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London, Ontario, Canada

O B J E C T I V E S The aim of this study was to demonstrate the feasibility of providing spatially matched,

3-dimensional (3D) myocardial scar and coronary imaging for the purpose of fused volumetric image display

in patients undergoing cardiac resynchronization therapy (CRT) or coronary artery revascularization (CAR).

B A C K G R O U N D Clinical success in coronary vascular-based interventions is mitigated by the

presence of scar in related myocardium. Pre-procedural fused volumetric imaging of both myocardial

scar and coronary vasculature may benefit pre-procedural planning and patient selection in populations

referred for CRT or CAR.

M E T H O D S A total of 55 studies were performed in patients referred for either CRT (n � 42) or CAR

(n � 13). Coronary-enhanced and scar-enhanced imaging was performed on a 3-T cardiac magnetic

resonance scanner using the same cardiac-gated, 3D, free-breathing cardiac magnetic resonance

technique during and 20 minutes following slow gadolinium infusion. Matched image datasets were

fused and volume-rendered to simultaneously display coronary anatomy and myocardial scar. Visual

scoring of coronary artery, coronary vein, and myocardial scar image quality (score 0 to 4) was

performed. The clinical impact of imaging was also scored using a physician survey.

R E S U L T S Mean age was 57 � 14 years. Combined 3D coronary and scar imaging was successful in

49 studies (89%). A quality score �2 was obtained for 97% of proximal- and mid-coronary artery and vein

segments. The mean quality score of 3D scar imaging was 2.8 � 1.0 and was scored as �2 in 86% of

patients with myocardial scar. All patients with a scar quality score �2 achieved successful image fusion.

Transmural scar was present below �1 planned target vessel in 9 patients (39%) planned for CRT and

8 patients (62%) planned for CAR. Physician surveys demonstrated incremental clinical impact in 67% of

patients.

C O N C L U S I O N S Three-dimensional myocardial scar and coronary imaging with fused volumetric

display is clinically feasible and may be valuable for the planning of vascular-based interventions when

regional myocardial scar is pertinent to therapeutic success. (J Am Coll Cardiol Img 2010;3:921–30)
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atients with reduced left ventricular (LV)
systolic function are frequently considered for

vascular-based interventions aimed at improv-
ing regional and global systolic performance. Both

ardiac resynchronization therapy (CRT) and cor-
nary artery revascularization (CAR) rely upon
ppropriate vascular targets in the venous and arte-
ial circulations, respectively. Three-dimensional
3D) vascular imaging has been shown to be of
alue for identification of these targets (1–5). How-
ver, the clinical benefit of both procedures also
ppears reliant upon regional myocardial scar.
ransmural scar in myocardial segments targeted

See page 931

or either CRT lead placement or CAR mitigates
he benefit of these therapies (6–10). Therefore,
lthough anatomic imaging may assist in identify-

ing appropriate vascular targets, the health
of associated myocardial targets must also
be considered. A combined 3D imaging
technique, spatially registering both myo-
cardial scar and vascular anatomy, may
offer advantages for the planning of such
procedures.

In this study, we demonstrate both the
clinical feasibility and clinical impact of
performing fused, 3D myocardial scar and
coronary vascular imaging in patients be-
ing evaluated for CRT or CAR.

M E T H O D S

ubjects and image acquisition. Fifty-five consecutive
tudies were performed in 53 patients being evaluated
or CRT or CAR. Two patients had repeat imaging
erformed following CAR. Patients with standard
ontraindications to cardiac magnetic resonance
CMR) or with a glomerular filtration rate �45
l/min/1.73 m2 were excluded. All patients provided
ritten informed consent. The study was approved by

he local institution’s Research Ethics Board.
A 3-T CMR scanner (TRIO, Siemens Medical

ystems, Erlangen, Germany) and 6-element body
urface receiver coil were used. Cine imaging was
rst performed using a steady-state free precession–
ased pulse sequence in serial short-axis slices from
he atrioventricular annulus to the apex at 10-mm
ntervals and in long-axis orientations (slice thick-
ess 6 mm, gap 4 mm, echo time 1.5 ms, repetition
ime 3.0 ms, flip angle 50°). A 3D whole-heart,

tion

r

nversion-recovery gradient echo pulse sequence with s
respiratory navigator pulse placed over the right
emidiaphragm was used to obtain both an early
coronary-enhanced) and late (scar-enhanced) dataset
voxel size 1.3 � 1.3 � 1.3 mm3, echo time 1.3 ms,
ip angle 20°, integrated parallel acquisition technique
). Fat saturation was employed to suppress pericardial
at signal. Imaging volumes were prescribed in the
ransverse plane from the aortic arch to below the
ost inferior aspect of the heart (slab thickness 120 to

44 slices) based on multiplanar scout images. Adjust-
ent of trigger delay and number of segments was

erformed to maintain image acquisition between the
nset and termination of cardiac standstill, as deter-
ined from the 4-chamber cine.
For coronary-enhanced imaging, an intravenous

nfusion of 0.2 mmol/kg gadolinium (Magnevist,
ayer Inc., Toronto, Ontario, Canada) was given at
.3 ml/s, followed by 40 ml of saline at the same
ate. Imaging was initiated 25 s following infusion
nset, as previously described (11). A repeat (scar-
nhanced) dataset was then acquired 20 to 25 min
ater (Online Video 1), with adjustment of the
nversion time (TI) to provide optimal myocardial
ignal suppression. The TI was set at 200 ms for
oronary-enhanced imaging and was adjusted for
car-enhanced imaging (typical range 240 to 270
s), as previously described (12). These adjust-
ents were performed using a test-image slab

10-mm thickness) acquired over the mid-ventricle.
he acceptance rate of the respiratory navigator was

ecorded for both full-volume acquisitions.
To provide for visual and quantitative compar-

sons of 3D delayed enhancement (DE) imaging
ith conventional DE techniques, a series of

tandard short-axis 2-dimensional (2D) DE images
as also obtained between coronary-enhanced and

car-enhanced 3D imaging. This was performed
sing a standard phase-sensitive inversion recovery
ulse sequence (matrix 256 � 192, slice thickness
mm, gap 4 mm).
MR image interpretation. Serial short-axis cine im-
ges were evaluated using semiautomated software
CMR42, Circle International, Calgary, Alberta,
anada) to obtain LV end diastolic volume, LV

nd systolic volume, and ejection fraction. To
rovide a representation of average scar burden,
uantitative analysis of 2D short-axis DE images
as also performed with scar defined as signal �5
D above the mean signal of normal remote
yocardium.
Coronary-enhanced and scar-enhanced 3D data-
B B R E V I A T I O N S

N D A C R O N YM S

D � 3-dimensional

AR � coronary artery

evascularization

MR � cardiac magnetic

esonance

RT � cardiac resynchroniza

herapy

E � delayed enhancement

V � left ventricle/ventricula

RA � magnetic resonance
ets were evaluated using open source software

http://jaccimage.cardiosource.com/vol3/issue9/0493_VID1-vol3iss9.mov
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OsiriX, version 3.5.1, 2009, OsiriX Imaging Soft-
are, Geneva, Switzerland) (13). An experienced,
linded observer visually scored each dataset using a
D multiplanar reformatted display. Coronary ves-
el image quality was scored using a 14-segment
oronary artery model (14,15) and a 7-segment
oronary vein model, as shown in Figure 1. A
-point scoring system was used as follows: 0 �
oninterpretable, 1 � poor quality, 2 � medium
uality, 3 � good quality, and 4 � excellent quality.
ll segments assigned a value of 0 (noninterpret-

ble) or 1 (poor) were considered clinically “non-
valuable.”

The 3D scar-enhanced datasets were visually
cored for image quality using the same 5-point
ystem. A score of �2 (interpretable) was assigned
nly if the extent and distribution of signal en-
ancement on 3D scar imaging was assessed to
ccurately reflect standard 2D DE imaging. Addi-
ionally, to provide quantitative validation of the 3D
E technique to conventional 2D imaging, we

andomly selected 20 patients with myocardial scar
nd reformatted their 3D DE datasets into a series
f short-axis, mean signal intensity slabs (thickness

mm, gap 4 mm). This was followed by an
dentical quantitative signal analysis, as was per-
ormed for 2D DE images with total scar volumes,
nd then correlated between the 2 techniques.
mage fusion technique. Matched 3D coronary and
car-enhanced datasets were evaluated using a syn-
hronized display (OsiriX, version 3.5.1, OsiriX
maging Software) (13). A seeded, 3D region grow-
ng technique was used to segment myocardial scar
rom 3D scar-enhanced datasets with a signal �5
D above normal, remote myocardium included as
car. If segmentation was found to leak into the
djacent blood pool, a higher threshold of 8 SD was
hen adopted (required in 4 studies). Segmented
car volumes were fused to spatially matched coro-
ary datasets and volume rendered for visualization
urposes (Fig. 2, Online Videos 2A and 2B).
valuation of clinical relevance. For all successfully
used datasets, the presence of transmural scar
�50% wall thickness) in �1 myocardial segment
elow a target vessel(s) was determined. The

argest-diameter coronary vein of the posterolateral
all was assumed to be the target vessel for patients
ndergoing CRT. For patients undergoing CAR,
ll arterial segments containing or distal to an
bstructive coronary lesion(s) were assumed to be
he target vessel(s). The presence of obstructive

rterial lesions (�70% stenosis) was determined s
rom invasive coronary angiography and was as-
igned to segments using a 14-segment artery
odel.
To evaluate the incremental impact of fused

car– coronary imaging on therapeutic decision
aking, the referring physician was provided a

escriptive report identifying which target vessel(s)
ad underlying scar and the transmural extent of
his scar. Representative 3D fused images were also
rovided. The physician was asked to score the
mpact of this report on the planned procedure
sing a 5-point scale as follows: 0 � negative
mpact (led to confusion), 1 � no impact, 2 �

odest impact (change in anticipated benefit but
o change in planned therapy), 3 � moderate

mpact (change in the vessel[s] to be targeted),
� major impact (cancellation of procedure). A

core of �2 was considered to be a clinically
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Figure 1. Illustration of Coronary Artery and Vein Segmentation
Used for Image Analysis

Fourteen-segment coronary artery (upper) and 7-segment coronary
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tatistical analysis. Data were expressed as mean
alues � SD. Statistical analyses were performed
sing a commercially available software program
GraphPad Prism, version 5.0, GraphPad Software,
an Diego, California). The proximal to mid cor-
nary artery and coronary vein segments, indicated
n Figure 1, were considered to be most clinically
elevant for procedural planning and were reported
eparately for quality scoring. Comparisons of cat-
goric variables (quality score) were performed by
eans of a 2-tailed t test, as indicated in the Results

ection. A probability value �0.05 was considered
ignificant.

E S U L T S

aseline patient and CMR characteristics are listed
n Table 1. Forty-two studies were performed in
atients being evaluated for CRT and 13 for CAR.
he mean age was 57 � 14 years, and 11 patients

21%) were female. Obstructive coronary artery
isease (stenosis �70%) was documented on prior

nvasive angiography in 30 patients (57%), with all
ther patients having a diagnosis of nonischemic
ardiomyopathy. The mean ejection fraction was
3 � 17%. The mean heart rate at time of CMR
as 73 � 13 beats/min (range 45 to 102). All

Figure 2. 3D Scar Segmentation and Image Fusion Technique

(A) Three-dimensional (3D) scar data reviewed (shown as thick max
scar. (B) 3D region growing algorithm applied and segmented data
resonance angiography data. Bottom row shows volume-rendered
dial infarction from a mid–right coronary artery vessel occlusion.
atients were in sinus rhythm with the exception of a
(rate-controlled atrial fibrillation), and 8 patients
ad frequent ventricular ectopy during image acqui-
ition.

The combined 3D scar and coronary imaging
rotocol was completed in 49 of 55 studies (36 of 42
RT studies [86%] and 13 of 13 CAR studies

100%]). Imaging was not completed in 3 studies
ecause of inconsistent breathing pattern, in 2
ecause of frequent ectopy, and in 1 because of an
nability to lie flat. The mean imaging time for the
oronary and scar-enhanced data sets was 6 min,
5 s, and 6 min, 18 s, respectively.
Forty-four studies (80%) from 42 patients dem-

nstrated the presence of myocardial scar. The
attern of scarring was ischemic (subendocardial
ased) in 28 studies (64%), midwall in 9 studies
20%), and epicardial based in 7 studies (16%).
even studies (16%) had a combined ischemic/
onischemic scar pattern. The mean burden of
yocardial scar in the population was 13 � 12% of

he LV mass.
oronary artery imaging. Of 686 possible coronary
rtery segments, 682 were visually scored (Table 2).
n 4 segments, no lumen was identifiable, suggest-
ng complete occlusion without retrograde filling
confirmed in all cases by invasive coronary

m intensity projection) and “seed” (J) placed in central region of
erated. (C) Segmented data fused to matched coronary magnetic
es of a fused dataset demonstrating a large inferior wall myocar-
imu
gen
imag
ngiography).
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Example coronary artery images are shown in
igure 3A. Quality scores �2 (clinically evaluable)
ere achieved in 333 of 343 (97%) proximal-mid

rterial segments (Table 2). Quality scores for the

Table 1. Patient and CMR Characteristics

Patient characteristics

Age (yrs) 57 � 14

Female 11 (21%)

BMI (kg/m2) 28 � 5

Hypertension 25 (47%)

Diabetes mellitus 7 (13%)

Hyperlipidemia 24 (45%)

Current smoker 17 (32%)

Etiology of LV dysfunction

Obstructive CAD* 30 (57%)

Nonischemic (no obstructive CAD*) 23 (43%)

CMR characteristics

Cardiac rhythm during CMR

Sinus rhythm 54 (98%)

Frequent PVCs 8 (15%)

Atrial fibrillation 1 (2%)

Mean heart rate (beats/min) 73 � 13

LVEF (%) 43 � 17

LV EDV (ml) 198 � 107

LV ESV (ml) 130 � 99

LV mass (g) 142 � 65

Myocardial scar

Any 44 (80%)

Subendocardial based 28 (51%)

Midwall 9 (16%)

Epicardial based 7 (13%)

Total scar volume† (% of LV mass) 13 � 12

Values are mean � SD or n (%). *Defined as �70% stenosis in major epicardial
coronary artery by invasive catheterization. †Defined as �5 SD above the
mean signal of normal myocardium.
BMI � body mass index; CAD � coronary artery disease; CMR � cardiac

magnetic resonance; EDV � end diastolic volume; ESV � end systolic volume;
LV � left ventricle; LVEF � left ventricular ejection fraction; PVC � premature
ventricular complex.

Table 2. Number of Evaluable Segments (Quality Score >2 of
the Coronary Arteries and Coronary Veins)

Coronary Segment Evaluable Segments (%)

Coronary arteries

Proximal and mid-segments 333/343 (97)

Distal and branching segments 303/339 (89)

Total coronary arteries 636/682 (93)

Not assessed* 4

Coronary veins

Proximal and mid-segments 237/245 (97)

Distal segments 87/98 (89)

Total coronary veins 324/343 (95)

*No lumen visualized, chronic occlusion without distal collateral flow and

confirmed by invasive coronary angiogram.
roximal-mid segments and distal-branch segments
re shown in Table 3.
oronary vein imaging. Examples of coronary vein
mages are shown in Figure 3B. A total of 343
oronary vein segments were visually assessed. A
uality score of �2 (clinically evaluable) was
chieved in 237 of 245 (97%) proximal-mid seg-
ents (Table 2). Mean quality scores are shown in
able 3.

Figure 3. Examples of 3D Contrast-Enhanced Coronary MRA Stu

(A) Normal (top row) and abnormal (bottom row) coronary artery s
(B) Normal (top row) and abnormal (bottom row) coronary vein sy
(white arrow indicates a posterolateral vein and black arrow indica
severe reduction in lumen diameter of the great cardiac vein). MRA
dies

ystems.
stems
tes
� mag-
netic resonance angiography; other abbreviation as in Figure 2.
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D scar imaging. Examples of 3D scar-enhanced
maging are shown in Figure 4. Myocardial scar
as seen on 44 of 49 3D datasets and visually

orresponded to the distribution of scar seen on
tandard 2D imaging in all cases. The mean
uality score of these studies was 2.8 � 1.0
Table 3). A quality score �2 was reported in 38

Figure 4. Examples of 3D High-Resolution Scar Maps

Patients with ischemic myocardial injury (A and B) and nonischemi

Table 3. Visual Quality Scoring of Coronary Artery, Coronary
Vein, and High-Resolution 3-Dimensional Scar Images

Cardiac Structure Mean Quality Score

Coronary artery segments

All proximal and mid-segments 3.1 � 0.8

Left main artery 3.3 � 0.6

Proximal left anterior descending artery 3.2 � 0.7

Mid-left anterior descending artery 3.1 � 0.7

Proximal right coronary artery 3.2 � 0.7

Mid-right coronary artery 3.1 � 0.9

All distal and branch segments 2.3 � 0.8

Distal left anterior descending artery 2.7 � 0.9

First diagonal branch 2.4 � 0.7

Distal left circumflex 2.2 � 0.8

First obtuse marginal branch 2.1 � 0.8

Distal right coronary artery 2.8 � 0.9

Posterior descending artery 2.0 � 0.7

Posterolateral artery 1.8 � 0.8

Coronary vein segments

All proximal and mid-segments 3.3 � 0.9

Coronary sinus 3.7 � 0.6

Proximal great cardiac vein 3.5 � 0.8

Posterolateral vein 2.9 � 0.9

Mid-great cardiac vein 3.0 � 0.9

Middle cardiac vein 3.2 � 0.9

All distal and branch segments 2.6 � 0.8

Anterolateral vein 2.1 � 0.8

Anterior interventricular vein 3.1 � 0.8

Myocardial scar 2.8 � 1.0

Values are expressed as mean � SD.
accompanying Online Video 1. Abbreviation as in Figure 2.
tudies (86%), obtained from 36 patients. All
mages with quality scores �2 had respiratory
nd/or cardiac motion artifacts reported as the
rimary reason for reduced quality.
Comparison of 3D and 2D quantitative scar

olumes in 20 randomly selected cases demon-
trated a high level of agreement, with correspond-
ng mean scar volumes of 11.2 � 12.9% and 13.1 �
4.5% of LV mass, respectively (R2 � 0.88, slope
.94).
actors influencing image quality. Heart rate did not
ignificantly impact image quality. Forty-four
80%) patients had heart rates of �80 beats/min
uring their studies. Studies performed during heart
ates of �80 beats/min had mean segmental coro-
ary artery and coronary vein quality scores of 2.7 �
.9 and 3.1 � 0.9, respectively, whereas those
erformed at �80 beats/min had respective scores
f 2.6 � 0.9 and 3.0 � 0.9 (p � 0.5 for both
omparisons by 2-tailed t tests).

The mean respiratory navigator acceptance rate
or coronary-enhanced and scar-enhanced imaging
as 43 � 9% and 43 � 10%, respectively. The
umber of patients with respiratory navigator ac-
eptance rates �40% was 28 (51%) for coronary
maging and 33 (60%) for 3D scar imaging. Studies
erformed with acceptance rates �40% had a mean
uality score of 3.1 � 0.7 for proximal–mid-arterial
egments and 3.4 � 0.8 for proximal–mid-vein
egments. Respective values of 2.7 � 0.8 and 3.1 �
.9 were found in studies with acceptance rates
40% (p � 0.0001 for coronary artery comparison

nd p � 0.03 for coronary vein comparison by
-tailed t test). Quality scores for scar-enhanced
mages were 3.0 � 0.8 and 2.5 � 1.2 for acceptance
ates �40% and �40%, respectively (p � 0.03 by
-tailed t test).

flammatory) injury (C). Scar indicated by white arrows. See
c (in

http://jaccimage.cardiosource.com/vol3/issue9/0493_VID1-vol3iss9.mov
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mage segmentation and fusion. Of 44 studies dem-
nstrating myocardial scar, 38 (86%) achieved suc-
essful image fusion. These were reliably obtained
rom the 36 patients (23 referred for CRT and 13
eferred for CAR) achieving a 3D scar quality score
2. Six studies had suboptimal 3D scar segmenta-

ion owing to reduced image quality (quality score
2) and were not able to be fused. Examples of

used imaging in patients with ischemic, midwall,
nd epicardial-based scar patterns are shown in
igure 5. Both coronary artery and vein systems
ere clearly visualized relative to myocardial scar on
olume-rendered images (Online Videos 2A, 2B,
nd 3).
linical relevance of 3D fused imaging. The presence
f �1 vascular target with underlying transmural
car (�50% wall thickness) was seen in 17 of the 36
atients with fused imaging. This group consisted
f 9 of 23 patients (39%) referred for CRT and 8 of
3 (62%) patients referred for CAR (Fig. 6).
Incremental clinical impact (clinical impact score
2) was recorded in 24 of the 36 patients (67%)

ndergoing successful image fusion. Examples of
tudies scored with impact scores �2 are shown in
igure 6. The mean impact score for therapeutic
ecision making was 2.8 � 0.8 and 3.1 � 0.7 in
RT and CAR patients, respectively. Procedures
ere canceled (clinical impact score of 4) owing to

Figure 5. Demonstration of Varying Patterns of Myocardial Inju

Patterns of myocardial injury illustrated by conventional 2-dimensio
resolution 3-dimensional scar-coronary imaging (bottom row). Ische
intermedius in patient referred for coronary artery bypass grafting.
dilated cardiomyopathy planned for cardiac resynchronization thera

inferior wall). Myocarditis: epicardial-based enhancement seen, consiste
he results of imaging in 6 patients: 2 planned for
RT and 4 planned for CAR.

I S C U S S I O N

his study is the first to demonstrate the feasibility
f matched, isotropic 3D imaging of coronary
asculature and myocardial scar using a single im-
ging modality. Fused volumetric display of these
tructures poses advantages for the spatial registra-
ion of vascular targets and related myocardial scar
nd was demonstrated to have a significant clinical
mpact on therapeutic decisions in patients referred
or both CRT and CAR. This suggests a potential
f this technique to meaningfully assist in the
lanning of vascular-based therapies reliant upon
egional myocardial scar for clinical success.

Whole-heart coronary artery imaging using a
ontinuous gadolinium infusion has been previously
emonstrated at both 1.5-T (16–18) and 3-T
11,19–21) field strengths. Its ability to provide for
valuation of the coronary veins has also been
eported at 1.5-T (22–24). The inversion-recovery
echnique used to provide myocardial signal sup-
ression in this approach was adopted from the DE
echnique, initially described by Simonetti et al.
25). A lower TI is employed to accommodate for
he shorter T1 relaxation seen during contrast

late enhancement imaging (top row) and by fused, high-
: lateral wall myocardial infarction from ostial occlusion of ramus
ted cardiomyopathy: midwall scar in patient with nonischemic
The inset shows small embolic infarction in apical segment of the
ry

nal
mic
Dila
py.
nt with prior myocarditis.

http://jaccimage.cardiosource.com/vol3/issue9/0493_VID2A-vol3iss9.mov
http://jaccimage.cardiosource.com/vol3/issue9/0493_VID2B-vol3iss9.mov
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nfusion (26). The current study demonstrates that
spatially matched 3D scar evaluation can be

eadily obtained following this coronary imaging
echnique using an isolated adjustment of the TI
ime. Semiautomated segmentation of these data
an then be performed using widely available open
ource software (13) for rapid fusion to the 3D
oronary MRA dataset.

Prior studies have demonstrated the improved
ignal characteristics of 3-T CMR in comparison
ith 1.5-T for the performance of 2D DE imaging

27). The clinical feasibility of high-resolution 3D
car imaging at 3-T has also been recently described
28). However, the current study demonstrates the
linical feasibility of isotropic myocardial scar im-
ging, an important advance for facilitation of 3D
isualization. Although the approach of fusing mul-
iple 2D scar images to a single 3D coronary dataset
ould also be considered, the current approach of
sing a matched 3D scar dataset offers high-
esolution isotropic voxels with inherent registra-
ion, both spatially and temporally (within the
ardiac cycle), affording rapid image fusion.

The incremental value of fusing scar to coronary
maging should be considered in the context of
herapies likely to benefit from spatially relating
hese structures. The established and expanding
ole of CRT in patients with systolic heart failure is
hallenged by recognition of its limited or absent
enefit in approximately one-third of patients
29,30). The presence of myocardial scar in either of
he posterolateral or septal walls has been shown to

Figure 6. Examples of Scar-Coronary MRA Images Scored as Ha

Example images from 4 patients planned for coronary revasculariza
therapy (right panel) scored as having a clinically significant impac
indicated by white arrows. See accompanying Online Videos 2A, 2B
egate the clinical benefit of CRT in these patients e
6,7). Therefore, although the use of anatomic
ascular imaging to plan placement of CRT leads
as been recently suggested (3–5), the ability to
imultaneously visualize this anatomy in the context
f myocardial scar greatly enhances the identifica-
ion of optimal targets.

Similarly, myocardial scar is intimately coupled
o a lack of functional improvement following
urgical and percutaneous revascularization (31–
3). A fused 3D visual display of coronary anatomy
nd scar was shown to impact therapeutic decisions
elated to CAR in this study. In 2 such cases, LV
emodeling surgery (Dor procedure [34]) was addi-
ionally performed following clear visualization of
n isolated apical scar on fused imaging (Online
ideo 2A).
tudy limitations. This study was not designed to
valuate the diagnostic accuracy of whole-heart
oronary magnetic resonance angiography (MRA)
or the detection of obstructive coronary disease.
uch a study was recently performed by Yang et al.
21) using a similar MRA technique and showed
romising results. However, it is not anticipated
hat MRA diagnostic accuracy will contribute to
he clinical utility of the currently described tech-
ique because all patients planned for CAR will
ave already received invasive coronary imaging.
he described technique’s value is focused on the

patial registration of established vascular targets to
egional scar.

Supplemental heart rate–reducing agents or sub-
ingual nitrates were not used within this protocol;

Clinically Significant Impact

(left panel) and 4 patients planned for cardiac resynchronization
planned therapy. Target vessels for the respective procedures are
d 3. Abbreviation as in Figure 3.
ving

tion
t on
ach agent has been previously used for optimiza-

http://jaccimage.cardiosource.com/vol3/issue9/0493_VID2-vol3iss9.mov
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ion of coronary artery imaging (35,36). However, a
ignificant proportion (77%) of patients were re-
eiving oral beta-blockers. Image quality might also
e further improved through the use of 32-channel
oil technology, which has recently been shown to
e beneficial for coronary imaging at 3-T field
trengths (37).

O N C L U S I O N S

he performance of 3D isotropic myocardial scar
patients. Eur Heart J 2007;28:33–41. Coronary arteries:
maging is clinically feasible. This novel imaging
pproach has potential for providing clinical impact
n the planning of vascular-based cardiac interven-
ions in which myocardial scar is considered rele-
ant to therapeutic success.
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