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yocardial Perfusion Imaging With
ontrast Ultrasound

homas R. Porter, MD, Feng Xie, MD

maha, Nebraska

his report reviews the development and clinical application of myocardial perfusion imaging with myocardial

ontrast echocardiography (MCE). This includes the development of microbubble formulations that permit the

etection of left ventricular contrast from venous injection and the imaging techniques that have been in-

ented to detect the transit of these microbubbles through the microcirculation. The methods used to quantify

yocardial perfusion during a continuous infusion of microbubbles are described. A review of the clinical

tudies that have examined the clinical utility of myocardial perfusion imaging with MCE during rest and stress

chocardiography is then presented. The limitations of MCE are also discussed. (J Am Coll Cardiol Img 2010;3:

76–87) © 2010 by the American College of Cardiology Foundation
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series of inventions and scientific break-
throughs are responsible for the develop-
ment of myocardial perfusion imaging

with myocardial contrast echocardiog-
aphy (MCE). First, there was the invention of
table microbubble shells using either electrome-
hanical sonication of albumin or lipid emulsions
1,2). Second there was the stabilization of these
icrobubbles following venous injection by the

ncorporation of a high molecular weight insolu-
le gas within the shell, which permitted consis-
ent left ventricular opacification following ve-
ous injection (3). Then, it was discovered that
he typical ultrasound imaging techniques at a
igh mechanical index (MI) were destroying
hese microbubbles as they transited through the
yocardial microcirculation. By either triggering

ltrasound to one frame every cardiac cycle or by
tilizing a very low mechanical index and har-
onic imaging, myocardial contrast enhance-
ent from a venous injection of microbubbles

rom the University of Nebraska Medical Center, Omaha, Nebrask
antheus Medical Imaging and Astellas Pharma Inc., significant gra

upport (i.e., equipment, drugs, and software) from Siemens Medic
onorarium from Lantheus Medical Imaging and Point BioMed. Sa
anuscript received May 29, 2009; revised manuscript received Augus
as consistently visualized (4). With harmonic
riggered imaging, myocardial perfusion abnor-
alities were visualized in humans using very

mall intravenous bolus injections of perflouro-
arbon containing microbubbles (5). Finally, a
eam of investigators headed by Kevin Wei and
anjiv Kaul at the University of Virginia made
he landmark discovery that these ultrasound
riggering techniques could be utilized to quantify
yocardial blood flow, and even examine the

omponents responsible for myocardial blood
ow (6). This has led to clinical studies demon-
trating how MCE can provide important bed-
ide information on myocardial blood flow during
tress echocardiography laboratory (7–10), in the
cute and chronic assessment of myocardial via-
ility (11–14), and in the emergency department
15). This paper will review the technical aspects
f myocardial perfusion imaging with MCE, and
ow it has been utilized to detect coronary artery
isease and guide management.

r. Porter has received modest grant support from
upport from NuVox Pharma Inc., and other grant

aging, and has served as a consultant or received
Kaul, MD, served as Guest Editor for this paper.
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erfusion Imaging Techniques With Myocardial
ontrast Echocardiography

icrobubbles in an ultrasonic field are strong scat-
erers, sending compression and rarefaction waves
ack to the scanner. At peak negative pressures
bove 0.1 MPa, the microbubbles respond in a
onlinear manner. In general, what nonlinear be-
avior means is that the magnitude of compression
nd rarefaction waves are not the same with each
scillation. At these low incident pressures, the
icrobubbles exhibit both linear and nonlinear

eturning waves, whereas the myocardium and
ther structures primarily exhibit linear responses
16). The nonlinear responses occur in both the
undamental and harmonic frequencies and can be
eceived and filtered by the echocardiographic sys-
em. Ultrasound imaging software that selectively
eceives the nonlinear responses produces a much
etter signal-to-noise ratio and more sensitive de-
ection of microbubbles than what would be re-
eived from conventional imaging software (17).

Microbubbles are destroyed by real-time ultra-
ound when it is transmitted at higher intensities
MIs �0.3). Destruction can be reduced by de-
reasing the frame rate to 1 out of every 1 to several
ardiac cycles, usually with triggering the frame to
he electrocardiogram. This has been referred to as
ntermittent imaging, and has been used with both
armonic and power Doppler systems (18–21).
hen the intermittent ultrasound impulse is at a

igh intensity (�0.9 MI), there is a strong and brief
onlinear echo from the bubble. Interrupting the
igh-intensity ultrasound for a short period of time
llows for replacement of microbubbles, which serve
o produce contrast enhancement for the subse-
uent triggered frame. When microbubbles are
dministered as a continuous infusion and the
ltrasound pulsing interval is incrementally varied,
he reappearance of bubbles in the myocardium
ermits the calculation of mean microbubble veloc-
ty and plateau (or peak) myocardial signal intensity
5). Multiplying these 2 variables together, one can
uantify myocardial blood flow changes. With these
ntermittent imaging techniques, it has become
ossible to noninvasively examine myocardial per-
usion in animals and humans using a wide variety
f intravenous higher molecular weight micro-
ubbles (22,23). Significant achievements have
een made in low MI real-time visualization of
yocardial function. Pulse inversion Doppler is a
ultipulse technique that separates linear and non-
inear scattering using the radiofrequency domain. s
hen used at a very low MI, linear scatterers like
yocytes and tissue will have their signals canceled,
hereas nonlinear scatterers (like microbubbles)
ill produce summated signals (24). Pulse inversion
oppler overcomes motion artifacts by sending
ultiple pulses of alternating polarity into the
yocardium. This allows one to visualize wall

hickening and contrast enhancement simulta-
eously at very low MIs (�0.2) while maintaining
n excellent signal-to-noise ratio. Because it can
eceive only even order harmonics, however, there is
ignificant attenuation, especially in basal myocar-
ial segments in apical windows.
Power modulation is another technique that

mproves the signal-to-noise ratio at very low me-
hanical indices. This technique, developed by
hilips (Andover, Massachusetts), is also a multi-
ulse cancellation technique; however, with power
odulation, the power of each pulse is varied.
ontrast pulse sequencing (Siemens Acuson Se-
uoia; Mountain View, California) ex-
ends these multipulse techniques by in-
erpulse phase and amplitude modulation
25). Both power modulation and contrast
ulse sequencing can be used at a very low
I to assess myocardial contrast in real

ime with excellent spatial resolution at
igher bandwidths (Fig. 1). In these ex-
mples, note that background signals from
he myocardium are virtually absent.
ualitative and quantitative methods of
yocardial perfusion analysis. Regardless
f the route of microbubble injection, an
ccurate definition of microbubble con-
entration in the myocardium requires that the
elationship between concentration and signal in-
ensity be linear. This precondition is fulfilled at
ow intramyocardial microbubble concentrations.
t a certain microbubble concentration, however,

chocardiographic systems normally reach a satura-
ion point, where videointensity is no longer pro-
ortional to the microbubble concentration (26).
his becomes a factor with bolus injections of
icrobubbles, in which transient high concentra-

ions can be reached even in regions with reduced
yocardial blood flow, leading to a brief period

uring which contrast enhancement falsely appears
ormal in these regions. It is not until microbubble
oncentration falls during the washout period that
ifferences in microbubble concentration are visu-
lly evident. It is during this time period that there
s a linear relationship between concentration and

A B B

A N D

CAD �

LBBB

MCE �

echoc

MI �

PET �

tomog

SPECT

comp

RT �
ignal intensity. With bolus intravenous inje
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� left bundle branch block
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positron emission
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� single-photon emission
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f microbubbles, the myocardial contrast intensity
uring this washout period is a reflection of myo-
ardial blood volume. Estimates of myocardial
lood flow cannot be ascertained from bolus injec-
ions, because mean transit times cannot be ob-
ained from time intensity curves due to dispersion
f the bolus by intrapulmonary filtering.
The difficulties arising with thresholding effect and

aturation point of echocardiography systems can
artly be avoided by using a continuous peripheral
enous infusion for microbubbles instead of a bolus
njection. This method assumes that the input of

icrobubbles into the myocardium is constant. The
ractical advantage of a continuous infusion is that at-
enuation artifacts due to high contrast intensity in the
eft ventricular cavity can be reduced (27–29). More-
ver, the contrast dosage administered can easily be
djusted on the basis of what is seen during imaging (29).

The ultrasound beam destroys these microbubbles
hen a high MI is used, so that insonation at high
Is results in almost complete bubble destruction

ith every pulse. Triggering ultrasound to 1 frame
imed to end systole in the cardiac cycle at a sequence
f incrementally longer cardiac cycles allows a replen-
shment of contrast agent corresponding to flow to the
iven region during that time sequence. The longer
he triggering intervals are set, the more microbubbles
eplenish the capillaries and the higher the signal
ntensity to be registered in the tissue, until finally a
lateau phase is reached. Alternatively, if one is
maging at a low MI in real time, brief high-MI
mpulses can be applied to the imaging plane, after
hich replenishment can be visualized in real time at

he low MI (Fig. 2). Regardless of the technique, the
lateau background-subtracted myocardial contrast
ntensity of a respective myocardial region is related to
he capillary cross-sectional area. The initial slope at
hich this plateau stage is achieved is proportional to

Figure 1. An Example of the Excellent Background Subtraction

The images are achieved with low–mechanical index pulse sequenc
4-chamber view, note that there are virtually no signals from the m
tricular cavity opacification (B) and eventual myocardial contrast (C
basal segments is most likely due to a high initial concentration of
he blood flow velocity in that region. The slope times c
eak or plateau myocardial videointensity, therefore,
epresents a measure of myocardial blood flow (6).

Factors such as attenuation, underlying tissue
ignals, incomplete microbubble destruction with
igh MI impulses, and difficulties with software
uantification techniques have prevented the wide-
pread use of quantification during myocardial con-
rast echocardiography (MCE). Models have been
roposed and validated that correct for attenuation
n the plateau myocardial signal intensity by divid-
ng it by the adjacent left ventricular cavity inten-
ity. These normalized plateau intensities, when
ultiplied by the rate of contrast replenishment and

ivided by tissue density, can be used to compute
yocardial blood flow (30). Continuous infusion

echniques can be done with infusion pumps or
and-held infusions. With either of the commer-
ially available contrast agents, one can mix them at
he bedside with saline and infuse them either as a
ontinuous drip or as a hand-held infusion.

linical Application of Ultrasonographic Contrast
or Perfusion Imaging

ith Vasodilator Stress Perfusion Imaging
etection of coronary artery disease. Radionuclide

cintigraphy is still considered by the majority of
ardiologists as the diagnostic tool to assess myocardial
erfusion during stress testing. This method, when
erformed with technetium-99m (99mTc) or 201Tl,
as been reported to detect coronary artery disease
CAD) with high sensitivity during exercise or vaso-
ilator stress imaging. Despite its widespread use,
owever, both radionuclide single-photon emission
omputed tomography (SPECT) and positron emis-
ion tomography (PET) are limited by poor spatial
esolution. SPECT is also limited by frequent atten-
ation artifacts. With intravenous perfluorocarbon

hemes designed to assess myocardial perfusion. In this apical
ardium before contrast administration (A), but excellent left ven-
er venous infusion of ultrasound contrast. The attenuation in the
robubbles in the left ventricular cavity.
e sc
yoc
) aft
ontrast agents and nonlinear ultrasonographic imag-
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ng techniques, detection of underperfused myocardial
egments during stress echocardiography has become
feasible alternative. Initial studies deployed intermit-

ent harmonic or power Doppler imaging techniques
o detect coronary stenoses during vasodilator stress.
sing intravenous Optison and intermittent high MI
armonic imaging, Kaul et al. (7) described a 92%
oncordance between segmental perfusion scores by

CE and 99mTc-sestamibi SPECT at rest and
uring dipyridamole stress. Heinle et al. (9) used an

ntravenous Optison infusion and harmonic power
oppler imaging at long pulsing intervals during

denosine stress testing to compare perfusion with
9mTc-sestamibi SPECT in 123 patients with sus-
ected CAD. There was an overall concordance be-
ween both techniques of 83%; concordance was
igher in patients with no or multivessel CAD.
Real-time perfusion and other lower MI imaging

echniques have been applied to vasodilator stress as
ell (Table 1) (10,31–43). Recently, the first multi-

enter studies compared MCE (triggered replenish-
ent imaging) with radionuclide SPECT. These

Figure 2. An Example of Normal Myocardial Replenishment (Ap

With real-time perfusion image, the myocardial replenishment is aft
tions (A) that normal replenishment occurs within 4 s of the high M
replenishment normally occurs within 2 s (B).
emonstrated a similar sensitivity and specificity be- i
ween the 2 techniques, regardless of stenosis severity
31). Quantitative measurements of myocardial blood
ow reserve have yielded sensitivities and specificities
or the detection of CAD that exceeded both visual
nd quantitative assessments of dipyridamole stress
ith radionuclide SPECT (32). The better spatial

esolution of MCE has been shown to improve the
etection of subendocardial perfusion defects that
ould otherwise go undetected with lower-resolution
PECT imaging. An example of this is shown in
igure 3, where an anteroseptal and apical perfusion
efect during adenosine stress is evident during the
eplenishment phase of contrast with real-time MCE.
he corresponding radionuclide image appeared nor-
al, despite the presence of a significant left anterior

escending lesion at quantitative angiography (33). In
he majority of these studies, the analysis of perfusion
ith MCE was performed independent of wall mo-

ion analysis. As might be expected with vasodilator
tress, myocardial perfusion analysis consistently has
ad higher sensitivity for detecting CAD than wall
otion analysis. Proposed protocols for perfusion

3-Chamber)

high–mechanical index (MI) impulse. Note under resting condi-
pulse, whereas during stress (vasodilator, dobutamine, exercise),
ical

er a
I im
maging with either dipyridamole or adenosine stress
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re displayed in Figure 4. Note that due to the beam
idth elevation and capillary blood flow, normal myo-

ardial blood flow under resting conditions should be
ithin 5 s of a high-MI impulse, whereas during vaso-
ilator or exercise stress replenishment, it should be
ithin 2 s (Fig. 2).

uring Dobutamine Stress Echocardiography

nimal studies have shown that perfusion defects
ppear before wall-thickening abnormalities during
obutamine infusion and better delineate the area at
isk (44). Clinical MCE studies comparing myocar-
ial perfusion with wall motion during dobutamine
tress have confirmed this better sensitivity (Table 2)
44–52). In predominately single-center studies, real-

Figure 3. An Example of a Subendocardial Perfusion Defect

The defect is evident in the anteroseptal and apical segments of the le
mechanical index impulse during adenosine stress imaging. Note that
there was no evident defect noted on the lower-resolution radionuclid

yocardial Perfusion Stress Imaging Studies Performed With Intr

Year Test N Sensitivity Specificity

2004 Dipy 35 — —

2004 Dipy 73 73% 86%

2004 Dipy 46 — —

2004 Dipy�EX 70 91% 70%

2005 Dipy or Adeno 36 — —

2006 Dipy 123 80% 63%

2006 Dipy or Adeno 89 83% 72%

2006 Adeno 43 77% 69%

2007 Adeno 40 73% 90%

2008 Adeno 24 67% 67%

2008 Dipy 103 67% 86%

2008 Adeno 48 71% 94%

2008 Dipy 63 92% 95%

2009 Dipy 285* 61% 74%

377* 71% 64%

ivity,
racy)

1,455 76% 78%

gio � angiography; CI � continuous infusion; Dipy � dipyridamole; EX � exercise
ed.
the presence of significant coronary artery disease at angiography (Angio)
ime perfusion echocardiography has been shown to
ncrease the sensitivity of the dobutamine stress test
hen compared with wall motion analysis (44–46,53)

nd improve the ability of the test to predict death or
onfatal myocardial infarction (4). Dolan et al. (54)
ecently published multicenter data confirming the
rognostic value of perfusion imaging during dobut-
mine stress echocardiography. In their study, an
nducible perfusion defect, even in the absence of a
all motion abnormality, was an independent predic-

or of risk for subsequent death or nonfatal myocardial
nfarction (54).

Newer clinical studies have suggested that real-time
erfusion imaging may assist in the detection of
ubendocardial ischemia during dobutamine stress. In

ntricle during the replenishment phase of contrast after a high–
use the defect was confined to the subendocardium (black arrows),
gle-photon emission computed tomography (SPECT) image despite

nous Ultrasound Contrast During Stress Echocardiography

Accuracy Bolus or CI Mode Gold Standard

97% for stenosis
82% for normal

— Low MI Angio

— CI Angio

83% TRI SPECT

— CI RT Angio

TRI 81% RT 85% Bolus TRI and RT SPECT

— CI TRI Angio

— CI RT Angio

73% CI RT Angio

84% CI RT Angio

— Bolus RT Angio

70% Bolus RT Angio

90% CI RT Angio

— CI RT Angio

68% CI RT Angio

69% CI RT Angio

78%

mechanical index; RT � real time; SPECT � single-photon emission computed
ft ve
beca
e sin
Table 1. Vasodilator M ave
in the Last 5 Years

Author (Ref #)

Peltier (32)

Janardhanan (10)

Yu (35)

Moir (36)

Tsutsui (37)

Jeetley (38)

Korosoglou (39)

Malm (40)

Xie (33)

Wasmeier (41)

Lipiec (42)

Mor-Avi (43)

Hayat (34)

Senior (31)

Pooled (average sensit
specificity, and accu

*RAMP 1 and RAMP 2.
Adeno � adenosine; An ; MI �
(red arrows). Reprinted, with permission, from Xie et al. (33).
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atients with significant left anterior descending
AD, subendocardial wall-thickening abnormalities
ere detected in 35 of 45 patients with subendocardial
erfusion defects despite the presence of normal trans-
ural wall thickening (55). Because dobutamine will

ecruit the subepicardial layers to contract, these
all-thickening abnormalities would have gone un-
etected if contrast were only used to enhance
ndocardial borders. An example of this is demon-
trated in Figure 5, where the presence of a suben-
ocardial perfusion defect in the apex and apical

0 1 2 3 Time line (min)

3% Definity Infusion

Baseline 4C, 2C, 3C
with Contrast

Dipyridamole
0.56 ml/

Protocol of Dipyridamole

0 1 2Time line (min)

3% Definity Infusion

Baseline 4C, 2C, 3C
with Contrast

Ade

Protocol of Adenosine 

A

B

Figure 4. Proposed Protocols for Dipyridamole or Adenosine St

The images shown are not intended for analysis of perfusion, but t
echocardiography.

Table 2. Dobutamine or Exercise Myocardial Perfusion Stress Im

Author (Ref #) Year Test N Se

Porter (45) 2001 Dob 40

Shimoni (47) 2001 EX 100

Olszowska (49) 2003 Dob 44

Tsutsui (46) 2005 Dob

Elhendy (50) 2005 Dob 128

Xie (51) 2005 Dob 27

Miszalski-Jamka (48) 2007 EX 42

Hacker (52) 2008 Dob 32

Lønnebakken (44) 2009 Dob 37

Pooled (average sensitivity,
specificity, and accuracy)

526
Dob � dobutamine; other abbreviations as in Table 1.
ateral segments permitted the detection of a wall-
hickening abnormality when transmural wall
hickening appeared normal.
eal-time MCE during exercise stress echocardio-
raphy. There are greater challenges when attempt-
ng to use real-time perfusion imaging during tread-

ill or bicycle exercise stress echocardiography. These
nclude increased frequency of respiratory artifacts and
he brief period of time when a patient can be
xamined at peak stress. Nonetheless, multicenter
tudies using treadmill and supine bicycle stress have

5 6 7 8 9 10 11 12

3% Definity Infusion

sion

tress Echocardiography

Stress 4C, 3C, 2C
with Contrast

3 4 5 6

3% Definity Infusion

ine Infusion
u/Kg/min

ess Echocardiography

Stress 4C, 3C, 2C
with Contrast

Infusions

rve as reminders when to examine myocardial contrast

ng Studies Performed With Intravenous Ultrasound Contrast Dur

tivity Specificity Accuracy Bolus or CI Mode

— 83% Bolus RT

— 76% Bolus RT

% 93% — Bolus RT

— 84% Bolus RT

% 53% 81% Bolus RT

% 50% 65% Bolus RT

% 88% — CI RT

% 91% — CI RT

% 87% — CI RT

% 77% 78%
4 

 Infu
Kg

 S

 

nos
140 

Str

ress

o se
agi ing the Last 5 Years

nsi Gold Standard

— Angio

— SPECT

97 Angio

— Angio

89 Angio

66 Angio

88 Angio

86 Angio

70 Angio

83
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emonstrated the incremental value of myocardial
erfusion assessment using low-MI imaging during
xercise testing (47). Indeed, recent data have sug-
ested that real-time perfusion imaging, by delineat-
ng subendocardial wall-thickening abnormalities,

ay further improve the sensitivity of wall motion
nalysis during treadmill exercise stress (56). Supine
icycle exercise studies during a continuous infusion of
ltrasound contrast have shown that replenishment
elays in contrast enhancement after high-MI im-
ulses have 88% sensitivity and accuracy for the
etection of significant CAD (48). An example of a
readmill exercise-induced perfusion defect is delin-
ated in Figure 6. Figure 7 illustrates proposed pro-
ocols for real-time perfusion imaging during dobut-
mine or exercise stress.
ssessment of myocardial viability in the acute and
hronic setting. MCE has proven useful in evaluating
atients after interventional or thrombolytic treatment
n acute myocardial infarction. Identification of pa-

Figure 5. An Example of a Subendocardial Wall-Thickening Abn

The abnormality is delineated by real-time perfusion imaging durin
mechanical index (MI) impulse. If only transmural wall thickening w
the wall thickening would have appeared normal. Reprinted, with p
replenishment.

Figure 6. An Example of an Inferior Wall Perfusion Defect

The defect was confined to the subendocardium after treadmill exe
also observed (blue arrows). Note also the end-systolic shape chan
an area of rib shadowing that prevented delineation of perfusion in

ber view can be used to delineate perfusion in these segments.
ients with the “no-reflow” phenomenon has proven
o be an important clinical application for MCE
57–59). This phenomenon, described first in an
nimal setting by Kloner et al. in 1974 (57), is
haracterized by a lack of recovery in microvascular
erfusion, although the occluded coronary artery is
uccessfully reopened by percutaneous intervention or
hrombolysis. Ito et al. (58) were the first to system-
tically examine myocardial microvascular perfusion
ith intracoronary microbubbles in patients with

cute anteroseptal myocardial infarction immediately
fter restoration of antegrade flow in the left anterior
escending artery. Several investigators have suc-
eeded in detecting the no-reflow phenomenon from
ntravenous administration of microbubbles (Table 3)
13,60–68). In patients undergoing primary coronary
tenting, homogenous myocardial contrast enhance-
ent within the infarct zone by continuous-infusion

ntravenous MCE has been shown to be highly
redictive of regional recovery of function (10). Res-

ality

e replenishment phase of contrast (During MCR) after the high–
examined in this patient (Pre-MCR after High MI Impulse images),
ission, from Xie et al. (55). MCR � myocardial contrast

stress, where a subendocardial wall-thickening abnormality was
hat accompanies the perfusion defect. The open arrows indicate
basal to mid-anterior segments. A foreshortened apical 2-cham-
orm

g th
ere
erm
rcise
ge t
the
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oration of microvascular perfusion was most likely to
ccur if patients demonstrated at least partial perfu-
ion to the risk area before primary stenting. MCE
erformed during dipyridamole infusion 1 week after
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Janardhanan (62) 50 3

Korosoglou (63) 32 1

Huang (64) 34 4

Sbano (65) 50 6

Abe (66) 21 6

Dwivedi (67) 95 46

Galiuto (68) 110 6
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cute myocardial infarction in patients receiving pri-
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oronary disease is present (67). The extent and
everity of myocardial contrast defect size, determined
ith real-time perfusion, has been shown to be an

ndependent predictor of both death and recurrent
yocardial infarction at a mean of nearly 4 years

ost-infarction (11). Multicenter studies have recently
emonstrated that the extent of microvascular dam-
ge, assessed on day 1 after reperfusion therapy in
cute myocardial infarction, is the most powerful
ndependent predictor of whether left ventricular re-

odeling will occur (68).
In patients with chronic CAD and left ventricu-

ar dysfunction, both the visual and quantitative
ssessment of MCE during a continuous infusion of
ntravenous microbubbles has provided significant
ndependent data on the effects of revascularization
o that segment. In this setting, the product of the
lope of myocardial replenishment and plateau myo-
ardial contrast intensity (an index of myocardial
lood flow) in dysfunctional segments correlated with
ontractile reserve by low-dose dobutamine, as well as
60% thallium uptake with radionuclide SPECT.
ore importantly, this index of myocardial blood flow

y MCE was able to identify viable myocardium in
egments that did not exhibit contractile reserve by
obutamine stress (69,70). However, these studies
ere small (n � 20 patients) and have yet to be
erified in multicenter studies.

Figure 8. An Example of a Patient With Left Bundle Branch Bloc

An example of a patient with left bundle branch block who exhibited nor
fusion in the septum during radionuclide single-photon emission compute

details. Reprinted, with permission, from Hayat et al. (34).
eal-timeMCE to detect CAD in clinical scenarios where
adionuclide imaging and wall motion are limited. Pa-
ients with left bundle branch block (LBBB) or
acemaker-dependent patients represent clinical sce-
arios where both the assessment of wall thickening
nd conventional myocardial perfusion imaging with
adionuclide SPECT are not helpful in the detection
f CAD (47). In these patients, there are difficulties
ith interpretation of wall thickening in the septum

in LBBB) or, in pacemaker-dependent patients, in
he septum and entire apex. In LBBB patients, per-
usion defects in the interventricular septum are seen
n radionuclide SPECT despite normal myocardial
lood flow with real-time perfusion and no significant
AD by angiography (Fig. 8). The reason for this

ppears to be the partial volume effect, as the false-
ositive perfusion defects seen with radionuclide
PECT had a normal perfusion appearance with
igher-resolution real-time MCE and were indepen-
ently associated with smaller septal systolic wall-
hickness measurements (34). Similar wall-thickness
bnormalities encompassing a larger territory (the
eptum and apex) are seen in pacemaker-dependent
atients. Although real-time MCE may be useful for
uling in or ruling out significant CAD in these
atients, it has yet to be determined in published
linical studies.

perfusion with myocardial contrast echocardiography but abnormal per-
mography despite no significant coronary artery disease. See text for
k

mal
d to
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rtifacts in myocardial perfusion assessments. One
ust be able to differentiate potential artifacts that

reate the appearance of perfusion defects. The most
ommon source of artifacts is attenuation. This typi-
ally occurs in basal segments and is differentiated
rom true defects by its location. Attenuation typically
asks not only the myocardium, but adjacent epicar-

ial and endocardial borders as well. Attenuation is
sually present both at rest and during stress, whereas
nducible defects are present only during stress and
ypically involve just the subendocardium. Other po-
ential artifacts are lung shadows, which will often
ask an entire region (e.g., the anterior wall in the

pical 2-chamber view) (Fig. 6). A second location
here artifacts tend to occur is in the apical region. If

he near-field gains (time gain compensation) are set
oo low, the apex will appear hypoperfused. Unlike
rue defects, this can be corrected by increasing the
ear-field potentiometer settings. Near-field destruc-
ion of microbubbles can also cause the false appear-
nce of perfusion defects in the apex. This can be
orrected by moving the focus to the near field, which
ecreases the scan-line density in this region and
educes destruction.

onclusions

CE is a bedside imaging technique that has very
bruster RW. Detection of myocardial 139:675– 83.
eed of ionizing radiation. The use of intravenous
icrobubbles for perfusion imaging is now a reality.
nfortunately, the U.S. Food and Drug Administra-

ion still has not approved the use of ultrasound
ontrast for myocardial perfusion imaging. Nonethe-
ess, the real-time methods used to achieve optimal
eft ventricular opacification (the approved U.S. Food
nd Drug Administration indication) often result in
yocardial opacification, which permits the simulta-

eous analysis of perfusion. Consensus documents
rom both the U.S. and Europe have also clearly
ummarized the incremental value of myocardial per-
usion imaging in detecting CAD both during rest
nd stress echocardiography (71,72). Clinical studies
ave demonstrated the potential for this technique in
he emergency department, during stress echocardiog-
aphy, and in the detection of viability, and prospec-
ive studies are underway to examine the prognostic
alue of real-time perfusion imaging during stress
chocardiography as compared with conventional
chocardiographic imaging.
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