u ∗ v′) + δa1,0[b1] e0(u′ ∗ v)

where u′ = ea2 · · · ean
and v′ = eb2 · · · ebm . Therefore,

Λ = δb1,0[a1]u ∗ v′ + δa1,0[b1]u′ ∗ v. (4.2)

We decompose Q as Q = QZ �Q#, where

QZ : = {(p, i) ∈ Q | pi ∈ Z2},
Q# : = {(p, i) ∈ Q | pi /∈ Z2}.
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Moreover, by putting

Vα :=

⎧⎪⎪⎨⎪⎪⎩
(1, 0) if α =↑
(1
2 ,

1
2 ) if α =↗

(0, 1) if α =→

and defining the sets

Qα,β := {(p, i) ∈ Q | i > 0, pi ∈ Z2, pi = pi−1 + Vα, pi+1 = pi + Vβ}

for α, β, γ ∈ {↑, ↗, →}, we can further decompose QZ as

QZ = �
α,β∈{↑,↗,→}

Qα,β .

Now we have

s(Q↗↗) = 0 (4.3)

s(Q↑→) + s(Q→↑) + s(Q#) = 0 (4.4)

s(Q→→) + s(Q→↗) + s(Q↗→) = u ∗ ∂v (4.5)

s(Q↑↑) + s(Q↑↗) + s(Q↗↑) = (∂u) ∗ v. (4.6)

The identity (4.3) is obvious since h(p, p + (1
2 , 

1
2 )) = h(p − (1

2 , 
1
2 ), p) if p ∈ Z2.

To check the identity (4.4), define the bijections ω+ : Q# −→ Q↑→ and ω− : Q# −→
Q→↑ by

ω±(p, i) := (ω±
i (p), i),

where

ω±
i (p0, . . . , pn+m+1) :=

(
p0, . . . , pi ± (1

2 ,−
1
2), . . . , pn+m+1

)
.

Then

s(ω+(p, i)) + s(ω−(p, i)) + s(p, i) = C(p, i) ef(p1) · · · êf(pi) · · · ef(pn+m)

with

C(p, i) = sgn(ω+
i (p)) (h((x + 1, y), (x + 1, y + 1)) − h((x, y), (x + 1, y)))

+ sgn(ω−
i (p)) (h((x, y + 1), (x + 1, y + 1)) − h((x, y), (x, y + 1)))

+ sgn(p)
(
h((x + 1

, y + 1), (x + 1, y + 1)) − h((x, y), (x + 1
, y + 1))

)

2 2 2 2
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pi + ( 1
2 ,− 1

2 )
[by+1−by ]+[ax+1]

pi+1

pi

[ax+1]+[by+1]

pi−1 = (x, y)
[by+1−by ]+[ax]

[ax]+[by]

[ax+1−ax]+[by ]

pi − ( 1
2 ,− 1

2 )

[ax+1−ax]+[by+1]

Fig. 4.3. The paths p (diagonal), ω+
i (p) (upper), ω−

i (p) (lower).

= −sgn(p) ([by+1 − by] + [ax+1] − [ax+1 − ax] − [by])

− sgn(p) ([ax+1 − ax] + [by+1] − [by+1 − by] − [ax])

+ sgn(p) ([ax+1] + [by+1] − [ax] − [by])

= 0

where we put pi−1 = (x, y) (see Fig. 4.3). Hence we obtain the identity (4.4).
To check the identity (4.5), we first decompose Q→→, Q→↗ and Q↗→ as

Qα,β =
m�

y=1
Q

(y)
α,β

where (α, β) ∈ {(→, →), (→, ↗), (↗, →)} and

Q
(y)
α,β = {(p, i) ∈ Qα,β | ∃x, pi = (x, y)}.

On the other hand, by definition, we have

u ∗ ∂v =
m∑

y=1
([by+1 − by] − [by − by−1])u ∗ eb1 · · · êby · · · ebm

where we set b0 = 0. By similar methods as for the identity (4.4), we can show

s(Q(y)
→→) + s(Q(y)

→↗) + s(Q(y)
↗→) = ([by+1 − by] − [by − by−1])u ∗ eb1 · · · êby · · · ebm

(see Figs. 4.4 and 4.5). Hence we have the identity (4.5).
The identity (4.6) is also checked in completely the same way.
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ax+1by
[by+1−by ]+[ax+1]

ax+1by+1

0

[ax+1]+[by ]

0

axby−1
[by−by−1]+[ax]

axby

[ax]+[by ]

a1b1
[b2−b1]+[a1]

a1b2

0

[a1]+[b1]

Fig. 4.4. A visual explanation of the reason why the terms in s(Q(y)
→↗) + s(Q(y)

↗→) corresponds to the 
terms of the form ([by+1 − by] − [by − by−1]) × (· · · eaxby−1e0eax+1by+1 · · · ) which appear in u ∗ ∂v. The 
first diagram is for the case y > 1 and the second diagram is for the case y = 1. Note that 
([by+1 − by] + [ax+1] − [ax+1] − [by]) + ([ax] + [by] − [by − by−1] − [ax]) = [by+1 − by] − [by − by−1] for 
the first diagram, and [b2 − b1] + [a1] − [a1] − [b1] = [b2 − b1] − [b1] for the second diagram.

(x, y − 1)
[by−by−1]+[ax]

(x, y)
[by+1−by ]+[ax]

(x, y + 1)

Fig. 4.5. A visual explanation of the reason why the terms in s(Q(y)
→→) corresponds to the terms of the form 

([by+1 − by] − [by − by−1]) (· · · eaxby−1eaxby+1 · · · ) which appear in u ∗ ∂v. Note that [by+1 − by] + [ax] −
[by − by−1] − [ax] = [by+1 − by] − [by − by−1].

Combining the identities (4.1), (4.2) together with (4.3), (4.4), (4.5) and (4.6), it 
readily follows that

∂(u ∗ v) = (∂u) ∗ v + u ∗ ∂v + δb1,0[a1]u ∗ v′ + δa1,0[b1]u′ ∗ v. �
5. Möbius transformation

In this section, we investigate the relation between the differential operator ∂s,t and 
the transformation on the algebra A = AF associated to the Möbius transformation 
on P 1.
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Recall that GL2(F ) naturally acts on P 1(F ) = F �{∞} by the Möbius transformation

γ(x) = ax + b

cx + d

(
γ =

(
a b

c d

))
.

Put e∞ := 0. We define an automorphism γ∗ of A by3 γ∗(ex) = eγ(x) − eγ(∞).

Hereafter, we fix γ =
(
a b

c d

)
∈ GL2(F ), a starting point s ∈ F and an endpoint 

t ∈ F . We assume that γ(s) �= ∞ and γ(t) �= ∞. We set εγ(z) := [det γ] − 2[cz + d] ∈ Z. 
We shall prove the following identity4:

Theorem 9. For a non-constant monomial w ∈ A,(
γ−1)∗ ∂γ(s),γ(t)γ∗(w) = ∂s,tw + δx,s εγ(s)w′ − δy,t εγ(t)w′′,

where w = exw
′ = w′′ey. In particular, for w ∈ A0

(s,t),(
γ−1)∗ ∂γ(s),γ(t)γ∗(w) = ∂s,tw.

In the following, we give a proof of this theorem. We put w = ez1 · · · ezn ∈ A0
(s,t) and 

(z0, zn+1) = (s, t). We define a directed graph G = (V, E) whose vertex set V is given by

V = {(0, 0)} � {1, . . . , n} × {0, 1} � {(n + 1, 0)}

and whose edge set E is given by

E = {((m1, i1), (m2, i2)) ∈ V 2 | m2 = m1 + 1}.

Define a labeling f and a sign sgn : V → {±1} of vertices by

f : V → P 1(F ) ; (n, i) �→
{
γ(zn) i = 0
γ(∞) i = 1,

and by sgn((m, i)) = (−1)i. For example, if n = 3, the labeling and the sign of the graph 
is as follows:

3 The motivation of the definition of γ∗ comes from the formula dt
t−x = ds

s−γ(x) − ds
s−γ(∞) , where s = γ(t).

4 The motivation of this identity comes from the total differential of the identity

ˆ

s<t1<···<tn<t

n∏
j=1

dtj

tj − zj
=

ˆ

γ(s)<t′1<···<t′
n
<γ(t)

n∏
j=1

(
dt′j

t′j − γ(zj)
−

dt′j

t′j − γ(∞)

)

which is obtained by the Möbius transformation t′j = γ(tj).
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(γ(s),+1) (γ(z1),+1) (γ(z2),+1) (γ(z3),+1) (γ(t),+1)

(γ(∞),−1) (γ(∞),−1) (γ(∞),−1)

As before, we define the set of paths by

P :=
{
p = (p0, . . . , pn+1) ∈ V n+2

∣∣∣∣∣ p0 = (0, 0) ,
pn+1 = (n + 1, 0),

pm ∈ {(m, 0), (m, 1)}
for 1 ≤ m ≤ n

}
,

the subset of “effective” paths by

P eff : =
{
p ∈ P | f(pm) �= ∞ for 1 ≤ m ≤ n

}
and sgn : P → {±1} by sgn(p) =

∏n
i=1 sgn(pi). Then, γ∗(w) is expressed as

γ∗(w) =
∑
p∈P

sgn(p) ef(p1) · · · ef(pn) =
∑

p∈P eff

sgn(p) ef(p1) · · · ef(pn).

Now, define a map λ : E → Z by

λ(v1, v2) :=⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[ad− bc] + [zm+1 − zm] − [czm+1 + d] − [czm + d] if (v1, v2) = ((m, 0), (m + 1, 0))
[ad− bc] − [c] − [czm + d] if (v1, v2) = ((m, 0), (m + 1, 1))
[ad− bc] − [c] − [czm+1 + d] if (v1, v2) = ((m, 1), (m + 1, 0))
[ad− bc] − 2[c] − [zm+1 − zm] if (v1, v2) = ((m, 1), (m + 1, 1))

for m ∈ {0, . . . , n}. Then, by direct calculations, we have

[f(v1) − f(v2)] = λ(v1, v2) (5.1)

for (v1, v2) ∈ E such that f(v1) �= ∞, f(v2) �= ∞ and f(v1) �= f(v2). Set Q = P ×
{1, . . . , n} and Qeff = P eff × {1, . . . , n} and

s(p,m) := (λ(pm, pm+1) − λ(pm−1, pm))(
∏

1≤i≤n

sgn(pi)) ef(p1) · · · êf(pm) · · · ef(pn)

for (p, m) ∈ Q. Then, by (5.1) and Lemma 1, we get

∂γ(s),γ(t)(γ∗(w)) = s(Qeff) + Λ,

where
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Λ := δz1,s εγ(s)
∑

p∈P eff

p1=(1,0)

sgn(p) ef(p2) · · · ef(pn)

− δzn,t εγ(t)
∑

p∈P eff

pn=(n,0)

sgn(p) ef(p1) · · · ef(pn−1)

= γ∗ (δz1,s εγ(s)w′ − δzn,t εγ(t)w′′) (w = ez1w
′ = w′′ezn).

By setting

Q′ =
{

(p,m) ∈ Q
∣∣ ∃i �= m such that f(pi) = ∞

}
,

Q′′ =
{

(p,m) ∈ Q
∣∣ f(pm) = ∞ and f(pi) �= ∞ for all i �= m

}
,

we have Q = Qeff �Q′ �Q′′. Also, we can check by direct calculations5 that

λ(v1, v2) = λ(v2, v3)

for v1, v2, v3 ∈ V such that (v1, v2), (v2, v3) ∈ E and f(v1), f(v3) �= ∞, f(v2) = ∞. Thus, 
s(p, m) = 0 for (p, m) ∈ Q′′. Together with the trivial fact that ef(p1) · · · êf(pm) · · · ef(pn) =
0 for (p, m) ∈ Q′, we find that s(p, m) = 0 for (p, m) ∈ Q′ �Q′′ and hence

s(Qeff) = s(Q).

Again, by direct calculations,

∑
j∈{0,1}

(−1)j (λ((m, j), (m + 1, k)) − λ((m− 1, i), (m, j)))

= [zm+1 − zm] − [zm − zm−1] (i, k ∈ {0, 1}).

Hence, we have

s(Q) =
n∑

m=1
([zm+1 − zm] − [zm − zm−1])

∑
p∈Pm

ef(p1) · · · êf(pm) · · · ef(pn)
∏

1≤i≤n
i�=m

sgn(pi),

(5.2)
where Pm is a coset of P by the equivalence relation (p0, . . . , (m, 0), . . . , pn+1) ∼
(p0, . . . , (m, 1), . . . , pn+1). Since the right-hand side of (5.2) is γ∗(∂s,tw) by definition, 
this proves Theorem 9.

5 Note that if v2 is at the bottom i.e. sgn(v2) = −1 then c = 0 since γ(∞) = ∞ in this case.
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6. An application to iterated integrals on P1 \ {0, 1, ∞, z}

In this section, we consider the special case F = Q(z). We put A{0,1,z} =
Z 〈e0, e1, ez〉 ⊂ AF and A{0,1} = Z 〈e0, e1〉 ⊂ AF . Then, by definition, we have

∂u ∈ A{0,1,z} (u ∈ A{0,1,z}),

u

∃

v ∈ A{0,1,z} (u, v ∈ A{0,1,z}),

u ∗ v ∈ A{0,1,z} (u ∈ A{0,1,z}, v ∈ A{0,1}).

Recall the linear operator ∂z,c : AF → AF introduced in (1.2) i.e.,

∂z,c(ea1 · · · ean
) :=

n∑
i=1

(
δ{ai,ai+1},{z,c} − δ{ai−1,ai},{z,c}

)
ea1 · · · êai

· · · ean
,

where (a0, an+1) = (0, 1). Note that ∂z,c = ∂0,1
Fc

, where Fc : F× → Z is any homomor-
phism satisfying

Fc(z − c) = 1, Fc(z − (1 − c)) = 0.

Let τz : A{0,1,z} → A{0,1,z} be the anti-automorphism (i.e., τz(uv) = τz(v)τz(u) for 
u, v ∈ A{0,1,z}) defined by

τz(e0) = ez − e1, τz(e1) = ez − e0, τz(ez) = ez.

We also put A1
{0,1} := A{0,1} ∩ A1

F and A0
{0,1,z} := A{0,1,z} ∩ A0

F .

Theorem 10. For c ∈ {0, 1}, we have the following formulas.

(1) For u, v ∈ A{0,1,z},

∂z,c(u ∃

v) = (∂z,cu) ∃ v + u

∃ (∂z,cv).

(2) For non-constant monomials u ∈ A{0,1} and v ∈ A{0,1,z},

∂z,c(u ∗ v) = u ∗ (∂z,cv) + δa,0δb,zδc,0 u
′ ∗ v,

where u = eau
′, v = ebv

′. In particular, for u ∈ A1
{0,1} and v ∈ A{0,1,z},

∂z,c(u ∗ v) = u ∗ (∂z,cv).

(3) For a non-constant monomial u ∈ A{0,1,z},

τ−1
z ◦ ∂z,c ◦ τz(u) = ∂z,cu + (δc,1 − δc,0)(δa,0u′ + δb,1u

′′),
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where u = eau
′ = u′′eb. In particular, for u ∈ A0

{0,1,z},

τ−1
z ◦ ∂z,c ◦ τz(u) = ∂z,cu.

Proof. (1) and (2) of Theorem 10 follow from Theorem 3 and 8. Let ϕ : AF → AF be 
an anti-automorphism defined by

ϕ(ex) = −ex (x ∈ F ).

Then, we have

ϕ ◦ ∂x,y = ∂y,x ◦ ϕ (x, y ∈ F ).

Since τz = ϕ ◦ γ∗
z with γz =

(
z −z

1 −z

)
∈ GL2(F ), (3) of Theorem 10 follows from 

Theorem 9. �
We can further generalize (2) of Theorem 10 to a more symmetric form as an example 

of Theorem 8. Note that, for u, v ∈ A{0,1,z}, the stuffle product u ∗ v is in A{0,1,z,z2}
where

A{0,1,z,z2} := Z 〈e0, e1, ez, ez2〉 ⊂ AF .

For c ∈ {0, 1, −1}, we extend the previous definition of ∂z,c to ∂z,c : A{0,1,z,z2} →
A{0,1,z,z2} by

∂z,c(ea1 · · · ean
) :=

∑
1≤i≤n
ai �=ai+1

ordz=c(ai+1 − ai)ea1 · · · êai
· · · ean

−
∑

1≤i≤n
ai−1 �=ai

ordz=c(ai − ai−1)ea1 · · · êai
· · · ean

where (a0, an+1) = (0, 1), and ordz=c(f) is the order of zero of f at z = c. Then the 
following theorem follows from Theorem 8.

Theorem 11. For c ∈ {0, 1, −1} and non-constant monomials u, v ∈ A{0,1,z},

∂z,c(u ∗ v) = u ∗ (∂z,cv) + (∂z,cu) ∗ v + δa,0δb,zδc,0 u
′ ∗ v + δb,0δa,zδc,0 u ∗ v′,

where u = eau
′, v = ebv

′.
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