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Abstract

Small mass impacts on composite structures are common cases caused by hailstones and runway debris. Small mass
impactors usually result in a wave controlled local response, which is independent of boundary conditions. This response
occurs before the reflection of waves from the boundaries and cannot be modeled by large mass drop weight tests. An elas-
to-plastic contact law, which accounts for permanent indentation and damage effects, was used here to study small mass
impact on laminated composite plates. By comparing with results from the Hertzian contact law, it was found that damage
can change the dynamic response of the structure significantly with increasing impact velocity. Due to smaller contact force
generated for the case of using elasto-plastic contact, the central displacement of the plate is also less than the one using
Hertzian contact law. The linearized version of the contact law was then used to derive the closed-form approximations of
the contact force, indentation and plate central displacement for the impact loading of composite laminates. The threshold
velocity for delamination onset under small mass impact was predicted analytically based on the obtained peak contact
forces by combining with an existing quasi-static delamination threshold load criterion. A good agreement was found
between the predicted threshold values and published experimental results.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Fiber-reinforced composites are being utilized as viable alternatives to metallic materials in structures where
weight is a major consideration, e.g., aerospace structures, high-speed boats and trains. However, a well-
known problem with composite laminates is their poor resistance to accidental impact by foreign objects.
The resulting damage due to impacts, often in the form of delaminations, matrix cracking and fiber failures
may severely reduce the structural strength and stability (Abrate, 1991). Therefore, considerable amount of
research has been done in the area of impact of composite structures.

Impacts are often termed as low-velocity and high-velocity impacts. However, a more relevant classification
was proposed by Olsson (1992) as boundary-controlled and wave-controlled impact. For boundary-controlled
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Fig. 1. Comparison between boundary-controlled and wave-controlled Impact (Olsson, 2003).
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impact, the entire plate is deformed during the impact, and the contact force and plate deformation are more
or less in phase, as shown in Fig. 1a. However, for wave-controlled impact, the plate deformation is localized
to the region around the impact point, and the contact force and plate deformation are never in phase, as
shown in Fig. 1b. Generally, boundary-controlled and wave-controlled impacts are associated with large-mass
and small-mass impact responses. A mass-ratio based criterion governing boundary-controlled and wave-con-
trolled impact response has been derived in detail by Olsson (2000). It was shown that small mass impact
occurs when the mass of the impactor is less than one-fourth of the mass of the largest possible area for which
waves do not interfere with the boundaries.

Due to the more localized deformation, small-mass impacts cause higher impact forces and earlier damage
initiation than large-mass impacts with the same kinetic energy. Usually, the initial matrix cracking is attrib-
uted to high contact stresses that initiate at relatively low-loads. However, the onset of delamination typically
happens at higher impact loads. Therefore, the peak contact force becomes a key parameter and determines
the criticality of the impact during small mass impact (Christopherson et al., 2005). For boundary-controlled
quasi-static impacts, the delamination threshold load has been derived and validated by experimental data
(Olsson, 2001). The concept of mobility, which describes the velocity per unit force under sinusoidal excitation
of linear systems, was used to predict the peak contact force as well as delamination threshold velocity for
wave-controlled impact loading of composite laminates (Olsson, 2003; Olsson et al., 2006). Mobility is a fre-
quency dependent quantity and the mobility of serial systems is obtained by adding the mobility of
subsystems.

Most of the above impact models for wave-controlled and boundary-controlled impacts are based on
Hertzian contact law. The Hertzian contact law was obtained from the elastostatic analysis of contact between
the spherical impactor and elastic half-space where permanent deformations due to damage were not
accounted for. During the initial stages of impact loading, Hertzian-type contact laws are adequate for most
cases. However, it has been shown that even at low contact loads, the permanent deformation causing dam-
ages around the contact zone is present, and the unloading phase of the process is significantly different from
the loading phase (Yang and Sun, 1982; Tan and Sun, 1985; Cairns, 1991). Chattopadhyay and Saxena (1991)
investigated the combined effects of shear deformation and permanent indentation on the impact response of
elastic isotropic plates based on a modified Hertzian contact law with recovery process. In this paper, an elas-
to-plastic contact law proposed by Yigit and Christoforou (1994), which accounts for permanent indentation
and damage effects, was used to study small mass impact on laminated composite plates. Closed-form approx-
imation of the peak contact force obtained from the linearized elasto-plastic contact law was then employed to
predict the threshold velocity for delamination onset. The methodology presented in this study is valuable in
designing model tests for small mass impacts on composite structures.

2. Derivation of the governing equations

The formulation of the governing equations is based on the original work done by Olsson (1992). A basic
assumption in this formulation is that the time involved is so short that the bending waves do not reflect back
from the boundaries of the plate, i.e., in the ‘‘early state’’ of the impact phenomenon. It has been analytically
shown, as may be intuitively expected, that the boundary conditions have no influence on the dynamic
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response of the structures during the ‘‘early state’’ (Mittal, 1987). In particular, if the impact lasts for a period
much less than the time taken for the return of the fastest flexure waves to the point of impact, then the struc-
ture can be assumed infinite.

The analysis was based on Kirchhoff’s plate theory for specially orthotropic composite plates with zero
damping. It was shown that the plate center deflection at impact point (0, 0) can be written as
wpð0; 0; tÞ ¼ 1

8
ffiffiffiffiffiffiffiffiffiffiffi
mpD�

p Z t

0

F ðsÞds ð1Þ
where the effective plate stiffness D* is defined by fairly complicated expressions including elliptical integrals
but a sufficient approximation is (Olsson, 2003):
D� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D11D22ðAþ 1Þ=2

p
A ¼ ðD12 þ 2D66Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D11D22

p�
ð2Þ
where Dij are called the bending stiffnesses which can be calculated from laminate theory.
By neglecting the vibrations in the impactor, the displacement of the impactor and the initial conditions can

be expressed as
wiðtÞ ¼ V 0t� 1

mi

Z t

0

Z s

0

F ðnÞdnds

wið0Þ ¼ 0; _wið0Þ ¼ V 0 ð3Þ
The indentation of the plate is defined by
a ¼ wi � wp ð4Þ
Differentiating the above equation twice with respect to time, the indentation is governed by the differential
equation
d2a
dt2
þ 1

8
ffiffiffiffiffiffiffiffiffiffiffi
mpD�

p dF
dt
þ F

mi
¼ 0

að0Þ ¼ 0; _að0Þ ¼ V 0 ð5Þ
3. Contact laws

3.1. Hertzian contact law

In the original study done by Olsson (1992), Hertzian contact law was used to describe the contact phenom-
enon. According to Hertzian theory developed for static loading on isotropic linear elastic half-space, the rela-
tionship between contact load and the indentation can be described as (Goldsmith, 1960)
F ðaÞ ¼ kha
3=2 ð6Þ
where kh is the contact stiffness and
kh ¼ 4
3
Qa

ffiffiffi
R
p

ð7Þ
with
1=Qa ¼ 1=Qzi þ 1=Qzp ð8aÞ

Qzk ¼ Ezk=ð1� mrzkmzrkÞ; k ¼ i; p ð8bÞ
where R is the impactor nose radius, and Ezk is the modulus in the thickness direction of body k, and mrzk and
mzrk are the different Poisson’s ratios for body k. When the impactor is much stiffer than the plate, Eq. (8a)
simplifies to
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1=Qa ¼ 1=Qzp ð9Þ
As shown recently by Swanson (2005), Hertzian contact law for impact on isotropic half-space can be ex-
tended to impact on transversely isotropic plate with finite thickness, if the isotropic modulus is replaced
by a combination of transversely isotropic properties. Thus, for normal contact on transversely isotropic plate
with finite thickness, the relationship between contact load and the indentation can be described as
F ðaÞ ¼ bkha
3=2 ð10Þ
where kh is the contact stiffness defined in Eq. (7) except that the effective modulus Qzp is replaced for trans-
versely isotropic materials.

In Eq. (10), b is an empirical constant accounting for contact force reduction in finite thickness plate rel-
ative to half-space contact loading of orthotropic materials. The effect of finite thickness of the plate on the
indentation stiffness was studied numerically by Suemasu et al. (1994). It was shown that the contact stiffness is
smaller in finite thickness plates than is predicted from contact loading on a half-space.

It was shown by Turner (1979) that the effective modulus for transversely isotropic normal contact can be
expressed as
Qzp ¼
2

a1a3

ð11Þ
with
a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ex=Ez � m2

xz

1� m2
xy

s
ð12aÞ

a2 ¼
1þ Ex

2Gxz
� 1

� �
� mxzð1þ mxyÞ

1� m2
xy

ð12bÞ

a3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 þ a2

2

r
1� mxy

Gxy

� �
ð12cÞ
In Eqs. (12a)–(12c), the equivalent orthotropic properties can be determined from the stiffness or compliance
matrix of a laminate (Tsai and Hahn, 1980).

Inserting Eq. (10) into Eq. (5) gives
d2a
dt2
þ 1

8
ffiffiffiffiffiffiffiffiffiffiffi
mpD�

p � 3
2
� bkh � a1=2 � da

dt
þ kh

mi
� a3=2 ¼ 0

að0Þ ¼ 0; _að0Þ ¼ V 0 ð13Þ
Introducing the non-dimensional variables
�a ¼ a
V 0T e

; �t ¼ t
T e

ð14Þ
where Te is an unknown time constant needed to be determined for Hertzian contact law based on governing
equation Eq. (13).

Then Eq. (13) becomes
d2�a
d�t2
þ ke �

3

2
� �a1=2 � d�a

d�t
þ �a3=2 ¼ 0

�að0Þ ¼ 0; _�að0Þ ¼ 1 ð15Þ
where the coefficients
ke ¼
ðbkhÞ2=5 � V 1=5

0 � m
3=5
i

8
ffiffiffiffiffiffi
mp
p ð16aÞ
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T e ¼
mi

bkh
ffiffiffiffiffiffi
V 0

p
� �2=5

ð16bÞ
Eq. (15) is a second-order nonlinear ordinary differential equation. The �að�tÞ can be solved numerically for dif-
ferent values of ke. The dimensionless indentation and contact force histories have been plotted for different
values of ke, as shown in Figs. 2 and 3, respectively.

It can be seen that for an infinite plate with Hertzian contact law, the impact is governed by a single param-
eter ke that combines the effect of the contact stiffness, impact velocity, the mechanical and geometrical prop-
erties of the plate and the projectile. From Fig. 3, the highest contact force is obtained for ke = 0, where the
plate is very rigid and the problem of the impact can be considered as impact on a half-space. As ke increases,
the contact force history becomes more asymmetrical and the contract duration increases as the deformation
of the plate becomes more significant.
Fig. 2. Nondimensional indentation histories as a function of ke.

Fig. 3. Nondimensional contact force histories as a function of ke.
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3.2. Elasto-plastic contact law

Hertzian-type contact laws were obtained from the elasto-static analysis of the contact between a sphere
and an elastic half-space. Because permanent deformation is not taken into account in the formulation, they
are only valid during the initial stages of the impact event. Therefore, a contact law incorporating damage
effects is needed for an accurate modeling of contact force-deformation during impact.

In this study, the contact law accounting for permanent deformation proposed by Yigit and Christoforou
(1994) is used. In this contact law, it is assumed the contact consists of three phases. The contact is assumed to
be Hertzian for the first phase. For the second phase, the elastic–plastic behavior is assumed where the ‘‘yield-
ing’’ point is exceeded. In case of fiber composites, ‘‘yielding’’ means a combination of different damage modes
such as matrix crack and fiber tensile failure or buckling. Assuming that the deformations in the plane surface
outside the contact region can be neglected, the slope of load-indentation curve after the critical indentation
can be shown approximately as a constant, i.e., a nearly linear relationship between force and indentation
exists (Abrate, 1998; Cairns, 1991). The third phase is assumed to be elastic Hertzian behavior again.

The quasi-static contact law for the three phases is given as following.
Phase I: Elastic loading
F ðaÞ ¼ Kha
3=2 0 6 a 6 acr ð17Þ
Phase II: Elasto-plastic loading
F ðaÞ ¼ Kyða� acrÞ þ Kha
3=2
cr acr 6 a 6 am ð18Þ
Phase III: Elastic unloading and reloading
F ðaÞ ¼ Khða3=2 � a3=2
m þ a3=2

cr Þ þ Kyðam � acrÞ ð19Þ
where acr is the critical indentation when material yields, and am is the maximum indentation when the unload-
ing or restitution begins. acr was obtained from the contact stress distribution based on maximum fiber shear
failure criterion (Poe and Illg, 1989; Yigit and Christoforou, 1994)
acr ¼
0:68 � ð2SuÞ2p2R

Q2
a

ð20Þ
where Su is the interlaminar shear strength of laminated composites.
The slope of the elastic indentation curve at a = acr is given by
Ky ¼ 1:5Kh
ffiffiffiffiffiffi
acr
p ð21Þ
Substituting Eqs. (17)–(19) into Eq. (5), the governing equation of the indentation considering permanent
indentation and damage effects can be obtained. For the elastic loading phase
d2a
dt2
þ 1

8
ffiffiffiffiffiffiffiffiffiffiffi
mpD�

p � 3
2
� kh � a1=2 � da

dt
þ kh

mi
� a3=2 ¼ 0

að0Þ ¼ 0; _að0Þ ¼ V 0; 0 6 a 6 acr ð22Þ
For the elasto-plastic loading phase
d2a
dt2
þ 1

8
ffiffiffiffiffiffiffiffiffiffiffi
mpD�

p � Ky �
da
dt
þ Ky

mi
� ða� acrÞ þ

Kh

mi
� a3=2

cr ¼ 0

aðtcrÞ ¼ acr; _aðtcrÞ ¼ V cr; _aðtmÞ ¼ 0; acr 6 a 6 am ð23Þ
For the elastic unloading phase
d2a
dt2
þ 1

8
ffiffiffiffiffiffiffiffiffiffiffi
mpD�

p � Kh �
3

2
� a1=2 � da

dt
þ Kh

mi
� a3=2 � a3=2

m þ a3=2
cr

� 	
þ Ky

mi
� am � acrð Þ ¼ 0

aðtmÞ ¼ am; _aðtmÞ ¼ 0; af 6 a 6 am ð24Þ
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In Eqs. (23) and (24), tcr and tm are the time to reach critical indentation and maximum indentation, respec-
tively. acr, am and af are the critical indentation, maximum indentation and permanent indentation, respec-
tively and
af ¼ am � acr ð25Þ
3.3. Linearized elasto-plastic contact law

As shown in Eq. (13) and Eqs. (22)–(24), due to the nonlinearity of the elastic and elasto-plastic contact
law, an analytical solution is generally not possible. One method of contact stiffness linearization is to obtain
an equivalent linear stiffness for a single degree-of-freedom lumped model which will result in the same max-
imum contact force (Bucinell et al., 1991). Since the linearized contact stiffness only depends on the maximum
contact force, it may not be adequate for situations where the details of the contact law and permanent defor-
mations are important.

Another method for the situation where permanent deformation is present is to linearize each phase of the
contact law separately with very good results (Yigit and Christoforou, 1995). However, for most composite
materials, damage occurs early in the loading phase and most of the local response is dominated by the second
phase of the contact law (Yigit and Christoforou, 1994). Therefore, it is worthwhile to consider only the lin-
earization of the elasto-plastic phase which is already linear. The linearized contact law can be written as
F ðaÞ ¼ Kya ð26Þ
Substituting the linearized contact law into the governing equation for indentation Eq. (5), the governing
equation becomes
d2a
dt2
þ 1

8
ffiffiffiffiffiffiffiffiffiffiffi
mpD�

p � Ky �
da
dt
þ Ky

mi
� a ¼ 0

að0Þ ¼ 0; _að0Þ ¼ V 0 ð27Þ
Introducing nondimensional variables similar to Eq. (14)
�a ¼ a
V 0T p

; �t ¼ t
T p

ð28Þ
where Tp is an unknown time constant needed to be determined for Elasto-plastic contact law based on gov-
erning equation Eq. (27).

Then Eq. (27) can be written as
d2�a
d�t2
þ kp �

d�a
d�t
þ �a ¼ 0

�að0Þ ¼ 0; _�að0Þ ¼ 1 ð29Þ
with the coefficients
kp ¼
1

8

ffiffiffiffiffiffiffiffiffiffiffi
Kymi

mpD�

s
and T p ¼

ffiffiffiffiffiffi
mi

Ky

r
ð30Þ
Eq. (29) is the equation of motion for single degree of freedom system with viscous damping (Abrate, 1998).
By introducing the variable g = kp/2 and distinguishing different range of values of g, the closed-form solution
of Eq. (29) can be obtained
Under-damping : g < 1 �a ¼ e�g�t sinð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
��tÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
ð31aÞ

Critical-damping : g ¼ 1 �a ¼ �te��t ð31bÞ

Over-damping : g > 1 �a ¼ e�g�t sinhð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 1

p
��tÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 1

p
ð31cÞ
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The physical indentation time history can be obtained by multiplying dimensionless quantity with the physical
constants in Eq. (28)
aðtÞ ¼ V 0 � T p � �aðt=T pÞ ð32Þ

From Eqs. (26) and (32), the physical contact force time history is given by
g < 1: F ðtÞ ¼ KyV 0T p � e�g�t=T p � sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
� t=T p

� �
=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
ð33aÞ

g ¼ 1: F ðtÞ ¼ KyV 0t � e�t=T p ð33bÞ

g > 1: F ðtÞ ¼ KyV 0T p � e�gt=T p sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 1

p
� t=T p

� �
=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 1

p
ð33cÞ
From Eq. (1), the physical central displacement of the plate can be written as
wpð0; 0; tÞ ¼
miV 0

8
ffiffiffiffiffiffiffiffiffiffiffi
mpD�

p Z �t

0

�að�tÞd�s ð34Þ
Combining Eqs. (31a)–(31c) with Eq. (34), the central displacement of the plate for under-damping case can be
obtained as
wpð0; 0; tÞ ¼
miV 0

8
ffiffiffiffiffiffiffiffiffiffiffi
mpD�

p � 1� e�gt=T p � cosð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
� t=T pÞ þ

g sinð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
� t=T pÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1� g2
p

 !" #
ð35aÞ
The center displacement of the plate for critical-damping case is
wpð0; 0; tÞ ¼ miV 0

8
ffiffiffiffiffiffiffiffiffiffiffi
mpD�

p � 1� e�t=Tp � ð1þ t=T pÞ

 �

ð35bÞ
The center displacement of the plate for over-damping case is
wpð0; 0; tÞ ¼
miV 0

8
ffiffiffiffiffiffiffiffiffiffiffi
mpD�

p � 1� e�gt=T p � coshð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 1

p
� t=T pÞ þ

g sinhð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 1

p
� t=T pÞffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 � 1
p

 !" #
ð35cÞ
4. Delamination onset prediction

Experimental and numerical results indicate that the threshold force can be used at least as a qualitative
indicator of delamination onset under small mass impacts (Beks, 1996). In this study, based on the closed form
solution of the contact force time history, the peak contact force is obtained from the characteristics of the
contact force history curve. Fig. 4 shows the non-dimensional indentation as a function of non-dimensional
time for under-damping, critical damping and over-damping three cases. It can be seen that the peak value
of contact force can be obtained as
F peak ¼ Kyamax ¼ KyaðtÞjda
dt¼0 ð36Þ
After some algebraic manipulations, the peak contact force can be obtained for three different cases
g < 1: F peak ¼ Ky � V 0 � T p � e
�g Arc cosðgÞffiffiffiffiffiffi

1�g2
p

ð37aÞ

g ¼ 1: F peak ¼ Ky � V 0 � T p �
1

e
ð37bÞ

g > 1: F peak ¼ Ky � V 0 � T p �
ð�1þ gnÞ � ð�1þ 2gnÞ

1
�2þ2gwffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 � 1
p ð37cÞ
where n ¼ gþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 1

p
and w ¼ g�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 1

p
.

Davies and Robinson (1992) proposed an approach to deal with the prediction of the threshold value of the
contact force that corresponds to damage initiation. It was shown that when the damage area is plotted versus
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the maximum impact force, there is a clear sudden increase in damage size once the load reaches a critical
value. This method has been used successfully to predict the onset of delamination damage for several
quasi-isotropic graphite-epoxy laminates. The simple model for estimating this critical load is shown in
Fig. 5. It can be seen that at the threshold value of impact force, there is an unstable crack propagation leading
to large delamination size. This will cause the impact force drop suddenly in the response representing the loss
of transverse stiffness. After this, the delamination size increases linearly with the force indicating stable
delamination growth. For quasi-static axisymmetric delamination growth in a centrally loaded clamped plate,
the threshold load for delamination can be derived from this model as (Davies et al., 1994).
F stat
del ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32D�GIIc=3

p
ð38Þ
where GIIc is the critical energy release rate for mode II fracture. The independence of delamination size and
boundary conditions implies that the delamination threshold load is applicable to impact situations where
inertial effects may be neglected (Olsson, 2003). The delamination threshold load considering inertial effects
was given as (Olsson et al., 2006):
Fig. 5. Damage size as a function of impact force for plates (Christoforou, 2001).
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F dyn
del ¼ F stat

del

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 7p2=216

p
� 1:213F stat

del

.
ð39Þ
Combining Eqs. (37) to (39), the threshold velocity for a given plate and projectile can be predicted with
closed-form solution as following
g < 1 : V th ¼ F dyn
del Ky � T p � e

�g Arc cosðgÞffiffiffiffiffiffi
1�g2
p !

:

,
ð40aÞ

g ¼ 1 : V th ¼ F dyn
del Ky � T p �

1

e

� ��
ð40bÞ

g > 1 : V th ¼ F dyn
del Ky � T p �

ð�1þ gnÞ � ð�1þ 2gnÞ
1

�2þ2gwffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 1

p
 !,

ð40cÞ
5. Application examples: influence of contact laws

A symmetric cross-ply [0/90/0/90/0]s T300/934 graphite/epoxy composite plate is analyzed to illustrate the
effect of different contact laws on the impact responses. The material properties, geometry and impact condi-
tions for the impact problem are given in Table 1 (Cairns and Lagace, 1989). For the first case, the initial
velocity of the projectile is 3.0 m/s. The calculated impact parameter for elastic and elasto-plastic contact
law is ke = 2.07 and kp = 1.71, respectively. The comparison of the impact force history, contact law and plate
deformation using different contact laws is shown in Figs. 6–8, respectively. In Figs. 6–8, the elastic curves and
1
etrical and material properties of the composite plate

[0/90/0/90/0]s T300/934 graphite/epoxy composite plate, simple supported

ize: 200 mm · 200 mm
154.9 Nm, D12 = 4.760 Nm, mp = 4.132 kg/m2, D22 = 91.4 Nm
8.970 Nm
tile 1: R = 6.35 mm, V0 = 3.0 m/s, mi = 8.30 g
tile 2: R = 6.35 mm, V0 = 30 m/s, mi = 8.30 g
t Parameter: Kh = 1.033E9 N/m3/2, ke1 = 2.07, ke2 = 3.30, kp = 1.71

Fig. 6. Comparison of contact force history (ke = 2.07).



Fig. 7. Comparison of contact law (ke = 2.07).

Fig. 8. Comparison of center deflection of plate (ke = 2.07).
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the elasto-plastic curves are based on the solutions of the equations of motion in Eq. (13) and Eqs. (22)–(24),
respectively. It demonstrates that elasto-plastic contact reduces the contact force and increases the contact
duration. There is significant amount of permanent deformation due to local impact damage during elasto-
plastic impact, which is more consistent with existing experimental data (Swanson and Rezaee, 1990).

In the second case, the initial velocity of the projectile is increased to 30 m/s by keeping all other parameters
the same as before. The calculated impact parameter for elastic and elasto-plastic contact law is ke = 3.30 and
kp = 1.71, respectively. The comparison of impact force history, contact law and plate deflection from elastic
and elasto-plastic impact is shown in Figs. 9–11, respectively. In Figs. 9–11, the elastic curves and the elasto-
plastic curves are based on the solutions of the equations of motion in Eq. (13) and Eqs. (22)–(24), respec-
tively. It can be seen that the use of elasto-plastic contact law can significantly change the contact force history
and plate center deflection when the velocity of projectile reaches medium velocity. The peak plate central dis-
placements associated with permanent indentations are significantly less compared to the elastic contact



Fig. 9. Comparison of contact force history (ke = 3.30).

Fig. 10. Comparison of contact law (ke = 3.3).
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solutions because of the smaller contact force resulting at the contact region. Similar conclusions were
obtained for elastic isotropic plates by Chattopadhyay and Saxena (1991).

6. Application examples: Delamination threshold

The closed-form prediction of the contact force history for the first case in Section 5 is demonstrated in
Fig. 12, where the elasto-plastic and closed-form curves are based on the solutions equations of motion in
Eqs. (22)–(24) and Eq. (33), respectively. It is clearly shown that the linearized elasto-plastic contact law
can predict the peak contact force quite well. The predicted peak contact force can then be combined with
the delamination threshold load considering dynamic inertia effect, Eq. (39), to predict the delamination
threshold velocity for small mass impacts. Several experimental studies on symmetric composite laminated
plates impacted by small mass steel or aluminum impactor were compared with the closed-form predictions
from current methodology. Table 2 shows a list of the assumed material properties for the laminates and
impactors (Olsson, 2003).



Fig. 11. Comparison of center deflection (ke = 3.3).

Fig. 12. Comparison of contact force history (ke = 2.07, kp = 1.71).

Table 2
Material properties for experimental validation

Material E11 (GPa) E22 (GPa) G12 (GPa) G23 (GPa) m12 m23 q (kg/m3) tply (mm) GIIc (J/m2)

Aluminum 71 71 27 27 0.30 0.30 2790 – –
Steel 206 206 79 79 0.30 0.30 7850 – –
HTA/6376C 137 10.4 5.2 3.5 0.30 0.51 1620 0.130 400
T300/5208 132 10.8 5.6 4.4 0.24 0.50 1600 0.127 300
AS4/2220-3 123 11.1 6.3 3.7 0.29 0.50 1600 0.129 510
XAS/914C 145 9.5 5.6 3.6 0.31 0.50 1600 0.125 416
AS4/PEEK 137 10.6 5.4 3.5 0.40 0.50 1600 0.135 1959
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Interlaminar shear strength is defined as the shear stress at rupture, where the plane of fracture is located
between the layer interfaces of a composite laminate. (Pahr et al., 2002) reviewed a number of test methods for
the measurement of interlaminar shear strength. It was shown that the experimental interlaminar shear



Table 3
Shear strength of the laminate (Su)

AS4/PEEK AS4/2220-3 T300/5208 HTA/6376C XAS/914C

Fiber Volume Ratio 0.58 0.63 0.65 0.60 0.60
Su (MPa) 157 110 101 93 95

Table 4
Measured and Predicted Delamination Threshold Velocities

Plate Layup h

(mm)
GIIc (J/m2) Qzp

(GPa)
mp (Kg/m2) mi

(g)
Vexp (m/s) V a

pred (m/s) V b
pred (m/s)

HTA /6376C [(0/±45/90)s/
(90/�45/0)s]3

6.24 400 11.36 9.85 10.2 28 (Olsson, 2003) 32 34.2

AS4 /PEEK [03/453/903/
�453]s

3.24 1959 11.47 5.18 1.9 46 (Morita et al.,
1997)

68 73.2

T300 /5208 (0/±45/90)6s 6.2 300 12.74 9.75 3.0 38 (Williams,
1984)

38 57

AS4 /2220-3 (0/±45/90)6s 6.2 510 12.06 9.91 3.0 55 (Williams,
1984)

46 71.2

XAS /914C [02/±45]2s 2.0 416 11.05 3.2 0.9 30 (Cantwell and
Morton, 1989)

34 39.4

XAS /914C [0/90]2s 1.0 416 11.05 1.6 0.9 33 (Cantwell,
1988)

32 32.4

V a
pred: prediction from reference (Olsson et al., 2006); V b

pred: prediction from present study.
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strength values represent a lower bound for the true interlaminar shear strength. The interlaminar shear
strength values for the laminates used in this study, as shown in Table 3, are obtained from manufacture’s
data and available experimental data (Choi and Chang, 1992; Christoforou and Yigit, 1998).

Table 4 illustrates the comparison between predicted and measured delamination threshold velocities in a
number of experimental studies. In all of the calculations, the effects of plate finite thickness and effective mod-
ulus based on transversely isotropic material properties were included. Since the ratio of plate thickness to
contact radius is significantly larger than 2.0 for all the investigated laminated plates, the empirical constant
b was assumed as 1.0 for all cases (Swanson, 2005). Dynamic inertia effect of the impacts was also included in
the current predictions. Very good agreement with experimental observations is obtained. The predictions
from current theory are also compared well with the predictions from asymptotic solutions by Olsson et al.
(2006). The present approach for prediction of delamination onset is based on elasto-plastic contact law
including the effect of damage and permanent indentation, which was not considered by existing literatures
in the prediction of delamination.

7. Conclusions

In this paper, a linearized elasto-plastic contact law including permanent indentation and damage
effects was used to obtain the closed-form approximations of the small mass impact response of compos-
ite laminate. It was shown that the use of elasto-plastic contact law can significantly change the impact
response when the velocity of projectile reaches medium velocity. Based on the peak contact forces from
the linearized elasto-plastic contact law as well as a quasi-static delamination threshold load criterion,
the delamination threshold velocity was obtained analytically. It is demonstrated that the predictions
for delamination threshold velocity are in good agreement with experimental values for a wide range
of test cases and existing literatures. Further experiments and analysis are required to fully verify the
validity and limitations of the methodology. The analytical peak contact force and delamination thresh-
old velocity would be useful for designers who prefer closed form solutions for the criticality of small
mass impacts.



D. Zheng, W.K. Binienda / International Journal of Solids and Structures 44 (2007) 8143–8158 8157
Acknowledgements

The support of NASA Gleen Research Center and The University of Akron for this study is greatly
acknowledged.

References

Abrate, S., 1991. Impact on laminated composite materials. Applied Mechanics Reviews 44 (4), 155–189.
Abrate, S., 1998. Impact on Composite Structures. Cambridge University Press.
Beks, F-A., 1996. Examination of impact response and damage of composite laminates. FFATN 1996-29, Bromma: The Aeronautical

Research Institute of Sweden.
Bucinell, R.B., Nuismer, R.J., Koury, J.L., 1991. Response of composites plates to quasi-static impact events. In: Composite Materials:

Fatigue and Fracture (vol. 3), ASTM STP 1110, ASTM, Philadelphia, PA, pp. 528–549.
Cairns, D.S., 1991. A Simple, elasto-plastic contact law for composites. Journal of Reinforced Plastics and Composites 10 (4), 423–433.
Cairns, D.S., Lagace, P.A., 1989. Transient response of graphite/epoxy and kevlar/epoxy laminates subjected to impact. AIAA Journal 27

(11), 1590–1596.
Cantwell, W.J., 1988. The influence of target geometry on the high velocity impact response of CFRP. Composite Structures 10 (3), 247–

265.
Cantwell, W.J., Morton, J., 1989. Comparison of the low and high velocity impact response of CFRP. Composites 20 (6), 545–551.
Chattopadhyay, S., Saxena, R., 1991. Combined effects of shear deformation and permanent indentation on the impact response of elastic

plates. International Journal of Solids and Structures 27 (13), 1739–1745.
Choi, H.Y., Chang, F.K., 1992. A Model for predicting damage in graphite/epoxy laminated composites resulting from low-velocity point

impact. Journal of Composite Materials 26 (14), 2134–2169.
Christoforou, A.P., 2001. Impact dynamics and damage in composite structures. Composite Structures 52 (2), 181–188.
Christoforou, A.P., Yigit, A.S., 1998. Characterization of impact in composite plates. Composite Structures 43 (1), 15–24.
Christopherson, J., Mahinfalah, M., Jazar, G.N., Aagaah, M.R., 2005. An investigation on the effect of small mass impact on sandwich

composite plates. Composite Structures 67 (3), 299–306.
Davies, G.A.O., Robinson, P., 1992. Predicting failure by debonding/delamination. In: Debonding/Delamination of Composites,

AGARD-CP-530, 5-1-28.
Davies, G.A.O., Zhang, X., Zhou, G., Watson, S., 1994. Numerical modeling of impact damage. Composites 25 (5), 342–350.
Goldsmith, G., 1960. Impact: The Theory and Physical Behavior of Colliding Solids. Edward Arnold, London.
Mittal, R.K., 1987. Effect of transverse shear on the behavior of a beam under dynamic loading. Z. Angew. Math. Mech. Journal of

Applied Mathematics and Mechanics 67 (3), 175–181.
Morita, H., Adachi, T., Tateishi, Y., Matsumoto, H., 1997. Characterization of impact damage resistance of CF/PEEK and CF/

toughened epoxy laminates under low and high velocity impact tests. Journal of Reinforced Plastic and Composites 16 (2),
131–143.

Olsson, R., 1992. Impact response of orthotropic composite plates predicted from a one-parameter differential equation. AIAA Journal 30
(6), 1587–1596.

Olsson, R., 2000. Mass criterion for wave controlled impact response of composite plates. Composites Part A: Applied Science and
Manufacturing 31 (8), 879–887, Corrigendum in Composites Part A: Applied Science and Manufacturing 32 (2), 291.

Olsson, R., 2001. Analytical prediction of large mass impact damage in composite laminates. Composites Part A: Applied Science and
Manufacturing 32 (9), 1207–1215.

Olsson, R., 2003. Closed form prediction of peak load and delamination onset under small mass impact. Composite Structures 59 (3), 341–
349.

Olsson, R., Donadon, M.V., Falzon, B.G., 2006. Delamination threshold load for dynamic impact on plates. International Journal of
Solids and Structures 43 (10), 3124–3141.

Pahr, D.H., Rammerstorfer, F.G., Rosenkranz, P., Humer, K., Weber, H.W., 2002. A study of short-beam-shear and double-lap-shear
specimens of glass fabric/epoxy composites. Composites Part B: Engineering 33 (2), 125–132.

Poe, C.C., Jr., Illg, W., 1989. Strength of a thick graphite/epoxy rocket motor case after impact by a blunt object. In:Test Methods for
Design Allowables for Fibrous Composites: vol. 2, ASTM STP 1003, ASTM, Philadelphia, pp. 150–179.

Suemasu, H., Kerth, S., Maier, M., 1994. Indentation of spherical head indentors on transversely isotropic composite plates. Journal of
Composite Materials 28 (17), 1723–1739.

Swanson, S.R., 2005. Contact deformation and stress in orthotropic plates. Composites Part A: Applied Science and Manufacturing 36
(10), 1421–1429.

Swanson, S.R., Rezaee, H.G., 1990. Strength loss in composites from lateral contact loads. Composites Science and Technology 38 (1), 43–
54.

Tan, T.M., Sun, C.T., 1985. Use of statical indentation laws in the impact analysis of laminated composite plates. Journal of Applied
Mechanics 52 (1), 6–12.

Tsai, S.W., Hahn, H.T., 1980. Introduction to Composite Materials. Technomic Publishing Company, Inc.
Turner, J.R., 1979. Contact on a transversely isotropic half-space, or between two transversely isotropic bodies. International Journal of

Solids and Structures 16, 409–419.



8158 D. Zheng, W.K. Binienda / International Journal of Solids and Structures 44 (2007) 8143–8158
Williams, J.G., 1984. Effect of impact damage and open holes on the compression strength of tough resin/high strain fiber laminates,
Tough Composite Materials, NASA CP 2334, pp. 61–79.

Yang, S.H., Sun, C.T., 1982. Indentation law for composite laminates. Composite Materials: Testing and Design (6th Conference, Editor:
M. Daniel). ASTM STP 787, ASTM, Philadelphia, PA, pp. 425–449.

Yigit, A.S., Christoforou, A.P., 1994. On the impact of a spherical indenter and an elastic–plastic transversely isotropic half-space.
Composites Engineering 4 (11), 1143–1152.

Yigit, A.S., Christoforou, A.P., 1995. On the impact between a rigid sphere and a thin composite laminate supported by a rigid substrate.
Composite Structures 30 (2), 169–177.


	Effect of permanent indentation on the delamination threshold for small mass impact on plates
	Introduction
	Derivation of the governing equations
	Contact laws
	Hertzian contact law
	Elasto-plastic contact law
	Linearized elasto-plastic contact law

	Delamination onset prediction
	Application examples: influence of contact laws
	Application examples: Delamination threshold
	Conclusions
	Acknowledgements
	References


