
J A C C : C A R D I O V A S C U L A R I M A G I N G V O L . - , N O . - , 2 0 1 7

ª 2 0 1 7 B Y T H E AM E R I C A N C O L L E G E O F C A R D I O L O G Y F O U N D A T I O N

P U B L I S H E D B Y E L S E V I E R

I S S N 1 9 3 6 - 8 7 8 X / $ 3 6 . 0 0

h t t p : / / d x . d o i . o r g / 1 0 . 1 0 1 6 / j . j c m g . 2 0 1 7 . 0 3 . 0 1 3
EDITORIAL COMMENT
Left Ventricular Geometry, Blood Pressure,
Arterial Hemodynamics, and Mortality
After Ischemic Stroke*

Thierry C. Gillebert, MD, PHD,a Julio A. Chirinos, MD, PHDb
T he importance of left ventricular (LV) remod-
eling as a determinant of cardiovascular risk
is widely recognized. With age, stroke vol-

ume, and LV volumes decrease (1,2). LV mass de-
creases as well, albeit to a lesser extent. As a
consequence, the LV mass/volume ratio and the rela-
tive wall thickness (RWT) increase. Hemodynamic
load and other forms of cardiovascular stress trigger
processes that lead to increased LV mass, remodeling,
and hypertrophy. Grossmann et al. (3) linked the type
of hemodynamic stress to the type of remodeling of
the ventricle. They described concentric hypertrophy
(thick-walled ventricle) in response to pressure over-
load and increased systolic wall stress as well as
eccentric hypertrophy (dilated ventricle) in response
to volume overload and increased diastolic wall
stress. Ross (4) applied this concept to hemodynamic
load in aortic and mitral heart diseases. Recent
research refined this paradigm in view of
ventricular-arterial interactions and revealed the
importance of the timing of systolic load, with early-
systolic load triggering adaptive and late-systolic
load maladaptive hypertrophy (5). The timing of sys-
tolic load underlies the importance of arterial stiff-
ening and prominent/premature arterial wave
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reflection for predicting LV hypertrophy, incident
heart failure, and mortality (6,7).

In large community-based cohort studies, such as
the Framingham Heart Study, LV remodeling and
hypertrophy have been associated with poor long-
term outcome (8). It has been recommended (9,10)
to describe LV geometry as a function of LV mass and
RWT. This leads to 4 categories: normal geometry,
concentric remodeling (increased RWT), concentric
hypertrophy (increased LV mass and RWT), and
eccentric hypertrophy (increased LV mass and normal
RWT). Further studies (11) have linked cardiovascular
risk mainly to increased LV mass and concentricity (or
RWT). The geometry of the ventricle is an established
prognostic factor, not only in the general population
but also in the setting of hypertension, valvular heart
diseases, heart failure with preserved ejection frac-
tion, and after myocardial infarction. However, no
data are available regarding the prognostic role of LV
mass in patients with acute ischemic stroke. Long-
term mortality after ischemic stroke remains high,
which indicates the need for more aggressive thera-
peutic interventions that should be tailored to the
risk of individual patients. Echocardiography is
widely used in patients with acute ischemic stroke to
assess for the presence of cardiac sources of emboli.
Therefore, the identification of echocardiographic
parameters that can aid in the risk stratification of
this patient population could be readily applied in
clinical practice, without additional cost.

In this issue of iJACC, Park et al. (12) report on the
prognostic value of LV geometry and its interaction
with blood pressure (BP) as a predictor of mortality
in a large cohort of patients with acute ischemic
stroke. In this study, 2,069 patients hospitalized for
acute ischemic stroke were followed up for a median
of 37.6 months, during which 367 deaths occurred (of
which 166 were of a cardiovascular cause). This is an
important cohort study with careful follow-up and
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FIGURE 1 LV Geometric Patterns Classified According to LV Mass,

LV Volume, and RWT
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with mortality data collected from the governmental
statistics office in South Korea. The main finding of
the study is that concentric remodeling and hyper-
trophy, but not eccentric hypertrophy, were inde-
pendently associated with a higher risk of mortality
than normal LV geometry. Accordingly, RWT was a
significant independent predictor of all-cause mor-
tality, whereas LV mass was not. These results
pinpoint concentricity as a maladaptive phenotype
that is associated with a poor outcome. A second
important finding is that there was a significant
interaction between LV geometry and systolic BP
during hospital admission as predictors of mortality,
such that mortality decreased as systolic BP was
lower in patients with normal LV geometry, whereas
in patients with abnormal LV geometry, mortality
risk increased at both extremes of the BP range
but more prominently among patients with lower
(<w150 mm Hg) systolic BP on admission. These
findings suggest that in patients with abnormal LV
geometry, cerebral autoregulation is more disturbed
(shifted to higher pressures), presumably as a
consequence of chronic hypertension and arterial
stiffening. In this situation, lower BP can cause ce-
rebral hypoperfusion and further ischemic insult,
whereas similar BP values are within the range of
cerebral autoregulation in patients with normal LV
geometry.
Arterial hemodynamics could also be at play. With
every heartbeat, the pulse wave generated by LV
contraction becomes partially reflected at sites of
impedance mismatch along the arterial tree (13).
Whereas a local wave reflection at the aortic-carotid
interface has been proposed to prevent penetration
of pressure and flow pulsatility into the brain (14), the
bulk of wave reflections, which arise at the lower
body, travel back to the heart and penetrate the ca-
rotid artery as a forward wave, which increases pul-
satile pressure and flow in the cerebrovascular bed
(15). Chronically increased pressure and flow pulsa-
tility in the cerebrovascular territory is thought to be
linked to chronic microvascular disease in the brain
(14), which could lead to impaired cerebral autor-
egulation. These wave reflections increase the mid to
late systolic wall stress of the LV (5), which leads to
maladaptive concentric remodeling and hypertrophy
(7). Therefore, abnormal LV geometry could be a
marker of prominent wave reflections, increasing
late-systolic LV wall stress on the one hand and
leading to microvascular dysfunction with impaired
cerebrovascular regulation on the other. The micro-
vascular function of other vascular beds (e.g., kid-
neys) could be similarly impaired. Impaired tissue
perfusion of critical organs might contribute to the
total and cardiovascular mortality observed after
stroke by Park et al. (12).

The lesser risk of patients with eccentric hyper-
trophy deserves further attention. When the pre-
sented data are examined, there is a trend toward
increased mortality in eccentric hypertrophy that
might statistically not differ from the effect of
concentric remodeling or hypertrophy. The authors
(12) argue that the peripheral circulation might be
better preserved in patients with eccentric hypertro-
phy. But admittedly, eccentric hypertrophy, as clas-
sically defined by LV mass and RWT, is a melting pot
of dissimilar ventricles. For this and other reasons,
Zile et al. (16) proposed a classification of the geom-
etry of the ventricle as a function of LV volume,
combined with LV mass and RWT. They tested this
classification in the Cardiovascular Health Study. The
proposed classification is based on the presence or
absence of LV enlargement and LV hypertrophy, and
RWT is valuable primarily for subclassifying people
with normal LV size and mass. Compared with the
American Society of Echocardiography criteria, the
proposed scheme requires the presence of a normal
LV volume for concentric remodeling or concentric
hypertrophy, whereas an enlarged LV volume is
required for classification as eccentric hypertrophy
(17). An American Society of Echocardiography/
European Association of Echocardiography writing



J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . - , N O . - , 2 0 1 7 Gillebert and Chirinos
- 2 0 1 7 :- –- Editorial Comment

3

group (10) recently expanded this classification
(Figure 1) and defined categories on the basis of LV
volume, LV mass, and RWT. The advantages of this
expanded classification are that it includes physio-
logical hypertrophy, categorizes dilated ventricles,
and can be used in various patient populations,
including valvular heart diseases. Of note, dilated
hypertrophy was previously categorized as concentric
hypertrophy, and proportional hypertrophy was pre-
viously categorized as eccentric hypertrophy.

The findings of Park et al. (12) should prompt more
tailored studies to examine the mechanisms of the
interaction between LV remodeling, BP, and arterial
hemodynamics as prognostic factors after acute
ischemic stroke. Similarly, whether antihypertensive
therapy should be tailored according to the prevalent
LV geometry in patients with ischemic stroke remains
to be addressed in properly designed prospective
clinical trials.

ADDRESS FOR CORRESPONDENCE: Professor Thierry
C. Gillebert, Department of Cardiology, Ghent Uni-
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Ghent, Belgium. E-mail: thierry.gillebert@ugent.be.
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