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Phenogrouping Diastolic Dysfunction by

Artificial Intelligence

Learning From What We Teach the Machines*

Mani A. Vannan, MBBS,? Edgar Argulian, MD, Patrizio Lancellotti, MD, PuD%¢

“Predicting the future isn’t magic, it’s artificial
intelligence.”
—Dave Waters (1)

chocardiography is the cornerstone in the

assessment of left ventricular diastolic

dysfunction (LVDD) (2). This evaluation is
based on an algorithmic approach to assess myocar-
dial relaxation, myocardial stiffness, and left ventric-
ular filling pressure (LVFP). LVDD frequently, but not
always, accompanies heart failure with preserved
ejection fraction (HFpEF) (3). About 50% of those
with the clinical diagnosis of heart failure have
HFpEF that carries a significant mortality, varying
from 10% to 30% (higher in epidemiological studies
than in clinical trials) (4). In addition, the degree of
DD determined via echocardiography is predictive of
clinical outcomes in HFpEF (2). Therefore, a reliable
evaluation of DD by echocardiography is of para-
mount importance in the diagnosis and management
of HFpEF.

Over the years, there have been many algorithmic
pathways to assess DD with the use of echocardiog-
raphy. The latest iteration of the systematic approach
to evaluate for DD with the use of echocardiography
was described in the 2016 American Society of
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Echocardiography (ASE) guidelines (5). This has been
demonstrated to be more accurate and reliable
compared with the previous approach. However,
there are limitations to the ASE guidelines, with up to
one-third of the individuals falling under the inde-
terminate classification, especially when applied to
the general population (6). Furthermore, DD may
include patients with abnormal relaxation but normal
LVFP. Conversely, young patients with risk factors
such as hypertension or diabetes mellitus may be
graded as having worse DD than is truly the case (7).
All of these, at least in part, attest to the fact that a
stepwise approach does not account for the more
complex interactions among the parameters. Finally,
DD is only one component of HFpEF, which is a
multisystem disorder, and it has been argued that
assessment of DD might not even be necessary for the
diagnosis of HFpEF (8).

In this issue of iJACC, Pandey et al (8) have pro-
posed phenotyping DD by machine-learning (ML)
methods using echocardiographic parameters and
clinical features (9). They applied an unsupervised
ML approach to retrospective echocardiographic data
from patients with HF and identified low- and high-
risk phenogroups, followed by developing a deep
learning solution. This deep mneural network
(DeepNN) classifier was then used to predict the high-
and low-risk phenogroups in a derivation cohort.
Subsequently they applied the DeepNN classifier to
predict elevated LVFP, adverse clinical outcomes,
elevated cardiac biomarkers, exercise capacity, and
response to therapy in validation cohorts. The pre-
dictive performance of the DeepNN classifier for
elevated LVFP was tested in 84 patients who had
invasive measurements in close temporal proximity
to echocardiography. The DeepNN classifier per-
formed significantly better than the currently rec-
ommended echocardiographic criteria for elevated
LVFP. In a separate population of 219 patients with
HF, the DeepNN classifier was able to identify the
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high- and low-risk phenogroups, with a higher rate of
the cumulative composite end point of death and
hospitalization in the high-risk group. This was true
for the entire cohort and when applied to those with
HFpEF (EF >50%). Finally, the DeepNN classifier was
applied to 3 drug trial populations. In the TOPCAT
population, the ML classifier categorized ~80% as
high-risk and the cumulative incidence of primary
endpoint of all-cause mortality and hospitalization
(34%) was twice that of the low-risk phenogroup
(17%). Furthermore, ~40% were classified as inde-
terminate DD by the ASE guidelines, and 80% of these
were categorized in the high-risk phenogroup and
had a higher incidence of adverse clinical outcome. It
was also remarkable that nearly 75% of those classi-
fied as grade 1 DD by the ASE guidelines were iden-
tified as high-risk with significantly worse clinical
outcomes. When the DeepNN classifier was applied to
the combined RELAX and NEAT-HFpEF population,
~75% of the patients were identified as high-risk,
which showed higher levels of circulating cardiac
biomarkers of myocardial stress and injury, lower
exercise capacity (VO,pea) and worse Minnesota
Living With Heart Failure quality of life score, inde-
pendently from other variables.

The past few years has seen a plethora of publica-
tions reporting ML algorithms for almost the entire
gamut of cardiovascular disease. This trend is set to
expand and it is only a matter of time before ML ap-
proaches become a part of routine clinical practice.
This is a much needed development, as the human
brain can process only a finite number of elements to
accurately diagnose, assign prognosis, or plan
appropriate therapy for a given disease. HFpEF is a
good example of the challenge that a clinician en-
counters for the diagnosis and management of dis-
ease. HFpEF is a multiorgan disorder that includes
cardiac and vascular structural remodeling, endo-
thelial and ventriculovascular functional perturba-
tions, and metabolic and inflammatory abnormalities
with differential dominance of circulating biomarkers
in men and in women. ML algorithms should serve us
well in clinical decision making, given that conven-
tional multivariable logistic regression statistics do
not account for the nonlinear complex interaction of
the factors that ultimately determine the disease
state, the outcome, and the effectiveness of a thera-
peutic plan for a HFpEF patient.
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Pandey et al (8) have provided a good first step in
that direction, but many issues remain to be
addressed. The inclusion of parameters other than
those that identify DD by echocardiography is
important. For example, there is almost no infor-
mation on vascular parameters, which are a key
determinant of the pathophysiology and clinical
course of HFpEF. There are numerous other reports
of characterization of HFpEF phenotypes based on
ML methods (10-12). There are similarities and dif-
ferences in the phenotypes in these publications,
perhaps caused by the inclusion of different vari-
ables in developing the ML algorithms, or due to
unreliable and missing data. Although imputation
methods may address the latter issue, the threshold
at which imputation could account for the missing
data is unclear. Also, ML phenotyping should not
only be predictive of outcomes, but must aid in
predicting utility or futility of therapy. In this re-
gard, Pandey et al (8) have shown that spi-
ronolactone therapy the high-risk TOPCAT
phenogroup identified by the DeepNN classifier
reduced the incidence of the primary adverse
end point, an effect not seen in the low-risk
phenogroup.

Although ML methods offer an ability to process
data in multidimensional planes, their accuracy and
reliability remain to be tested by prospective ran-
domized application to larger and multi-institutional
populations. ML tools must also offer transparency
for the clinician to be able to audit and validate the
models in the context of current clinical practice. This
quote from Pedro Domingos is worth remembering:
“The greatest benefit of machine learning may ulti-
mately be not what the machines learn but what we

in

learn by teaching them.” (The Master Algorithm: How
the Quest for the Ultimate Learning Machine Will
Remake Our World).
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