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1. Introduction

Ultragraphs are versatile types of labelled graphs: their combinatorial structure en-
codes elaborate symbolic dynamics and algebras, meanwhile, the intuition from the graph 
context is often (but not always) preserved. Ultragraphs were originally defined in [47], 
as a unifying object to study Exel-Laca and graph C*-algebras. Since then, their study 
has intertwined Dynamics, Algebra and Analysis in ways that each area benefits from 
the other, see for example [24,29–31,46] where ultragraphs are used to study shift spaces 
over infinite alphabets, [15,46] where KMS states associated to ultragraph C*-algebras 
are described, [37] where purely infinite ultragraph C*-algebras are determined, [16]
where topological full groups associated to ultragraph groupoids are shown to be iso-
morphism invariants, [35] where ultragraph Leavitt path algebras are introduced and [26]
where irreducible representations of ultragraph Leavitt path algebras are characterized, 
among many other developments.

Since ultragraphs are labelled graphs (for which edges with the same label necessarily 
have the same source), their algebras share some of the intricacies of labelled graph 
algebras. Labelled graph C*-algebras were originally defined in [3], but the final definition 
was settled independently in [2] and [6]. Technically, this C*-algebra is associated with 
a labelled space, which is a labelled graph with an additional family of sets of vertices 
(see Section 2.3). In this paper, we illustrate that the elaborate nature of labelled graphs 
(spaces) and their associated algebras manifests itself in ultragraphs, and we show when 
relevant concepts can be simplified for certain cases.
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To associate an algebra with an ultragraph, we use the strategy proposed for combina-
torial algebras in [19]. Specifically, for an ultragraph G an inverse semigroup is associated 
with G. The tight spectrum of this inverse semigroup is then used, via a groupoid or par-
tial crossed product construction, as a building block for the C*-algebra or the Leavitt 
path algebra associated with G. In [5], an inverse semigroup is associated with a labelled 
graph and the tight spectrum of this inverse semigroup is characterized. Since ultra-
graphs are special cases of labelled graphs, we use the inverse semigroup of a labelled 
graph to study general ultragraphs.

In [25], a shift space is associated with an ultragraph G without sinks that satisfies 
Condition (RFUM), and also in [46] if G has sinks and satisfies Condition (RFUM2). 
For these special cases, we show that shift spaces coincide with the tight spectrum of 
the inverse semigroup associated with G (see Theorem 3.19). However, we find that the 
“graph” like picture of a shift space (using paths and cylinder sets) associated to an 
ultragraph satisfying Condition (RFUM2) is not available for general ultragraphs.

The tight spectrum of the inverse semigroup mentioned above is, in fact, the unit 
space of a groupoid used to realize an ultragraph C*-algebra as a groupoid C*-algebra. 
In [39] an inverse semigroup is associated with an ultragraph to also form a groupoid 
such that the groupoid C*-algebra is isomorphic to the ultragraph C*-algebra. However, 
we point out that our description of the unit space differs from that of [39], and we allow 
for sinks. Essentially, comparing these groupoids, the unit space in [39] lacks certain 
elements. We elaborate in detail on this in Remarks 3.5 and 3.7, and in Remark 5.11 we 
discuss some implications to the associated groupoid C*-algebra. For the description in 
[39] to work, an extra assumption that the range of every edge is finite is needed, see 
Remark 3.7.

Often when a combinatorial object has a C*-algebra associated with it, one can also 
associate an algebra over a ring with it. If a groupoid description of this C*-algebra 
is obtained, then it is natural to try to obtain a Steinberg algebra realization of the 
algebra. Since the theory of Steinberg algebras is quite developed (see [12,14,45] for a 
few examples), and closely parallels the theory of groupoid C*-algebras, such realizations 
open the possibility of many advances. In the case of graphs, the groupoid used for 
modelling Leavitt path algebras and graph C*-algebras is the same. We show that this 
is also the case for ultragraphs,3 without any assumptions on the ultragraph.

To obtain a Steinberg algebra realization of an ultragraph Leavitt path algebra, we use 
the description of the latter as a partial skew group ring [27] and the general realization of 
partial skew group rings as Steinberg algebras given in [4]. With this approach, we develop 
some new tools along the way which may be of independent interest. However, we need to 
overcome a few hurdles. First, we need to reconcile two running definitions of ultragraph 
Leavitt path algebras. To describe this issue, recall that an ultragraph is a quadruple 

3 While we were in the final phase of organizing this paper, the manuscript [34] was posted on arXiv, 
where a Steinberg algebra realization of an ultragraph Leavitt path algebra is given. Nevertheless, the 
groupoid presented there is the same as the groupoid introduced in [39], and so their approach needs the 
extra assumption that the range of each edge is finite.
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G = (G0, G1, r, s) consisting of two countable sets G0 and G1, a map s : G1 → G0, and a 
map r : G1 → P (G0) \ {∅}, where P (G0) is the power set of G0. A key concept in the 
definition of ultragraph algebras is that of a generalized vertex. Originally in [47] the 
set of generalized vertices of an ultragraph G is defined as the smallest subset of P (G0)
that contains {v} for all v ∈ G0, contains r(e) for all e ∈ G1, and is closed under finite 
unions and nonempty finite intersections. However, another definition also appears in the 
literature. For example, in [36] the set of generalized vertices, in addition to the original 
definition, is also taken to be closed under relative complements. In [36] it is proved that 
the C*-algebras arising from both definitions are isomorphic (see Remark 2.5 and Section 
3 of [36]). In the algebraic setting, ultragraph Leavitt path algebras are defined in [35]
by also including relative complements in the generalized vertices (this convention is also 
used in [21]). In other contexts, the definition of generalized vertices does not require 
that the set is closed under relative complements (see [26,28,27,34,41]). Analogous to 
the C*-algebraic case, we show that ultragraph Leavitt path algebras arising from both 
definitions agree, see Proposition 5.2. Then we have the realization of any ultragraph 
Leavitt path algebra as a partial skew group ring, as given in [27], at our disposal. 
This brings us to the second hurdle to overcome. We show that the purely algebraic 
partial action constructed from an ultragraph in [27] can be built from the topological 
partial action defined on the tight spectrum of the inverse semigroup associated with the 
ultragraph in [17], see Theorem 4.15. We can then build the transformation groupoid of 
the topological partial action and use the isomorphism between the Steinberg algebra 
and the partial skew group ring found in [4] (see Theorem 5.5).

To exemplify the power of realizing ultragraph algebras as groupoid algebras we apply 
our results to obtain generalized uniqueness theorems to both ultragraph C*-algebras 
and ultragraph Leavitt path algebras. Recall that a uniqueness theorem means a set of 
conditions on a combinatorial object (in our case, an ultragraph) or on a representation 
of the associated algebra, guaranteeing that the representation is injective (see [40] for 
a nice description of the development of the subject in the context of C*-algebras). In 
our context, after identifying the abelian core subalgebra of an ultragraph algebra, we 
apply general groupoid C*-algebra and Steinberg algebra results [9,13] to show that 
a representation of an ultragraph algebra is injective if, and only if, its restriction to 
the abelian core subalgebra is injective, see Theorem 6.11 and Theorem 6.13. We remark 
that our results do not require aperiodicity, a gauge invariance or a Z-graded assumption. 
Finally, our identification of the abelian core subalgebra of an ultragraph Leavitt path 
algebra allows us to apply results of [33] to describe the core as the centralizer of the 
diagonal subalgebra, and to show that if the centre of an ultragraph Leavitt path algebra 
is equal to its abelian core then the ultragraph is either a single vertex or a vertex with a 
loop (in the context of Leavitt path algebras this question is posed in [11] and answered 
in [33]).

The paper is organized in a manner that (we hope) appeals to an audience with differ-
ent backgrounds and interests. In Section 2.1 we recall the necessary concepts regarding 
filters, labelled spaces, the key inverse semigroup associated with a labelled space and 
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its tight spectrum. In Section 3 we recall the definition of the shift space associated to 
an ultragraph that satisfies Condition (RFUM2) and, in Theorem 3.19, we show that it 
is homeomorphic to the tight spectrum of the associated inverse semigroup. As a conse-
quence, we obtain that the “graph like” groupoids studied in [16,46] coincide with the 
groupoid arising from the labelled space perspective. Furthermore, we provide examples 
of ultragraphs for which the tight spectrum of the inverse semigroup associated with it 
cannot be described in the same manner as the shift defined for ultragraphs with Con-
dition (RFUM2). Section 4 is independent of Section 3. Here we show that the algebraic 
partial action defined in [27] agrees with the topological partial action associated with 
an ultragraph defined in [17]. We devote Section 5 to reconciling the different definitions 
of an ultragraph Leavitt path algebra (Proposition 5.2) and to the realization of ultra-
graph algebras as groupoid algebras (C*-algebraic in Theorem 5.9 and purely algebraic 
in Theorem 5.5) by using the groupoid described in Section 3 and, in the algebraic case, 
also using the results of Section 4. Finally, in Section 6, we apply our results to obtain 
generalized uniqueness theorems for ultragraph algebras, both in the C*-algebraic (The-
orem 6.11) and purely algebraic context (Theorem 6.13), and we describe the abelian 
core subalgebra of an ultragraph algebra (Proposition 6.8).

2. Preliminaries

Throughout this paper we let N and N∗ denote the set of non-negative integers, and 
positive integers, respectively.

2.1. Filters

A filter in a partially ordered set P with least element 0 is a subset ξ of P such that 
(i) 0 /∈ ξ; (ii) if x ∈ ξ and x ≤ y, then y ∈ ξ and (iii) if x, y ∈ ξ, there exists z ∈ ξ such 
that z ≤ x and z ≤ y. If P is a (meet) semilattice, condition (iii) may be replaced by 
x ∧ y ∈ ξ if x, y ∈ ξ. An ultrafilter is a filter which is not properly contained in any filter.

For x ∈ P , we define

↑x = {y ∈ P | x ≤ y} , ↓x = {y ∈ P | y ≤ x},

and for subsets X, Y of P define

↑X =
⋃
x∈X

↑x = {y ∈ P | x ≤ y for some x ∈ X},

and ↑Y X = Y ∩ ↑X; the sets ↑Y x, ↓Y x, ↓X and ↓Y X are defined analogously. A filter ξ
is called principal if ξ =↑x for some x ∈ P .

If ξ is a filter in a lattice L with least element 0, we say that ξ is prime if for every 
x, y ∈ L, if x ∨ y ∈ ξ, then x ∈ ξ or y ∈ ξ.



G.G. de Castro et al. / Journal of Algebra 579 (2021) 456–495 461
We consider a Boolean algebra to be a relatively complemented distributive lattice 
with least element 0. We do not assume that Boolean algebras have a greatest element.

The following result is well known in order theory.

Proposition 2.1. Let ξ be a filter in a Boolean algebra B. Then the following are equiva-
lent:

• ξ is an ultrafilter,
• ξ is a prime filter,
• if x ∈ B is such that x ∧ y �= 0 for all y ∈ ξ, then x ∈ ξ.

We briefly describe the Stone duality. For a Boolean algebra B, the set of all ultrafilters 
in B will be denoted by B̂. For each x ∈ B, we let Ux = {ξ ∈ B̂ | x ∈ ξ}. Then the family 
{Ux}x∈ξ is a basis of compact-open sets for a Hausdorff topology on B̂. The set B̂ with 
this topology is called the Stone dual of B. On the other hand, if X is a Hausdorff space 
such the set of all compact-open sets K(X) is a basis for the topology on X, then K(X)
is a Boolean algebra such that K̂(X) is homeomorphic to X.

2.2. Algebras of sets via characteristic functions

Let C be a lattice of subsets of a set X. In this subsection, we characterize the algebra 
generated by the characteristic functions (taking values in a commutative unital ring) 
of elements from C as a universal algebra. This will be important in Section 5, in the 
study of ultragraph Leavitt path algebras. However, since this result is independent of 
ultragraph algebras, we present it here.

Let X be a set, R a commutative unital ring, C ⊂ P (X) be a family of subsets of X, 
F (X) be the R-algebra of functions from X to R with pointwise operations, FC(X) be 
the subalgebra of F (X) generated by {1C}C∈C, where 1C represents the characteristic 
function of the set C, and let AC be the algebra of sets generated by C.

Lemma 2.2. We have that

AC = {A ⊆ X | 1A ∈ FC(X)}.

In particular FC(X) = FAC
(X).

Proof. Define B = {A ⊆ X | 1A ∈ FC(X)}. It is straightforward to check that B is 
an algebra of sets containing C so that AC ⊆ B. Let B ∈ B so that 1B is a linear 
combination of some 1C1 . . . , 1Cn

, where each Ci is a finite intersection of elements of 
C for i = 1, . . . , n. By basic set theory, we can find a family of mutually disjoint sets 
A1, . . . , Am in AC such that each Ci is a finite union of some elements of this family. 
We can then rewrite 1B as a linear combination of 1A1 , . . . , 1Am

where each coefficient 
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is either 0 or 1. If follows that B is the union of the Aj’s whose coefficient is 1 and hence 
B ∈ AC.

For the last part, the inclusion FC(X) ⊆ FAC
(X) is immediate and the reverse inclu-

sion follows from the argument above. �
Definition 2.3. Let C be a lattice of sets. We define LC as the universal R-algebra gener-
ated by a family of idempotents {pA}A∈C subject to the relations p∅ = 0, pA∩B = pApB
and pA∪B = pA + pB − pA∩B for all A, B ∈ C.

Proposition 2.4. Let C be a lattice of subsets of X. Then there exists an isomorphism 
φ : LC → FC(X) such that φ(pA) = 1A for all A ∈ C.

Proof. By the universal property of LC, there exists an R-algebra homomorphism φ :
LC → F (X) such that φ(pA) = 1A for all A ∈ C. Notice that φ(LC) = FC(X), so it 
remains to show that φ is injective. We claim that for A, B ∈ C, we have that pA = pA∩B

if and only if 1A = 1A∩B . Indeed, if pA = pA∩B then 1A = φ(pA) = φ(pA∩B) = 1A∩B . 
On the other hand, if 1A = 1A∩B then A = A ∩B so that pA = pA∩B .

Take x ∈ LC and suppose that φ(x) = 0. Since C is closed under intersections, we 
have that LC = span{pA}A∈C, so we can write x =

∑n
i=1 ripAi

for some n ∈ N∗ and 
ri ∈ R, Ai ∈ C for all i = 1, . . . , n. For each ∅ �= I ⊆ {1, . . . , n}, we let AI =

⋂
i∈I Ai, 

BI =
⋃

i∈Ic Ai and pI = pAI
− pAI∩BI

. Straightforward computations show that pI is 
idempotent for all I, that pIpJ = 0 if I �= J and that pAi

=
∑

i∈I pI for all i. By the 
above claim pI = 0 if and only if AI = AI ∩ BI . Let Λ = {I ⊆ {1, . . . , n} | pI �= 0} so 
that we can write x =

∑
I∈Λ sIpI , where sI ∈ R for all I ∈ Λ. For a fixed J ∈ Λ, we 

have that

0 = φ(x) = φ(pJ)φ(x) = φ(pJx) = φ(sJpJ) = sJ(1AJ
− 1AJ∩BJ

).

Since J ∈ Λ, we have that pJ �= 0, so that AJ �= AJ ∩BJ and hence, the above equality 
then implies sJ = 0. Since J ∈ Λ was arbitrary, we have that x = 0. The injectivity of φ
follows. �
2.3. Labelled spaces and ultragraphs

A (directed) graph E = (E0, E1, r, s) consists of non-empty sets E0 (of vertices), E1 (of 
edges), and range and source functions r, s : E1 → E0. A vertex v such that s−1(v) = ∅
is called a sink, and the set of all sinks is denoted by E0

sink. The graph is countable if 
both E0 and E1 are countable.

A path of length n on a graph E is a sequence λ = λ1λ2 . . . λn of edges such that 
r(λi) = s(λi+1) for all i = 1, . . . , n − 1. We write |λ| = n for the length of λ and 
regard vertices as paths of length 0. En stands for the set of all paths of length n and 
E∗ = ∪n≥0E

n. Similarly, we define a path of infinite length (or an infinite path) as an 
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infinite sequence λ = λ1λ2 . . . of edges such that r(λi) = s(λi+1) for all i ≥ 1; for such a 
path, we write |λ| = ∞ and we let E∞ denote the set of all infinite paths.

A labelled graph consists of a graph E together with a surjective labelling map L :
E1 → A, where A is a fixed non-empty set, called an alphabet, and whose elements are 
called letters. A∗ stands for the set of all finite words over A, together with the empty 
word ω, and A∞ is the set of all infinite words over A. We consider A∗ as a monoid 
with operation given by concatenation. In particular, given α ∈ A∗ \ {ω} and n ∈ N∗, 
αn represents α concatenated n times and α∞ ∈ A∞ is α concatenated infinitely many 
times.

The labelling map L extends in the obvious way to L : En → A∗ and L : E∞ → A∞. 
Ln = L(En) is the set of labelled paths α of length |α| = n, and L∞ = L(E∞) is the 
set of infinite labelled paths. We consider ω as a labelled path with |ω| = 0, and set 
L≥1 = ∪n≥1L

n, L∗ = {ω} ∪ L≥1, and L≤∞ = L∗ ∪ L∞.
For α ∈ L∗ and A ∈ P (E0) (the power set of E0), the relative range of α with respect 

to A is the set

r(A,α) =
{
{r(λ) | λ ∈ E∗, L(λ) = α, s(λ) ∈ A}, if α ∈ L≥1

A, if α = ω.

The range of α, denoted by r(α), is the set

r(α) = r(E0, α),

so that r(ω) = E0 and, if α ∈ L≥1, then r(α) = {r(λ) ∈ E0 | L(λ) = α}.
We also define

L(AE1) = {L(e) | e ∈ E1 and s(e) ∈ A} = {a ∈ A | r(A, a) �= ∅}.

A labelled path α is a beginning of a labelled path β if β = αβ′ for some labelled path 
β′. Labelled paths α and β are comparable if either one is a beginning of the other. If 
1 ≤ i ≤ j ≤ |α|, let αi,j = αiαi+1 . . . αj if j < ∞ and αi,j = αiαi+1 . . . if j = ∞. If j < i

set αi,j = ω. Define L∞ = L(E∞) = {α ∈ A∞ | α1,n ∈ L∗, ∀n ∈ N}, that is, it is the 
set of all infinite words such that all beginnings are finite labelled paths. Also we write 
L≤∞ = L∗ ∪ L∞.

A labelled space is a triple (E, L, B) where (E, L) is a labelled graph and B is a family 
of subsets of E0 which is closed under finite intersections and finite unions, contains all 
r(α) for α ∈ L≥1, and is closed under relative ranges, that is, r(A, α) ∈ B for all A ∈ B

and all α ∈ L∗. A labelled space (E, L, B) is weakly left-resolving if for all A, B ∈ B and 
all α ∈ L≥1 we have r(A ∩ B, α) = r(A, α) ∩ r(B, α). A weakly left-resolving labelled 
space such that B is closed under relative complements will be called normal.4

4 Note this definition differs from [2]. However since all labelled spaces considered in this paper are weakly 
left-resolving, we include ‘weakly-left resolving’ in the definition of a normal labelled space.
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For α ∈ L∗, define

Bα = B ∩ P (r(α)) = {A ∈ B | A ⊆ r(α)}.

If a labelled space is normal, then Bα is a Boolean algebra for each α ∈ L∗.
Our main objects of study in this paper are ultragraphs. Our approach is through 

labelled spaces, which will allow us to prove results for ultragraphs in full generality. 
Next, we outline how a labelled space is associated with an ultragraph, we highlight 
certain properties and we fix some notation.

Definition 2.5. An ultragraph is a quadruple G = (G0, G1, r, s) consisting of two countable 
sets G0, G1, a map s : G1 → G0, and a map r : G1 → P (G0) \ {∅}, where P (G0) is the 
power set of G0.

Definition 2.6. Let G be an ultragraph. Define G0 to be the smallest subset of P (G0)
that contains {v} for all v ∈ G0, contains r(e) for all e ∈ G1, contains ∅, and is closed 
under finite unions and finite intersections. Elements of G0 are called generalized vertices. 
The accommodating family B associated with G is the smallest family of subsets of 
G0 that contains G0 and is closed under relative complements, finite unions and finite 
intersections.

We can now define the labelled space associated with an ultragraph.

Definition 2.7. ([3, Examples 3.3(ii) and 4.3(ii)], [2, Example 2]). Fix an ultragraph G =
(G0, G1, r, s). Let EG = (E0

G , E
1
G , r

′, s′), where E0
G = G0, E1

G = {(e, w) : e ∈ G1, w ∈ r(e)}
and define r′(e, w) = w and s′(e, w) = s(e). Set A = G1, B the accommodating family 
of G and define LG : E1

G → A by LG(e, w) = e. Then, (EG , LG , B) is the normal labelled 
space associated with G.

Although ultragraphs are labelled graphs, it is important to recognize the usual no-
tation used in their study. We briefly recall this below. For more details, we refer the 
reader to [39,46].

Let G be an ultragraph. A finite path in G of is either an element of G0 or a sequence 
of edges e1 . . . ek in G1 where s (ei+1) ∈ r (ei) for 1 ≤ i < k. The set of finite paths in G is 
denoted by G∗. An infinite path in G is an infinite sequence of edges γ = e1e2 . . . in 

∏
G1, 

where s (ei+1) ∈ r (ei) for all i ≥ 1. The set of infinite paths in G is denoted by p∞. With 
this definition, labelled paths correspond to paths in the ultragraph, and L∞ = L∞. A 
vertex v in G0 is called a sink if 

∣∣s−1 (v)
∣∣ = 0. We denote the set of sinks in an ultragraph 

G by G0
s. We say that the ultragraph is connected if for every v, w ∈ G0, there exists 

a finite path γ ∈ G∗ such that s(γ) = v and w ∈ r(γ). For each A ∈ P (G0), we define 
ε(A) := {e ∈ G1 : s(e) ∈ A}, and notice that ε(A) = L(AE1) for the labelled graph 
associated with G. We say that A ∈ G0 is an infinite emitter if |ε(A)| = ∞. Otherwise 
we say that A is a finite emitter.
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For n ≥ 1, we define

pn := {(α,A) : α ∈ G∗, |α| = n,A ∈ G0, A ⊆ r(α)}.

We specify that (α,A) = (β, B) if, and only if, α = β and A = B. Letting p0 := G0

we define the ultrapath space associated with the ultragraph G to be p := �
n≥0

pn. The 

elements of p are called ultrapaths. We embed the set of finite paths G∗ in p by sending 
α to (α, r(α)). Define the length |(α,A)| of a pair (α,A) to be |α|. Each A ∈ G0 is 
regarded as an ultrapath of length zero and can be identified with the pair (A, A). Hence, 
the range map r and the source map s extend to p by declaring that r ((α,A)) = A, 
s ((α,A)) = s (α) and r(A, A) = r(A) = A = s(A) = s(A, A).

A finite path α ∈ G∗ with |α| > 0 is a loop if s(α) ∈ r(α). We say α is a loop based 
at A ∈ G0 if s(α) ∈ A. An exit for a loop α = α1 . . . αn is either of the following:

1. an edge e ∈ G1 such that there exists an i for which s(e) ∈ r(αi), but e �= αi+1,
2. a sink w such that w ∈ r(αi) for some i.

We concatenate elements in p in the following way: If x = (α, A) and y = (β, B), 
with |x| ≥ 1, |y| ≥ 1, then x · y is defined if, and only if, s(β) ∈ A, in which case, 
x · y := (αβ, B). Also we specify that:

x · y =

⎧⎪⎨⎪⎩
x ∩ y, if x, y ∈ G0 and if x ∩ y �= ∅
y, if x ∈ G0, |y| ≥ 1, and if s(y) ∈ x

xy, if y ∈ G0, |x| ≥ 1, and if r(x) ∩ y �= ∅,

where, if x = (α,A), |α| ≥ 1 and if y ∈ G0, the expression xy is defined to be (α,A ∩ y). 
We concatenate ultrapaths in p with paths in p∞ as follows: If s(β) ∈ r(α, A) = A, we 
define (α, A) · β = αβ ∈ p∞, where (α, A) ∈ p and β ∈ p∞. Furthermore, if α = A then 
(A, A) · β = β ∈ p∞.

Remark 2.8. As pointed out in the introduction, the definition of G0 varies in the lit-
erature by either requiring that G0 is closed under relative complements or not. In this 
paper, we do not require that G0 is closed under relative complements. This is consis-
tent with Tomforde’s original definition in [47]. We shall keep track of this difference 
whenever it is relevant.

2.4. The inverse semigroup of a labelled space

Let (E, L, B) be a weakly-left resolving labelled space and consider the set

S = {(α,A, β) | α, β ∈ L∗ and A ∈ Bα ∩Bβ with A �= ∅} ∪ {0}.
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Define a binary operation on S as follows: s ·0 = 0 ·s = 0 for all s ∈ S and, if s = (α, A, β)
and t = (γ, B, δ) are in S, then

s · t =

⎧⎪⎨⎪⎩
(αγ′, r(A, γ′) ∩B, δ), if γ = βγ′ and r(A, γ′) ∩B �= ∅,
(α,A ∩ r(B, β′), δβ′), if β = γβ′ and A ∩ r(B, β′) �= ∅,
0, otherwise.

For s = (α, A, β) ∈ S, we define s∗ = (β, A, α).
The set S endowed with the operations above is an inverse semigroup with zero 

element 0 ([5], Proposition 3.4), whose semilattice of idempotents is

E(S) = {(α,A, α) | α ∈ L∗ and A ∈ Bα} ∪ {0}.

Remark 2.9. In [39], an inverse semigroup is associated with an ultragraph. The inverse 
semigroup we obtain from the labelled space of an ultragraph differs from the inverse 
semigroup in [39] in two aspects. Firstly, [39] intrinsically considers quadruples instead 
of triples and secondly, G0 is used, as opposed to B.

The natural order in the semilattice E(S) is given by p ≤ q if only if pq = p. In our 
case, the order can be described by noticing that if p = (α, A, α) and q = (β, B, β), then 
p ≤ q if and only if α = βα′ and A ⊆ r(B, α′) (see [5, Proposition 4.1]).

2.5. Filters in E(S)

For a (meet) semilattice E with 0, there is a bijection between the set of filters in E
and the set Ê0 of characters of E (that is, the zero and meet-preserving non-zero maps 
from E into the Boolean algebra {0, 1}). With the topology of pointwise convergence 
on Ê0, the closure of the subset Ê∞ of characters that correspond to ultrafilters in E
is denoted by Êtight, and is called the tight spectrum of E. Elements of Êtight are the 
tight characters of E, and their corresponding filters in E are tight filters. The set of all 
filters will be denoted by F and the set of all tight filters will be denoted by T, which 
we also call tight spectrum. In particular, we may view T as a closed subspace of F. See 
[19, Section 12] for details. We use this construction for the semilattice E(S) as in the 
previous section.

We now describe a basis for the topology of T inherited by the bijection with Êtight

as done in [38, Section 2.2]. For each e ∈ E(S), define

Ve = {ξ ∈ T | e ∈ ξ}.

If {e1, . . . , en} is a finite (possibly empty) set in E(S), define

Ve:e1,...,en = Ve ∩ V c
e ∩ · · · ∩ V c

e = {ξ ∈ T | e ∈ ξ, e1 /∈ ξ, . . . , en /∈ ξ}.

1 n
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In order to simplify the notation, let E(S)+ =
⋃∞

n=1 E(S)n, where E(S)n is the Cartesian 
product of n copies of E(S). For each n ∈ N and e = (e, e1, . . . , en) ∈ E(S)+, define 
Ve = Ve:e1,...,en . Then the family {Ve}e∈E(S)+ is a basis for the topology on T. Notice 
that if E(S) is countable, which is the case for ultragraphs, then T is second-countable 
and therefore metrizable.

Remark 2.10. Given e ∈ E(S) \ {0}, a simple application of Zorn’s lemma shows that 
there is an ultrafilter containing ↑e, which in turn implies that Ve �= ∅.

Let (E, L, B) be a weakly-left resolving labelled space. We recall the description of the 
tight spectrum of E(S), as given in [5] with the correction pointed out in [7] and [17]. 
Let α ∈ L≤∞ and let {Fn}0≤n≤|α| (understanding that 0 ≤ n ≤ |α| means 0 ≤ n < ∞
when α ∈ L∞) be a family such that Fn is a filter in Bα1,n for every n > 0 and F0 is 
either a filter in B or F0 = ∅. Then, the family {Fn}0≤n≤|α| is a complete family for α if

Fn = {A ∈ Bα1,n | r(A,αn+1) ∈ Fn+1}

for all 0 ≤ n < |α|.

Theorem 2.11. [5, Theorem 4.13] Let (E, L, B) be a weakly left-resolving labelled space and 
S its associated inverse semigroup. Then there is a bijective correspondence between filters 
in E(S) and pairs (α, {Fn}0≤n≤|α|), where α ∈ L≤∞ and {Fn}0≤n≤|α| is a complete 
family for α.

Filters are of finite type if they are associated with pairs (α, {Fn}0≤n≤|α|) for which 
|α| < ∞, and of infinite type otherwise. As a consequence of [5, Proposition 4.18], a filter 
of finite type is completely determined by α and F|α|.

A filter ξ in E(S) with associated labelled path α ∈ L≤∞ is sometimes denoted by ξα

to stress the word α; in addition, the filters in the complete family associated with ξα

will be denoted by ξαn (or simply ξn). Specifically,

ξαn = {A ∈ B | (α1,n, A, α1,n) ∈ ξα}. (2.12)

Remark 2.13. It follows from [5, Propositions 4.4 and 4.8] that for a filter ξα in E(S) and 
an element (β, A, β) ∈ E(S) we have that (β, A, β) ∈ ξα if and only if β is a beginning 
of α and A ∈ ξα|β|.

The following theorem characterizes the tight filters in E(S):

Theorem 2.14. [5, Theorems 5.10 and 6.7] Let (E, L, B) be a normal labelled space and 
S its associated inverse semigroup. Then the tight filters in E(S) are:

(i) The filters of infinite type for which the non-empty elements of their associated 
complete families are ultrafilters.
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(ii) The filters of finite type ξα such that ξ|α| is an ultrafilter in Bα and for each A ∈ ξ|α|
at least one of the following conditions hold:

(a) L(AE1) is infinite.
(b) There exists B ∈ Bα such that ∅ �= B ⊆ A ∩ E0

sink.

Notice that for the labelled space of an ultragraph, since all singletons are elements 
of B, condition (ii)(b) in the above theorem can be rewritten as A ∩ E0

sink �= ∅.

3. Groupoids for ultragraphs via labelled spaces

In this section we associate a groupoid with any ultragraph (in particular, we make 
no assumptions on the sinks or the range of the edges). We detail the similarities and 
differences to the approach in [39]. For ultragraphs that satisfy Condition (RFUM2), we 
show that the unit space of our groupoid, that is, the tight spectrum, coincides with the 
shift space defined in [46], and consequently that their associated groupoids agree. For 
background on groupoids and their C*-algebras, we refer the reader to [42].

3.1. The groupoid of a general ultragraph

Fix an ultragraph G = (G0, G1, r, s) and let (E, L) be the labelled graph associated to 
it as in Definition 2.7. Let B and G0 be as in Definition 2.6. Observe that if α = α1 . . . αn

is a path in G, then Bα = Bαn
.

The first step to obtaining the groupoid associated to G is to describe the tight spec-
trum T of E(S), where S is the inverse semigroup associated to (E, L, B) as in Section 2.4. 
For this, we need a few auxiliary results, which we prove next.

Remark 3.1. Notice that for every A ⊆ G0 and e ∈ G1, we have that r(A, e) = r(e) if 
s(e) ∈ A and r(A, e) = ∅ otherwise. In particular r({s(e)}, e) = r(e).

Lemma 3.2. Let α be a path in G such that |α| ≥ 1 and let {Fn}|α|n=0 be a complete family 
of filters for α. If 0 ≤ n < |α|, then Fn =↑Bαn

{s(αn+1)}.

Proof. By Remark 3.1 and the definition of complete family, {s(αn+1)} ∈ Fn, and if 
A ∈ Fn then s(αn+1) ∈ A. This implies that Fn ⊆↑Bαn

{s(αn+1)}. On the other hand, 
{s(αn+1)} ∈ Fn implies that ↑Bαn

{s(αn+1)} ⊆ Fn. �
Lemma 3.3. Let α be a finite path in G and F be an ultrafilter on Bα. If there exists 
A ∈ F with |A| < ∞, then F =↑Bα

{v} for some v ∈ A.

Proof. Suppose A = {v1, . . . , vn}. Since ∅ /∈ F , we have that n ≥ 1. Since A =
⋃n

i=1{vi}
and F is an ultrafilter, by Proposition 2.1, there exists i ∈ {1, . . . , n} such that {vi} ∈ F . 
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In this case ↑Bα
{vi} ⊆ F , and since ↑Bα

{vi} is also an ultrafilter (because it is a prime 
filter), equality holds. �
Lemma 3.4. Let α be an infinite path in G, then {Fn}∞n=0 := {↑Bαn

{s(αn+1)}}∞n=0 is the 
only complete family of filters (in particular, ultrafilters) for α.

Proof. First suppose that {Fn}∞n=0 is a complete family for α. Then, it follows from 
Remark 3.1 and the definition of complete family that {s(αn+1)} ∈ Fn and that if 
A ∈ Fn, then s(αn+1) ∈ A. This implies that Fn ⊆↑Bαn

{s(αn+1)}. On the other hand, 
{s(αn+1)} ∈ Fn implies that ↑Bαn

{s(αn+1)} ⊆ Fn.
That {↑Bαn

{s(αn+1)}}∞n=0 is always a complete family for α follows from Remark 3.1, 
and each ↑Bαn

{s(αn+1)} is an ultrafilter because it is a principal filter of a singleton. �
Remark 3.5. The above results allow us to describe the set of filters F of E(S) for the 
labelled space associated with an ultragraph. Namely, for each infinite path in G, there 
is only one filter in E(S) associated to it, and for each finite path α, there is a filter 
in E(S) associated to each filter F on Bα. In particular for each (α, A) ∈ p, we can 
define a filter in E(S) by defining F =↑Bα

A. Since not all filters in Bα are necessarily 
principal (see Remark 3.7), it follows that the correspondence of [39, Proposition 10] is 
incomplete. The issue lies in Case I of the proof of [39, Proposition 10], because, contrary 
to what happens with graphs, if the product of two idempotents is not zero, then the 
idempotents do not necessarily correspond to two ultrapaths where one is the beginning 
of the other. See also [5, Proposition 4.4].

We now give a complete description of T.

Proposition 3.6. For each infinite path α on G, there is unique element ξ ∈ T, whose 
associated word is α. And if ξα is a filter of finite type, then ξα ∈ T if and only if one 
of the following holds:

(i) There exists v ∈ G0
s such that ξ|α| =↑Bα

{v}.
(ii) For all A ∈ ξ|α|, |ε(A)| = ∞.
(iii) For all A ∈ ξ|α|, |A ∩G0

s| = ∞.

Proof. First, if α is an infinite path in G, then, by Lemma 3.4, the family {↑Bαn

{s(αn+1)}}∞n=0 is complete and each filter is an ultrafilter. By Theorem 2.14, the fil-
ter associated to α and this family is an element of T. The uniqueness of such ξ follows 
from Lemma 3.4.

For the second part, suppose that ξα is a filter of finite type such that ξα ∈ T. By 
Lemma 3.3, if there exists A ∈ ξ|α|, with |A| < ∞, then ξ|α| =↑Bα

{v} for some v ∈ r(α). 
Since ξ is tight, by Theorem 2.14, either v ∈ G0

s and (i) is satisfied, or v is an infinite 
emitter and (ii) is satisfied. Suppose now that |A| = ∞ for all A ∈ ξ|α|. In this case, 
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either (ii) is satisfied, or there exists B ∈ ξ|α| such that |ε(B)| < ∞. In the latter case, 
given A ∈ ξ|α|, we have that |ε(A ∩ B)| ≤ |ε(B)| < ∞. Since ξ|α| is an ultrafilter, and 
thus A ∩ B ∈ ξ|α|, it follows that |A ∩ B| = ∞. Hence A ∩ B has an infinite amount of 
sinks, and the same holds for A.

Finally if ξα is a filter of finite type such that ξ|α| satisfies Conditions (i) or (iii) in 
the statement, then ξ|α| satisfies Condition (ii)(b) in Theorem 2.14, and if ξ|α| satisfies 
Condition (ii) in the statement, then ξ|α| satisfies Condition (ii)(a) in Theorem 2.14. In 
all cases ξα ∈ T. �

Using the description of filters in E(S) given in Remark 3.5 and Proposition 3.6, the 
elements of T can be described in two ways:

• if ξ ∈ T is of infinite type, then it is completely described by the infinite path 
associated to it;

• if ξ ∈ T is of finite type, then it is described by a pair (α, F), where α is the labelled 
path associated to ξ and F is a filter in Bα satisfying one of the three conditions of 
Proposition 3.6. The filter F is equal to ξ|α| and by the definition of complete family, 
for all n < |α|, ξn can be recuperated from F .

Next, we associate a topological groupoid to an arbitrary ultragraph as the groupoid 
associated to its corresponding labelled space (see [7] for groupoids associated to general 
labelled spaces). This can be done in terms of a shift map and the Renault-Deaconu 
construction [18,43]. For each n ∈ N, we let T(n) = {ξα ∈ T | |α| ≥ n}. The map 
σ : T(1) → T of [7, Proposition 4.8] can be described in our case as:

1. If the associated path of ξ is an infinite path α1α2α3 . . ., then σ(ξ) is the filter asso-
ciated to the path α2α3 . . . as in Proposition 3.6.

2. If the associated path of ξ is a finite path α1α2 . . . αn with n ≥ 2, then σ(ξ) is the 
filter associated to the pair (α2 . . . αn, ξn).

3. If the associated path of ξ is an edge e ∈ G1, then σ(ξ) is the filter associated to the 
pair (ω, ↑Bξ1), recalling that ω is the empty word.

For n ∈ N∗, in order to apply σn to a element ξ ∈ T, it is necessary that ξ ∈ T(n). 
The Renault-Deaconu groupoid associated to the σ is then

Γ(T, σ) = {(ξ,m− n, η) ∈ T × Z× T | m,n,∈ N, ξ ∈ T(n), η ∈ T(m), σn(ξ) = σm(η)},

with product and inverse given by

• (ξ, k, η)(ζ, l, ρ) = (ξ, k + l, ρ) for (ξ, k, η), (ζ, l, ρ) ∈ Γ(T, σ) such that η = ζ, and
• (ξ, k, η)−1 = (η, −k, ξ) for (ξ, k, η) ∈ Γ(T, σ),
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respectively. A basis for the topology on Γ(T, σ) is given by the family of sets of the form

V(U, V,m, n) = {(ξ, k, η) ∈ Γ(T, σ) | k = m− n, (ξ, η) ∈ U × V, σm(ξ) = σn(η)},

where m, n ∈ N, U is an open subset of T(m) and V is an open subset of T(n).

Remark 3.7. Due to Remark 3.5, there is not always a bijection between the groupoid 
Γ(T, σ) and the ultragraph groupoid of [39] for ultragraphs without sinks, however, both 
approaches are very similar. The idea in both approaches is to consider an inverse semi-
group associated with an ultragraph, then consider the space of filters in the idempotent 
semilattice and to take a certain closed subspace to be the groupoid’s unit space. In gen-
eral, the closed subspace is the tight spectrum defined by Exel in [19], which appeared 
around the same time as [39]. If an ultragraph has no sinks, then because of [5, Theorem 
5.10] the ultrafilters in E(S) are exactly the filters associated with the infinite paths. 
In this case, the set T is the closure of the “set of infinite paths” as it is done in the 
discussion after [39, Proposition 18]. In order to describe which points of T are missing 
in the construction of [39], we recall that the approach there is to define an ultraset as an 
element A ∈ G0 such that the principal filter ↑G0A is an ultrafilter. Because all singleton 
subsets of G0 are in G0, we see that a principal filter is an ultrafilter if and only if A is 
a singleton. This means that the approach in [39] only considers elements of finite type 
in T that are given by pairs (α, ↑Bα

{v}), where v ∈ G0 is an infinite emitter. In fact, 
their groupoid will coincide with Γ(T, σ) if and only if the range of every edge is finite. 
To see this, note that if every range is finite, then every element of B is a finite subset 
of G0, and therefore, by Lemma 3.3, every ultrafilter is principal. On the other hand, 
if there is an edge e such that r(e) is infinite, then by Zorn’s lemma, there exists an 
ultrafilter F containing all cofinite subsets of r(e). Notice that, since we are assuming 
that the ultragraph has no sinks, all elements of F satisfies (ii) of Proposition 3.6 and 
F does not correspond to any vertex, and therefore the filter given by the pair (e, F)
has no correspondence in the groupoid defined in [39]. See also Proposition 3.18 and 
Example 3.20.

3.2. The groupoid of an ultragraph that satisfies Condition (RFUM2)

The tight spectrum (and hence the groupoid) associated with a general ultragraph is 
quite technical, which makes it hard to use in some applications. For ultragraphs that 
satisfy Condition (RFUM2), we can avoid using filters altogether, and build a groupoid 
which is more conducive to applications, see [16,46] (cf. [10] where the description of 
the groupoid in the graph case is given). The unit space of this groupoid (also known 
as the boundary path space), with the associated shift map, is proposed to be a version 
of a shift of finite type over an infinite alphabet in [25,46], and the dynamics of these 
shifts is studied in [29–31], among other papers. In this subsection, we show that the 
unit space of the groupoid defined in [46] agrees with the tight spectrum T associated 



472 G.G. de Castro et al. / Journal of Algebra 579 (2021) 456–495
with the ultragraph. Consequently, the groupoid introduced in [16,46] agrees with the 
groupoid we described in Subsection 3.1.

3.2.1. The boundary path space of an ultragraph that satisfies Condition (RFUM2)
In this subsection we recall the definition of the boundary path space of an ultragraph 

that satisfies Condition (RFUM2), as defined in [46]. We start with the definition of 
minimal infinite emitters.

Definition 3.8. Let G be an ultragraph and A ∈ G0. We say that A is a minimal infinite 
emitter if A is an infinite emitter, contains no proper subsets in G0 that are infinite 
emitters, and contains no proper subsets in G0 which are finite emitters and have infinite 
cardinality. We denote by A∞ the set of all minimal infinite emitters in G0.

Remark 3.9. Notice that if we consider minimal infinite emitters in the set B of Defini-
tion 3.8, instead of G0, then a minimal infinite emitter is necessarily a singleton. Indeed, 
this is the case if A is a minimal infinite emitter with |A| < ∞ (by the pigeonhole princi-
ple). On the other hand, if |A| = ∞ and we assume that A is a minimal infinite emitter 
then, for each element v of A, {v} is a finite emitter and A \{v} is also an infinite emitter, 
contradicting the minimality of A. This is not the case for G0 as we see in Example 3.20. 
Nevertheless, this point highlights the subtleties involved in the definition of G0.

The set of sinks in an ultragraph is denoted by G0
s. Let G0

s := �
vi∈G0

s

{{vi}} ⊆ G0, that 

is, G0
s is the collection of all singletons of G0 whose element is a sink. We now define sets 

that are minimal sinks.

Definition 3.10. Let G be an ultragraph and A ∈ G0. We say that A is a minimal sink if 
|A| = ∞, |ε(A)| < ∞ and A has no subsets (in G0) with infinite cardinality. We denote 
by As the set of all minimal sinks in G0.

Define the boundary path space as the set

X := p∞ �Xmin �Xsin,

where

Xmin := {(α,A) ∈ p : |α| ≥ 1, A ∈ A∞} ∪ {(A,A) ∈ p0 : A ∈ A∞},

Xsin := {(α,A) ∈ p : |α| ≥ 1, A ∈ G0
s �As} ∪ {(A,A) ∈ p0 : A ∈ G0

s �As}.

Let Xfin := Xmin �Xsin. We define a topology on X as follows. For each (β, B) ∈ p, let

D(β,B) := {y ∈ X : y = βγ; s(γ) ∈ B} ,
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and for each (β, B) ∈ Xfin, F ⊆ ε(B) finite, and S ⊆ B ∩G0
s finite, define

D(β,B),F,S := {(β,B)}� {y ∈ X : y = βγ′, |γ′| ≥ 1, γ′
1 ∈ ε(B) \ F}

� {y ∈ Xsin : y = (β, {v}) : v ∈ B\S} .

Then the collection of cylinders

{
{D(β,B) : (β,B) ∈ p, |β| ≥ 1}

∪ {D(β,B),F,S : (β,B) ∈ Xfin, F ⊆ ε(B), S ⊆ B, |F |, |S| < ∞}
}

is a countable basis for a topology on X. If G satisfies Condition (RFUM2) (defined 
below), then these cylinders are compact, [46, Proposition 3.22].

We recall the definition of Condition (RFUM2):

Definition 3.11. We say that an ultragraph G satisfies Condition (RFUM2) if for each 
edge e ∈ G1 its range can be written as

r(e) =
k⋃

n=1
An,

where An is either a minimal infinite emitter, or a minimal sink, or a singleton formed 
by a sink or a regular vertex.

Remark 3.12. For ultragraphs with no sinks, Condition (RFUM2) as defined above co-
incides with Condition (RFUM) of [25].

3.2.2. The tight spectrum for an ultragraph that satisfies Condition (RFUM2)
In this subsection, we describe the tight spectrum of an ultragraph that satisfies 

Condition (RFUM2) and identify it with the space X of the previous subsection. Before 
we prove this, we need a sequence of auxiliary results, we need a sequence of auxiliary 
results.

Recall that B is the smallest family of subsets of G0 that contains G0 and is closed 
under relative complements, finite unions and finite intersections (see Definition 2.6). We 
have the following description of B.

Lemma 3.13. Let B be as above. Then

B =
{

n⋃
i=1

Ai \Bi | n ∈ N, and Ai, Bi ∈ G0 ∀i ∈ {1, . . . , n}
}
. (3.14)

Moreover, for any finite path α on G,
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Bα =
{

n⋃
i=1

Ai \Bi | n ∈ N, and Ai, Bi ∈ G0, Ai, Bi ⊆ r(α) ∀i ∈ {1, . . . , n}
}
.

Proof. Let C be the set defined in the right hand side of Equation (3.14). Clearly C ⊆ B, 
and since ∅ ∈ G0, we have that G0 ⊆ C. Using that G0 is closed under finite intersections 
and finite unions, as well as some basic properties of operations on sets, we see that 
C is closed under relative complements, finite unions and finite intersections. By the 
minimality of B, we conclude that C = B. The last part is similar. �

Recall that As and A∞ denote the minimal sinks and the minimal infinite emitters, 
respectively (see Definition 3.8 and Definition 3.10).

Lemma 3.15. Suppose that A, B ∈ G0.

(i) If A, B ∈ A∞, then A = B or |A ∩B| < ∞.
(ii) If A, B ∈ As, then A = B or |A ∩B| < ∞.
(iii) If A ∈ A∞ and B ∈ As, then |A ∩B| < ∞.

Proof. (i) This statement follows from [46, Proposition 3.6].
(ii) This is the statement of [46, Proposition 3.9].
(iii) Notice that A ∩ B ∈ G0 and ε(A ∩ B) ≤ ε(B) < ∞, so that A ∩ B is a proper 

subset of A. By the definition of A∞, |A ∩B| < ∞. �
In the next couple of lemmas, we characterize the ultrafilters in Bα.

Lemma 3.16. Suppose that G is an ultragraph that satisfies condition (RFUM2). Let 
α ∈ L∗ and F be an ultrafilter on Bα.

(i) If there exists A ∈ F with |A| < ∞, then F =↑Bα
{v} for some unique v ∈ r(α).

(ii) If for every A ∈ F it holds that |A| = ∞, then there exists a unique B ∈ As �A∞
such that B ∈ F .

Proof. (i) This follows from Lemma 3.3. The uniqueness of v follows from the fact that 
{v} ∩ {w} = ∅ if v �= w and ∅ /∈ F .

(ii) Since F does not contain a finite subset of G0, by Lemma 3.13 and the fact it is 
a filter, F contains an element of G0. By [46, Lemma 7.12] and since F is a prime filter, 
there exists B ∈ As � A∞ such that B ∈ F . The uniqueness of such B follows from 
Lemma 3.15 and the fact that F is closed under intersections. �
Lemma 3.17. Suppose that G is an ultragraph that satisfies condition (RFUM2) and let 
α ∈ L∗. If B ∈ As ∪A∞ is such that |B| = ∞ and B ⊆ r(α), then there exists a unique 
ultrafilter F in Bα such that B ∈ F and |A| = ∞ for all A ∈ F .
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Proof. For the existence, we let

F = {C ∈ Bα | there exists A ∈ Bα with |A| < ∞ such that C ⊇ B \A}.

It is easy to check that F is a filter such that B ∈ F and |C| = ∞ for all C ∈ F . By 
Proposition 2.1, in order to prove that F is an ultrafilter, we will show that if D ∈ Bα is 
such that D ∩ C �= ∅ for every C ∈ F , then D ∈ F . Using Lemma 3.13 and [46, Lemma 
7.12], we can write D =

⋃n
i=1 Xi \ Yi where Xi is either finite or Xi ∈ As ∪ A∞ and 

Xi �= Xj if i �= j. By Lemma 3.15, there exists i0 such Xi0 = B, otherwise D∩(B\A) = ∅, 
where A =

⋃n
i=1(B ∩Xi) is finite set. We may assume that i0 = 1. Also, by [46, Lemma 

7.12], Y1 =
⋃m

j=1 Aj , where Aj is either finite or Aj ∈ As ∪A∞. Notice that Aj �= B for 
all j, otherwise X1 \Y1 = ∅, and arguing as above we would find A ⊆ G0 finite such that 
D ∩ (B \ A) = ∅. Let Z1 =

⋃m
j=1(B ∩ Ai) and Z2 =

⋃n
i=2(B ∩Xi) and notice they are 

both finite sets. It follows that

D ⊇ D ∩ (B \ Z2) = (B \ Y1) ∩ (B \ Z2) = (B \ Z1) ∩ (B \ Z2) = B \ (Z1 ∪ Z2),

which implies that D ∈ F .
For the uniqueness, we let H be another ultrafilter in Bα such that B ∈ H and 

|A| = ∞ for all A ∈ H. We prove that F ⊆ H. For that it is sufficient to prove that 
B \ A ∈ H for all A ∈ Bα finite. Fixed such A, notice that B ⊆ B ∪ A = (B \ A) ∪ A. 
Since H is prime and A is finite (so A /∈ H), we have that B \A ∈ H. Since F is also an 
ultrafilter, we conclude that F = H. �

Recall that B̂α denotes the Stone dual of Bα (see Subsection 2.1). Joining the previous 
two lemmas we get the following result.

Proposition 3.18. Suppose that G is an ultragraph that satisfies condition (RFUM2) and 
let α ∈ L∗. There is a bijective correspondence between {{v} | v ∈ r(α)} ∪ {B ∈ As ∪
A∞ | B ⊆ r(α), |B| = ∞} and B̂α that maps {v}, where v ∈ r(α), to ↑Bα

{v}, and 
maps B ∈ As ∪ A∞ such that B ⊆ r(α) and |B| = ∞ to {C ∈ Bα | there exists A ∈
Bα with |A| < ∞ such that C ⊇ B \A}.

Proof. The proof follows from Lemmas 3.16 and 3.17. �
We now prove the main result of this subsection.

Theorem 3.19. Suppose that G is an ultragraph that satisfies condition (RFUM2). For 
each α ∈ L∗, let φα : B̂α → {{v} | v ∈ r(α)} ∪ {B ∈ As ∪ A∞ | B ⊆ r(α), |B| = ∞} be 
the correspondence given in Proposition 3.18. Then, the map Φ : T → X given by
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Φ(ξα) =

⎧⎪⎪⎨⎪⎪⎩
(φω(ξ0), φω(ξ0)), if α = ω;
(α, φα(ξ|α|)), if 0 < |α| < ∞;
α, if |α| = ∞

is a homeomorphism.

Proof. We start by showing that Φ is well-defined. If ξα is a filter of infinite type, then 
it is clear that Φ(ξα) ∈ X. If ξα is a filter of finite type and φα(ξ|α|) ∈ As ∪ A∞, then 
Φ(ξα) is also an element of X. Finally, we have to show that if ξα is a filter of finite type 
and φα(ξ|α|) is a singleton, say {v}, then v is either a sink or an infinite emitter. This 
follows from Theorem 2.14, since in this case {v} ∈ ξ|α|.

We now build an inverse for Φ. Denote by G0
sg the set of vertices that are either an 

infinite emitter or a sink. Define Ψ : X → T as follows:

(a) For (A, A), where A ∈ {{v} | v ∈ G0
sg} ∪ As ∪ A∞, we let Ψ(A, A) be the filter 

associated to the pair (ω, φ−1
ω (A)).

(b) For (α, A), where A ∈ {{v} | v ∈ r(α) ∩ G0
sg} ∪ {B ∈ As ∪ A∞ | B ⊆ r(α)}, we let 

Ψ(α, A) be the filter associated to the pair (α, φ−1
α (A)).

(c) For α an infinite path, we let Ψ(α) be the filter associated to α.

We check that Ψ is well-defined. For (a) and (b), fix α ∈ L∗, where α = ω for item 
(a). We have four cases to consider for A. If A = {v} with v a sink, then all elements of 
φ−1
α (A) contain {v} as a subset and so they satisfy Theorem 2.14(ii)(b). If A = {v} with 

v an infinite emitter, then all elements of φ−1
α (A)) are infinite emitters and so they satisfy 

Theorem 2.14(ii)(a). If A ∈ As, then it contains an infinite number of sinks and hence, 
by the description of φ−1

α (A), we see that all its elements satisfy Theorem 2.14(ii)(b). 
Analogously, if A ∈ A∞ and |A| = ∞, all elements of φ−1

α (A)) satisfy Theorem 2.14(ii)(a). 
In all cases, we get a tight filter. For (c), Ψ(α) is well-defined by Proposition 3.6 and 
Theorem 2.14(i).

To see that Ψ = Φ−1, for finite paths, we use [5, Propositions 4.3 and 4.4] and 
Proposition 3.18, and, for infinite paths, we use [5, Theorem 4.13] and Proposition 3.6.

Let us prove now that Φ is continuous. For this we consider the basis for the topology 
on X given in Section 3.2.1, and we show that Φ−1 of each such basic open set is a basic 
open set for T. If (β, B) ∈ p, then, by the description of Φ−1 as Ψ, Remark 3.1 and 
[5, Proposition 4.1], we see that Φ−1(D(β,B)) = V(β,B,β). Analogously, if (β, B) ∈ Xfin, 
F = {f1, . . . , fn} ⊆ ε(B) and S = {s1, . . . , sm} ⊆ B ∩G0

s, then

Φ−1(D(β,B),F,S) = V(β,B,β):(βf1,r(f1),βf1),...,(βfn,r(fn),βfn),(β,{s1},β),...,(β,{sm},β).

Hence the inverse image of each basic open set of X by Φ is also open, from where we 
conclude that Φ is continuous.
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It remains to show that Ψ is continuous. For that, it is sufficient to show that Ψ
is a local homeomorphism. Notice that the sets D(β,B), for (β, B) ∈ p, cover X, and 
that, for each (β, B) ∈ p, we can restrict Φ to a bijection between V(β,B,β) and D(β,B). 
Since V(β,B,β) is compact, X is Hausdorff and Φ is continuous, this restriction is a 
homeomorphism with inverse given by a restriction of Ψ. This implies that Ψ is a local 
homeomorphism and therefore continuous. �
Example 3.20. Let G be the ultragraph such that G0 = {vi}i∈N and edges ei such that 
s(e0) = v0, r(e0) = {vi : i = 1, 2, . . .} and, for i �= 0, s(ei) = vi and r(ei) = {v0, vi}. 
Notice that this ultragraph has no sinks and satisfies condition (RFUM2). The set r(e0) is 
a minimal infinite emitter so that (e0, r(e0)) ∈ X. In order to describe the corresponding 
element of T, we note that Be0 consists only of the finite and cofinite subsets of r(e0). 
Then, by Proposition 3.18 and what we have just noticed, φe0(r(e0)) is the set of all 
cofinite subsets of r(e0), which is not a principal filter. Using the homeomorphism from 
Theorem 3.19, (e0, r(e0)) corresponds to the element ξ given by the pair (e0, φ−1

e0 (r(e0)). 
Finally, notice that, by the description of convergence in X given in [46, Corollary 3.20], 
the sequence of infinite paths (e0e

∞
n )n∈N∗ converges to (e0, r(e0)). Notice that in the 

space defined just after [39, Proposition 18], there is no element corresponding to ξ (see 
Remark 3.7).

3.2.3. Identifying the groupoids
In [46] the groupoid associated with an ultragraph that satisfies Condition (RFUM2) 

is the Renault-Deaconu groupoid obtained from a partially defined shift map on the space 
X, in a similar fashion to what we described for general ultragraphs in Subsection 3.1. 
In this subsection, we identify our general groupoid described in Subsection 3.1 with the 
groupoid described in [46]. For completeness sake, we briefly recall the definition of the 
groupoid defined in [46].

Definition 3.21. Let G be an ultragraph that satisfies Condition (RFUM2). We define 
the groupoid associated to G by G(X, ̃σ) := {(x, m − n, y) : x, y ∈ X; m, n ∈ N; ̃σm(x) =
σ̃n(y)}, where σ̃ is the shift map on X (see [46]). The source function is defined by 
s(x, k, y) = y and the range by r(x, k, y) = x. Multiplication is given by (x, k, y)(y, l, z) =
(x, k + l, z) and inversion by (x, k, y)−1 = (y, −k, x). The topology considered is that of 
cylinder sets, see [46].

Proposition 3.22. Suppose that G is an ultragraph that satisfies condition (RFUM2). 
Then the groupoids G(X, ̃σ) and Γ(T, σ) are isomorphic as topological groupoids.

Proof. It is easy to check that Φ from Theorem 3.19 gives a conjugation between the 
shift on X and the shift on T, and since both groupoids are Renault-Deaconu groupoids, 
the result follows. �
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4. Partial actions for ultragraphs via labelled spaces

Partial actions are the subject of intense research. They are interesting on their own 
and their associated algebras are used to model many known algebras, in particular, the 
ones associated with combinatorial objects (see [19,20]). In the context of ultragraphs, 
partial actions are used to describe the C*-algebras associated with ultragraphs that 
satisfy Condition (RFUM) or Conditon (RFUM2), see [25,46]. In the purely algebraic 
setting, the ultragraph Leavitt path algebra associated with a general ultragraph is 
realized as a partial skew group ring associated with a partial action in [27]. The goal of 
this section is to show that the topological partial action associated with a labelled space 
(as in [17, Proposition 3.12]) gives rise to an algebraic partial action (via locally constant 
functions with compact support) that is equivalent to the algebraic partial action defined 
in [27]. Furthermore, using the identification of T with X from Theorem 3.19, we also 
observe that for ultragraphs that satisfy Condition (RFUM2) the partial action defined 
in [17] generalizes that of [46].

4.1. The topological partial action on the tight filters of E(S)

In [17] a partial action by the free group generated by the alphabet A is defined on 
the tight spectrum T of a labelled space. In this section we outline this construction 
and refer the reader to [17, Section 3] for the details. For the definition of a topological 
partial action, we refer the reader to [20, Proposition 2.5 and Definition 5.1].

Fix a weakly-left resolving labelled space (E, L, B) and let F be the free group gen-
erated by A (identifying the identity of F with ω). Then, by [17, Proposition 3.12], for 
every t ∈ F there is a compact open set Vt ⊆ T and a homeomorphism ϕt : Vt−1 → Vt

such that

Δ = ({Vt}t∈F , {ϕt}t∈F ) (4.1)

is a topological partial action of F on T. In particular, Vω = T and if α, β ∈ L∗, then 
Vα = V(α,r(α),α), Vα−1 = V(ω,r(α),ω), and V(αβ−1)−1 = ϕ−1

β−1(Vα−1), with V(αβ−1)−1 �= ∅ if 
and only if r(α) ∩ r(β) �= ∅ ([17, Lemma 3.10]).

For the labelled space associated to an ultragraph, we can intuitively describe the 
map ϕαβ−1 , for α, β ∈ L∗, as cutting β from the beginning of an element ξ ∈ Vα−1β

and then gluing α in front of it. For filters of finite type we just have to take into 
account the last filter of the corresponding complete family. In most cases, the last filter 
is kept fixed, unless the empty word is involved. If β is the labelled path associated 
to an element ξ ∈ Vα−1β , then by cutting β, we get the filter associated to the pair 
(ω, ↑Bξ|β|), and by gluing α afterwards, we get the filter associated to the pair (α, F), 
where F = {A ∩ r(α) | A ∈↑Bξ|β|}.

Remark 4.2. Using the map Φ of Theorem 3.19 and the above description of the partial 
action, it follows that Δ is a generalization of the partial action for ultragraphs with-
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out sinks satisfying (RFUM) as in [25] and the generalization to ultragraphs satisfying 
(RFUM2) in [46].

We let

F �Δ T = {(t, ξ) ∈ F × T : ξ ∈ Vt} (4.3)

denote the transformation groupoid associated with Δ, as defined in [1]. Then Γ(T, σ)
defined in Section 3 and F �Δ T are isomorphic as topological groupoids, [17, Theorem 
5.5]. In Theorem 5.5 and Section 6 it will be convenient to use F �Δ T as the groupoid 
associated with a labelled space.

4.2. The algebraic partial action associated with an ultragraph

In this subsection, we show that the induced algebraic partial action arising from the 
action defined in Subsection 4.1 and the partial action defined in [27] are equivalent. We 
connect the necessary concepts from [27] with the concepts we developed so far, but we 
will refrain from reproducing here the whole construction given in [27]. We maintain the 
notation of the previous section.

For the remainder of the section, R is a commutative unital ring and, for a Hausdorff 
space X, Lc(X, R) denotes the set of locally constant R-valued functions on X with 
compact support.

Given an ultragraph G, we let

Y = p∞ ∪ {(α, v) | α ∈ L∗, v ∈ G0
s ∩ r(α)}.

Remark 4.4. The set Y is essentially the same as X considered in [27]. The only difference 
is that we are using (ω, v) instead of (v, v), recalling that ω is the empty word.

For each e = (α, A, α) ∈ E(S) \ {0}, we define

Ye = {y ∈ Y | |y| > |α|, y1,|α| = α, s(y|α|+1) ∈ A} ∪ {(α, v) | v ∈ A ∩G0
s}.

We also define Y0 = ∅.

Remark 4.5. Each set defined directly after [27, Notation 3.4] can be seen as Ye for some 
e ∈ E(S): for α, β ∈ L∗ and A ∈ G0, the set Xαβ−1 corresponds to Y(α,r(α)∩r(β),α), XA

corresponds to Y(ω,A,ω) and XαA corresponds to Y(α,A,α).

The following lemma is a simplification of [27, Lemma 3.6].

Lemma 4.6. For every e, f ∈ E(S), Ye ∩ Yf = Yef .
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Let D be the Boolean algebra in P (Y ) generated by the family {Ye}e∈E(S), and let 
D̂ be the set of all ultrafilters on D, that is, the Stone dual of D. We will show that D̂
is homeomorphic to T, but for this we need a few auxiliary results first.

For n ∈ N and e, e1, . . . , en, we define Ye:e1,...,en = Ye∩Y c
e1∩· · ·∩Y c

en . Using Lemma 4.6, 
we can see that every element of D is a finite union of sets of the form Ye:e1,...,en .

Lemma 4.7. Let n ∈ N and e, e1, . . . , en ∈ E(S) be given.

(i) For α ∈ p∞ and ξ the only tight filter associated to α, we have that ξ ∈ Ve:e1,...,en
if and only if α ∈ Ye:e1,...,en .

(ii) For (α, v) ∈ Y , where α ∈ L∗ and v ∈ G0
s, let ξ be the tight filter associated to 

(α, ↑Bα
{v}). Then, ξ ∈ Ve:e1,...,en if and only if (α, v) ∈ Ye:e1,...,en .

In particular, items (i) and (ii) define an injective map ι : Y → T such that 
ι(Ye:e1,...,en) = ι(Y ) ∩ Ve:e1,...,en .

Proof. (i) Notice that for e = (β, B, β) to be an element of ξ, we must have that β
is a beginning of α and s(α|β|+1) ∈ B. The result then follows from the definitions of 
Ve:e1,...,en and Ye:e1,...,en .

(ii) In this case for e = (β, B, β) to be an element of ξ, either β is a beginning of α
with |β| < |α| and s(α|β|+1) ∈ B, or β = α and v ∈ B. Again, the result follows from 
the definitions of Ve:e1,...,en and Ye:e1,...,en .

The last part follows immediately from (i) and (ii). �
For e = (e, e1, . . . , en) ∈ E(S)+, recall that Ve = Ve:e1,...,en as in Section 2.5. We also 

define Ye = Ye:e1,...,en .

Lemma 4.8. The map ι : Y → T given by Lemma 4.7 has dense image.

Proof. We prove that for every basic open set of the form Ve, where e ∈ E(S)+, if 
Ve �= ∅, then there exists y ∈ Y such that ι(y) ∈ Ve. Suppose then, that ξα ∈ Ve for 
some e ∈ E(S)+. If |α| = ∞, then by Lemma 4.7, ι(α) = ξα ∈ Ve.

Suppose now that ξα is a filter of finite type and consider the three cases of Proposi-
tion 3.6. For case (i), we have that ι(α, v) = ξα ∈ Ve by Lemma 4.7. For case (ii), suppose 
that |ε(A)| = ∞ for all A ∈ ξ|α|. Fix A ∈ ξ|α| and assume without loss of generality that 
e = ((β, B0, β), (α, B1, α), . . . , (α, Bk, α), (δ1, C1, δ1), . . . , (δl, Cl, δl)), where α = βγ for 
some γ ∈ L∗, r(B0, γ) ∈ ξ|α| and for each j = 1, . . . , l, δj is either a beginning of α
with |δj | < |α|, in which case s(α|δj |+1) /∈ Cj , or δj is not a beginning of α. Notice that 
A′ := (r(B0, γ) ∩ A) \ (B1 ∪ · · · ∪ Bk) ∈ ξ|α| and therefore |ε(A′)| = ∞. We can then 
choose a ∈ ε(A′) such that a is not the |α| + 1 coordinate of any δj . From αa we can 
build an element y ∈ Y beginning with αa by adding edges until we find a sink or we 
add infinitely many edges and build an infinite path. Then, by construction y ∈ Ye, and 
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therefore by Lemma 4.7, ι(y) ∈ Ve. Finally, for case (iii), if we let A′ as above, then 
|A′ ∩G0

s| = ∞. Analogous to case (ii), if we take any v ∈ A′ ∩G0
s, then ι(α, v) ∈ Ve. �

Lemma 4.9. Let e, f (1), . . . , f (m) ∈ E(S)+, where m ∈ N with m ≥ 1. If Ye ⊆
⋃m

i=1 Yf (i) , 
then Ve ⊆

⋃m
i=1 Vf (i) .

Proof. Let ξ ∈ Ve. By Lemma 4.8, there exists a sequence {yn}n∈N in Y such that ι(yn)
converges to ξ. Since Ve is open, by Lemma 4.7, we may assume that yn ∈ Ye for all 
n ∈ N. By the pigeonhole principle, there exists i ∈ {1, . . . , m} such that Yf (i) contains 
yn for infinitely many n ∈ N. We can then take a subsequence {ynk

}k∈N such that 
ynk

∈ Yf (i) for all k ∈ N. By Lemma 4.7, ι(ynk
) ∈ Vf (i) for all k ∈ N. Since Vf (i) is 

compact and T is Hausdorff, we conclude that ξ ∈ Vf (i) . �
For each Z ∈ D, let Ẑ = {F ∈ D̂ | Z ∈ F}. By the Stone duality, if K(D̂) is the family 

of all compact-open subsets of D̂, then the map Z ∈ D → Ẑ ∈ K(D̂) is an isomorphism 
of Boolean algebras.

We now prove that D̂ and T are homeomorphic.

Proposition 4.10. The map Φ : D̂ → T given by

Φ(F) = {e ∈ E(S) | Ye ∈ F}

is a homeomorphism such that Φ(Ŷe) = Ve for all e ∈ E(S)+.

Proof. We first check that Φ is well-defined. Given F ∈ D̂, since Y0 = ∅, we have that 
Y0 /∈ F and therefore 0 /∈ Φ(F). That Φ(F) is a filter in E(S) then follows from the fact 
that e ≤ f in E(S) whenever ef = e in S and Lemma 4.6. By Theorem 2.11, we can 
describe Φ(F) as a pair (α, {ξn}|α|n=0), where {ξn}|α|n=0 is a complete family of filters for α. 
We now prove, using Proposition 2.1, that ξn is an ultrafilter for every n. In order to do 
this, we fix n, we take an arbitrary A ∈ Bα1,n \ ξn and we show that there exists C ∈ ξn
such that A ∩C = ∅. Take B ∈ ξn and notice that A ∪B ∈ ξn and A ∪B can be written 
as the disjoint union A ∪ (B \A). Then Y(α1,n,A∪B,α1,n) = Y(α1,n,A,α1,n)∪Y(α1,n,B\A,α1,n), 
again the union being disjoint. Since F is an ultrafilter, it is a prime filter, and since 
A /∈ ξn, we have that Y(α1,n,B\A,α1,n) ∈ F and therefore C = B \ A ∈ ξn is such that 
A ∩ C = ∅. If |α| = ∞, then Φ(F) is a tight filter by Theorem 2.14. Suppose then 
that |α| < ∞ and let us check Condition (ii) of Theorem 2.14. If A ∈ ξ|α| is such that 
A ∩G0

s = ∅ and ε(A) < ∞, then Y(α,A,α) = ∪e∈ε(A)Y(αe,r(e),αe), and since F is prime, there 
exists e0 ∈ ε(A) such that Y(αe0,r(e0),αe0) ∈ F . This implies that (αe0, r(e0), αe0) ∈ Φ(F), 
but this contradicts the fact that α is the labelled path associated to Φ(F). We conclude 
that Φ(F) ∈ T when |α| < ∞ and |α| = ∞, showing Φ is well-defined.

For the inverse of Φ, given ξ ∈ T, we define

Fξ = {Z ∈ D | ∃ e ∈ E(S)+ such that ξ ∈ Ve and Ye ⊆ Z}.
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In order to prove that Fξ is an ultrafilter, it suffices to show that for n ∈ N with n ≥ 2, if 
f (1), . . . , f (n) ∈ E(S)+ are such that 

⋃n
i=1 Yf (i) ∈ Fξ, then there exists i ∈ {1, . . . , n} such 

that Yf (i) ∈ Fξ. By the definition of Fξ, if 
⋃n

i=1 Yf (i) ∈ Fξ, then there exists e ∈ E(S)+
such that ξ ∈ Ve and Ye ⊆

⋃n
i=1 Yf (i) . By Lemma 4.9, there exists i ∈ {1, . . . , n} such 

that ξ ∈ Vf (i) , but this implies that Yf (i) ∈ Fξ. The map Ψ : T → D̂ given by Ψ(ξ) = Fξ

is then well-defined. Let us prove that Ψ = Φ−1.
Given F ∈ D̂ and Z ∈ F , there exists e = (e, e1, . . . , en) ∈ E(S)+ such that Ye ∈ F

and Ye ⊆ Z. Notice that Ye ∈ F and Yei /∈ F for all i = 1, . . . , n. By definition, e ∈ Φ(F)
and ei /∈ Φ(F) for all i = 1, . . . , n, which implies that Φ(F) ∈ Ve. We conclude that 
Z ∈ Ψ(Φ(F)), and since Z was arbitrary, F ⊆ Ψ(Φ(F)). The equality follows from the 
fact that F is an ultrafilter.

Now fix ξ ∈ T. If e ∈ ξ, then ξ ∈ Ve, which implies that Ye ∈ Ψ(ξ), and hence 
e ∈ Φ(Ψ(ξ)). We conclude that ξ ⊆ Φ(Ψ(ξ)). For the reverse inclusion, suppose that 
e ∈ Φ(Ψ(ξ)). In this case Ye ∈ Ψ(ξ), and therefore there exists f ∈ E(S)+ such that 
ξ ∈ Vf and Yf ⊆ Ye. By Lemma 4.9, Vf ⊆ Ve, which implies that ξ ∈ Ve, that is, e ∈ ξ. 
The equality ξ = Φ(Ψ(ξ)) now follows.

The equality Φ(Ŷe) = Ve for all e ∈ E(S)+ follows from the construction of Φ. Finally, 
the family {Ŷe}e∈E(S)+ is a basis for the topology on D̂, which is sent by Φ to the basis 
{Ve}e∈E(S)+ of T. Hence Φ is a homeomorphism. �

Next we prove that the algebra D defined in [27] is isomorphic to Lc(D̂, R). Before 
we present this result we make a few observations.

If we define C = {Y(α,A,α) | (α, A, α) ∈ E(S), A ∈ G0}, then the algebra D defined in 
[27] coincides with FC(Y ). Notice that the algebra of sets generated by C is D, and thus, 
by Lemma 2.2, we have that D = FD(Y ). Hence,

D = span{1Y(α,A,α) : (α,A, α) ∈ E(S)}. (4.11)

Proposition 4.12. There exists an isomorphism of R-algebras φ : Lc(D̂, R) → D such 
that φ(1Ẑ) = 1Z for all Z ∈ D.

Proof. Given a non-zero element f ∈ Lc(D̂, R), let {r1, . . . , rn} be the non-zero elements 
belonging to the image of f and such that ri �= rj whenever i �= j. For each i = 1, . . . , n, 
let Ui = f−1(ri). Then Ui is a compact-open subset of D̂ and therefore there is a 
unique Zi ∈ D such that Ui = Ẑi. Define φ(f) =

∑n
i=1 ri1Zi

and φ(0) = 0. Using the 
isomorphism of Boolean algebra Z ∈ D → Ẑ ∈ K(D̂), it is easy to check that φ is a 
homomorphism of R-algebras. We have that φ is surjective because its image contains 
the generators of D. Moreover, observe that for Z ∈ D, we have that 1Z = 0 ⇔ Z =
∅ ⇔ Ẑ = ∅ ⇔ 1Ẑ = 0, from where we conclude that φ is injective. �

We have identified Lc(D̂, R) with D above, but our goal is to identify Lc(T, R) with 
D. We will do this using the identification between D̂ and T given in Proposition 4.10. 
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To this end, we need the following lemma, which describes a typical open set Vt, where 
t ∈ F , that appears in the definition of the partial action Δ (see (4.1)).

Lemma 4.13. For α, β ∈ L∗ we have that Vαβ−1 = V(α,r(α)∩r(β),α).

Proof. If ξ ∈ Vαβ−1 then r(α) ∩ r(β) �= ∅ (see [17, Lemma 3.10]), and by the partial 
action associated with a labelled space (4.1)

ξ = ϕαβ−1(η)

for some η ∈ V(βα−1)−1 . That is, η = ηβγ , for some γ ∈ L∞ ∪ L∗. Then, (ω, r(β), ω) ∈
ϕβ−1(η), which implies that (α, r(α) ∩ r(β), α) ∈ ϕαβ−1(η) = ξ, proving that Vαβ−1 ⊆
V(α,r(α)∩r(β),α).

For the reverse inclusion, if ξ ∈ V(α,r(α)∩r(β),α), then (α, r(α) ∩ r(β), α) ∈ ξ and thus 
ξ = ξαγ for some γ ∈ L∞ ∪ L∗. Then, (ω, r(α) ∩ r(β), ω) ∈ ϕ−1

α (ξ), which implies 
that (r(α) ∩ r(β)) ∈ ϕ−1

α (ξ)0. Since ϕ−1
α (ξ)0 is an ultrafilter, it follows that r(β) ∈

ϕ−1
α (ξ)0. Thus, ϕ−1

α (ξ) is in the set of tight filters that can be “glued” to β. Now, let 
η = ϕβ(ϕ−1

α (ξ)). Then,

ξ = ϕα(ϕ−1
β (η)).

That is, ξ ∈ Vαβ−1 , and thus V(α,r(α)∩r(β),α) ⊆ Vαβ−1 . �
For t ∈ F , the set

Dt = span{1t1Y(α,A,α) : (α,A, α) ∈ E(S)}

defines an ideal in D. Note that if t = γδ−1 for some γ, δ ∈ L∗, then Dγδ−1 = DXγδ−1 in 
the notation of [27], which corresponds to our DY(γ,r(γ)∩r(δ),γ) (see Remark 4.5). For the 
remainder of this section we retain the notation from earlier by still letting φ denote the 
isomorphism from Proposition 4.12 and Φ the homeomorphism from Proposition 4.10.

Proposition 4.14. For any compact open set U ⊂ T, we define

ψ(1U ) = φ(1Φ−1(U)).

Then ψ extends to an isomorphism of Lc(T, R) onto D. Furthermore, if t ∈ F is in 
reduced form, then ψ(Lc(Vt, R)) = Dt.

Proof. The claim that ψ extends to an isomorphism of Lc(T, R) onto D follows from 
Proposition 4.10 and Proposition 4.12.

Let t ∈ F be in reduced form. If t = ω, then Lc(Vω, R) = Lc(T, R), and we are done. 
If t �= ω and Vt �= ∅, then t ∈ {α | α ∈ L≥1} ∪ {α−1 | α ∈ L≥1} ∪ {αβ−1 | β, α ∈
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L≥1, r(α) ∩ r(β) �= ∅}, by [17, Lemma 3.11]. Similarly, by [27, Notation 3.4], if Dt �= ∅, 
then t = αβ−1 with r(α) ∩ r(β) �= ∅. Hence we may assume without loss of generality 
that t = αβ−1 with α, β ∈ L∗ and r(α) ∩ r(β) �= ∅.

We first show that ψ(Lc(Vt, R)) ⊆ Dt. By Lemma 4.13 we have that Vt =
Vαβ−1 = V(α,r(α)∩r(β),α), and then it follows from Lemma 4.10 that ψ(1V(α,r(α)∩r(β),α)) =
1Y(α,r(α)∩r(β),α) . Let U ⊆ Vt be a compact open set. Then Φ−1(U) is a compact 
open set in D̂. That is, Φ−1(U) ∈ K(D̂). Hence there is exists a Z ∈ D such that 
Φ−1(U) = Ẑ ⊂ Ŷ(α,r(α)∩r(β),α). Then,

ψ(1U ) = ψ(1U1V(α,r(α)∩r(β),α))

= 1Z1Y(α,r(α)∩r(β),α) ,

which belongs to Dt. If f ∈ Lc(Vt, R) is arbitrary, then f =
∑n

i=1 ri1Ui
, where ri ∈ R and 

Ui ⊆ Vt are compact open for each i = 1, 2, . . . , n. Then, ψ(f) =
∑n

i=1 riψ(1Ui
) ∈ Dt. 

Hence ψ(Lc(Vt, R)) ⊆ Dt.
To show that ψ(Lc(Vt, R)) ⊆ Dt, it will suffice to show that each generator of Dt is 

the image of some function from Lc(Vt, R). Consider 1Y(α,r(α)∩r(β),α)1Y(γ,C,γ) ∈ Dt, with 
(γ, C, γ) ∈ E(S). Then

ψ(1V(α,r(α)∩r(β),α)1V(γ,C,γ)) = 1Y(α,r(α)∩r(β),α)1Y(γ,C,γ) ,

and 1V(α,r(α)∩r(β),α)1V(γ,C,γ) ∈ Lc(V(α,r(α)∩r(β),α), R) = Lc(Vαβ−1 , R). Hence, ψ maps 
Lc(Vt, R) onto Dt. �

Let Δ = ({Vt}t∈F , {ϕt}t∈F ) be the partial action on T defined in (4.1). Then Δ
induces a dual algebraic partial action Δ̂ = ({Lc(Vt, R)}t∈F , {ϕ̂t}t∈F ), where each ϕ̂t :
Lc(Vt−1 , R) → Lc(Vt, R) is the isomorphism defined by ϕ̂t(f)(ξ) = f ◦ ϕt−1(ξ).

We now state the main result of this section.

Theorem 4.15. Let G be an ultragraph, Θ = ({Dt}t∈F , {θt}t∈F ) be the algebraic partial 
action of F on D as defined in [27, Remark 3.8] and Δ̂ = ({Lc(Vt, R)}t∈F , {ϕ̂t}t∈F ) be 
the dual of the topological partial action Δ = ({Vt}t∈F , {ϕt}t∈F ) defined in (4.1). Then 
Θ and Δ̂ are equivalent.

Proof. If ψ is the map of Proposition 4.14, then ψ ◦ ϕ̂t = θt ◦ψ for all t ∈ F , from where 
the result follows. �
Remark 4.16. In the context of Leavitt path algebras, the purely algebraic partial action 
defined in [23] is shown to be equivalent to a topological partial action in [32, Page 3964]. 
The above result generalizes this for ultragraph Leavitt path algebras.
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5. Ultragraph algebras

In this section, we focus on the realization of the algebras associated to ultragraphs 
as groupoid algebras. In the algebraic setting, we first do the fundamental task of rec-
onciling the two running definitions of an ultragraph Leavitt path algebra, and then we 
realize such algebras as Steinberg algebras. In the C*-algebraic context, we provide a 
description of a general ultragraph C*-algebra as a groupoid algebra, thereby generaliz-
ing [39] (where ultragraphs are assumed to have no sinks) and [46] (where ultragraphs 
are assumed to satisfy Condition (RFUM2)). Our results also provide a description of a 
general ultragraph C*-algebra as a partial crossed product.

5.1. Ultragraph Leavitt path algebra

In this section, we realize an ultragraph Leavitt path algebra as a Steinberg alge-
bra. However, as described in the introduction, it is of fundamental importance to first 
reconcile the two running definitions of ultragraph Leavitt path algebras. This is done 
in Proposition 5.2. After that, we turn our attention to showing that the Leavitt path 
algebra of an ultragraph is isomorphic to the Steinberg algebra associated to the trans-
formation groupoid described in Subsection 4.1.

The definition of an ultragraph Leavitt path algebra that we will adopt is the following.

Definition 5.1. Let G be an ultragraph and R be a unital commutative ring. The Leavitt 
path algebra of G, denoted by LR(G), is the universal R-algebra with generators {se, s∗e :
e ∈ G1} ∪ {pA : A ∈ G0} and relations

1. p∅ = 0, pApB = pA∩B , pA∪B = pA + pB − pA∩B , for all A, B ∈ G0;
2. ps(e)se = sepr(e) = se and pr(e)s∗e = s∗eps(e) = s∗e for each e ∈ G1;
3. s∗esf = δe,fpr(e) for all e, f ∈ G;
4. pv =

∑
s(e)=v

ses
∗
e whenever 0 < |s−1(v)| < ∞.

As we mentioned before, the difference in the definitions of an ultragraph Leavitt 
path algebra lies in how the set of generalized vertices is defined. Given an ultragraph 
G, let B and G0 be as in Definition 2.6, and recall that G0 is not necessarily closed under 
relative complements. We denote by LR(Gr) the Leavitt path algebra associated with G
by allowing A, B ∈ B in 1. of Definition 5.1, that is, LR(Gr) is the algebra as defined in 
[35, Definition 2.1].

Proposition 5.2. Let G be an ultragraph. Then LR(Gr) and LR(G) are isomorphic.

Proof. In LR(Gr), the family {pA, e, e∗ : A ∈ G0, e ∈ G1} satisfies the relations defining 
LR(G). By universality this gives us a homomorphism π : LR(G) → LR(Gr). We build 
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the inverse of this homomorphism by describing a family {p̃A, e, e∗ : A ∈ B, e ∈ G1}
inside LR(G) satisfying the relations defining LR(Gr).

Let LG0 be the algebra as in Definition 2.3, taking G0 as C and {qA}A∈G0 as the gener-
ators. By the universal property of LG0 , there exists an homomorphism φ : LG0 → LR(G)
such that φ(qA) = pA for all A ∈ G0. By Proposition 2.4, there exists an isomorphism 
ψ : FG0(G0) → LG0 such that ψ(1A) = qA for all A ∈ G0, where FG0(G0) is the subalgebra 
of F (G0) generated by {1C : C ∈ G0}. By Lemma 2.2, we have that FG0(G0) = FB(G0). 
Now, for each A ∈ B, we define

p̃A := φ(ψ(1A)).

Clearly p̃A = pA for all A ∈ G0. Also, it is readily checked that p̃Ap̃B = p̃A∩B and 
p̃A∪B = p̃A + p̃B − p̃A∩B for all A, B ∈ B.

Notice that the family {p̃A, e, e∗ : A ∈ B, e ∈ G1} inside LR(G) satisfies the relations 
defining LR(Gr) and hence, by universality, we obtain a homomorphism θ : LR(Gr) →
LR(G). To finish the proof we have to show that π and θ are inverses of each other. 
It is straightforward that θ ◦ π = id. We verify that π ◦ θ = id on the generators of 
LR(Gr). Note first that π ◦ θ(e) = e and π ◦ θ(e∗) = e∗ for all e ∈ G1. Let B ∈ B. Then 
θ(pB) = p̃B = φ(ψ(1B)). By Lemma 2.2, with C = G0, we have that 1B ∈ FG0(G0). So 
we can write 1B as a linear combination of the form 1B =

∑n
i=1 ci1Bi

, where Bi ∈ G0. 
Hence π ◦ θ(pB) =

∑n
i=1 cipBi

. Now note that, similarly to what was done for G0 above, 
we can find a homomorphism from FB(G0) to LR(Gr) sending 1A to pA for every A ∈ B. 
Applying this homomorphism to the equation 1B =

∑n
i=1 ci1Bi

we conclude that pB =∑n
i=1 cipBi

inside LR(Gr). So π ◦ θ(pB) = pB as desired. �
Although the algebras obtained with the different versions of generalized vertices 

agree, in some situations, there are relevant differences depending on the definition used. 
For example, the graded uniqueness theorem for ultragraph Leavitt path algebras proved 
in [35] gives conditions when a homomorphism from an ultragraph Leavitt path algebra 
is injective. Among the conditions, one is required to check that the homomorphism 
does not vanish on the generalized vertices. Of course, if the set of generalized vertices 
is larger, it is, a priori, harder to verify the condition. As we show below though, this is 
not the case, that is, it is enough to check the condition on the set of generalized vertices 
defined without the use of relative complements, that is, on G0. Furthermore, from this, 
we clearly get the graded uniqueness theorem for LR(G) (by composing homomorphisms), 
which we state below for completeness.

Lemma 5.3. Suppose that φ : LR(Gr) → S is a homomorphism that does not vanish in 
G0. Then φ does not vanish in B.

Proof. Let B ∈ B and take v ∈ B. Since v ∈ G0 we have that φ(v) �= 0. Hence 0 �=
φ(v) = φ(vB) = φ(v)φ(B). We conclude that φ(B) �= 0. �



G.G. de Castro et al. / Journal of Algebra 579 (2021) 456–495 487
Theorem 5.4. (cf. [35, Corollary 2.18]) Let G be an ultragraph, R be a unital commutative 
ring and S be a Z-graded ring. If π : LR(G) → S is a graded ring homomorphism such 
that π(rpA) �= 0 for all non-empty A ∈ G0 and all nonzero r ∈ R, then π is injective.

Given an ample groupoid Γ, we denote by AR(Γ) the groupoid algebra, known as 
Steinberg algebra, defined in [44]. In the next result, we give a realization of the Leavitt 
path algebra of an ultragraph as a Steinberg algebra.

Theorem 5.5. Let G be an ultragraph. Then, there is an isomorphism κ : LR(G) →
AR(F �Δ T) given on the generators of LR(G) by

κ(pA) = 1{ω}×V(ω,A,ω)

κ(se) = 1{e}×V(e,r(e),e) , and

κ(se∗) = 1{e−1}×V(ω,r(e),ω)

(5.6)

for each A ∈ G0 and e ∈ G1.

Proof. Let F �Δ T denote the transformation groupoid associated with Δ in (4.3). Then 
F �Δ T is an ample Hausdorff groupoid, [17, Lemma 5.4]. By [4, Theorem 3.2] the partial 
skew group ring Lc(T, R) �Δ̂ F is isomorphic to AR(F �Δ T).

By [27, Theorem 3.10] the Leavitt path algebra LR(G) associated with G is isomorphic 
to the partial skew ring D�Θ F . But, by Theorem 4.15, the partial actions Θ and Δ̂ are 
equivalent. Hence, D �Θ F is isomorphic to Lc(T, R) �Δ̂ F , from which it follows that 
LR(G) is isomorphic to AR(F �Δ T). The equations (5.6) are obtained by composing the 
two isomorphisms mentioned above. �

As the composition of two isomorphisms, κ in Theorem 5.5 factors through the partial 
skew ring Lc(T, R) �Δ̂F . Although κ is explicitly given on a generating set of LR(G), the 
dynamics in the partial skew ring play a big part in how κ maps more general elements. 
In Section 6 we are interested in elements of the from κ(sαpAsβ∗), with α, β ∈ L∗ and 
A ∈ G0. To see what κ(sαpAsβ∗) looks like in AR(F �Δ T), it is helpful to first compute 
the product in the partial skew ring, and then map into AR(F �Δ T). That is,

sαpAsβ∗ �→ (1V(α,r(α),α)δα)(1V(ω,A,ω)δω)(1V(ω,r(β),ω)δβ−1) ∈ Lc(T, R) �Δ̂ F ,

where, for example, δα is merely a placeholder indicating that 1V(α,r(α),α) belongs to the 
ideal Lc(Vα, R). Now, computing inside the partial skew ring yields

(1V(α,r(α),α)δα)(1V(ω,A,ω)δω)(1V(ω,r(β),ω)δβ−1) = 1V(α,A∩r(α)∩r(β),α)δαβ−1

(see for example [17, Equation (4.2)]). Then,

κ(sαpAsβ∗) = 1{αβ−1}×V . (5.7)
(α,A∩r(α)∩r(β),α)
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5.2. The C*-algebra of an ultragraph

In this section, we show how the C*-algebra of an arbitrary ultragraph defined by 
Tomforde in [47] can be written as a groupoid C*-algebra and as a partial crossed 
product, generalizing the results in [25,39,46].

Definition 5.8. ([47]) Let G be an ultragraph. The C*-algebra associated to G, denoted 
by C∗(G), is the universal C*-algebra generated by a collection of mutually orthogonal 
partial isometries {se : e ∈ G1} and projections {pA : A ∈ G0}, subject to the relations

1. p∅ = 0, pApB = pA∩B , pA∪B = pA + pB − pA∩B , for all A, B ∈ G0;
2. s∗ese = pr(e) for all e ∈ G1;
3. ses

∗
e ≤ ps(e) for all e ∈ G1;

4. pv =
∑

s(e)=v

ses
∗
e whenever 0 < |s−1(v)| < ∞.

As with Leavitt path algebras, we can define another C*-algebra by allowing the 
relations in 1 to be valid for all A, B ∈ B. That we still get C∗(G) with these extra 
relations is proven in [36].

For a labelled space (E, L, B), there is also a definition of a C*-algebra C∗(E, L, B)
such that if (E, L, B) is the labelled space associated to G, the C∗(E, L, B) ∼= C∗(G) [2, 
Example 2]. Let also Γ(T, σ) be the groupoid defined in Section 3 and Δ the partial 
action defined in Section 4.1. Then Δ induces a C*-algebraic partial action and we may 
form the partial crossed product C0(T) �Δ F .

Theorem 5.9. Let G be an arbitrary ultragraph, then

C∗(G) ∼= C∗(Γ(T, σ)) ∼= C∗(F �Δ T) ∼= C0(T) �Δ F .

Proof. The first isomorphism follows from [2, Example 2] and [7, Theorems 3.7 and 
5.8], the second isomorphism follows from [17, Theorem 5.5] and the third isomorphism 
follows from [1, Theorem 3.3]. �

We remark that the C*-algebra C0(T) �Δ F is generated by

{1V(ω,A,ω)δω, 1V(a,r(a),a)δa : A ∈ B, a ∈ A}.

Let κ∗ : C∗(G) → C∗(F �Δ T) denote the isomorphism in Theorem 5.9. Then κ∗ is given 
on the generators of C∗(G) by

κ∗(pA) = 1{ω}×V(ω,A,ω)

κ (s ) = 1 .
(5.10)
∗ e {e}×V(e,r(e),e)
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Remark 5.11. As pointed out in Remark 3.7, the description of the ultragraph groupoid 
GG in [39] is incomplete, which implies that the isomorphism in [39, Theorem 22] does 
not always hold. For instance, in Example 3.20, there is a sequence in V(e0,r(e0),e0) that 
converges to an element ξ, which corresponds to a pair (e0, F), where F is not a principal 
filter. This implies that the set A′((e0, r(e0)), e0) described in [39] is not actually com-
pact because it contains a sequence with no convergent subsequence, and therefore the 
characteristic function of this set is not an element of C∗(GG). This means that the map 
from C∗(G) to C∗(GG) that sends se0 to 1A′((e0,r(e0)),e0) (as in [39]) is not well-defined.

6. Abelian core subalgebras and the generalized uniqueness theorems

In this section, we prove generalized uniqueness theorems for ultragraph algebras in 
both the analytical and algebraic setting. These uniqueness theorems have the advantage 
of not requiring an aperiodicity nor a gauge invariance nor a graded homomorphism 
assumption. By identifying the abelian core subalgebras we also answer, in the context 
of ultragraph algebras, a question raised in [11] for Leavitt path algebras, namely we 
characterize the ultragraph Leavitt path algebras such that the centre is equal to the 
core.

For the results of this section, we will use the isotropy bundle of a groupoid. Recall 
that if G is a groupoid with source map s and range map r, the isotropy bundle is given 
by Iso(G) = {γ ∈ G | s(γ) = r(γ)}. For more details, we refer the reader to [9,13]. To fix 
the notation, Iso(G)0 represents the interior of the isotropy bundle of a groupoid G.

We recall below the generalized graded uniqueness theorem for Steinberg algebras (see 
also [12]).

Theorem 6.1 (Generalized Uniqueness Theorem). [13, Theorem 3.1] Let H be a second-
countable, ample, Hausdorff groupoid and let R be a unital commutative ring. Suppose 
that A is an R-algebra and that π : AR(H) → A is a ring homomorphism. Then π is 
injective if and only if π ◦ ι is injective, where ι is the natural inclusion of AR(Iso(H)0)
in AR(H).

In the context of groupoid C*-algebras, the analogous result is the following:

Theorem 6.2. [9, Theorem 3.1 (b)] Let G be a locally compact Hausdorff étale groupoid. 
If π : C∗

r (G) → D is a C∗-homomorphism, then π is injective if and only if π ◦ ιr is 
an injective homomorphism of C∗

r (Iso(G)0), where ιr : C∗
r (Iso(G)0) → C∗

r (G) is the 
inclusion map.

We want to use the above uniqueness results in combination with our characterization 
of ultragraph algebras as groupoid algebras to obtain generalized uniqueness theorems 
for ultragraph algebras. This motivates our definition of the abelian core of an ultragraph 
algebra, which we present after we recall some relevant concepts below.
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Let G be an ultragraph and let R be a unital commutative ring. Recall that LR(G) =
spanR{sαpAsβ∗ : α, β are paths, and A ∈ G0} and if R = C, then for C∗(G) the same 
holds by taking the closure of the span on the right side (see [35] and [47]). Denote the 
set of generators of the algebra by GG, that is,

GG = {sαpAsβ∗ : α, β are paths, A ∈ G0, and r(α) ∩A ∩ r(β) �= ∅}.

Definition 6.3. Let G be an ultragraph and let R be a unital commutative ring. The 
diagonal subalgebra D(LR(G)) of LR(G) (respectively D(C∗(G)) of C∗(G)) is the R-
subalgebra (respectively C∗-subalgebra) generated by elements of GG such that α = β. 
The abelian core of LR(G) (respectively of C∗(G)) is the subalgebra M(LR(G)) (respec-
tively the C∗-subalgebra M(C∗(G))) generated by elements of GG that satisfy:

1. α = β;
2. α = βλβ and λβ is a loop without exits;
3. β = αλα and λα is a loop without exits.

We denote by GM
G the set of all elements in GG that satisfy one of the three above 

conditions.

We shall see in Corollary 6.10 that the abelian core is indeed a commutative algebra.

Remark 6.4. The word core is overused in the context of ultragraph algebras. The reader 
should not confuse the abelian core defined above with the core subalgebra defined in 
[15].

Our next goal is to identify the abelian core of an ultragraph algebra with the algebra 
of the interior of the isotropy. For this it will be convenient to use F�ΔT as the groupoid 
associated with G. We start by identifying Iso(F �Δ T)0, but for this, we need a couple 
of auxiliary results first.

Lemma 6.5. An element ξ ∈ T with associated path βγ∞, for some path β and some loop 
γ, is isolated if and only if γ has no exits. In this case, V(βγn,{s(γ)},βγn) = {ξ} for all 
n ∈ N.

Proof. Suppose first that γ has an exit. Then for any open neighbourhood V of ξ, for n
sufficiently large, ξ ∈ V(βγn,{s(γ)},βγn) ⊆ V . We can then use the exit to build an element 
of T different from ξ which is in V(βγn,{s(γ)},βγn), so that ξ is not isolated.

Now suppose that γ has no exits. This means that for all i = 1, . . . , |γ| we have that 
s−1(s(γi)) = {γi}, which then implies that V(βγn,{s(γ)},βγn) = {ξ} for all n ∈ N, and in 
particular ξ is an isolated point. �
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Lemma 6.6. For (t, ξ) ∈ F �Δ T such that t �= ω, we have that (t, ξ) ∈ Iso(F �Δ T)0
if, and only if, there exist a path β and a loop without exits γ such that t = βγβ−1 or 
t = βγ−1β−1, and ξ is the element of T associated to βγ∞. In this case (t, ξ) is an 
isolated point of Iso(F �Δ T)0.

Proof. Suppose first that (t, ξ) ∈ Iso(F �Δ T)0. By [17, Remark 6.11], there exist a path 
β and a loop γ such that t = βγβ−1 or t = βγ−1β−1, and the associated path of ξ is 
βγ∞. By Proposition 3.6, ξ is the unique element of T with associated path βγ∞ so that 
({t} ×T) ∩ Iso(F �Δ T) = {(t, ξ)}. Since (t, ξ) ∈ Iso(F �Δ T)0, there exists an open set U
of F �Δ T such that (t, ξ) ∈ U ⊆ Iso(F �Δ T). This implies that {(t, ξ)} = ({t} ×T) ∩U

is open and so is its projection in the second coordinate {ξ}. By Lemma 6.5, γ has no 
exits.

Suppose now that there exist a path β and a loop without exits γ such that t = βγβ−1

or t = βγ−1β−1, and ξ is the element of T associated to βγ∞. Notice that ϕt(ξ) = ξ so 
that (t, ξ) ∈ Iso(F �Δ T). By Lemma 6.5, {ξ} is open in T, and hence {(t, ξ)} is an open 
neighbourhood of (t, ξ) inside Iso(F �Δ T), from where the result follows. �

Since the unit space (F�ΔT)(0) of F�ΔT is identified with T, it follows that AR((F�Δ
T)(0)) ∼= Lc(T, R).

Proposition 6.7. The diagonal algebra D(LR(G)) is isomorphic to Lc(T, R) and the di-
agonal C*-algebra D(C∗(G)) is isomorphic to C0(T).

Proof. The C*-algebraic case is proved in [6, Theorem 6.9].
We show that D(LR(G)) ∼= Lc(T, R). Let D be the R-algebra defined in (4.11). By 

Proposition 4.14, Lc(T, R) is isomorphic to D and, by Lemma 4.10, this isomorphism 
sends 1Y(a,A,a) ∈ D to 1V(a,A,a) ∈ Lc(T, R) for every A ∈ G(0) and α ∈ L∗. Hence,

Lc(T, R) = span{1V(α,A,α) : α ∈ L∗, A ∈ Bα}.

Let κ be the isomorphism given in Theorem 5.5 and fix an α ∈ L∗ and an A ∈ B. Then, 
it follows from Equation (5.7) that

κ(sαpAsα∗) = 1{ω}×V(α,A,α) .

That is, 1V(α,A,α) ∈ AR({ω} × T) = AR((F �Δ T)(0)). By identifying (F �Δ T)(0) with 
T, it follows that 1V(α,A,α) is a function in Lc(T, R). Then, since κ maps the generators 
of D(LR(G)) onto a generating set of Lc(T, R), we have that D(LR(G)) ∼= Lc(T, R). �
Proposition 6.8. Let R be a unital commutative ring. The abelian core M(LR(G)) is 
isomorphic to AR(Iso(F �Δ T)0), and the abelian core M(C∗(G)) is isomorphic to 
C∗(Iso(F �Δ T)0).
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Proof. We first show that M(LR(G)) ∼= AR(Iso(F�ΔT)0). Let κ denote the isomorphism 
in Theorem 5.5. By Proposition 6.7, we have that κ(D(LR(G))) ⊂ AR(Iso(F �Δ T)0). 
Let α, β ∈ L∗ and A ∈ B such that r(α) ∩r(β) ∩A �= ∅ and α = βγ for some loop γ ∈ L∗

without exits. Notice in this case that r(α) = {s(γ)} so that r(α) ∩ r(β) ∩ A = {s(γ)}. 
Then, by Lemma 6.5, ξβγ∞ is an isolated point and

V(α,r(α)∩r(β)∩A,α) = V(βγn,r(α)∩r(β)∩A,βγn) = {ξ}, (6.9)

for all n ≥ 0. Therefore, by (5.7) and (6.9), we have that

κ(sαpAsβ∗) = 1{αβ−1}×V(α,r(α)∩r(β)∩A,α) = 1{(αβ−1,ξ)}, and

κ(sβpAsα∗) = 1{βα−1}×V(β,r(α)∩r(β)∩A,β) = 1{(βα−1,ξ)}

Hence, κ(M(LR(G))) ⊆ AR(Iso(F �Δ T)0).
To see that AR(Iso(F �Δ T)0) ⊆ κ(M(LR(G))), let U ⊆ Iso(F �Δ T)0 be a compact-

open bisection. Then, by Lemma 6.6,

U = V ∪ {(t1, ξ1), . . . , (tm, ξm)},

where V is a compact-open subset of (F�Δ T)(0) and (ti, ξi) ∈ Iso(F �Δ T)0 \(F �Δ T)(0)
is an isolated point for each i. Notice that 1U = 1V +

∑
i 1{(ti,ξi)}. By Proposition 6.7, 

we have that κ−1(1V ) ∈ M(LR(G)). By Lemma 6.6, for each i = 1, . . . , n, the labelled 
path associated to ξi is of the form βiγ

∞
i for some loop γi without exists and ti =

βiγiβ
−1
i or ti = βiγ

−1
i β−1

i . Put αi = βiγi. Then r(αi) ∩ r(βi) = {s(γi)} �= ∅. Hence, 
sαi

pr(αi)sβ∗
i
, sβi

pr(αi)sα∗
i
∈ M(LR(G)). Now, if ti = βiγiβ

−1
i , then

κ(sαi
pr(αi)sβ∗

i
) = 1{αiβ

−1
i }×V(αi,r(αi)∩r(βi),αi)

= 1{(αiβ
−1
i ,ξi)} = 1{(ti,ξi)},

and if ti = βiγ
−1
i β−1

i , then

κ(sβi
pr(αi)sα∗

i
) = 1{βiα

−1
i }×V(βi,r(αi)∩r(βi),βi)

= 1{(βiα
−1
i ,ξi)} = 1{(ti,ξi)}.

Thus, κ−1(AR(Iso(F�ΔT)0)) ⊆ M(LR(G)), which completes the proof that M(LR(G)) ∼=
AR(Iso(F �Δ T)0).

Next we show that M(C∗(G)) is isomorphic to C∗(Iso(F �Δ T)0). Let κ∗ be the 
isomorphism given in (5.10). Then, the same arguments as for the algebraic case above 
imply that κ∗ maps a dense *-subalgebra of M(C∗(G)) onto a dense *-subalgebra of 
C∗(Iso(F �Δ T)0). Since κ∗ is continuous, we may extend it to a *-isomorphism of 
M(C∗(G)) onto C∗(Iso(F �Δ T)0). �
Corollary 6.10. The abelian cores M(LR(G)) and M(C∗(G)) are commutative algebras.
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Proof. Since the transformation groupoid F �Δ T is isomorphic to the Renault-Deaconu 
groupoid Γ(T, σ), then Iso(F �Δ T)0 is a commutative groupoid. By Proposition 6.8 the 
result follows. �

As a consequence of the above proposition we obtain a generalized uniqueness theorem 
for ultragraph C*-algebras (this generalizes the graph C*-algebra version given in [40, 
Theorem 3.13]).

Theorem 6.11. For a *-homomorphism π : C∗(G) → A, the following conditions are 
equivalent:

1. π is injective;
2. the restriction of π to M(C∗(G)) is injective;
3. π(pA) �= 0 for all nonempty A ∈ G0 and, for any simple loop α without exist, the 

spectrum of π(sα) contains the unit circle.

Proof. That 1. is equivalent to 2. follows from Theorem 6.2 and Proposition 6.8. The 
equivalence between 1 and 3 is given in [22, Theorem 7.4]. �
Remark 6.12. A version of the above theorem has been proved for higher-rank graphs in 
[8].

We now extend the generalized uniqueness theorem for Leavitt path algebras [11, 
Theorem 5.2] to ultragraph Leavitt path algebras.

Theorem 6.13. Let G be an ultragraph and R be a unital commutative ring. Consider 
Φ : LR(G) → A a ring homomorphism. Then Φ is injective if, and only if, the restriction 
of Φ to M(LR(G)) is injective.

Proof. This follows from Theorem 6.1 and Proposition 6.8. �
We finish the paper applying the results of [33] to obtain an extension of [11, The-

orem 4.13] to ultragraph Leavitt path algebra and to describe when the core of an 
ultragraph Leavitt path algebra is equal to the centre of the algebra.

Corollary 6.14. Let G be an ultragraph and LR(G) be the ultragraph Leavitt path algebra 
associated to G. Then

(i) The centraliser of the diagonal algebra D(LR(G)) is the core algebra M(LR(G)).
(ii) The core algebra M(LR(G)) is a maximal commutative subalgebra of LR(G).
(iii) If Z(LR(G)) = M(LR(G)) and G is connected, then LR(G) is either R or R[x, x−1], 

i.e., the ultragraph G is either a single vertex or a vertex and an edge.
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Proof. (i) It follows from Proposition 6.7 and [33, Theorem 2.2].
(ii) It follows from Proposition 6.8 and [33, Corollary 2.3].
(iii) By [33, Corollary 2.3], since the centre of LR(G) is commutative, we have that 

LR(G) itself is commutative. We claim that G has only one vertex. Indeed, if v, w ∈ G are 
such that v �= w, since G is connected, there exists a path α ∈ G∗ such that s(α) = v and 
w ∈ r(α). On one hand, we get pwsα = 0. On the other hand, (α, {w}, α) ∈ E(S) \ {0}, 
so that, sαpw �= 0 by (5.7) and Remark 2.10. Hence pwsα �= sαpw, contradicting the 
commutativity of LR(G). We conclude that G0 is a singleton. Now suppose that there 
are two different edges a, b ∈ G1. In this case ab and ba are two different paths in G, which 
also correspond to two different elements in F . Again, using (5.7) and Remark 2.10, we 
conclude that sasb �= sbsa contradicting the commutativity of LR(G). Therefore, either 
G consists of only one vertex and no edges, in which case LR(G) is R, or G consists of 
only a vertex and an edge, in which case LR(G) is R[x, x−1]. �
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