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O B J E C T I V E S The aim of this study was to develop a molecular imaging strategy that can monitor
myocardial angiotensin-converting enzyme (ACE)-1 upregulation as a function of progressive heart failure.

B A C K G R O U N D High-affinity technetium-99m–labeled lisinopril (Tc-Lis) has been shown to spe-
cifically localize in tissues that express ACE in vivo, such as the lungs. Whether Tc-Lis can also detect

upregulation of ACE in the heart, by external in vivo imaging, has not been established.

M E T H O D S Twenty-one ACE-1 over-expressing transgenic (Tg) and 18 wild-type control rats were
imaged using in vivo micro single-positron emission computed tomography (SPECT)-computed

tomography (CT) at 10, 30, 60, and 120 min after Tc-Lis injection. A subgroup of rats received

nonradiolabeled (cold) lisinopril before the Tc-Lis injection to evaluate nonspecific binding. After

imaging, the rat myocardium was explanted, ex vivo images were acquired, and percent injected dose

per gram gamma-well was counted, followed by an assessment of enzyme-linked immunosorbent

assay-verified ACE activity and messenger ribonucleic acid expression.

R E S U L T S On micro SPECT-CT, myocardial ACE-1 uptake was best visualized in Tg rats at 120 min
after Tc-Lis injection. The quantitative uptake of Tc-Lis in the myocardium was 5-fold higher in mutant

Tg than in control rats at each time point after tracer injection. The percent injected dose per gram

uptake was 0.74 � 0.13 in Tg myocardium at 30 min and was reduced substantially to 0.034 � 0.003%

when pre-treated with cold lisinopril (p � 0.029). Enzyme activity assay showed a �30-fold higher level

of ACE-1 activity in the myocardium of Tg rats than in controls. The ACE-1 messenger ribonucleic acid

was quantified, and lisinopril was found to have no effect on ACE-1 gene expression.

C O N C L U S I O N S The Tc-Lis binds specifically to ACE, and the activity can be localized in Tg rat

hearts that over-express human ACE-1 with a signal intensity that is sufficiently high to allow external

imaging. Such a molecular imaging strategy may help identify susceptibility to heart failure and may

allow optimization of pharmacologic intervention. (J Am Coll Cardiol Img 2012;5:409–18) © 2012 by

the American College of Cardiology Foundation
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T
he renin-angiotensin system is activated

early in the failing heart with angiotensin-
converting enzyme (ACE)-1 activity upregu-
lated within the cardiomyocytes (1,2). Left

entricular ACE expression has been found to be
ignificantly enhanced in the failing human myo-
ardium in proportion to the increasing disease
everity, regardless of the underlying etiology of
eart failure (3). Although serum renin-angiotensin
ctivity often returns to relatively normal levels in
ell-compensated heart failure, tissue renin-

ngiotensin activity may remain elevated in the
yocardium and may contribute significantly to

See page 419

the progression of myocardial remodeling (4–6).
The cardiac renin-angiotensin system has
also been shown to correlate with the
extent of cardiac hypertrophy (7), cardiac
fibrosis (8), and myocyte apoptosis (9).
This implies a role of local tissue effects of
renin-angiotensin activity on left ventric-
ular remodeling and, importantly, pro-
vides an opportunity for imaging local
ACE activity in the myocardium using
external molecular imaging probes with
positron emission tomography (PET) or
single-positron emission computed to-
mography (SPECT).

Large clinical trials using ACE inhibi-
tors have shown to improve patient mor-
tality, reduce hospitalizations for heart
failure, attenuate left ventricular remodel-
ing, and improve quality of life (6,10,11).
Consequently, ACE inhibition has be-
come central to the treatment of patients

with heart failure, left ventricular dilation and
remodeling after myocardial infarction, endothelial
dysfunction, and diabetic nephropathy. However,
there is significant interindividual variability in
response to ACE therapy, and at present, there is
no reliable method that predicts the response of an
individual patient to ACE inhibition. Factors such
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as genetic differences, sex, race, comorbid condi-
tions, age, concomitant medications, renal and liver
functions are all important determinants of individ-
ual response to ACE inhibitors. It is conceivable,
therefore, that the knowledge of imaged-guided
myocellular ACE-1 expression would allow tailor-
ing medical therapy to individual needs (12,13).

The myocellular ACE upregulation has been suc-
cessfully targeted with F-18 labeled fluorobenzoyl-
lisinopril in ex vivo myocardial samples obtained
from explanted cardiomyopathic hearts in cardiac
allograft recipients (14–16). In the present study,
we used technetium-99m–labeled lisinopril (Tc-
Lis), as a molecular probe, to determine the feasi-
bility for external in vivo imaging of ACE-1 ex-
pression in human ACE-1 over-expressing
transgenic (Tg) rats by hybrid micro SPECT-CT.
The clinical implications of this project will be to
better define the complex biochemical phenomena
underlying cardiac remodeling and heart failure. If
the intensity of the Tc-Lis binding signal is suffi-
ciently high in the heart of Tg rats, it will support
subsequent noninvasive imaging studies in human
subjects with heart failure using external SPECT
imaging to assess remodeling myocardium. Our
hypothesis is that the intensity of the Tc-Lis signal
as measured by percent injected dose per gram
(%ID/g) uptake would be increased in the heart of
Tg rats after Tc-Lis administration, but decreased if
pre-treated with nonradiolabeled (cold) lisinopril.

M E T H O D S

Study protocol. Twenty-one ACE-1 over-expres-
ing Tg rats and 18 wild-type Sprague-Dawley
ontrol rats were studied. The Tg rats were ob-
ained from Charité University (Campus Benjamin
ranklin, Berlin, Germany); this Tg rat model has
een described previously (2). A 2.1 kb rat myosin
ight chain (rMLC-2) promoter has been used to
irect cardiac-specific expression of human ACE-1
ardiac deoxyribonucleic acid (cDNA) (18). The Tg
ats (L1173 strain) maintain up to 50-fold selective
ver-expression of human ACE-1 in ventricles. All
g and control rats were males and similarly aged.
he ACE-1 targeting imaging agent was developed
y Molecular Insight Pharmaceuticals, Inc. (Cam-
ridge, Massachusetts), which is a high-affinity analog
f lisinopril containing a tridentate chelate and radio-
abeled with 99mTechnetium (99mTc). This com-
pound localizes in the tissues that express ACE
abundantly, and the technique has been reported
B B R E V I A T I O N S

N D A C R O N YM S

ACE � angiotensin-converti

enzyme

cDNA � cardiac

deoxyribonucleic acid

CT � computed tomograph

mRNA � messenger ribonuc

acid

%ID/g � percent injected do

per gram

PET � positron emission

tomography

SPECT � single-positron

emission computed tomogra

Tc-Lis � technitium-99m–

labeled lisinopril
previously (19). The experimental protocol was
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approved by the Animal Care and Use Committee
of the University of California, Irvine, School of
Medicine. Noninvasive images were obtained using a
dual-head micro-SPECT gamma camera combined
with micro-CT (X-SPECT, Gamma Medica, Inc.,
Northridge, California). The SPECT images of the
heart were acquired in a 64 � 64 matrix, 32 stops at
15 s per stop at 140 keV photopeak of 99mTc with
15% windows using a low-energy, high-resolution,
parallel-hold collimator. Immediately after SPECT
imaging, a micro-CT scan was acquired using an
X-ray tube operating at 50 kVp and 0.8 mA.
Images were captured for 2.5 s per view for 256
views in 360-degree rotation. After transferring to a
256 � 256 matrix, the micro-SPECT images and

icro-CT studies were fused, allowing scinti-
raphic and anatomic in vivo images in all tomo-
raphic scans in the 3 different spatial axes.

Radionucl ide imaging with Tc-Lis . Micro
SPECT-CT images were obtained at 10, 30, 60,
and 120 min after Tc-Lis administration. Each rat
was injected with approximately 3 mCi Tc-Lis.
Nine of 21 Tg rats and 8 of 18 control rats received
0.6 mg/kg cold lisinopril 5 min before radiotracer
administration. After in vivo imaging, the rat myo-
cardium was explanted, and static ex vivo images
were acquired for 15 min using a low- energy, high-
resolution, parallel-hole collimator. Subsequently,
anesthetized animals were euthanized by carbon
dioxide asphyxiation at 10, 30, 60 and 120 min to
evaluate tissue tracer biodistribution. The %ID/g
was gamma-well counted. Biodistribution of Tc-
Lis in heart, lung, liver, spleen, kidney, and blood
was determined.
Biochemical evaluation of myocardial specimens. The

CE-1 gene expression and enzyme activity were
uantified in the myocardium of control rats and
CE-1 over-expressing Tg rats. Myocardial sam-
les were collected from untreated and lisinopril
re-treated control and Tg rats after in vivo and ex
ivo imaging. Samples were frozen in liquid nitro-
en and stored at �70° C until used. Protein
solation was performed, and ACE-1 enzyme activ-
ty was quantified. Myocardial tissues were homog-
nized in lysis buffer (50 mM Tris-HCI pH 7.6,
50 mM NaCl, 1 mM sodium vandate, 0.1 mM
henylmethylsulfonyl fluoride, 10 �g/ml aprotinin/

eupeptin/pepstatin A, 1% NP-40, 1 mM DL-
ithiothreitol) and kept in ice for 30 min. Homog-

nate was centrifuged at 10,000 g for 15 min at 4°
C, and supernatant cytosolic fraction was collected
for ACE-1 assay. Protein concentrations of all the

samples were determined using Bio-Rad protein d
assay reagent (Bio-Rad Laboratories, Hercules,
California) and equalized. The ACE activity was
determined by ACE colorimetric enzymatic assay
(ALPCO Diagnostics, Schonenbuch, Switzerland).
This procedure utilizes the cleavage of a synthetic
substrate, N-hippuryl-histidyl-l-leucine, into hippuric
acid and the dipeptide histidyl-leucine (18,20) by
ACE. Released hippuric acid was complexed with
cyanuric chloride, and the absorbance was measured at
382 nm. One unit of ACE activity is defined as the
amount of enzyme required to release hippuric acid, 1
�mol · min�1 · l�1 serum, at 37° C. The standard
curve was obtained from the absorbance of each
standard (serial dilutions of the hippuric acid from
2,500 to 250 �mol/l) at 382 nm. Cardiac tissue
amples from Sprague-Dawley control rats and Tg
ats were assayed in duplicate for ACE levels.
ositive control serum with a known ACE level was

ncluded for quality assurance. Quantification of
CE-1 gene expression was performed by perform-

ng RNA isolation, cDNA synthesis, and a gene
xpression assay. Total RNA was extracted from
yocardial tissues using the RNeasy Midi Kit

Qiagen, Valencia, California) according to the
anufacturer’s protocol. The amount of RNA was
easured by absorbance at 260 nm. Integrity of
NA was verified by electrophoresis and by a
60/280 nm absorption ratio. Total RNA was
everse transcribed into first-strand cDNA using
he SuperScript III RT kit (Invitrogen Inc., Carls-
ad, California) according to the manufacturer’s in-
tructions. Briefly, 5 �g total RNA was added to 1

�l oligo (dT), 1 �l 10 mM Deoxynucleotide set
2=-Deoxyadenosine 5=-triphosphate; 2=-Deoxycytidine
=-triphosphate; 2=-Deoxyguanosine 5=-triphosphate;

Thymidine 5=-triphosphate] (dNTPs), 2 �l 10 � first
trand buffer, 4 �l 25 mM MgCl2, 2 �l 0.1 M DL-

Dithiothreitol, and 1 �l RNAase out. First, RNA, oligo
dT), and dNTPs were mixed and incubated at 65° C for
min for annealing and then chilled on ice until the

ther components were added. The samples were
ncubated at 42° C for 2 min. Then 1 �l SuperScript
II (40 U/�l) was added, and the samples were

incubated at 42° C for 50 min. The reaction was
inactivated at 70° C for 15 min. The samples were
kept on ice, centrifuged briefly, added to 1 �l of

NAse H, and incubated at 37° C for 20 min.
uantification of gene expression was carried out

sing cDNA samples. Pre-designed and validated,
sing ACE-1 gene-specific TaqMan gene expres-
ion assay (ID: Rn00561094_m1 from Applied
iosystems, Foster City, California) was used in

uplicate, according to the manufacturer’s protocol.
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The level of glyceraldehyde 3-phosphate dehydro-
genase (TaqMan gene expression assay ID:
Rn99999916_s1) was used as endogenous control
for data normalization. Real-time quantitative poly-
merase chain reaction was performed on an ABI
PRISM 7000 SDS (Applied Biosystems) using 2.5
�l (20� concentration) TaqMan gene expression
assay (Applied Biosystems) in a total volume of 50
�l, using 25 �l 2XTaqMan gene expression poly-
merase chain reaction master mix, 1 �l cDNA.

ycle conditions were 50° C for 2 min, 95° C for 10
in, followed by 40 cycles at 95° C for 15 s and 60°
for 1 min. Each sample was tested in duplicate,

nd a sample without template was included as a
egative control. Relative quantification was made
rom collected threshold cycle numbers data. Rela-
ive expression levels of ACE-1 mRNA were nor-
alized according to GAPDH expression using the

-��CT method (21).
Statistical analyses. Quantitative radiotracer uptake
was calculated as %ID/g of the tissue. Radiotracer
uptake measurements were expressed as mean �
SD. The exact Mann-Whitney U test was used for
pairwise comparison of %ID/g in groups. One-
sided p values (based on our hypothesis of expected

Figure 1. Noninvasive Micro SPECT-CT Imaging of ACE-1 Activit

Micro single-positron emission computed tomography (SPECT)-com
and morphologic localization of technitium-99m–labeled lisinopril u
angiotensin-converting enzyme (ACE)-1 over-expressing transgenic
tration (right). White arrowhead demonstrates intense lung uptake
suggest a substantial reduction in tracer uptake after pre-treatment
fold lower lung-to-heart ratio in the transgenic animals when comp

and, may contribute spillover counts to the myocardium, which can be
increases in uptake from Tc-Lis administration and
decreases from cold lisinopril pre-treatment) were
calculated, and p values �0.05 were considered
tatistically significant. The SAS statistical soft-
are, version 9.1.3 (SAS Institute, Cary, North
arolina), was used to conduct all analyses and

omputation of the comparisons of radiotracer up-
ake measurements in groups.

R E S U L T S

In vivo imaging of cardiac ACE over-expression.
Simultaneous micro SPECT-micro-CT acquisition
provided scintigraphic and anatomic images, and
allowed comparison of myocardial uptake of Tc-Lis
within Tg rats and control rats in vivo. Examples of
in vivo images are shown in Figure 1. In a control
rat, micro SPECT-CT images acquired 60 min
after Tc-Lis administration displays tracer uptake
in the lungs (Fig. 1, white arrowhead) but not in the
myocardium (Fig. 1, left panel, yellow arrow),
suggesting normal ACE activity in the lungs and a
lack of appreciable ACE activity in normal myocar-
dium. Conversely, the ACE-1 over-expressing Tg
rats demonstrated substantial tracer uptake within

d tomography (CT) imaging provides simultaneous scintigraphic
ke, 60 min after tracer administration, in a control animal (left),
al (middle), and a transgenic animal after cold lisinopril adminis-
d yellow arrows point to myocardial ACE-1 activity. White arrows
h nonradiolabeled lisinopril administration. Despite the several-
to the control animals, the lung uptake may still be visualized
y

pute
pta
anim
, an
wit
ared
corrected for.
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the myocardium (Fig. 1, middle panel, yellow
arrow) and lungs (white arrowhead) after Tc-Lis
administration. Pre-treatment of the ACE-1
over-expressing Tg rats with nonlabeled cold
lisinopril almost completely abolished the radio-
tracer uptake within the myocardium and lungs
(Fig. 1, right panel, white arrows), demonstrating
targeting specificity of the radiotracer. Noninva-
sive micro SPECT-CT imaging studies, there-
fore, demonstrated the feasibility of Tc-Lis based
targeting of the ACE-1 expression within the
myocardium.
Ex vivo imaging of cardiac ACE over-expression and
quantitative %ID/g uptake of Tc-Lis in myocardium.
Ex vivo imaging of cardiac ACE at different time
points within the individual rats in different groups
is demonstrated in Figure 2. It is important to note
that the quantitative uptake of Tc-Lis in the myo-
cardium was 5-fold higher in mutant Tg rats than
in control rats at each time point after tracer
injection.

Quantitative myocardial uptake of Tc-Lis at
various time points is shown in the bar graph in
Figure 2 (right). Although maximum myocardial
uptake was seen at 30 min, best target-to-
background ratio was observed at 120 min because
of significant Tc-Lis clearance of ACE from the
circulation and the pulmonary region. Administra-
tion of nonradiolabeled lisinopril 5 min before
Tc-Lis administration significantly reduced the

Figure 2. Ex Vivo Imaging of Explanted Hearts at Various Time
Uptake in Myocardium

(A) Radiotracer uptake is demonstrated in a control rat (left), transg
(right) at different time points. Uptake is significantly higher at eac
decreased after simultaneous administration of cold tracer for co
99mTc-labeled lisinopril uptake in larger number of animals demo

enzyme; LIS � lisinopril; %ID/g � percent injected dose per gram;
myocardial Tc-Lis uptake. The %ID/g uptake in
Tg and control rats at 10 min was 0.48 � 0.29%
and 0.19 � 0.10% (p � 0.171), respectively; and at
30 min, it was 0.74 � 0.13% and 0.17 � 0.03%
(p � 0.028). The uptake reduced substantially in
Tg rats pre-treated with cold lisinopril; %ID/g at 10
min was reduced to 0.037 � 0.015% (p � 0.014),
and at 30 min, it was reduced to 0.034 � 0.003%
(p � 0.028). Uptake values in control rats were
quite low to begin with and remained low with cold
lisinopril pre-treatment (0.05 � 0.01% at 10 min
and 0.049 � 0.008% at 30 min, p � 0.014 for both
time points). Moreover, the uptake of Tc-Lis at 10
min or 30 min after cold lisinopril pre-treatment
was comparable for Tg rats and control rats.
Biodistribution of Tc-Lis in organs. Biodistribution of
Tc-Lis in all visceral organs and blood was calcu-
lated (Table 1). The Tc-Lis uptake did not signif-
icantly differ between any groups in blood or various
organs. The maximum radiation burden was ob-
served for lungs at all time points; for instance,
%ID/g uptake of 8.6 � 1.6% and 9.5 � 2.6% (p �
0.243) was seen in Tg rats and control rats, respec-
tively, at 30 min. Administration of cold lisinopril
substantially reduced lung uptake to 0.04 � 0.02
(p � 0.014) in Tg rats and 0.07 � 0.02 (p � 0.014)
in control animals, at 30 min. Kidney, spleen, and
liver were the other organs with high tracer uptake
(Table 1).

nts in Representative Animals and Quantitative Tracer

rats (middle), and a transgenic rat after unlabeled lisinopril
e point in transgenic rats. The radiotracer uptake is substantially

etitive uptake inhibition of the radiotracer. (B) Quantitative
rates the same observation. ACE � angiotensin-converting
9m
Poi

enic
h tim
mp
nst

9
 Tc-Lis � technitium-99m–labeled lisinopril; TG � transgenic.
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Biochemical and molecular characterization of ACE-1
expression and activity. Enzyme activity assays indi-
cated a �30-fold higher level of ACE-1 in the
myocardium of ACE-1 over-expressing Tg rats as

Table 1. Radiotracer Biodistribution in Target and Non-Target
Organs at Various Time Points and With or Without
Competitive Inhibition

Organ 15 Min 30 Min 60 Min 120 Min

Heart

Control 0.110 0.120

RL-LSP 1.308 1.849 1.060 1.003

Cold LSP 0.007

Lung

Control 7.925 8.535

RL-LSP 8.844 10.757 9.754 4.581

Cold LSP 0.014

Liver

Control 0.331 0.369

RL-LSP 0.622 0.483 0.565 0.159

Cold LSP 0.102

Spleen

Control 0.449 0.777

RL-LSP 0.529 0.550 0.535 0.118

Cold LSP 0.011

Kidney

Control 0.217 0.314

RL-LSP 1.700 1.627 1.402 1.586

Cold LSP 0.105

Blood

Control 0.032 0.028

RL-LSP 0.063 0.058 0.062 0.045

Cold LSP 0.016

LSP � lisinopril; RL � radiolabeled.

Ctrl
0

20

40

A
C

E
 U

n
it

s

Ctrl+
ACE-I

ACE-Tg ACE-Tg+
ACE-I

ACE-1 Activity

Figure 3. Tracer Uptake, ACE-1 Message Expression and Enzym

Enzyme activity assays (left) indicates a �30-fold higher level of an
ACE-1 over-expressing transgenic (Tg) rats as compared to control
lisinopril (0.6 mg/kg) pre-treatment and confirms the imaging data.
by relative quantification TaqMan assay shows a 2-fold increase in

ACE-1 enzymatic activity, mRNA level showed no decrease in response
compared to control animals. Nonradiolabeled lis-
inopril (0.6 mg/kg) pre-treatment for 30 min de-
creased the ACE-1 activity in these hearts to a level
similar to that of controls (Fig. 3, left). The quan-
titative uptake of Tc-Lis in the myocardium, which
was higher in Tg rats than in control rats at each
time point between 10 min and 120 min after
tracer injection, paralleled the measured ACE-1
activity. These findings demonstrate that the
imaging data are truly representative of the myo-
cardial biochemistry, and the response to the
cold-lisinopril demonstrates the specificity of the
targeting radiotracer.

Conversely, expression of ACE-1 mRNA by
relative quantification TaqMan assay shows a 2-fold
increase in over-expressing Tg rat heart compared
to control rats (Fig. 3, right). Unlike ACE-1
enzymatic activity, mRNA level showed no de-
crease in response to cold lisinopril pre-treatment in
either Tg hearts or control hearts. These results
indicated that lisinopril, as expected, would not
influence the overall mRNA expression, but will
elicit a profound effect on enzyme activity.

D I S C U S S I O N

Left ventricular remodeling, characterized by
changes in chamber size, shape, and function,
contributes to heart failure. Systemic and local
neurohumoral factors are known to play major roles
in the process of left ventricular remodeling, and
among them the renin-angiotensin system occupies
a central place. Blockade of the renin-angiotensin
system, by ACE inhibitors, angiotensin II type 1

Ctrl
0

1

2

A
C

E
 m

R
N

A
 (

A
U

)

Ctrl+
ACE-I

ACE-Tg ACE-Tg+
ACE-I

ACE-1 mRNA

tivity

ensin-converting enzyme (ACE)-1 activity in the myocardium of
) animals. The activity is markedly reduced after nonradiolabeled
versely, expression of ACE-1 messenger ribonucleic acid (mRNA)
-expressing Tg rat heart compared to controls (right). Unlike
e Ac

giot
(Ctrl
Con
over
to cold lisinopril pre-treatment.
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receptor blockers, or aldosterone antagonists has
been shown to be effective in preventing or revers-
ing left ventricular remodeling. Although numerous
clinical trials have demonstrated a direct beneficial
effect of renin-angiotensin blockade on patient
outcome in heart failure, in many of these trials,
significant differences have been observed in clinical
responses of various subpopulations to ACE inhib-
itors. Although some clinical and laboratory param-
eters may help predict the response of patients to
renin-angiotensin blockade, since the tissue compo-
nent of the renin-angiotensin system is not directly
accessible, they lack accuracy. Conversely, external
cardiac imaging using radiolabeled probes of the
renin-angiotensin system may give a direct measure of
tissue ACE expression in the myocardium. Hence,
targeted molecular imaging of cardiac ACE-1 and the
remodeling process may provide valuable insight into
the natural progression of heart failure, which could
allow earlier and more effective intervention. Al-
though pharmacologic ACE inhibition is a common
therapy for heart failure, the cellular response with such
therapy on an individual basis may be variable, and
assessment of tissue ACE activity may allow optimiza-
tion of therapeutic intervention.

ACE-1 is a large type I anchored glycoprotein
that spans the cell membrane (22,23). It contains 2
distinct extracellular catalytic binding sites (24), and
a number of auxiliary binding subsites (25). It acts
as a zinc metalloproteinase that transforms the
short peptide substrate angiotensin I to the more
physiologically active angiotensin II peptide (22)
and degrades bradykinin (23). ACE inhibitors bind
to these extracellular enzyme binding sites specifically

Figure 4. Diagrammatic Representation of Cell Surface ACE-1 an

Modified from Kumar et al. (4) and Dzau et al. (24). ACE � angioten

II � angiotensin II.
with varying affinity (25,26). Radiolabeled Tc-Lis
likely binds to extracellular binding sites located along
the myocardial cell membrane (Fig. 4).
Molecular imaging of myocardial ACE-1. The present
study demonstrates the feasibility of external non-
invasive in vivo imaging of cardiac tissue ACE-1 by
hybrid micro SPECT-CT. Enzyme activity assay
indicated a �30-fold higher level of ACE-1 in the
myocardium of Tg rats as compared to control rats.
The quantitative uptake of Tc-Lis closely correlated
the enzyme activity demonstrating the accuracy of the
molecular imaging strategy. Cold lisinopril (0.6 mg/
kg) treatment before radiolabeled lisinopril admin-
istration decreased the ACE-1 activity and the tracer
uptake, establishing the specificity of the radioiso-
tope probe to myocardial ACE-1. The develop-
ment of such molecular imaging strategy for assess-
ing ACE-1 upregulation in the heart that can
monitor ACE as a function of progressive heart failure by
external imaging may lead to a new generation of
molecular imaging probes for monitoring disease pro-
gression and the effectiveness of treatments for heart
failure. Data correlating cardiac ACE-1 imaging to
clinical outcomes will ultimately be necessary.
Previous reports of molecular imaging in remodeling
process. In vivo noninvasive imaging of angiotensin
I receptors has been successfully demonstrated in
he remodeling post-infarction myocardium, with
ptake occurring almost exclusively in the myofi-
roblasts (27–30). Radiolabeled 99mTc–labeled
y5.5 arginine-glycine-aspartic acid (RGD) imag-

ng peptide (CRIP) evaluated the extent of myofi-
roblast prevalence within post-myocardial infarc-
ion mice, and demonstrated an ability to evaluate

otential Targeting by Radiolabeled Lisinopril

converting enzyme; ATG � angiotensin; AT I � angiotensin I; AT
d P

sin-
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the efficacy of therapy with angiotensin-aldosterone
axis suppression using molecular noninvasive imag-
ing (28,29). The CRIP uptake was attenuated by
therapy with captopril alone or in combination with
losartan [28], and diminished radiotracer uptake
was associated with systolic function preservation
(29). In another study, in vivo noninvasive imaging
of angiotensin II type 1 receptors utilizing 99mTc-
osartan successfully demonstrated remodeling

yocardium of post-infarction mice, with uptake
ccurring again almost exclusively in the myofibro-
last (27). Although the extent of angiotensin II
ptake, and hence the magnitude of fibroblastic pro-
iferation, should predict ultimate interstitial fibrosis
nd remodeling, it may be advisable to evaluate the
eurohumoral perturbations at the myocyte level that
recedes proliferation of myofibroblasts.
Transglutaminase factor XIII is a key enzyme in
yocardial remodeling post-infarction, and is in-

olved in extracellular matrix turnover and regula-
ion of inflammation after ischemic injury (31). In
nother molecular imaging study, factor XIII was
ssessed in healing myocardium using a post-
yocardial infarction murine model utilizing

111Indium-labeled affinity peptide and micro
SPECT-CT (32). The radioisotope cross-links to
extracellular matrix proteins, allows direct assess-
ment of wound healing in vivo and predicts prog-
nosis post-myocardial infarction (32). Increased
cardiac ACE-1 activity likely has significant influ-
ence on cardiac hypertrophy augmentation, and
potentially represents a risk factor in persons with
heart failure or in persons predisposed to develop
heart failure. The ability to visualize alterations in
the expression of angiotensin I and ACE-1, and
myocardial factor XIII levels in the failing heart in
vivo may facilitate pharmacologic-induced cessation
of adverse cardiac remodeling.
ACE inhibitors with high versus low degrees of tissue
penetration. A trial specifically designed to compare
outcomes among cardiac patients prescribed ACE
inhibitors with high versus low degrees of tissue
penetration has not been conducted. Most studies
have focused on comparisons of particular ACE
inhibitor with placebo. Although results from a few
head-to-head trials suggest that various ACE in-
hibitors are associated with similar reductions in
mortality (33), there are, however, other head-to-
head trials and observational studies that provide
evidence to the contrary (34–37). In a recent
publication, using linked hospital discharge and
prescription claims databases in 3 provinces of

Canada, the investigators identified 43,316 patients
with heart failure who were 65 years of age or older
and filled prescriptions for ACE inhibitors within
30 days after discharge from hospital (38). The
mean follow-up period was 2.1 years, and none of
the patients was admitted for heart failure in the 3
years before the study period. Such “real-world”
analysis, albeit retrospective and observational, pro-
vided important comparative information for 8
different ACE inhibitors with variable high and low
degrees of tissue penetration that would not be
readily available in a clinical trial. The results
showed that captopril and enalapril (low tissue
penetration ACE inhibitors) were associated with
about 10% to 15% higher mortality than ramipril
(high tissue penetration ACE inhibitor). Lisinopril
patients did not have a significantly different mor-
tality from that of patients who were receiving
ramipril. Moreover, in a prior randomized trial
comparing lisinopril and captopril in heart failure
patients, lisinopril improved nonfatal outcomes
such as exercise duration in subgroups of patients
when compared to captopril (34).
The potential impact of other ACE inhibitors with
different affinities on lisinopril binding. Although
ACE inhibitors share the same basic structure,
there are important structural and pharmacologic
differences within the class that influence the po-
tency and bioavailability of the drug and may
explain some of the variation in their effectiveness in
the literature. Conversely, whereas affinities of ACE
inhibitors vary, they are relatively close to each
other, within a factor of 10-fold. It is important to
point out, however, that it is the mass amount of
the compound, not just the affinity, that impacts
ACE saturation. Given the large disparity between
the mass of the compound administered relative to
the differences in the individual affinities of various
ACE inhibitors, the affinity is not likely to signif-
icantly influence the ultimate image interpretation.
As a result, we expect that the lisinopril radioligand
will be measuring unoccupied enzymes.

For new-onset heart failure patients, the goal
would be to acquire pre-ACE therapy lisinopril
SPECT and repeat the imaging study after ACE
inhibitor therapy. That would be consistent with
occupancy studies that were first carried out in
humans with drugs for neurologic diseases, given
that plasma levels are not indicative of occupancy. If
the lisinopril signal is blocked on post-ACE scan or
there is very little uptake when compared to the
pre-ACE scan, then the therapeutic dose of ACE is
appropriate. That would represent paired studies

and be consistent with the concept of individualized
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medicine. However, if a heart failure patient is
already receiving an ACE inhibitor, and a pre-ACE
scan cannot be obtained, then the lisinopril signal
could be compared to a group database. That is, in
subsequent early clinical phase studies, healthy sub-
jects can be studied to set a parameter of normal
criteria for ACE availability, such as standardized
uptake value or change in % ID/g. Such a parameter
would then be utilized to assess ACE occupancy on
a group basis and compare the post-ACE scan of
the heart failure patient to the group base derived
parameter (e.g., standardized uptake value thresh-
old). This approach has been used routinely in
measurement of glucose metabolism in cancer pa-
tients.
Spillover of counts from ACE activity in the lungs into
the myocardium. The circulating renin-angiotensin
ystem is initiated by the release of renin from the
idney, which acts in circulating blood on angio-
ensinogen of hepatic origin to produce angiotensin
, which, in turn, is modified to angiotensin II
hrough enzymatic action of the ACE predomi-
antly in the pulmonary circulation. As such, con-
titutive lung ACE activity may spill over into the
yocardium during image acquisition. However,

pillover is a problem that can be overcome (39–
1). Many techniques have been developed and
ublished over the years to correct the equally severe
roblem of spillover of counts from the left ventric-
lar cavity into the myocardium, during kinetic
odeling of the heart (e.g., ammonia, rubidium,
ater PET imaging). Accordingly, there are several
ossible corrections that could be performed. For
xample, in the era of hybrid PET-CT and
PECT-CT, the lung/myocardial borders could
rst be drawn on the CT, and then the lung region
an be set to a constant value equal to whatever the
creased angiotensin-I converting en- 1993;25:1369–80.
eaving the myocardium zero. Then the image can
e blurred with the known resolution of the imag-
ng device, PET or SPECT. The myocardial region
an then be placed on this artificial, CT-based
mage, and determine how many counts are in the

yocardial region. This value is the value that needs
o be subtracted from the actual measured PET or
PECT myocardial region. Alternatively, very
mall amount of macro-aggregated albumin could
e injected, which is clinically used for lung perfu-
ion studies, to find out how many counts spilled
nto the myocardium. Very low doses are needed,
ecause we are not interested in a good lung image,
nly in finding out how many counts spilled into
he myocardium.

C O N C L U S I O N S

Tc-Lis binds specifically to ACE, and the activity
can be localized in Tg rat hearts that over-express
human ACE-1. Moreover, the intensity of the
Tc-Lis binding signal is sufficiently high to allow
external in vivo imaging by hybrid micro SPECT-
CT. Because ACE is upregulated in remodeling
human myocardium, it is expected that such a molec-
ular imaging strategy will help identify patients sus-
ceptible to heart failure development and may allow
optimization of pharmacologic intervention.
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