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OBJECTIVES The aim of this study was to establish a rapid prescreening tool for heart failure with preserved ejection

fraction (HFpEF) by using artificial intelligence (AI) techniques to detect abnormal echocardiographic patterns in struc-

ture and function on the basis of intrabeat dynamic changes in the left ventricle and the left atrium.

BACKGROUND Although diagnostic criteria for HFpEF have been established, rapid and accurate assessment of HFpEF

using echocardiography remains challenging and highly desirable.

METHODS In total, 1,041 patients with HFpEF and 1,263 asymptomatic individuals were included in the study. The

participants’ 4-chamber view images were extracted from the echocardiographic files and randomly separated into

training, validation, and internal testing data sets. An external testing data set comprising 150 patients with symptomatic

chronic obstructive pulmonary disease and 315 patients with HFpEF from another hospital was used for further model

validation. The intrabeat dynamics of the geometric measures were extracted frame by frame from the image sequence to

train the AI models.

RESULTS The accuracy, sensitivity, and specificity of the best AI model for detecting HFpEF were 0.91, 0.96, and 0.85,

respectively. The model was further validated using an external testing data set, and the accuracy, sensitivity, and

specificity became 0.85, 0.79, and 0.89, respectively. The area under the receiver-operating characteristic curve was

used to evaluate model classification ability. The highest area under the curve in the internal testing data set and external

testing data set was 0.95.

CONCLUSIONS The AI system developed in this study, incorporating the novel concept of intrabeat dynamics, is a

rapid, time-saving, and accurate prescreening method to facilitate HFpEF diagnosis. In addition to the classification of

diagnostic outcomes, such an approach can automatically generate valuable quantitative metrics to assist clinicians in the

diagnosis of HFpEF. (J Am Coll Cardiol Img 2021;-:-–-) © 2021 The Authors. Published by Elsevier on behalf of the

American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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ABBR EV I A T I ON S

AND ACRONYMS

1D = 1-dimensional

A4C = apical 4-chamber

AI = artificial intelligence

BNP = brain natriuretic peptide

CNN = convolutional neural

network

COPD = chronic obstructive

pulmonary disease

GLS = global longitudinal

strain

HF = heart failure

HFpEF = heart failure with

preserved ejection fraction

LV = left ventricular

LVEF = left ventricular ejection

fraction

ROC = receiver-operating

characteristic

Chiou et al. J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . - , N O . - , 2 0 2 1

AI-Assisted Echocardiographic Prescreening of HFpEF - 2 0 2 1 :- –-

2

H eart failure (HF) is a significant
emerging global public health
issue associated with a high

burden (approximately 1 million annually)
of hospitalizations (1,2). Patients with HF
can be classified into 2 primary phenotypes:
those with HF with reduced ejection fraction
and those with HF with preserved ejection
fraction (HFpEF). Patients with HF with
reduced ejection fraction have impaired sys-
tolic function, whereas those with HFpEF
have diastolic dysfunction. These 2 pheno-
types demonstrate distinct clinical and
morphometric characteristics; therefore,
they are assumed to derive from different
pathologic molecular or biological mecha-
nisms (3).

Ejection fraction is a percentage measure-
ment of the amount of blood pumped out of
the heart during systole. The most common
cardiac systolic function assessment is through
measuring the left ventricular ejection fraction
(LVEF). The LVEF in patients with HF with reduced
ejection fraction is <40%. In contrast, patients with
HFpEF generally have LVEFs of more than 50%; thus,
HFpEF cannot be determined solely from LVEF (4).
To diagnose HFpEF is not an easy task; the diagnostic
criteria need to follow the 2016 guidelines of the
American College of Cardiology and the American
Heart Association, take into account the diagnostic
algorithm of the European Society of Cardiology, and
include an LVEF $50%, LV mass index $115 mL/m2 in
men and $95 mL/m2 in women, left atrial volume
index $34 mL/m2, along with functional alterations
of lower tissue Doppler–derived myocardial relaxa-
tion (e0) and elevated left ventricular (LV) passive
filling (E/e0 ratio), and elevated brain natriuretic
peptide (BNP) concentration (5). HFpEF is gradually
becoming the main form of HF. However, it usually
takes about 10 min–30 min to perform a medical ul-
trasound examination and to process results from
ultrasound tests. The accurate diagnosis of HFpEF
depends on the clinician’s expertise. Moreover, these
ultrasound tests are performed only when the patient
shows symptoms of HF.

In recent years, artificial intelligence (AI) deep-
learning algorithms have been widely applied in the
medical field to assist in diagnosis (6). In particular,
convolutional neural networks (CNNs) have been
used in echocardiography and cardiac magnetic
resonance to automatically extract cardiac functional
parameters (7,8). AI-supported echocardiographic
interpretation can accelerate the diagnosis of specific
diseases (8). However, the diagnosis of diseases such
as HFpEF, which requires multiangle echocardiogra-
phy and measurement of multiple cardiac function
parameters, remains challenging. HFpEF is also
difficult to diagnose for inexperienced clinicians.
Thus, the need for an efficient AI-assisted diagnostic
prescreening tool for HFpEF is urgent. Previous
studies assessed the differences in left atrial and LV
global longitudinal strain (GLS) between participants
with HFpEF and control subjects (9–12). The aim of
this study was to design and evaluate a GLS-based AI
prescreening system to assist in HFpEF diagnosis.

METHODS

STUDY DESIGN. We hypothesized that HFpEF could
be identified by tracking the intrabeat dynamic
changes in left atrial and LV regions in apical 4-
chamber (A4C) view echocardiography. A data set
comprising 1,263 asymptomatic individuals recruited
from previous cardiovascular health surveys as the
control group and 1,468 patients with HFpEF older
than 20 years of age as the HFpEF group. The partici-
pants’ 4-chamber view images were obtained from the
echocardiographic files and randomly separated into
training, validation, and internal testing data sets. The
intrabeat dynamics of the geometric measures were
extracted frame by frame from the image sequence to
train the AI models. For further validation of the AI
model, an external testing data set comprising 150
patients with symptomatic chronic obstructive pul-
monary disease (COPD) and 315 patients with HFpEF
from a different hospital. Accuracy, sensitivity, spec-
ificity, F1 score, and receiver-operating characteristic
(ROC) curves were used to evaluate the prescreening
outcome of the AI models.

DATASET SELECTION. This study was approved by
the Mackay Memorial Hospital Institute Research
Medical Ethics Committee (18MMHIS127e). The pic-
ture archiving and communication system at Mackay
Memorial Hospital began in June 2009, when tissue
Doppler information was available, and the study
cohort of patients with HFpEF enrolled in the present
AI analysis spanned January 2011 to December 2013.
As HFpEF is a highly heterogeneous disorder, its
clinical diagnosis can be challenging. The diagnosis of
HFpEF in our retrospective cohort was established
mainly by HF admission history (within the past
12 months) for symptoms or signs that fulfilled Fra-
mingham criteria and required intravenous diuretic
therapy. The HFpEF diagnostic criteria required
elevated natriuretic peptide level (BNP $100 pg/mL
or N-terminal pro-BNP $300 pg/mL) (9), which was
commonly used as a robust clinical index of such
disease phenotype (such as in the GWTG-HF [Get



FIGURE 1 Flowchart of the Selection Process for the Internal Dataset

(From 1 Jan 2011 to 31 Dec 2013)
Patients Hospitalized with Main Diagnosis of HF with LVEF >50%

(n = 1,468)

Presence of significant and primary
valvular heart diseases, idiopathic
pulmonary hypertension, isolated
right-sided HF from chronic lung
disorder (i.e. chronic obstructive
pulmonary disease), congenital
heart disease, diagnosed
cardiomyopathies, acute coronary
syndrome, known cardiomyopathy,
end-stage renal disease, and
previously known history of HFrEF
(n = 400)

Major Exclusions
Over 20 years of age;
HF symptoms (NYHA: II-IV) or signs that
fulfilled Framingham criteria within the past
12 months;
Elevated natriuretic peptide level (BNP
≥100 pg/mL or NT-proBNP ≥300 pg/mL);
Intravenous diuretics therapy;
Adjudicated by experienced cardiologists
with HF subspecialty.

Additional Criteria set for HFpEF
•
•

•

•
•

1,263 Subjects Enrolled from Cardiovascular
Health Survey

Over 20 years of age;
No symptoms or signs for prevalent HF;
Normal BNP/NT-proBNP levels;
No past HF history.

•
•
•
•

AI Analysis Unavailable HFpEF Patients
(n = 0)

Poor image quality
Planes/Views missing

•
•

HFpEF Patients (n = 1,068)

HFpEF Patients (n = 1,041)Control (n = 1,263)

AI Analysis Unavailable HFpEF
Patients (n = 27)

Poor image quality
Planes/Views missing
Recording frames <60

•
•
•

The internal data set included 1,263 asymptomatic individuals and 1,468 patients with heart failure with preserved ejection fraction (HFpEF).

After data selection and exclusion, the final internal data set included 1,263 individuals without HFpEF with normal left ventricular ejection

fractions (LVEFs) (>50%) as the control group and 1,041 patients with HFpEF. BNP ¼ brain natriuretic peptide; HF ¼ heart failure;

HFrEF ¼ heart failure with reduced ejection fraction; Nt-proBNP ¼ N-terminal pro–brain natriuretic peptide; NYHA ¼ New York Heart As-

sociation functional class.

J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . - , N O . - , 2 0 2 1 Chiou et al.
- 2 0 2 1 :- –- AI-Assisted Echocardiographic Prescreening of HFpEF

3

With the Guidelines–Heart Failure] [10] and TOPCAT
[Aldosterone Antagonist Therapy for Adults With
Heart Failure and Preserved Systolic Function] trials
[11]).

Our internal data set comprised 1,263 asymptom-
atic individuals recruited from cardiovascular health
surveys as the control group and 1,468 patients with
HFpEF older than 20 years of age as the HFpEF
group (12). After data selection and exclusion, the
final internal data set included 1,263 individuals
without HFpEF with normal LVEFs (>50%) as the
control group and 1,041 patients with HFpEF (total
N ¼ 2,304) (Figure 1). All the participants’ Digital
Imaging and Communications in Medicine files
contained all angle views obtained on echocardiog-
raphy. The study population characteristics of our
internal data set, including echocardiographic pa-
rameters, are presented in Table 1. We performed
additional validation using an independent external
data set with 315 patients with HFpEF from another
hospital (MacKay Memorial Hospital, Tamshui
Branch) and 150 symptomatic patients with COPD.
These patients with COPD (confirmed by spirometry)
showed normal LVEFs (>50%) and low natriuretic
peptide levels (N-terminal pro-BNP <125 pg/mL or
BNP <35 pg/mL) without prior HF diagnosis or HF
hospitalization.

ASSESSMENT OF DIASTOLIC FUNCTION. Conventional
cardiac structural and geometric information was
obtained according to contemporary guidelines (1).
Assessment for each diastolic index and abnormal



TABLE 1 Study Population Characteristics

HFpEF Group Control Group

Physical information

Individual amount 1,041 1,263

Age (yrs) 72 � 14 47 � 9

Male 489 346

Female 554 917

BMI (kg/m2) 25 � 5 24 � 3

Systolic blood pressure (mm Hg) 149 � 28 124 � 16

Heart rates (beats/min) 80 � 20 73 � 10

NT-proBNP (pg/mL) 787 (290.3-1,780.0) 27.4 (11.7-49.9)

Total cholesterol (mg/dL) 170.72 � 49.82 201.68 � 34.37

High density lipoprotein cholesterol (mg/dL) 45.08 � 13.71 53.52 � 14.57

eGFR (mL/min/1.73 m2) 47.40 � 35.32 87.42 � 15.81

Hypertension 706 0

Diabetes 467 0

Cardiovascular disease 477 1

Coronary artery disease 381 0

Atrial fibrillation 327 0

Echocardiographic information

Interventricular septum (mm) 9.82 � 1.84 9.18 � 1.32

LV internal diameter in diastole (mm) 47.01 � 5.63 47.68 � 3.23

End-diastolic volume (mL) 102.08 � 29.95 106.48 � 16.18

End-systolic volume (mL) 42.18 � 20.34 35.20 � 7.73

LVEF (%) 60.24 � 9.15 67.03 � 4.33

LV mass index (g/m2) 90.36 � 27.79 77.65 � 16.45

Deceleration time (ms) 209.99 � 74.54 199.91 � 31.66

TRV (m/s) 3.2 � 0.5 2.1 � 0.3

Average e0 (cm/s) 6.0 � 2.3 11.7 � 2.2

E/e0 16.8 � 6.6 6.1 � 1.6

LAVI (mL/m2) 34.1 � 12.2 15.6 � 5.6

Values are n, mean � SD, or median (interquartile range).

BMI ¼ body mass index; E/e0 ¼ ratio of mitral peak E velocity to average e0 ; eGFR ¼ estimated glomerular
filtration rate; HFpEF ¼ heart failure with preserved ejection fraction; LAVI ¼ left atrial volume index; LV ¼ left
ventricular; LVEF ¼ left ventricular ejection fraction; NT-proBNP ¼ N-terminal pro–brain natriuretic peptide;
TRV ¼ tricuspid regurgitation velocity.
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cutoffs (including septal e0 <7 cm/s or lateral
e0 <10 cm/s, left atrial volume index >34 mL/m2,
tricuspid regurgitation velocity >2.8 m/s, and ratio of
mitral peak E velocity to average e0 [E/e0] >2.8m/s)
were defined according to 2016 American Society of
Echocardiography guidelines (13).

IMAGE PROCESSING. The step-by-step image anal-
ysis procedure is presented in Figure 2. All A4C view
frames were extracted from the Digital Imaging and
Communications in Medicine files and converted into
images, which were cropped and resized to 128 � 128
pixels. Each pixel was then normalized between
0 and 1 for neural network training and prediction.
Edges of the left atrial and LV chambers were ob-
tained using U-net, a conventional neural network
with a U-shaped architecture consisting of a con-
tracting and an expanding pathway focused on image
features (14). The U-net depth applied in this research
was 4 layers for down-convolution and another 4
layers for up-convolution. This U-net structure,
which allows the classification of each pixel, is widely
used in automatic biomedical image segmentation
(15,16). During U-net processing, each A4C view im-
age of the left atrial and LV regions was captured to
calculate chamber length, width, area, volume, and
LVEF. For U-net training, a total of 500 A4C view
images from internal data set were selected,
including 450 A4C view images for the training data
set, and 50 randomly selected untrained A4C view
images served as the testing data set (Figure 3, left).

In the value extraction process, the length, width,
area, and volume were extracted as intrabeat dy-
namics. After U-net segmentation, the length, width,
area, and volume of the LV and left atrial information
were calculated using a convex hull algorithm, which
was used to find the smallest square around the edge
of the chamber. All parameters in each frame were
recorded as linear data for the following 1-
dimensional (1D) CNN processing. The maximum
and minimum areas of the left atrium and left
ventricle were defined as the end of a diastolic view
and the end of a systolic view. Calculation of left
atrial and LV volumes and derived LVEF was based on
recommended guidelines for cardiac chamber quan-
tification by echocardiography (1).

DATA CLASSIFICATION BY 1D CNN. One-dimensional
CNNs are extensively used to classify medical signals
(17). Convolutional and pooling layers are used to
concentrate 1D linear signals to discover certain dis-
ease characteristics. The intrabeat dynamic changes
of left atrial and LV length, width, area, and volume
were recorded as linear waveform signals, which can
be trained and further classified by a 1D CNN. These 4
types of linear signals were cropped to 60 frames,
which constituted at least 1 complete systolic-
diastolic cycle, and were then separately imported
into 4 identical 1D CNN models. The network struc-
ture consisted of 4 convolutional layers, 2 pooling
layers, 2 dropout layers, and 1 dense layer. The con-
volutional and pooling layers were used to concen-
trate the linear features. The dropout layers were
designed to randomly drop some connections be-
tween layers to prevent overfitting, and the dense
layer was designed for output.

STATISTICAL ANALYSIS. For U-net model evalua-
tion, the mean intersection over union, a common
evaluation metric for semantic image segmentation,
was applied. It can be used to count the number of
overlapping pixels between the AI neural network
prediction and manual labeling areas (8). The mean
intersection over union formula is as follows:



FIGURE 2 Step-By-Step Procedures for Image Preprocessing and Segmentation, Value Extraction, and 1D CNN Model Prediction
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Step 2. Value Extraction

Step 1. Image Preprocessing & Segmentation

LV U-net model

DICOM File Images

LA U-net model

Each dynamic left ventricular (LV) and left atrial (LA) length, width, volume, and area data (60 frames) were extracted from the U-net

prediction images. These linear signals can be trained for model prediction by a 1-dimensional (1D) convolutional neural network (CNN).

DICOM ¼ Digital Imaging and Communications in Medicine.
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FIGURE 3 Training and Testing Dataset Used for U-Net and 1D CNN Model

Control
(n = 250)

Training Dataset
(n = 450)

(Control = 225,
HFpEF = 225)

Testing Dataset
(n = 50)

(Control = 25,
HFpEF = 25)

HFpEF
(n = 250)

Dataset n = 500

U-net 1D-CNN

Dyspnic COPD
Control

(n = 150)

HFpEF
(n = 315)

Dataset n = 465

External DatasetInternal Dataset

Control
(n = 1,263)

Training Dataset
(n = 2,072)

(Control = 1,147,
HFpEF = 925)

(10%) Untrained
Testing 
Dataset

(n = 232)

(Control = 116,
HFpEF = 116)

HFpEF
(n = 1,041)

Dataset n = 2,304

10% (n = 207)
Used for 10-fold Validation

(Control = 114,
HFpEF = 93)

The internal data set for 1D CNN comprised patients with HFpEF and asymptomatic individuals, with the external data set further validated to distinguish patients with

HFpEF from those with dyspnea and chronic obstructive pulmonary disease (COPD). Abbreviations as in Figures 1 and 2.
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Mean intersection over union

¼ Manual labelXprediction
Manual labelWprediction

Furthermore, the correlation between the ground
truth label and the AI prediction results can be
assessed using the Spearman correlation coefficient
and a Bland-Altman plot. The Spearman correlation
coefficient (r) represents the level of correlation, and
a P value of <0.01 indicates a significant correlation.
Bland-Altman plots are used to analyze the agree-
ment between 2 different assays. Both methods are
commonly used in the medical field to compare the
differences between the ground truth label and AI
prediction results (8).

For evaluation of the 1D CNN model, accuracy,
sensitivity, specificity, F1 score, and a ROC curve,
commonly applied in the evaluation of deep-learning
models, were used. ROC curves illustrate the diag-
nostic capabilities of a classifier system for model
prediction (eg, HFpEF or non-HFpEF). The area under
the ROC curve is equal to the probability that a clas-
sifier will rank a randomly chosen positive instance
higher than a randomly chosen negative one (18). For
the F1 score, both precision and recall are considered
to compute the score to evaluate the classifier (19).
Cohen’s kappa coefficient (k), a statistic that mea-
sures inter-rater reliability for categorical items (20),
was used to calculate the error between the model-
predicted label and manual echocardiographic label.
In this study, the kappa score was used to evaluate
the expert-calculated LVEF and the AI-derived LVEF
to measure the inter-rater consistency between the
expert and the AI model. In addition, the kappa score
was also used to evaluate the HFpEF prediction re-
sults between the expert and the AI model.

RESULTS

The internal data set selection process is displayed in
Figure 3 (right). To train our AI model, we randomly
separated the internal data set (total N ¼ 2,304) into a
training data set (n ¼ 2,072) and a 10% untrained in-
ternal testing data set (n ¼ 232) (Table 2). Four types
(including length, width, area, and volume) of left
atrial and LV linear signals were used for our HFpEF
model prediction. From the training data set, 10%
were randomly selected during the training process



TABLE 2 Internal Testing Dataset Population Characteristics

Internal
Control Group

Internal
HFpEF Group

Physical information

Individual amount 116 116

Age (yrs) 48 � 9 68 � 8

Male 77 66

Female 39 50

BMI (kg/m2) 23.� 3 27 � 6

Systolic blood pressure (mm Hg) 124 � 18 150 � 33

Heart rates (beats/min) 72 � 10 85 � 17

NT-proBNP (pg/mL) 27.4 (11.8-64.4) 742 (176-2,000.0)

Total cholesterol (mg/dL) 201.18 � 35.32 185.47 � 58.78

High density lipoprotein cholesterol (mg/dL) 53.80 � 16.21 40.28 � 10.92

eGFR (ml/min/1.73 m2) 89.42 � 17.22 51.12 � 32.54

Hypertension 14 68

Diabetes 3 50

Coronary artery disease 6 43

Atrial fibrillation 0 22

Echocardiographic information

Interventricular septum (mm) 9.11 � 1.42 9.78 � 2.31

LV internal diameter in diastole (mm) 47.54 � 3.80 48.92 � 6.43

End-diastolic volume (mL) 104.77 � 16.87 115.19 � 35.05

End-systolic volume (mL) 34.32 � 8.510 49.89 � 24.55

LVEF (%) 67.42 � 3.89 56.96 � 11.31

LV mass index (g/m2) 80.53 � 20.10 89.22 � 31.26

Deceleration time (ms) 204.45 � 35.15 174.62 � 52.54

TRV (m/s) 2.3 � 0.3 3.2 � 0.5

Average e0 (cm/s) 11.0 � 2.2 5.8 � 1.5

E/e0 6.6 � 1.7 17.2 � 5.5

LAVI (mL/m2) 16.0 � 5.8 35.7 � 9.1

Values are n, mean � SD, or median (interquartile range).

Abbreviations as in Table 1.
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(as internal validation; n ¼ 207) for 10-fold validation.
As previously mentioned, our 1D CNN model was
further validated in an external testing data set
comprising independent patients with HFpEF and
patients with symptomatic COPD without HF
(Figure 3, right; Table 3). We further tested the diag-
nostic performance of our trained AI model in iden-
tifying each abnormal diastolic index (as a binary
variable) proposed in contemporary guidelines both
in internal and external testing data sets (17).

INTERNAL DATA SET. After U-net model segmenta-
tion, the left atrial and LV length, width, area, and
volume of each segmented image as linear signals
were used for 1D CNN classification. After training
and validation from internal data set, we tested our
1D CNN model in the 10% randomly selected un-
trained internal testing data set (n ¼ 232) (Table 2).
The average time spent on each data set analysis
was <3 min. The internal testing data set results
revealed that compared with dynamic information on
length, width, and volume, both left atrial and LV
area changes showed the highest diagnostic perfor-
mance (area under the curve [AUC]: 0.95 for both) in
distinguishing patients with HFpEF from control
subjects (Table 4). These scores represent the preci-
sion in classifying patients with HFpEF and those
without HFpEF. Figure 4A presents the ROC curve
results for the internal testing data set. The left atrial
area model had the highest prediction accuracy
among the left atrial models, with accuracy, sensi-
tivity, specificity, F1 score, and kappa score of 0.91,
0.96, 0.85, 0.91, and 0.81, respectively. Similarly, the
LV area model had the highest prediction accuracy
among the LV models, with accuracy, sensitivity,
specificity, F1 score, and kappa score of 0.88, 0.91,
0.85, 0.88, and 0.75, respectively. Overall, our AI
model showed satisfactory performance in identi-
fying each abnormal diastolic index from our internal
testing data set (Supplemental Tables S1 to S4).
Comparison of ground truth labels and AI predictions
of end-diastolic volume, end-systolic volume, and
LVEF from an untrained internal data set (n ¼ 232), in
which Spearman correlation coefficients and differ-
ences (Bland–Altman plot) were further detailed in
Supplemental Figure S1. Supplemental Figure S2
shows the ROC curves.

EXTERNAL DATA SET. The external testing data set
was used to verify that the AI model could fit patients
with HFpEF from different hospitals. Patients with
COPD without HFpEF were included in the external
testing data set as a control group because the
external symptoms of COPD are similar to those of
HFpEF. The external testing data set comprised 150
patients with symptomatic COPD without HF and 315
patients with HFpEF independent of our internal data
set (Table 3). The external cohort results showed that
the linear signal data of both left atrial and LV area
had higher accuracy than other parameters in pre-
dicting HFpEF (Table 5). Figure 4B presents the ROC
curve results from the external testing data set, which
showed a similar pattern to the original internal
testing data set. These consistent results support that
our AI-assisted prescreening system shows potential
in distinguishing HFpEF from noncardiac causes of
dyspnea among symptomatic patients with COPD.
Additionally, our AI model also performed well in
identifying each abnormal diastolic index from
external testing data set (Supplemental Tables S5, S6,
S5 to S8), with ROC curves shown in Supplemental
Figure S2.

DISCUSSION

The AI-assisted prescreening system developed in
this study can automatically extract featured

https://doi.org/10.1016/j.jcmg.2021.05.005
https://doi.org/10.1016/j.jcmg.2021.05.005
https://doi.org/10.1016/j.jcmg.2021.05.005
https://doi.org/10.1016/j.jcmg.2021.05.005
https://doi.org/10.1016/j.jcmg.2021.05.005
https://doi.org/10.1016/j.jcmg.2021.05.005
https://doi.org/10.1016/j.jcmg.2021.05.005


TABLE 3 External Testing Dataset Population Characteristics

External COPD
Control Group

External
HFpEF Group

Physical information

Individual amount 150 315

Age (yrs) 55.03 � 13.43 70 � 13

Male 131 134

Female 17 181

BMI (kg/m2) 71.19 � 12.44 25.� 5

Systolic blood pressure (mm Hg) 130.24 � 19.70 152 � 27

Heart rates (beats/min) 70 � 10.8 84 � 23

NYHA functional class

I — 13

II — 190

III and IV — 112

Cardiomegaly 16 167

Jugular vein engorgement 12 76

Peripheral oedema 5 192

NT-proBNP (pg/mL) 33.70 (16.00-93.42) 796 (399.50-2,000.00)

Total cholesterol (mg/dL) 224.94 � 34.48 177 � 55

High density lipoprotein cholesterol (mg/dL) 47.2 � 10.7 45.56 � 13.82

eGFR (mL/min/1.73 m2) 67.5 � 24.2 49.47 � 31.73

Hypertension 48 162

Diabetes 35 160

Coronary artery disease 29 137

Atrial fibrillation 6 105

Echocardiographic information

Interventricular septum (mm) 9.56 � 1.48 10.72 � 2.26

LV posterior wall thickness (mm) 9.58 � 1.51 10.53 � 1.83

LV internal diameter in diastole (mm) 50.60 � 38.05 48.43 � 6.38

End-diastolic volume (mL) 106.37 � 20.12 112.53 � 35.10

End-systolic volume (mL) 37.20 � 8.90 48.90 � 27.24

LVEF (%) 65.12 � 5.41 56.90 � 13.51

LV mass index (g/m2) 82.65 � 22.20 96.91 � 30.44

Deceleration time (ms) 207.02 � 48.36 207.69 � 67.38

TRV (m/s) 2.4 � 0.3 3.2 � 0.5

Average e0 (cm/s) 10.0 � 1.9 5.9 � 1.8

E/e0 7.2 � 2.0 16.9 � 6.8

LAVI (mL/m2) 21.7 � 5.3 36.6 � 12.4

Values are n, mean � SD, or median (interquartile range).

NYHA ¼ New York Heart Association; other abbreviations as Table 1.
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intrabeat dynamic patterns associated with HFpEF to
assist in diagnosis. Echocardiographic interpretation
through AI assistance can be helpful to less experi-
enced clinicians and reduce interobserver and intra-
observer variability (21). Our system provides an
automatic interpretation that exhibits high accuracy
in detecting HFpEF. However, because of the limited
amount of data available for patients with HFpEF, our
system could only provide a proof of concept for AI
model development to aid in HFpEF prescreening. To
improve our system, further research and data
collection are required.

Our study concept was based on previous research
in which GLS was used as a predictor of HFpEF.
HFpEF is divided into 4 stages of severity (A-D). In
Stages B to D, the resting left atrial, LV, and right
ventricular GLS of the patient decrease gradually with
advancing stage (22). GLS < 16% has been set as a new
minor criterion to assist in HFpEF diagnosis (5). To
improve the diagnostic feasibility of GLS, instead of
extracting only LV diastolic and LV systolic length for
GLS calculation, our AI model incorporated dynamic
changes (and hence waveform characteristics) of
several left atrial and LV parameters (including
length, width, area, and volume) during the systolic-
diastolic cycle. The detailed intrabeat dynamic fea-
tures were extracted using a 1D CNN for classification.
Because the area formula contained both length and
width changes, the intrabeat dynamic changes of LV
and left atrial area had the highest accuracy among all
parameters (0.88 and 0.91, respectively). Thus,
changes in dynamic area rather than dynamic length
may be more helpful in assisting in HFpEF diagnosis.

Specific features in dynamic LV area changes in the
HFpEF group were manually classified on the basis of
cardiac phase–specific analysis. Figure 5 depicts a
typical illustration of the dynamic LV area changes
between the HFpEF and control groups. Figure 6
demonstrates the chronologic differences in intrabeat
dynamic LV area changes between the control group
and patients with several subtypes of HFpEF. Intra-
beat dynamics in the control group showed an early
upstroke followed by a steady rise or plateau-like
diastolic waveform, representing a sustained vol-
ume for approximately 15 frames–25 frames (0.3 s–0.5
s). In contrast, in the HFpEF group, 72% (including
the round-peak, sharp-peak, 2-peak in systole, and
irregular groups) of the patients with HFpEF showed
no steady plateau phase during the diastolic stage.
These may result in sharper waveforms during the
diastolic than the systolic phase, which likely reflects
markedly impaired diastolic mechanics (eg, reduced
e0 and higher E/e0 indicative of elevated LV filling
pressure) or delayed relaxation in HFpEF (Figures 5
and 6). This was partly supported by the findings that
our AI model is also capable of differentiating
abnormal diastolic indexes in both our internal and
external testing data sets. The irregular group (10%)
did not show a regular systolic-diastolic cycle. The
fake control group (21%) demonstrated perfect dy-
namic area changes, as did the control group, in
which clinicians could not find specific HFpEF char-
acteristics. AI technology is thus needed to discover
the subtle features hidden in such data.

PREVIOUS RESEARCH. Conventional GLS measure-
ment requires clear LV apical views (eg, the A4C view)
for speckle-tracking echocardiography, which is used



TABLE 4 Artificial Intelligence Prediction Results for the Internal Testing Dataset (n ¼ 232, Including 116 Control Subjects and 116 Patients

With Heart Failure With Preserved Ejection Fraction)

U-Net Prediction Result 1D CNN Prediction Result

Mean IoU Accuracy Sensitivity Specificity F1 Score k AUC (95% CI)

Left atrium

Length 0.89 0.81 0.92 0.69 0.83 0.61 0.89 (0.85-0.93)

Width 0.83 0.89 0.77 0.84 0.65 0.90 (0.86-0.94)

Area 0.91 0.96 0.85 0.91 0.81 0.95 (0.92-0.97)

Volume 0.89 0.94 0.84 0.89 0.78 0.94 (0.91-0.97)

Left ventricle

Length 0.90 0.78 0.9 0.67 0.81 0.56 0.88 (0.83-0.92)

Width 0.81 0.81 0.80 0.81 0.61 0.87 (0.82-0.91)

Area 0.88 0.91 0.85 0.88 0.75 0.95 (0.92-0.97)

Volume 0.80 0.82 0.78 0.85 0.68 0.94 (0.91-0.97)

1D ¼ one-dimensional; AUC ¼ area under the curve; CNN ¼ convolutional neural network; IOU ¼ intersection over union; LA ¼ left atrial; LV ¼ left ventricular.
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to count HFpEF GLS ranges (22). However, GLS re-
mains a minor criterion in the diagnosis of HFpEF for
which no specific range has been set. Therefore, a va-
riety of geometric or diastolic functional indexes may
be required to establish the diagnosis of HFpEF
(4–6,17,18). Furthermore, current echocardiographic
FIGURE 4 ROC Curves for 1D CNN in HFpEF-Specific Prediction Mod
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ata set (A) and the external testing data set (B). Abbreviations as in Figure 2.



TABLE 5 Artificial Intelligence Prediction Results for the External Testing Dataset (n ¼ 465, Including 150 Control Subjects With Chronic

Obstructive Pulmonary Disease and 315 Patients With Heart Failure With Preserved Ejection Fraction)

U-Net Prediction Result 1D CNN prediction result

Mean IoU Accuracy Sensitivity Specificity F1 Score k AUC (95% CI)

Left atrium

Length 0.88 0.80 0.75 0.83 0.71 0.57 0.87 (0.84-0.89)

Width 0.77 0.66 0.82 0.64 0.47 0.85 (0.82-0.88)

Area 0.85 0.83 0.85 0.77 0.66 0.92 (0.90-0.94)

Volume 0.86 0.85 0.86 0.79 0.69 0.93 (0.90-0.95)

Left ventricle

Length 0.92 0.77 0.86 0.73 0.71 0.53 0.85 (0.82-0.88)

Width 0.84 0.71 0.90 0.74 0.62 0.87 (0.84-0.90)

Area 0.87 0.84 0.88 0.80 0.70 0.93 (0.91-0.95)

Volume 0.85 0.79 0.89 0.78 0.67 0.95 (0.88-0.93)

Abbreviations as in Table 4.
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GLS value. This will probably generate more compre-
hensive information (including waveform character-
istics on phasic changes, heart rate, or heart cycle
regularity) than do single GLS values. These specific
features, when integrated as linear signals and
captured by 1D CNNs, could be supplemental and
5 Schematic Illustration of Typical Intrabeat Dynamic LV Area Changes in

pEF
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provide mechanical insights into altered left atrial and
LV kinetics for patients with HFpEF compared with
conventional echocardiographic parameters. Indeed,
our 1D CNN model showed remarkable performance in
HFpEF model prediction and discriminated impaired
diastolic mechanics (17), which were further validated
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FIGURE 6 Intrabeat Dynamic Area Changes in the Control and HFpEF Subgroups
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Patients with heart failure with preserved ejection fraction (HFpEF) may exhibit different types of specific dynamic left ventricular area

changes during systolic-diastolic cycles.
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CENTRAL ILLUSTRATION Framework Diagram for Artificial Intelligence–Assisted Heart Failure With Preserved
Ejection Fraction Prescreening Process
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The heart failure with preserved ejection fraction prescreening procedure consisted of: 1) apical 4-chamber (A4C) image preprocessing and segmentation; 2) A4C left

atrial and left ventricular chamber value extraction; and 3) dynamic intrabeat linear data classification by a one-dimensional convolutional neural network.
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in an independent external data set using patientswith
symptomatic COPD as a control group.

Recently, fully automated echocardiographic
interpretation, which can automatically measure
cardiac parameters (ejection fraction, LV mass index,
and left atrial volume index), has been widely used to
assist in diagnosis (7,8,21). For the diagnosis of
HFpEF, several studies have collected all the speckle-
tracking echocardiographic parameters and diastolic
indexes for phenotypic classification (23–25) or used
AI machine learning to classify patient information
and parameters (26,27). These studies achieved pre-
cise results, but the required collection of compre-
hensive patient information for further analysis was
very time consuming. Furthermore, as accurate
interpretation of echocardiographic images may rely
largely on clinician experience, interpretation using
trained AI models may be superior to conventional
interpretation by inexperienced clinicians. In
contrast, our system is fast, accurate, and based only
on a single A4C view, and it allows automatic diag-
nostic work flow; thus, it has the potential to be a
powerful prescreening tool for HFpEF diagnosis
(Central Illustration). Taken collectively, our CNN
model can provide faster and fully automated echo-
cardiographic framework to facilitate diagnostic
interpretation for HFpEF diagnosis rather than pro-
ducing many echocardiographic parameters, which
still require expert interpretation.
STUDY LIMITATIONS. With respect to clinical limita-
tions, first, this model was built specifically for the
diagnosis of HFpEF and therefore did not include
information on HF with reduced ejection fraction.
Second, ultrasound artifacts caused by confounding
factors, including those related to cauterization,
artificial valves, and ventricular assist devices, could
affect image quality and image segmentation results
and eventually lead to inaccuracy in the linear data
classification (28).

In terms of study limitations, first, we had fewer
data on the HFpEF group than on the control group.
Increasing the amount of training data might improve
the moderate association of AI-estimated results and
the export measurements. Second, each Digital Im-
aging and Communications in Medicine file must
comprise 60 frames to ensure the inclusion of at least
1 complete systolic-diastolic cycle. However, this may
preclude the application of our AI model in cases of
extreme bradycardia. Also, in our AI model, only 1
echocardiographic view was used for HFpEF pre-
screening. We believe that combining multiview
echocardiography could yield improved predictions.
Third, concerning image quality, the chamber
boundaries were blurred, and differences in machine
vendors may affect AI detection accuracy. Fourth, as
our data set contained only HFpEF data, additional
data sets for training would be necessary for other
types of cardiac diseases. Fifth, we used a fixed
number of ultrasound frames to ensure that the data
contained at least 1 complete cardiac cycle to extract
the intrabeat dynamics. However, depending on the
subject’s heart rate, the data could contain multiple
heartbeats, and the role of interbeat dynamics will
need further investigation.



PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: This AI-assisted

system provides fast (<3 min for each case) and accurate pre-

screening for HFpEF in a single A4C view on the basis of intra-

beat dynamics changes before diagnostic confirmation using

conventional echocardiography and blood tests.

COMPETENCY IN PATIENT CARE AND PROCEDURAL

SKILLS: The diagnostic criteria for HFpEF follow the 2016

guidelines of the American College of Cardiology and the

American Heart Association and take into account the diagnostic

algorithm of the European Society of Cardiology: ejection

fraction $50%, LV mass index $115 mL/m2 in men and $95 mL/

m2 in women, left atrial volume index $34 mL/m2, tissue

Doppler–derived early myocardial relaxation (e0) < 9 cm/s, and

LV passive filling (E/e0) >13, and a BNP concentration > 35 pg/

mL. Our results demonstrate that AI can provide rapid prescre-

ening to assist in diagnosis prior to conventional procedures such

as echocardiography and can be of particular help to inexperi-

enced clinicians.

TRANSLATIONAL OUTLOOK: This study demonstrates

that our AI system has high accuracy in prescreening of

HFpEF. However, collecting more A4C view data from

patients with HFpEF is necessary for further system

improvement.
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CONCLUSIONS

A fast and precise AI HFpEF prescreening tool based
on tracking intrabeat dynamic changes in LV and left
atrial length, width, area, and volume in the A4C view
was developed. The use of LV intrabeat dynamic area
changes had the highest accuracy (91%) in detecting
HFpEF, with an area under the curve of 0.95. Our AI
model can be a reliable prescreening tool compared
with the time-consuming conventional HFpEF diag-
nosis process; moreover, it can provide quantitative
information to assist inexperienced observers in the
diagnosis HFpEF.
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