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Technical Development and Comparison With High-Risk
Plaque Features Detected by Invasive Coronary Imaging*
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oronary plaque rupture and subsequent

myocardial infarction remains a major

health care problem despite advances in
diagnosis, coronary angioplasty, and medical ther-
apy. In the last decades, several noninvasive imaging
techniques have been developed and clinically inves-
tigated in the quest for vulnerable plaque detection
including coronary computed tomography angiog-
raphy (CTA), (18)F-sodium fluoride (NaF) positron
emission tomography, and T,-weighted (T1w) cardiac
magnetic resonance (CMR). CTA has been shown to be
very promising for identifying high-risk plaque fea-
tures such as positive remodeling and low attenua-
tion plaques that were independent predictors of
acute coronary syndrome (1). Similarly, (18)F-NaF
positron emission tomography-CT successfully iden-
tified ruptured coronary plaque and was associated
with high-risk plaque features including positive
remodeling, spotty calcification, and necrotic core as
measured by intravascular ultrasound (2). Non-
contrast-enhanced carotid and coronary Tiw CMR
has been shown to enable direct thrombus imaging
(3,4) and detection of intraplaque hemorrhage (IPH)
(5,6), both features of high-risk plaque, whereas
contrast-enhanced coronary Tiw MR plaque imaging
was associated with increased calcification (fibrosis)
on CTA (7,8) and inflammation in patients with acute
coronary syndrome (9), Takayasu disease (10), or sys-
temic lupus erythematosus (11). A disadvantage of
CTA and positron emission tomography compared
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with CMR is the exposure to ionizing radiation and
the need for potentially nephrotoxic contrast agents,
thus making Tiw CMR a promising candidate for
screening, follow-up, and guidance of therapy in
patients with a high-risk of coronary artery disease.
However, the long examination time, complex plan-
ning procedure, and unknown cost effectiveness
remains an obstacle to widespread clinical use. The
study by Xie et al. (12) in this issue of iJACC may be
a first promising step toward addressing these tech-
nical limitations.

The first observation of MR direct thrombus imag-
ing was made in patients with deep venous throm-
bosis back in late 1990s (3). The same group
demonstrated that Tiw CMR could be also used to
identify IPH in complex carotid artery plaques (5),
and the high predictive value of IPH for cerebrovas-
cular events has been demonstrated in several follow-
up studies including a recent meta-analysis (13). Later
work by Noguchi et al. (14) also demonstrated an
association between carotid IPH and subsequent
coronary events. The first observation of high-
intensity plaque (HIP) on non-contrast-enhanced
coronary magnetic resonance images was reported by
Maintz et al. (7) and Yeon et al. (8) in patients with
stable coronary artery disease and was believed to
result from the presence of fresh thrombus or intra-
plaque hemorrhage. In the same study, HIP after
injection of an extracellular MR contrast agent was
associated with increasing calcification and disease
burden on CTA and x-ray angiography. In a subse-
quent study by Kawasaki et al. (6), hyperintense
coronary artery plaque on noncontrast Tiw CMR was
found to be associated with positive remodeling,
ultrasound attenuation, and lower Hounsfield units,
all markers of unstable plaque. Jansen et al. (4)
demonstrated that noncontrast Tiw CMR allowed for
detection of acute coronary thrombus in a small
proof-of-concept single-center study. Most recent
work by Noguchi et al. (15,16) in 568 patients with
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suspected or known coronary artery disease demon-
strated that noncontrast HIPs were highly predictive
for future coronary events (15) and that statin treat-
ment would result in a decrease of the intensity and
frequency of HIP (16). Taken together, these obser-
vations suggest that new technical developments
aimed at improving Tiw coronary plaque imaging
may be very beneficial for better risk stratification
and treatment guidance in patients that are at high
risk of coronary artery disease.

TECHNICAL ASPECTS

When compared with earlier and pioneering reports
on Tiw characterization of coronary plaque as those
alluded to herein, there are 2 main aspects that make
this current study stand out from a technical
perspective. First, Xie et al. (12) succeeded in
breaking away from the paradigm that navigator
gating is used for respiratory motion suppression, and
second, they deliberately integrated a Tiw scan for
plaque visualization with an anatomical reference
acquisition for spatial coregistration into a single
scan. The former critically enables data acquisition
in 10 min or less and the respiratory pattern of the
patient no longer affects scanning time as was
the case for conventional navigator approaches. With
the technique reported by Xie et al. (12) instead,
overall acquisition time is highly predictable, which
tremendously improves the ease-of-use and in turn
facilitates the integration of this method into a clin-
ical CMR exam. The latter, the simultaneous acqui-
sition of a Tiw scan together with an anatomical
reference image is critically important to avoid
ambiguity in image interpretation and to improve
specificity in the identification of enhancement
localized in the coronary arteries. Whereas many of
the enabling technical ingredients have been used
and reported before by the same investigators and by
others, it is the ingenious combination of these
ingredients that distinguishes this study. First of all,
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and as shown in their Figure 1, retrospective affine
motion correction is at the core of the algorithm. It
obviates the need for navigator gating and uncer-
tainty with regard to the overall duration of the scan
is therefore entirely removed. Second, and to abbre-
viate the acquisition duration of 2 acquisitions with
large volumetric coverage (whole heart) and a high
spatial resolution (1.1 mm?3) to under 10 min, a sensi-
tivity encoding reconstruction is exploited. Third, the
technique is implemented at 3-T for improved signal-
to-noise ratio. This is critically linked with the fourth
ingredient, which is a robust radial gradient-echo
signal readout that exploits a golden angle rotation
of consecutive k-space profiles. Finally, an inversion
recovery magnetization preparation scheme that
alternates with consecutive heartbeats and an effec-
tive approach to fat signal suppression completes the
list. It is noteworthy that a simple modification of the
inversion time supports the use of this approach
before and after contrast injection to provide com-
plimentary information about plaque composition.
Whereas this may sound highly technical and the
combination of components rather unique, it is still
worth noting that many of these do already exist to
a large degree on clinical scanners. Therefore, a
more widespread use of coronary atherosclerosis
T,-weighted  characterization = with  integrated
anatomical reference, or CATCH, may not be out of
reach. As meticulous plan scanning, volume target-
ing, and navigator localization are no longer needed,
the likelihood that this technique will also be
successful outside of highly trained and specialized
centers is undoubtedly increased.
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