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OBJECTIVES This study sought to examine if fully automated measurements of global longitudinal strain (GLS) using a

novel motion estimation technology based on deep learning and artificial intelligence (AI) are feasible and comparable

with a conventional speckle-tracking application.

BACKGROUND GLS is an important parameter when evaluating left ventricular function. However, analyses of GLS are

time consuming and demand expertise, and thus are underused in clinical practice.

METHODS In this study, 200 patients with a wide range of left ventricle (LV) function were included. Three

standard apical cine-loops were analyzed using the AI pipeline. The AI method measured GLS and was compared

with a commercially available semiautomatic speckle-tracking software (EchoPAC v202, GE Healthcare, Chicago,

Illinois).

RESULTS The AI method succeeded to both correctly classify all 3 standard apical views and perform timing of cardiac

events in 89% of patients. Furthermore, the method successfully performed automatic segmentation, motion estimates,

and measurements of GLS in all examinations, across different cardiac pathologies and throughout the spectrum of LV

function. GLS was �12.0 � 4.1% for the AI method and �13.5 � 5.3% for the reference method. Bias was �1.4 � 0.3%

(95% limits of agreement: 2.3 to �5.1), which is comparable with intervendor studies. The AI method eliminated mea-

surement variability and a complete GLS analysis was processed within 15 s.

CONCLUSIONS Through the range of LV function this novel AI method succeeds, without any operator input, to

automatically identify the 3 standard apical views, perform timing of cardiac events, trace the myocardium, perform

motion estimation, and measure GLS. Fully automated measurements based on AI could facilitate the clinical

implementation of GLS. (J Am Coll Cardiol Img 2021;-:-–-) © 2021 The Authors. Published by Elsevier on behalf of

the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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ABBR EV I A T I ON S

AND ACRONYMS

2D = two-dimensional

AI = artificial intelligence

ANN = artificial neural network

ASE = American Society of

Echocardiography

B-A = Bland-Altman

EACVI = European Association

of Cardiovascular Imaging

ECG = electrocardiogram

ED = end diastole

GLS = global longitudinal

strain

LOA = limits of agreement

LV = left ventricle

LVEF = left ventricular ejection

fraction

ROI = region of interest
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A ssessment of left ventricular (LV)
function is fundamental for diag-
nosis, risk stratification, and guid-

ance of treatment in patients with cardiac
disease. The European Association of Cardio-
vascular Imaging (EACVI) and the American
Society of Echocardiography (ASE) recom-
mend global longitudinal strain (GLS) as a
supplement to left ventricular ejection frac-
tion (LVEF) when evaluating LV function
(1). As a result, vendors have developed soft-
ware enabling measurement of GLS (2).
Although these methods are semiautomatic,
analyses are still time consuming and de-
mand expertise, and thus are underused in
everyday clinical practice.

Deep learning, the most recent advance-
ment in artificial intelligence (AI), now en-
ables computers to learn from annotated
images and perform fully automated image
analysis without any operator input (3). Previous AI
and machine learning techniques required explicitly
designed pattern recognition features to be created
by the designers of the AI, whereas the novel deep
learning techniques enable the AI to independently
learn the patterns and combinations of patterns in the
dataset needed to make accurate predictions, thereby
allowing for fully automated calculations previously
only possible with extensive manual work. This has
caused deep learning neural networks to become the
most successful and state of the art method of current
AI research (4). Deep learning neural networks has
successfully been adapted to perform several specific
tasks in echocardiographic image analysis that pre-
viously would have needed human input, such as
view classification (5,6), timing of events (7), and
image segmentation (8). Although AI and deep
learning in echocardiography are still in its infancy,
there is at present commercially available software
solutions that have implemented neural networks for
tasks such as view classification and segmentation to
provide automatic measurement of GLS. However,
the core task of strain imaging, namely motion esti-
mation, is still performed by traditional speckle
tracking algorithms. We have recently demonstrated
that a deep learning neural network could also be
trained to estimate motion in two-dimensional (2D)-
echocardiography, and that such a network could be
implemented in an end-to-end deep learning AI
pipeline for automatic measurements of GLS (9).
Compared with traditional speckle tracking, far more
sophisticated motion estimation algorithms can be
constructed by using deep learning. A deep learning–
based motion estimation network could learn to
integrate information about different moving speckle
patterns and global features of an image and inde-
pendently learn to differentiate artifacts from true
motion. Fully automated GLS measurements based
on deep learning for motion estimation have the po-
tential to both reduce time spent on manual tracing
and improve reproducibility, and, due to the pro-
cessing speed of optimized deep learning algorithms,
this could eventually enable on-screen measure-
ments in real-time while the operator acquires im-
ages. Thus, the field of deep learning represents a
paradigm shift in medical imaging and could change
how we perform clinical measurements in cardiology.

We hypothesized that a fully automated AI method
based on deep learning could, without any operator
input, identify and classify the 3 standard apical
views, perform event timing, trace the myocardium,
perform motion estimation, and calculate GLS, pro-
ducing comparable results to a commercially avail-
able semiautomated speckle-tracking method. The
aim of this study was to test this hypothesis in
echocardiographic examinations from patients with a
wide range of LV function, different cardiac pathol-
ogies, and varying image quality.

METHODS

STUDY DESIGN. A measurement system comparison
study was performed by analysis of 200 echocardio-
graphic examinations. Each examination represented
a test for each method, resulting in 2 paired GLS
measurements for each examination. The first mea-
surement system consisted of a single experienced
observer using a commercially available semi-
automatic method for GLS measurements. The sec-
ond measurement system was a novel AI method
measuring GLS without any observer input. A single
heart cycle was chosen from each view and the exact
same recording and cardiac cycle was used for both
methods. Analyses were performed without knowl-
edge of clinical data or previous measurement
results.

To assess if agreement between methods was
affected by LV function, subgroup analyses were
performed by categorizing the 200 between method
differences by LV function measured using LVEF
(normal LVEF >50%, mildly reduced LVEF 40% to
59%, moderately reduced LVEF 30% to 39%, and
severely reduced LVEF <30%). Finally, subgroups
were evaluated according to image quality (good, fair,
or poor).

The proposed deep learning AI pipeline automati-
cally estimates end diastole (ED) and end systole us-
ing a deep learning AI timing network. To explore
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how this automatic event timing affected the GLS
measurements, all examinations were analyzed twice
by the AI pipeline. First, the deep learning AI pipeline
was performed as proposed including automatic
event timing using the AI timing network, Second,
analyses using the same AI pipeline was repeated
using the event timing defined by the reference
method.

Intra- and interobserver reproducibility was
assessed in a random subset of 25 patients to illus-
trate the variability observed when measuring con-
ventional LVEF and GLS by the reference method as
compared with the novel AI method. Intraobserver
reanalyses of these examinations were performed by
the same observer 4 weeks after the initial measure-
ments. An experienced second observer at a different
hospital analyzed the same examinations to assess
interobserver variability. All reanalyses were per-
formed using the exact same heart cycle and blinded
to previous measurements and clinical data.

MATERIAL

To achieve a study population with a wide range of
cardiac function and different pathologies, we
included 5 pre-defined patient groups: 35 patients
with non–ST-segment elevation myocardial infarc-
tion, 35 patients with ST-segment elevation myocar-
dial infarction, 50 patients with ischemic heart
failure, 50 patients with nonischemic heart failure,
and 30 patients admitted for chest pain where neither
clinical examination, laboratory tests, electrocardio-
gram (ECG), echocardiography, or coronary angiog-
raphy revealed any evidence of cardiac origin.
Patients were included regardless of the quality of
echocardiographic recordings. Myocardial infarction
was defined according to the universal definition (10).
Patients were included consecutively for each group
and regardless of image quality. Exclusion criteria
were significant valvular disease, atrial fibrillation,
age younger than 18 years, or inability to give written
informed consent. The study was approved by the
Regional Committee for Medical and Health Research
Ethics and was conducted in compliance with the
ethical principles of the Declaration of Helsinki.

ECHOCARDIOGRAPHIC EXAMINATIONS. The echo-
cardiographic examinations were recorded using GE
Vivid E7/E9/E95 ultrasound systems (GE Ultrasound,
Horten, Norway). Echocardiographic examinations
and measurements were performed in accordance
with EACVI guidelines (11). LV-focused echocardio-
graphic recordings were performed in the 3 standard
apical views with simultaneous ECG tracing. Frame
rate was 67 � 9 frames/s. LVEF was measured using
the Simpson biplane disc summation method using
tracings from apical 4-chamber and 2-chamber views.
Image quality was assessed based on visual assess-
ment of each of the 18 individual myocardial seg-
ments of the 3 apical views. A segment was
considered missing if partly outside the image sector
or if the myocardium was indistinguishable from
surrounding structures due to artifacts. Good quality
examination was defined as no missing segments in
either of the 3 apical views, fair quality was defined as
1 to 2 missing segments, and poor quality was defined
as >2 missing segments.

STRAIN MEASUREMENTS USING THE REFERENCE

METHOD. Conventional GLS was measured using
speckle-tracking analyses using the semiautomatic
analysis method (2DS) implemented in widely used
commercially available software (EchoPAC SWO
version 202, GE Ultrasound). ED was defined by the
automatic ECG trigger algorithm of the analysis soft-
ware and only corrected if the automatic QRS detec-
tion failed. End-systole was manually defined by the
aortic valve closure signal obtained by pulsed-wave
Doppler in the left ventricular outflow tract or from
continuous-wave Doppler through the aortic valve.
The observer manually corrected the region of inter-
est (ROI) by visual assessment of the endocardial and
epicardial borders. Spatial and temporal smoothing
were kept at default values. Drift compensation was
applied as by default. No segments were excluded. A
single heart cycle was analyzed for each of the 3
standard apical views and peak strain was obtained as
calculated by the software. GLS was calculated as the
average peak strain of the 3 apical views. The speckle-
tracking analyses were performed in accordance with
the consensus document of the EACVI/ASE/Industry
Task Force to standardize deformation imaging (12).

STRAIN MEASUREMENTS USING A DEEP LEARNING

AI PIPELINE. We used an in-house–developed AI
method based on deep learning consisting of a pipe-
line of 4 artificial neural networks (ANN) (Central
Illustration). A detailed technological description of
the pipeline has been published separately (9). The
first network was based on the Inception and Dense-
Net architectures and used for image classification.
This network was trained to classify a presented im-
age into one of the multiple-view classes, including:
2-chamber, 4-chamber, and apical long axis. The
second network was based on a recurrent ANN ar-
chitecture and was used for event timing. This
network was trained to classify series of presented
images into systole or diastole. The third network was
based on the U-net architecture and used for image
segmentation. This network was trained to classify



CENTRAL ILLUSTRATION Automated Deep Learning Artificial Intelligence Pipeline
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The artificial intelligence (AI) pipeline for automatic measurement of global longitudinal strain consisting of 4 artificial neural networks. Visual feedback of the key

steps involved in calculating the global longitudinal strain (GLS) is illustrated, such as the segmentation used to initiate the region of interest, an optical flow field

visualizing the predicted local velocities, the extracted centerline from the segmentation mask, and the points visualizing the motion used to calculate GLS.
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TABLE 1 Study Population (N ¼ 200)

Study cohorts

NSTEMI 35 (17.5)

STEMI 35 (17.5)

Ischemic heart failure 50 (25)

Nonischemic heart failure 50 (25)

No significant cardiac disease 30 (15)

Demographics

Age, yrs 61 � 14 (22–91)

Male 144 (72)

Clinical characteristics

BMI, kg/m2 27 � 4 (18–43)

Heart rate, beats/min 74 � 15 (44–132)

SBT, mm Hg 125 � 21 (86–197)

Echocardiographic measurements

Echocardiographic LVEF, % 42 � 13 (7–70)

LVEDV, ml 128 � 66 (47–372)

LVESV, ml 80 � 57 (19–306)

LV function by LVEF category

Severely reduced: <30% 29 (14.5)

Moderately reduced: 30–39% 60 (30)

Mildly reduced: 40–49% 41 (20.5)

Normal: >50% 70 (35)

Image quality

Poor (>2 segment missing) 39 (19.5)

Fair (1–2 segments missing) 71 (35.5)

Good (0 segments missing) 90 (45)

Values are n (%) or mean � SD (range).

BMI ¼ body mass index; LVEDV ¼ left ventricular end-diastolic volume;
LVEF ¼ left ventricular ejection fraction; LVESV ¼ left ventricular end-systolic
volume; NSTEMI ¼ non–ST-segment elevation myocardial infarction;
SBT ¼ systolic blood pressure; SD ¼ standard deviation; STEMI ¼ ST-segment
elevation myocardial infarction.
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the image per pixel into 4 segmentation classes:
lumen, LV myocardium, left atrium, or other/back-
ground. Per pixel predictions were used to extract the
position, size, and shape of the ventricular myocar-
dium, lumen, and left atrium in an image. The
myocardial segmentation performed by this network
had a previously reported Dice Coefficient of 0.79 �
0.08 and was used to initialize the ROI. The fourth
network was based on a modified Pyramidal pro-
cessing, Warping and Cost volume Network (PWC-
Net) optimized for estimation of motion in echocar-
diographic images. This network learned to find
patterns in 2 consecutive images and was trained to
output an optical flow vector field of equal size as the
input images that, when applied to the patterns in
the first image, would best reconstruct the location of
the same patterns in the second image.

The view classification network was trained on an
in-house dataset of out-patient examinations con-
taining 424 hand-labeled echocardiographic re-
cordings. The timing and segmentation networks
were trained using the publicly available Cardiac Ac-
quisitions for Multi-structure Ultrasound Segmenta-
tion dataset of 500 hand-labeled echocardiographic
recordings (13). The optical flow network was trained
using synthetic echocardiography images where the
true motion was known (14).

The AI method measured strain frame by frame
based on the estimated movement of equally spaced
points initialized along the centerline from myocar-
dial segmentation at ED. The tracking was performed
by updating the position of these points using the
displacement fields from the optical flow network. A
spline was fitted to the centerline points for each
frame. The GLS was calculated for each view as the
percentage change in length of the spline from ED to
its shortest length through cycle. Similar to the
reference method, lagrangian peak strain was calcu-
lated for the specified heart cycle in each of the 3
apical views and GLS was calculated as the average of
these 3 values.

STATISTICS. Association between methods was esti-
mated by calculating the Pearson correlation coeffi-
cient. The mean absolute difference between the 2
measurement systems was calculated using the mean
value of the absolute difference between all mea-
surement pairs. The agreement of the paired mea-
surements was assessed using a Bland-Altman (B-A)
analysis, which is the recommended statistical
method in measurement comparison studies (15). An
a priori maximum limit of agreement (LOA) of �4%
was chosen based on known intervendor variability
(2). A sample size of 200 subjects was chosen; this
sample size provides sufficient accuracy, with 95%
confidence interval about the LOA of approximately
�0.24 standard deviations. Tests for normality were
performed using Shapiro-Wilk and Kolmogorov-
Smirnov tests. Brown-Forsythe test was used to
assess if there was a statistically significant difference
in variance between subgroups of measurement pairs
when categorized using LVEF and image quality.

B-A statistical calculations and plot were per-
formed using Python 3.7.4 (Python Software Foun-
dation), where exact 95% confidence interval limits of
the LOA were calculated using code based on the
method proposed by Shie (16). All other statistical
analyses were performed using open-source statisti-
cal Python packages (SciPy 1.5.4 and Statsmodels
0.12.1).

RESULTS

Patient characteristics are summarized in Table 1. The
view classification network succeeded to classify the
correct view in 97% of the cine-loops (584/600). A
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confusion matrix summarizing classification results
for each view is presented in Supplemental Table 1.
The timing network succeeded in estimation of both
ED and end-systole in 98% (593 of 600) of the cine-
loops. Difference in timing of end systole and ED
between the deep learning AI timing network and the
reference method was 1.8 � 2.7 frames (17 � 42 ms)
and 0.5 � 2.7 frames, respectively. Detailed results of
the timing network for each view are presented in
Supplemental Table 2. When running the AI pipeline
as proposed, with event timing defined by the deep
learning AI network, the mean difference in
measured GLS compared with using event timing
defined by the reference method was 0.3 � 0.3%
(p ¼ 0.02). A B-A analysis presenting impact of timing
method is presented in Supplemental Figure 1.
Twenty-one patients (11%) had failures in either the
view classification or timing. Both the reference
method and the AI method succeeded in measuring
GLS in all included recordings, when correct view and
timing were verified.

The proposed method was run on a standard
desktop computer with a modern graphics card and
used approximately 4 ms per frame for view classifi-
cation, 16 ms per frame for event timing, 10 ms per
frame for myocardial segmentation, and 30 ms per
frame for motion estimation. Total processing time
when running the entire pipeline was 4.3 � 0.7 s per
view and 13.0 � 2.0 s for a full patient analysis
including all 3 apical views.

IN BETWEEN METHODS AGREEMENT. Mean GLS in
the entire population was �12.1 � 5.0% and �13.5 �
5.3% for the AI method and the conventional method,
respectively. The median absolute deviation was
1.4% and mean absolute difference was 1.8 � 1.5%.
There was a highly significant correlation between
the methods (Pearson coefficient 0.93; p < 0.01,
Figure 1). The B-A analysis of between method dif-
ferences revealed a bias of �1.4 � 0.3% (p < 0.01) with
estimated LOA of �3.7% (Figure 2).

AGREEMENT CATEGORIZED USING LVEF AND IMAGE

QUALITY. The spread of subjects across different cat-
egories of LVEF and image quality is presented in
Table 1. There was no significant difference in vari-
ance between measurement pairs from different
subgroups categorized using LVEF (p ¼ 0.06). More-
over, no significant difference in variance was found
between subgroups when categorized using image
quality (p ¼ 0.58). Figure 3 presents the B-A plot
where measurement pairs are categorically labeled
using LVEF and image quality, illustrating the distri-
bution of these categories throughout the range of
GLS measured in the study population.

INTRA- AND INTEROBSERVER VARIABILITY AND

AGREEMENT. Figure 4 shows B-A plots illustrating
the relative difference in repeated GLS measurements
when measured by 2 observers using the reference
method, one observer using the reference method
and repeated measurements by the automated deep
learning AI pipeline. Importantly, the AI pipeline had
no operator input and deep learning algorithms are
deterministic in design, thus there were no variability
when reanalyzing the exact same images. Assessment
of intraobserver variability using the reference
method resulted in no significant bias �0.1 � 0.2
(p ¼ 0.55) and LOA �0.5%. However, there was a
small interobserver bias observed when using the
reference method 0.5 � 0.4 (p ¼ 0.04) and LOA �2.1%.
Visual representations of measurement agreement
using the reference method are presented in B-A plots
in Supplemental Figures 2 and 3.

DISCUSSION

The current study presents, for the first time, the
clinical feasibility of an end-to-end AI pipeline that
incorporates a deep learning based ANN specifically
trained for motion estimation as an alternative to
traditional speckle-tracking–based measures of

https://doi.org/10.1016/j.jcmg.2021.04.018
https://doi.org/10.1016/j.jcmg.2021.04.018
https://doi.org/10.1016/j.jcmg.2021.04.018
https://doi.org/10.1016/j.jcmg.2021.04.018


FIGURE 2 Measurement Comparison Results
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strain. Through a wide range of LV function and im-
age quality, the AI pipeline succeeded without any
human input to correctly classify cardiac views and
perform timing of cardiac events, and it was able to
trace myocardium, estimate motion, and ultimately
measure GLS.

The main motivation for developing an AI-based
pipeline for GLS measurements is to provide a more
robust and automated method, with the potential to
provide fully automatic real-time GLS measurements
while performing the image acquisition, and with
improved tracking accuracy and reduced measure-
ment variability. The currently most widely used
semiautomatic speckle-tracking methods need
several steps of operator input, and time spent per-
forming a single GLS analysis is reported to range
from 5 to 10 min (17,18). In contrast, all steps in the AI
pipeline were performed in <15 s. The novel deep
learning AI pipeline eliminates the need for time-
consuming manual input, which makes it effortless
to acquire average measurements from multiple car-
diac cycles as recommended in guidelines. Moreover,
deep learning algorithms are deterministic. This
means that the same input images always gives
identical output, without variability (Figure 4).

It is important to emphasize that removing the
interpretation variability completely by a determin-
istic deep learning algorithm does make repeated
measurements more reproducible but does not
necessarily make the measurements more accurate. A
measurement error made by a deep learning method
will be reproduced every time the method is reap-
plied to analyze the exact same image. Poor image
quality in echocardiography is a common problem
and in the present study a total of 19% of subjects had
more than 2 of 18 segments missing. The high per-
centage of examinations with suboptimal image
quality could explain that 11% of subjects had failures
of either the view classification network or the timing
network. Suboptimal image quality is an unavoidable
factor that limits the achievable accuracy of both
manual and automatic measurements. Thus, mea-
surement error or failure of deep learning algorithms
is inevitable, even if deep learning algorithms were to
outperform humans in terms of precision of mea-
surements. This underlines the importance of not
choosing a fully “black-box” AI method, such as
directly predicting LVEF or GLS from images equiva-
lent to “eyeballing” as proposed by some authors
(19,20). An AI method should be designed to give vi-
sual feedback to the observer. Misclassification of
view or timing could easily be corrected by the
observer. Motion estimation involves complex cal-
culations that are not directly available for the user to
inspect, both with the AI method and the semi-
automatic reference method. However, an observer



FIGURE 3 Measurement Comparison Results Categorized
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could visually inspect if tracking and motion esti-
mates seem reasonable if provided a visual feedback.
The method presented in this study was able to give
visual feedback for each frame of the left ventricular
segmentation, the motion estimation flow field, and
the movement of the points used to calculate GLS
(Central Illustration).

Compared with a previously conducted inter-
vendor comparison study by the EASCVI/ASE/In-
dustry Task Force to standardize deformation
imaging (2), the 2 methods in the present study
showed excellent correlation and high level of
agreement. When assessing agreement, no significant
difference in variance was found when measurement
differences were categorized according to LV function
measured using LVEF and by degree of image quality,
suggesting that myocardial dysfunction and image
quality had limited effect on agreement.

In the landmark intervendor study by Farsalinos
et al. (2), 2 vendor independent software packages
were compared with the same reference software as
in our study. The bias reported was �0.7% and 2.5%
strain units and LOA �3.4% and �3.8%, respectively.
A study by Nagata et al. (21) compared 2 different
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vendor independent software packages using the
same reference vendor as in our study. They reported
bias of �2.1% and LOA of �4.1%. Anwar et al. (22) also
compared a vendor independent software package to
the same reference software as in our study, and
found a bias of �2.9% strain units and LOA �5.5%.
Thus, the bias of �1.4% and LOA of �3.7% observed in
our study are well within the overall range of the bias
and LOA previously reported in intervendor agree-
ment studies. This provides reasonable evidence to
support that GLS measurements by the present deep
learning AI pipeline are comparable with other clini-
cally available semiautomatic methods.

To the best of our knowledge, there is currently no
clinically available software application for fully
automated GLS measurements in 2D echocardiogra-
phy that have implemented a deep learning neural
network specifically to estimate motion and produce
a motion flow field as an alternative to traditional
speckle-tracking strain algorithms. Except for our
technical paper describing the present AI pipeline (9),
there are no published journal articles presenting a
deep learning neural network for local motion esti-
mation in 2D echocardiography that could produce
flow field motion estimates of the entire myocardium.
We are only aware of one other journal article that
presents an in-detail description of a fully automated
AI method for GLS measurements (23). However,
although the authors used deep learning to auto-
matically initialize a ROI, conventional optical flow
and not deep learning was used for motion estimation
and calculation of GLS. Thus, they did not gain the
full potential of deep learning to improve measure-
ments of GLS. They found median absolute deviation
in GLS measurements of 1.4% in a population of 419
examinations and 1.6% in another population of 110
examinations. These findings are in line with our
study where the median absolute deviation was 1.2%.
Their method resulted in a GLS processing time of 1 to
4 min per view depending on number of frames and



PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: AI

methods using deep learning could without any

operator input automatically estimate myocardial

deformation and measure GLS. AI methods could

reduce measurement variability and provide more

robust measurements of LV function.

TRANSLATIONAL OUTLOOK: Future research

should assess clinical implementation of AI-based

methods in ultrasound scanners for fully automatic

real-time on-screen measurement of GLS.
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image size, whereas the pipeline in our study
used <5 s per view. In addition, the individual net-
works used in the pipeline succeeded to process
frames within milliseconds. Thus, if these deep
learning methods are implemented into ultrasound
machines, the individual steps of the AI pipeline
could be computed during acquisition of images,
enabling rapid bedside analysis, and even real-time
measurements on the ultrasound scanner.

STUDY LIMITATIONS. We only compared measure-
ments against one reference method. There is no gold
standard for GLS measurements and intervendor
variability is a known problem. Moreover, the
tracking software used by the vendors are not open
source. Thus, we cannot conclude whether one mea-
surement system in this study is more accurate than
the other. We could only conclude that the mea-
surement variability between these 2 measurement
systems is within the range of previous intervendor
studies. The statistical power for comparing agree-
ment of measurement across subgroups of LVEF and
image quality were limited, due to relatively small
sample sizes of subgroup analyses. The total test-
retest reliability of an echocardiographic measure-
ment depends on multiple factors related to both
image acquisition and observer interpretation. A
recent study concluded that acquisition and reader
influenced the variability of both GLS and LVEF
measurements to a similar extent (24). This suggests
that automation of measurements could substantially
reduce the total variability in a test-retest setting by
removing the individual observer interpretation. We
focused on image interpretation and the 2 measure-
ment systems analyzed the exact same images from
one predefined cardiac cycle. Hence the present study
was not designed to determine the effect of image
acquisition on measurement reproducibility. The
current deep learning pipeline was not designed to
measure multiple cycles. Future work should be done
to evaluate implementation of beat-to-beat variation
in the algorithm. Another limitation in the present
study is that all examinations used for testing the
deep learning algorithms were acquired using ultra-
sound machines from the same vendor. Conse-
quently, we cannot conclude whether the AI method
performs equally on images from different vendors.
Another topic for further studies is whether deep
learning–based strain estimation is more accurate and
robust in terms of capturing subtle differences in
strain, or when exposed to image artifacts compared
with currently used speckle-tracking methods.

Further research is needed to address the
mentioned limitations before deep learning
measurements could be routinely used in a clinical
setting. However, we find the present results prom-
ising both in terms of feasibility and agreement with
the reference method.

CONCLUSIONS

Fully automated measurements of GLS using a novel
deep learning AI-based technology for motion esti-
mation are feasible and fast and they yield results
comparable with the most widely used semiautomatic
software. Deep learning networks remove the need
for manual tracing and could both increase efficiency
and improve reproducibility. The system can poten-
tially be implemented in ultrasound scanners and
allow for real-time GLS calculations. Fully automated
measurements based on AI could be an important
step to further facilitate the implementation of GLS in
clinical practice.
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