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a b s t r a c t

Numerical modeling of localization phenomena shows that constitutive equations with internal length
scale are necessary to properly model the post-localization behavior. Moreover, these models allow an
accurate description of the scale effects observed in some phenomena like micro-indentation. This paper
proposes some analytical results concerning a boundary value problem in a medium with microstructure.
In addition to their own usefulness, such analytical solutions can be used in benchmark exercises for the
validation of numerical codes. The paper focuses on the thick-walled cylinder problem, using a general
small strain isotropic elastic second gradient model. The most general isotropic elastic model involving
seven different constants is used and the expression of the analytical solutions is explicitly given. The
influence of the microstructure is controlled by the internal length scale parameter. The classical macro-
stress is no more in equilibrium with the classical forces at the boundary. Double stresses are indeed also
generated by the classical boundary conditions and, as far as the microstructure effects become predom-
inant (i.e. the internal length scale is much larger than the thickness of the cylinder), the macrostresses
become negligible. This leads to solutions completely different from classical elastic ones.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Since many years, the interest for enhanced models is increas-
ing more and more. Many reasons explain this renewal. The
advanced analysis of localization phenomena has shown that con-
stitutive equations with internal length are necessary to properly
model the experimental results involving some localized patterns
(see, for instance, the pioneering works of Aifantis (1984), Bazant
et al. (1984), de Borst and Muhlhaus (1992), Vardoulakis and
Sulem (1995)). Moreover, these models allow to properly describe
scale effects observed in some phenomena like micro-indentation
as described in Nix and Gao (1997), Sulem and Cerrolaza (2002)
and Rashid et al. (2004), or more generally in micro- and nano-
mechanics as detailed in Fleck et al. (1994) and Fleck and Hutchin-
son (1997).

Many enhanced models have been proposed in the literature,
especially within the framework of plastic or damage theories. In
this paper, we focus first on general theories not closely related
to specific behaviors. These theories based on an enhancement of
the kinematic itself can be traced back to the pioneering works
of Toupin (1962), Mindlin (1964) and Germain (1973b). The start-
ll rights reserved.
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ing point of this paper are the materials with microstructure, as de-
fined by Mindlin (1964) and Germain (1973b). On the contrary to
the theories involving a gradient of internal variables, only valid
for some specific behavior modeling, the latter are able to generate
several kinds of constitutive equations like elasticity (Mindlin,
1965) elastoplasticity (Fleck and Hutchinson, 1997; Chambon et
al., 1996, 1998), viscoplasticity (Forest and Sievert, 2006) and also
hypoplasticity and continuum damage (Chambon et al., 1998).
Adding some mathematical constraints to the most general mate-
rials with microstructure yields a large set of models. Among all
these models, the first and most famous one is the Cosserat model
(see Cosserat and Cosserat, 1909). Some of these models have been
extensively studied and it has been demonstrated that general
plastic (see Chambon et al., 2001) or viscoplastic models (see For-
est and Sievert, 2006) can be derived within this framework. Even
large elastoplasticity with multiplicative decomposition of the
deformation gradient can be developed at least in the particular
case of second gradient model (see Chambon et al., 2004). These
models have been used in numerical codes, especially once more
for the particular case of second gradient model (see, for instance,
Chambon et al. (1998) in the one-dimensional case or Shu et al.
(1999) for the elastic two-dimensional case and Matsushima
et al. (2002) for the elastoplastic two-dimensional case).

However, as far as we know, there are very few analytical
results concerning boundary value problems involving media with
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microstructure. This is a problem because, in addition to their own
usefulness, such solutions can be used as benchmark exercises in
order to assess the validation of numerical codes. In one-dimen-
sional cases, analytical solutions for a second gradient medium
are provided in Chambon et al. (1998, 2001). In true bi-dimen-
sional cases, Eshel and Rosenfeld (1970) and Bleustein (1966) pro-
pose the analytical solution of the stress concentration,
respectively, at a cylindrical hole in a field of uniaxial tension
and at a spherical cavity in a field of isotropic tension. Eshel and
Rosenfeld (1975) have also developed the general equations of
axi-symmetric problems in second gradient elastic materials, with-
out giving explicit analytical solutions. Seeking the solution to the
plastic expansion prior to the fully plastic stage, Zhao et al. (2007)
provide a semi-analytical solution for a thick-walled cylinder. In
this paper, the analytical solutions of the thick-walled cylinder
problem in the case of a general small strain isotropic elastic sec-
ond gradient model are given. With respect to the work of Zhao
et al. (2007), it has to be emphasized that there is no restriction
as far as the model is concerned. The more general isotropic elastic
model with seven constants is used. Moreover, in the present pa-
per, the analytical solutions are given explicitly, with the constants
of integration depending on the prescribed boundary conditions.
This allows to generate all the solutions of this problem by solving
a set of four algebraic equations in four unknowns.

The sequence of the paper is as follows. The Section 2 is a pre-
sentation of the notations. Enhanced models require the use of
unusual tensor. Moreover, the problem studied here has to be writ-
ten in cylindrical coordinate system. In order to avoid any confu-
sion, this section devoted to notation is necessary. The Section 3
is a presentation of the media with microstructure and relatives.
This allows us to detail the link between the general media with
microstructure and the second gradient model coming from the
previous one by adding a mathematical constraint on the kine-
matic description. We follow mainly the works of Germain (see
e.g. Germain (1973a,b)). The names of the models used in this pa-
per is our choice. This is necessary since there is no general agree-
ment concerning this point. In Section 4, the equations to be solved
in the case of the thick-walled cylinder are derived for a second
gradient model. The method uses extensively the virtual work
principle. Both balance equations and boundary conditions are ob-
tained. The fifth part deals with the resolution of the ordinary dif-
ferential equation obtained in the previous section. The general
method for the determination of the integration constants (from
the prescribed boundary conditions) is presented. In a sixth part,
some particular solutions corresponding to different boundary
conditions are exhibited. The influence of the internal length scales
introduced either by the model or by the boundary conditions are
also exemplified. Some concluding remarks end up this paper.
2. Notations

Since all along this paper only orthonormal basis are used, it is not
necessary to distinguish between covariant and contravariant com-
ponents. We use then lower case subscripts to denote components of
vectors and tensors. The other indices, namely superscripts, have
other meanings and cannot be confused with the power operation
because this later operation has a specific notation (see the first item
in the following list). Vectors are denoted with arrows. The summa-
tion convention with tensorial indices is used. Let us emphasize that,
using cylindrical coordinates, summation is meaningless for indices
r; h and z, even if they are in lower position.

� ðaÞn means a to the power n.
� dij are the components of the identity tensor (i.e. the Kronecker

symbol).
� xj are the components of the coordinates with respect to an
orthonormal Cartesian basis.

� nj are the components of the unit outward normal of a bounded
domain.

� ui are the components of the displacement field ~u.
� @ia or @iðaÞ in some cases to avoid some ambiguities denotes the

partial derivative of any quantity a with respect to the coordi-
nate i.

� �ij are the components of the gradient of the displacement field
i.e. �ij ¼ @jui.

� eijk are the components of the second gradient of the displace-
ment field i.e. eijk ¼ @kð@juiÞ.

� vijk are the components of the double stress denoted v.
� rij are the components of the macrostress denoted r;rij ¼ rji.
� sij are the components is the microstress denoted s.
� X is a given regular bounded domain.
� @X is the boundary of X assumed to enjoy the C1-continuity

property.
� � denotes virtual kinematical quantities.
� . denotes the scalar product of two vectors, for instance,
~a:~b ¼ aibi.
� : denotes the scalar product of two second order tensors, for

instance, A : B ¼ AijBij.
� ) denotes the scalar product of two third order tensors, for

instance, C)D ¼ CijkDijk.
� r is the gradient operator, which applies either to scalar or vec-

tor fields.
� DðqÞ is the normal derivative of the quantity q, being a scalar or a

vector. This means that: DðqÞ ¼ @jðqÞnj ¼ rq:~n.
� DjðqÞ are the components of the tangential derivative of the

quantity q, being a scalar or a vector. DjðqÞ ¼ @jðqÞ � DðqÞ
nj ¼ ðrq� ðrq:~nÞ~nÞj.

� � denotes the dyadic product.
� ~e denotes generically a basis vector. The basis vectors of the

orthonormal cartesian coordinates are denoted generically ~ei.
The basis vectors of the cylindrical coordinates are denoted:
~er;~eh and ~ez. This means that for any vector ~a we have
~a ¼ ai~ei ¼ ar~er þ ah~eh þ az~ez. It may be worth reminding that
the vectors~er;~eh depend on h and that @h~er ¼~eh and @h~eh ¼ �~er .

� Ri and Re denote, respectively, the inner and outer radii of the
studied thick-walled cylinder.

� For a scalar function u depending only on r, the function v is
defined such that: v ¼ @ruþ u

r ¼ 1
r @rðruÞ.

To make these notations more clear, let us give some examples.
Using orthonormal cartesian coordinates, we have, for instance, for
a vector: r~a ¼ @j~a�~ej ¼ @jðaiÞ~ei �~ej and for a second order tensor
rA ¼ @kA�~ek ¼ @kAij~ei �~ej �~ek.

Using cylindrical coordinates yields the following well-known
results, useful in the following:

r~a ¼ @r~a�~er þ
1
r
@h~a�~eh þ @z~a�~ez ð1Þ

and

rA ¼ @rA�~er þ
1
r
@hA�~eh þ @zA�~ez: ð2Þ
3. Media with microstructure and some relatives

3.1. Media with microstructure

The kinematic of a classical continuum is defined by a displace-
ment field denoted ~u, function of the coordinates. For media with
microstructure, a field of a (not necessarily symmetric) second
order tensor denoted E is added in the kinematic description.



Fig. 1. Thick-walled cylinder problem: (a) definition of the domain in cartesian
coordinates; (b) definition of the domain in cylindrical coordinates.
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Following Germain (1973b), it is necessary to define then the fol-
lowing dual static quantities: r the macrostress, s the microstress
and v the double stress. Neglecting all the body forces (i.e. the clas-
sical ones and the one which can be added due to the enriched
kinematics), the only external forces are the boundary ones, which
are in this case the classical forces ~F and the double forces M. The
double force M is a second order tensor defined on the boundaries.
In the case of a quasi-static problem, the virtual work principle cor-
responding to the equilibrium of a body X, the boundary of which
is denoted @X reads:

For any kinematically admissible fields ~u� and E�, the following
equation has to hold:

�
Z

X
ðr : r~u� þ s : ðE� � r~u�Þ þ v)rE�ÞdX

þ
Z
@X
ð~F:~u� þM : E�Þds ¼ 0; ð3Þ

where r is the symmetric macrostress tensor.
Eq. (3) can be recast as:

�
Z

X
ððr� sÞ : r~u� þ s : E� þ v)rE�ÞdX

þ
Z
@X
ð~F:~u� þM : E�Þds ¼ 0: ð4Þ

Using the integration by part and Green formulae, it is classical to
show that the virtual work principle yields the following balance
equations:

@jðrij � sijÞ ¼ 0; ð5Þ
@kvijk � sij ¼ 0 ð6Þ

and the boundary conditions:

ðrij � sijÞnj ¼ Fi; ð7Þ
vijknk ¼ Mij: ð8Þ

In a medium with microstructure, Eqs. (7) and (8) are the relevant
boundary conditions, with the classical forces ~F and the double
forces M, which can be prescribed independently.

3.2. Second gradient model

Among all the constitutive equations suitable for a medium
with microstructure, a second gradient model is a model for which
the following constraint holds:

E ¼ r~u: ð9Þ

Assuming the same constraint for the corresponding virtual quanti-
ties, namely

E� ¼ r~u�; ð10Þ

the Eq. (4) of the virtual work principle becomes:
For any kinematically admissible field ~u�,

�
Z

X
ðr : r~u� þ v)rr~u�Þdv þ

Z
@X
ð~p:~u� þ ~U:Dð~u�ÞÞds ¼ 0: ð11Þ

In Eq. (11), due to the constraint on the virtual quantities, it exists a
dependence between the tangential derivatives of ~u� and ~u� itself.
This means that only the normal derivative of ~u� can be chosen
independently from ~u� itself. This introduces two new forces, ~p
and ~U, respectively, the dual quantities of ~u� and Dð~u�Þ. The surface
traction ~p and the higher order surface traction ~U are thus the rel-
evant variables, which can be prescribed independently on the
boundary.

The application of the virtual work principle (Eq. (11)) and two
integrations by part give the balance equation and the boundary
conditions. The balance equation reads:
@jrij � @j@kvijk ¼ 0: ð12Þ

In second gradient media, the expression of the boundary condi-
tions is more complex due to the above-mentioned dependency be-
tween the tangential derivatives of ~u� and ~u� itself. Finally,
assuming that the boundary is regular (which means existence
and uniqueness of the normal for every point on the boundary @X
of the studied domain), we get:

rijnj � nknjDðvijkÞ � DkðvijkÞnj � DjðvijkÞnk þ DlðnlÞvijknjnk

� DkðnjÞvijk ¼ pi ð13Þ

and

vijknjnk ¼ Ui: ð14Þ
3.3. Constitutive equations

We use here an isotropic elastic model for which the classical
terms and the ones related to the second gradient are decoupled.
This means that the stress rij is following the classical Hooke’s
law defined by the Lamé constants k and l:

rij ¼ kdij�ll þ 2l�ij: ð15Þ

The double stress vijk is obeying the elastic gradient law established
by Mindlin (1965) with five parameters ai (let us notice that we use
different notations as the ones used in the quoted paper).

vpqs ¼ a1ðejjsdpq þ ejjqdpsÞ þ
1
2

a2ðesiidpq þ 2ejjpdqs þ eqiidpsÞ

þ 2a3epiidqs þ 2a4epqs þ a5ðeqsp þ espqÞ: ð16Þ

The five parameters ai are elastic constants associated with gradient
terms in the material. These constants have the dimension of a
force. Let us remark that Eq. (16) is an equality between tensors,
which means that it is valid in any system of orthogonal coordi-
nates, in particular in cylindrical coordinates.

4. Equation of the thick-walled cylinder in cylindrical
coordinates

4.1. The thick-walled cylinder problem

We want to find the axi-symmetric solutions of the thick-
walled cylinder problem (Fig. 1) for a second gradient medium.
This means that X is the domain situated in between two cylinders
sharing the same axis denoted as usual z (Fig. 1a). The problem is
assumed to be a plane problem, which means that the component
of the displacement along the z-axis is assumed to be equal to 0.
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The domain can now be defined in the plane orthogonal to the z-
axis. It is the area in between two circles sharing the same center
(Fig. 1b). The inner radius is denoted Ri and the outer radius Re.
We use now the classical cylindrical coordinates r; h and z and
the corresponding orthonormal basis, whose vectors are ~er , ~eh

and ~ez. (For more details on the use of strain gradient theory in
orthogonal curvilinear coordinates, see Zhao and Pedroso (2008).)
In fact only the first two are used in the following. In order to find
axi-symmetric solutions, the displacement is assumed to be only
radial:

~u ¼ u~er; ð17Þ

where u is a function of r only.
In order to solve the thick-walled cylinder problem, we need the

expressions of the strain tensor � and the second gradient tensor e.
Under the assumption (17), the first and second derivatives of the
displacement field are obtained (see Appendix A, for the details)
and the expressions of � and e are found:

�rr ¼ @ru;

�hh ¼
u
r
; ð18Þ

errr ¼ @2
r u;

ehhr ¼ @r
u
r

� �
;

erhh ¼ ehrh ¼
1
r
@ru�

u
r

� �
¼ @r

u
r

� �
; ð19Þ

all the other components of the two tensors are equal to 0. It can be
checked that ehhr ¼ ehrh.

In the following, we use extensively the scalar function v such
that:

v ¼ @ruþ
u
r
; ð20Þ

which means also that:

v ¼ 1
r
@rðruÞ: ð21Þ

Using this notation, errr can be rewritten as:

errr ¼ @rv � @r
u
r
: ð22Þ

Knowing the expressions of the gradient and second gradient of the
displacement field, the stress and double stress tensor can be obtained
after some calculations using the constitutive Eqs. (15) and (16):

rrr ¼ ðkþ 2lÞ@ruþ k
u
r
;

rhh ¼ k@ruþ ðkþ 2lÞu
r
;

rrh ¼ rhr ¼ 0 ð23Þ

and

vrrr ¼ 2ða1 þ a2 þ a3 þ a4 þ a5Þ@rv � 2ða4 þ a5Þ@r
u
r
;

vrhh ¼ ða2 þ 2a3Þ@rv þ 2ða4 þ a5Þ@r
u
r
;

vhrh ¼ vhhr ¼ a1 þ 1
2

a2
� �

@rv þ 2ða4 þ a5Þ@r
u
r
;

vrrh ¼ vrhr ¼ vhrr ¼ vhhh ¼ 0: ð24Þ
4.2. Virtual work principle

The virtual work principle is completely equivalent to balance
equations and boundary conditions. Using on one hand a second
gradient model or on the other hand a media with microstructure
model under the constraints (9) and (10) is also completely
equivalent.

The differential equation satisfied by u can be obtained by
transferring the constitutive Eqs. (23) and (24) into the balance
Eq. (12) and the boundary conditions (13) and (14), written in
cylindrical coordinates. It is in fact easier to derive the balance dif-
ferential equation as well as the boundary conditions from the vir-
tual formulation (4) under the constraint (10) ðE� ¼ r~u�Þ which
reads for the thick-walled cylinder:

�
Z Re

Ri

Z 2p

0
ðr : r~u� þ v)rE�Þrdhdr þ

Z 2p

0
ð~Fi:~u� þMi : E�ÞRidh

þ
Z 2p

0
ð~Fe:~u� þMe : E�ÞRedh ¼ 0: ð25Þ

It is usual to consider virtual fields ~u� and E� having the same fea-
tures as the unknown ones. This means that ~u� ¼ u�~er , where u� is
a function only of r; E�rh ¼ E�hr ¼ 0; E�rr ¼ @ru� and E�hh ¼ u�

r and finally
e�rrr ¼ @

2
r u�; e�hhr ¼ e�rhh ¼ e�hrh ¼ @r

u�
r

� �
. Let us point out that the previ-

ous relations rely once more upon the constraint (10).
Since all the previous quantities do not depend on h, dividing by

2p yields the virtual work equation in our particular case:

�
Z Re

Ri
rrr@ru� þ rhh

u�

r
þ vrrr@

2
r u� þ ðvhhr þ vrhh þ vhrhÞ@r

u�

r

� �� �
rdr

þ Fi
ru
�ðRiÞ þMi

rr@ru�ðRiÞ þMi
hh

u�ðRiÞ
Ri

 !
Ri

þ Fe
r u�ðReÞ þMe

rr@ru�ðReÞ þMe
hh

u�ðReÞ
Re

� �
Re

¼ 0:

ð26Þ

After two integrations by part, Eq. (26) yields:Z Re

Ri
@rðrrrrÞ�rhhþ

1
r
@rðrðvhhr þvrhhþvhrhÞÞ� @

2
r ðrvrrrÞ

� �
u�

� �
dr

þ RirrrðRiÞþvhhrðR
iÞþvrhhðR

iÞþvhrhðR
iÞ�Ri@rvrrrðR

iÞ�vrrrðR
iÞ

� �
u�ðRiÞ

þRivrrrðR
iÞ@ru�ðRiÞþ Fi

ru
�ðRiÞþMi

rr@ru�ðRiÞþMi
hh

u�ðRiÞ
Ri

 !
Ri

� RerrrðReÞþvhhrðR
eÞþvrhhðR

eÞþvhrhðR
eÞ�Re@rvrrrðR

eÞ�vrrrðR
eÞ

� �
u�ðReÞ

�RevrrrðR
eÞ@ru�ðReÞþ Fe

r u�ðReÞþMe
rr@ru�ðReÞþMe

hh

u�ðReÞ
Re

� �
Re ¼ 0:

ð27Þ

Using the fact that Eq. (27) has to hold for any kinematically admis-
sible virtual field, we obtain easily the balance equation for the
thick-walled cylinder problem, as well as the boundary conditions.

4.3. Balance equations

From Eq. (27), we get the balance equation of the problem:

@rðrrrrÞ � rhh þ
1
r
@rðrðvhhr þ vrhh þ vhrhÞÞ � @

2
r ðrvrrrÞ ¼ 0: ð28Þ

Substituting the stresses and the double stresses given by Eqs. (23)
and (24) in the previous equation yields:

ðkþ 2lÞ @rðr@ruÞ �
u
r

� �
þ 1

r
@r rðA� BÞ@rv þ 3rB@r

u
r

� �
� @2

r Ar@rv � Br
u
r

� �
¼ 0; ð29Þ

where

A ¼ 2ða1 þ a2 þ a3 þ a4 þ a5Þ ð30Þ

and
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B ¼ 2ða4 þ a5Þ: ð31Þ

The constants A and B have the same dimension as the parameters
ai. Eq. (29) can be recast and yields after some simplifications:

ðkþ 2lÞr@rv � Ar@r
1
r
@rðr@rvÞ

� �
¼ 0: ð32Þ

It is noteworthy that, even if Eq. (32) is completely general, it in-
volves only one parameter for the classical part, namely kþ 2l,
and one parameter for the second gradient part, namely A as de-
fined in Eq. (30). This means that, for the thick-walled problem, only
one internal length governs the behavior of the medium:

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

kþ 2l

s
: ð33Þ

Using this notation, the ordinary differential equation to solve
reads:

@r v � ðaÞ2 1
r
@rðr@rvÞ

� �
¼ 0: ð34Þ
4.4. Boundary conditions

The boundary conditions allow us to obtain the constants of
integration, which appear in the solution of Eq. (34). These latter
conditions can be the prescription of uðRiÞ; @ruðRiÞ;uðReÞ; @ruðReÞ,
or the corresponding dual quantities. In order to obtain the expres-
sion of these dual quantities, we use once more the Eq. (27) and,
u�ðRiÞ and @ru�ðRiÞ being independent, we get:

� RirrrðRiÞ � vhhrðR
iÞ � vrhhðR

iÞ � vhrhðR
iÞ þ Ri@rvrrrðR

iÞ
þ vrrrðR

iÞ ¼ Fi
rR

i þMi
hh ð35Þ

and

�vrrrðR
iÞ ¼ Mi

rr : ð36Þ

Similar relations are obtained for the outer boundary:

RerrrðReÞ þ vhhrðR
eÞ þ vrhhðR

eÞ þ vhrhðR
eÞ � Re@rvrrrðR

eÞ
� vrrrðR

eÞ ¼ Fe
r Re þMe

hh ð37Þ

and

vrrrðR
eÞ ¼ Me

rr: ð38Þ

It is noteworthy that it is not necessary to eliminate the tangential
derivative of u�, since in the particular case studied, that derivative
is equal to u�ðReÞ

Re ~eh �~eh on the outer radius (and to a similar expres-
sion on the inner radius) and does not involve any derivation with
respect to h but only the value u�ðReÞ.

Finally, looking back to Eq. (11), we can write:

pi
r ¼ Fi

r þ
Mi

hh

Ri
ð39Þ

and

Ui
r ¼ Mi

rr ð40Þ

and similar formulae for the outer radius. These two Eqs. (39) and
(40) exhibit that the force ~Fi and the double force Mi are not the rel-
evant quantities for the second gradient model, as far as it is only
possible to prescribe one component of the double force and a com-
bination of the force and the other component of the double force.

5. Solving the ordinary differential equation

The field equation (Eq. (34)) of the problem can be written as:
ðaÞ2 @3
r v þ

1
r
@2

r v �
1

ðrÞ2
@rv

 !
� @rv ¼ 0: ð41Þ

It must be pointed out that Eq. (34) is a third order differential
equation for v and, from Eq. (21), a fourth order one for u – as
expected for a second gradient problem. The use of the auxiliary
function v enables to reduce the differential order from 4 to 3.
Due to the form of the Eq. (34), it is moreover clear that a simple
integration can decrease the order of the ordinary differential
equation to 2, which simplifies the research of the solution u.
In fact, before the integration of Eq. (34), it is useful to reduce
its differential order by rewriting it in term of w ¼ @rv , which
yields:

ðaÞ2@2
r wþ ðaÞ2 1

r
@rw�

ðaÞ2

ðrÞ2
þ 1

 !
w ¼ 0: ð42Þ

Denoting x as the ratio of r over a, which means x ¼ r
a, yields a mod-

ified Bessel equation (see Abramowitz and Stegun, 1972):

ðxÞ2d2
x wþ xdxw� ð1þ ðxÞ2Þw ¼ 0: ð43Þ

The independent solutions of this equation are the modified Bessel
functions BIð1; xÞ and BKð1; xÞ (see Abramowitz and Stegun, 1972),
consequently:

@rv ¼ wðrÞ ¼ C 01BI 1;
r
a

� �
þ C02BK 1;

r
a

� �
; ð44Þ

where C01 and C 02 are two constants.
In order to find uðrÞ, the integration of Eq. (34) yields:

ðaÞ2 1
r
@rðr@rvÞ � v ¼ C 03; ð45Þ

where C03 is a third constant.
Knowing that @rðruÞ ¼ rv (see Eq. (21)), Eq. (45) gives us the va-

lue of rv and hence:

@rðruÞ ¼ ðaÞ2@rðr@rvÞ � C03r: ð46Þ

Integrating Eq. (46) yields:

u ¼ ðaÞ2@rv �
C 03
2

r þ C 04
r
; ð47Þ

where C04 is a fourth constant.
Finally, using Eqs. (44) and (47), the general solution of the

problem reads:

u ¼ ðaÞ2 C 01BI 1;
r
a

� �
þ C 02BK 1;

r
a

� �� �
� C 03

2
r þ C 04

r
: ð48Þ

This general solution (Eq. (48)) can be rewritten in order to simplify
the forthcoming developments, by introducing new constants of
integration:

u ¼ C1BI 1;
r
a

� �
þ C2BK 1;

r
a

� �
þ C3r þ C4

r
: ð49Þ

The boundary conditions allow us to find the values of the constants
of integration. These latter conditions can be the prescription of
uðRiÞ; @rðuðRiÞÞ; uðReÞ; @rðuðReÞÞ, or the corresponding dual quantities
(Eqs. (35)–(37), (3), (39) and (40)) at the inner or outer boundary.
The four constants of the problem are thus obtained using

– two conditions at the inner radius:

one of the two following equations:

uðRiÞ ¼ C1BI 1;
Ri

a

 !
þ C2BK 1;

Ri

a

 !
þ C3Ri þ C4

Ri
; ð50Þ
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pi
r ¼ � 2C4ðkþ lÞ � 2C3l

ðRiÞ2
þ 1

aRi
C1ðkþ 2lÞRiBI 0;

Ri

a

 !  

�2aC1lBI 1;
Ri

a

 !
� C2ðkþ 2lÞRiBK 0;

Ri

a

 !
� 2aC2lBK 1;

Ri

a

 !!

� 1

ðaÞ2
�

2ða4 þ a5Þ C1BI 1; Ri

a

� �
þ C2BK 1; Ri

a

� �� �
Ri

0
@

þ ða1 þ a2 þ a3 þ a4 þ a5Þ C1 BI 0;
Ri

a

 !
þ BI 2;

Ri

a

 ! !  

�C2 BK 0;
Ri

a

 !
þ BK 2;

Ri

a

! ! !!,
a

þ
6aða4 þ a5Þ �2aC3 þ ðRiÞ2 C1BI 2; Ri

a

� �
� C2BK 2; Ri

a

� �� �� �
ðRiÞ4

1
A

þ 1

ðaÞ2ðRiÞ4
ða4 þ a5Þ �16ðaÞ2C3 þ ðRiÞ2 �2C1RiBI 1;

Ri

a

 !   

þ8aC1BI 2;
Ri

a

 !
� 2C2RiBK 1;

Ri

a

 !
� 8aC2BK 2;

Ri

a

 !!!!!

ð51Þ
and one of the equations corresponding to the prescription of
@rðuðRiÞÞ or the double stress Mrr:

@rðuðRiÞÞ ¼ C4 �
C3

ðRiÞ2
þ C1 BI 0;

Ri

a

 !
þ BI 2;

Ri

a

 ! !

� C2 BK 0;
Ri

a

!
þ BK 2;

Ri

a

 ! ! ,
ð2aÞ; ð52Þ

Ui
r ¼� 2 ða1þa2þa3þa4þa5Þ C1BI 1;

Ri

a

 !
þC2BK 1;

Ri

a

 ! !  

þ
aða4þa5Þ 2aC3þðRiÞ2 �C1BIð2; Ri

aÞþC2BK 2; Ri

a

� �� �� �
ðRiÞ3

1
A
1
A,ðaÞ2 ð53Þ
– similarly two conditions at the outer radius:
one of the two following equations:

uðReÞ ¼ C1BI 1;
Re

a

� �
þ CeBK 1;

Re

a

� �
þ C3Re þ C4

Re ; ð54Þ

pe
r ¼ 2C4ðkþlÞ�2C3l

ðReÞ2
þ 1

aRe C1ðkþ2lÞReBI 0;
Re

a

� ��

�2aC1lBI 1;
Re

a

� �
�C2ðkþ2lÞReBK 0;

Re

a

� �
�2aC2lBK 1;

Re

a

� ��

� 1

ðaÞ2
�

2ða4þa5Þ C1BI 1; Re

a

� �
þC2BK 1; Re

a

� �� �
Re

0
@

þ ða1þa2þa3þa4þa5Þ C1 BI 0;
Re

a

� �
þBI 2;

Re

a

� �� ���

�C2 BK 0;
Re

a

� �
þBK 2;

Re

a

�� �� ��	
a

þ
6aða4þa5Þ �2aC3þðReÞ2 C1BI 2; Re

a

� �
�C2BK 2; Re

a

� �� �� �
ðReÞ4

1
A

þ 1

ðaÞ2ðReÞ4
ða4þa5Þ �16ðaÞ2C3þðReÞ2 �2C1ReBI 1;

Re

a

� ����

þ8aC1BI 2;
Re

a

� �
�2C2ReBK 1;

Re

a

� �
�8aC2BK 2;

Re

a

� ����
ð55Þ
and one of the equations corresponding to the prescription of
@rðuðReÞÞ or the double stress Mrr:

@rðuðReÞÞ ¼ C4 �
C3

ðReÞ2
þ C1 BI 0;

Re

a

� �
þ BI 2;

Re

a

� �� �

� C2 BK 0;
Re

a

� �
þ BK 2;

Re

a

� ��� 	
ð2aÞ; ð56Þ

Ue
r ¼ 2 ða1þa2þ a3þa4þa5Þ C1BI 1;

Re

a

� �
þC2BK 1;

Re

a

� �� ��

þ
aða4þa5Þ 2aC3þðReÞ2 �C1BI 2; Re

a

� �
þC2BK 2; Re

a

� �� �� �
ðReÞ3

1
A,ðaÞ2

ð57Þ

These equations yields a linear system of four equations in four un-
knowns Ci. The next section shows some examples of particular
solutions of this set of equations. On the contrary to the general
solution of the problem (Eq. (49)), it is noteworthy that the bound-
ary conditions involve other parameters than the modulus A. This
means that some boundary layer effects can be related to an inter-
nal length different from a.
6. Some examples of particular solutions

All the following solutions are obtained with a ratio Re

Ri ¼ 10 and
an unique value of kþ 2l. Concerning the second gradient consti-
tutive equation, we use the general isotropic elastic model pro-
posed by Mindlin (1965). In the reference case, the modeling is
performed with a particular case of Mindlin’s model, in which
the second gradient part only depends on one parameter. This
one-parameter model has been used by Bésuelle et al. (2006), for
regularization purpose in elastoplastic strain localization computa-
tions. Let us first recall the general isotropic relation between the
double stress and the second gradient of the displacements. In
the bi-dimensional case, Eq. (24) can be written following Mindlin
(1965) as:

vrrr

vrrh

vrhr

vrhh

vhrr

vhrh

vhhr

vhhh

2
66666666666664

3
77777777777775
¼

A 0 0 a23 0 a12 a12 0
0 a145 a145 0 a25 0 0 a12

0 a145 a145 0 a25 0 0 a12

a23 0 0 a34 0 a25 a25 0
0 a25 a25 0 a34 0 0 a23

a12 0 0 a25 0 a145 a145 0
a12 0 0 a25 0 a145 a145 0
0 a12 a12 0 a23 0 0 A

2
66666666666664

3
77777777777775

errr

errh

erhr

erhh

ehrr

ehrh

ehhr

ehhh

2
66666666666664

3
77777777777775
;

ð58Þ

where the constants A; a23; a12; a145; a25 and a34 depend on the ai

introduced in Eq. (24) according to the following formulae:

A ¼ 2ða1 þ a2 þ a3 þ a4 þ a5Þ
a23 ¼ a2 þ 2a3

a12 ¼ a1 þ a2

2

a145 ¼ a1

2 þ a4 þ a5

2

a25 ¼ a2

2 þ a5

a34 ¼ 2ða3 þ a4Þ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
: ð59Þ

In the one-parameter model used in the reference case, we chose
the following values for the ai parameters:
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a1 ¼ 0
a2 ¼ D

a3 ¼ �D=2
a4 ¼ D

a5 ¼ �D

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
: ð60Þ

As far as the non-classical boundary conditions are concerned, two
cases are considered in the following: one with natural boundary
conditions for the double forces (Case A) and the other one with
prescribed values different from zero (Case B).

6.1. Natural boundary conditions for the double forces

In this section, the prescribed boundary conditions are:

� for the non-dimensional external forces

pi
r

kþ 2l ¼ 0:002;
pe

r

kþ 2l ¼ 0; ð61Þ

� for the non-dimensional external double forces

Ui
r

ðkþ 2lÞRi
¼ 0;

Ue
r

ðkþ 2lÞRi
¼ 0: ð62Þ
6.1.1. Reference case – Case A.1
In this reference case, the one parameter-model recalled above

is used with D

ðkþ2lÞRi2 ¼ 4. The corresponding non-dimensional inter-

nal length scale is a
Ri ¼ 2. In order to compute the solutions, the

expressions of the constants of integration are found using Eqs.
(51), (53), (55), (57). For this reference case, the constants C1 and
C2 are null and the effect of microstructure disappears in the solu-
tion: we find the response of a (conventional) classical elastic med-
ium. Fig. 2 shows the radial displacement ur

Ri and the macrostresses
rrr

kþ2l ;
rhh

kþ2l as a function of the radial distance r
Ri. No double stresses

are generated by the application of the boundary conditions and
the obtained solution is independent of the internal length scale.

6.1.2. Solutions with ða4 þ a5Þ different from zero – Cases A.2/A.4
Considering the expression of the double stresses (Eq. (24)), we

notice that the sum ða4 þ a5Þ appears in each non-zero component
of the double stress tensor. However, with the one-parameter
model, this value vanishes and the obtained results in Case 1 are
not general. In order to investigate the role of ða4 þ a5Þ, we solve
the problem for different ratios a5=a4 and different values of the
(a)
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Fig. 2. Case A.1 – classical force: (a) radial displaceme
parameter D (Case A.2: D

ðkþ2lÞRi2 ¼ 0:4 , Case A.3: D

ðkþ2lÞRi2 ¼ 4 and

Case A.4: D

ðkþ2lÞRi2 ¼ 400). The following set of parameters are used:

the values of a1; a2; a3 and a4 are defined by Eq. (60) as a function of
D and the value a5 is computed using the ratio a5=a4.

Fig. 3 shows the influence of ða4 þ a5Þ for the Case A.2
(a

Ri ¼ 0:633 for a5=a4 ¼ �1). Actually, varying ða4 þ a5Þ modifies
the parameter a

Ri as it is shown in Table 1. We recall that the solu-

tion for a5=a4 ¼ �1 corresponds to the response of a (conventional)
classical elastic medium and the effect of the microstructure is
therefore highlighted by comparison to this reference case. For
increasing values of the difference between a4 and a5, we observe
that the radial macrostress rrr

kþ2l at the inner radius is no more equal

to pi
r

kþ2l and even tends to zero. This is due to second gradient ef-

fects: double stresses are generated in this case for a5=a4 <> �1.
Indeed, the double stresses vrhh

ðkþ2lÞRi and vhrh

ðkþ2lÞRi become more and

more negative at the inner radius as far as (a4 þ a5) is increasing.
The double stress vrrr

ðkþ2lÞRi remains equal to zero at the inner and out-

er radii (as a consequence of the natural boundary conditions for
the double forces). This double stress is not equal to zero within
the cylinder: it is negative near the inner radius and positive near
the outer radius. The values of the negative minimum and the po-
sitive maximum of vrrr are increasing with the difference between
a4 and a5.

Fig. 4 shows the influence of ða4 þ a5Þ for the Case A.3 (a
Ri ¼ 2 for

a5=a4 ¼ �1). The results are similar to the previous case, except for
the double stress vrrr

ðkþ2lÞRi. Fig. 4b shows that this latter double stress
component is negative all over the cylinder. The minimum is still
increasing with the difference between a4 and a5. It is also notice-
able that, applying a compressive classical force at the inner radius,
the corresponding radial macrostress is a low traction stress for
a5=a4 ¼ �0:5. This means that the microstructure effects become
predominant.

Fig. 5 shows the influence of ða4 þ a5Þ for Case A.4 (a
Ri ¼ 20 for

a5=a4 ¼ �1). This internal length is much larger than the thickness
of the cylinder and the response should be the same for each value
of a5=a4 different from �1 (a5=a4 ¼ �1 being the classical elastic
response as explained previously). We observe however a slight
influence of this ratio on the double stress components. This is re-
lated to the fact that, changing a4 and a5, the internal length is also
slightly increased. As a consequence the minimum of vrrr is
decreasing with a5=a4. We have also to point out the fact that, even
if a classical force is applied at the inner radius, no radial macro-
stress is generated and the external force is only balanced by the
double stresses.
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Fig. 3. Case A.2 – classical force: (a) macrostress rrr
kþ2l; (b) double stress vrrr

ðkþ2lÞRi; (c) double stress vrhh

ðkþ2lÞRi; and (d) double stress vhrh

ðkþ2lÞRi
D

ðkþ2lÞRi 2 ¼ 0:4
� �

.

Table 1
Non-dimensional internal length scale a

Ri for the different cases.

Case a5=a4 ¼ �1 a5=a4 ¼ �0:99 a5=a4 ¼ �7=8 a5=a4 ¼ �0:5

Case A.2 0.633 0.639 0.707 0.894
Case A.3 2 2.020 2.236 2.828
Case A.4 20 20.20 22.36 28.28
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6.2. Double forces at the boundary – Case B

In this section, the prescribed boundary conditions are:

� for the non-dimensional external forces

pi
r

kþ 2l
¼ 0;

pe
r

kþ 2l
¼ 0: ð63Þ

� for the non-dimensional external double forces

Ui
r

ðkþ 2lÞRi
¼ 0:004;

Ue
r

ðkþ 2lÞRi
¼ 0:004: ð64Þ

For this Case B, the one-parameter model is used and the values
of the parameters ai are defined by Eq. (60). Four different values of
parameter D

ðkþ2lÞRi2 are considered (0.04, 0.4, 4.0 and 400) to inves-

tigate the influence of the internal length scale. Using the Eqs. (51),
(53), (55), (57) as in the previous cases, the expressions of the con-
stants of integration are found. In this case, the four constants Ci

are different from zero, meaning that microstructure effects are
generated. It must be pointed out that no comparison with a clas-
sical elastic solution is possible as far as the double forces do not
exist in the conventional mechanic.
Fig. 6 shows the influence of the non-dimensional internal
length scale a

Ri (0.2, 0.632, 2.0, 20). On Fig. 6c, it can be seen that
the double stress vrrr is well balanced by the boundary conditions
at the inner and outer radii. Depending on the internal length,
starting from the boundaries, this double stress decreases more
or less quickly to zero. The conclusions are the same for the other
double stress component vhrh, which is exactly equal to vrrr=2.
Fig. 6b shows that macrostresses are also generated by double
forces and are maximum at the boundaries. The area of influence
of the boundaries depends on the internal length scale a. This is
clearly a boundary layer effect. The intensity of the radial macro-
stress at the boundaries is decreasing with respect to the internal
length.
7. Concluding remarks

This paper proposes the analytical solutions of the thick-walled
cylinder problem for an isotropic elastic second gradient medium.
The expressions of the general equation and the boundary condi-
tions have been first established. They are general and, knowing
the seven parameters involved in the model, it is possible to find
the four constants of integration, depending on the four boundary
conditions on the inner radius and outer radii. The constants of
integration are obtained by solving a set of four equations in four
unknowns (the constants of integration). Some particular solutions
are given explicitly for the thick-walled cylinder, loaded by classi-
cal forces (Case A) or double forces (Case B). The analytical solu-
tions of Case A show that the influence of the microstructure is
controlled by the internal length scale parameter a. The classical
macrostress rrr is no more in equilibrium with the classical forces
at the boundary. Double stresses are indeed also generated by the
classical boundary conditions and, as far as the microstructure ef-
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Fig. 4. Case A.3 – classical force: (a) macrostress rrr
kþ2l; (b) double stress vrrr

ðkþ2lÞRi; (c) double stress vrhh

ðkþ2lÞRi; and (d) double stress vhrh
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Fig. 6. Case B – double force: (a) radial displacement; (b) macrostress rrr; (c) double stress vrrr; and (d) double stress vhrh .
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fects become predominant (i.e. the internal length scale is much
larger than the thickness of the cylinder), the macrostresses be-
come negligible. This leads to solutions completely different from
classical elastic ones. The analytical solutions of Case B show that
the double forces generate of course double stresses but also mac-
rostresses. The influence of these microstructure effects are again
controlled by the internal length scale.

Following the same method, it is likely that general solutions for
the general models with microstructure can be obtained, even for
different loading conditions.
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Appendix A

Expressions of the strain tensor and the second gradient tensor.
Under the assumption (17), the derivatives of the displacement

field are the following: @r~u ¼ @ru~er ; @h~u ¼ u~eh and @z~u ¼ 0. Using Eq.
(1), the gradient of the displacement yields:

r~u ¼ @ru~er �~er þ
u
r
~eh �~eh: ð65Þ

Clearly r~u is symmetric and then the strain tensor � is given by:

� ¼ r~u: ð66Þ

In the case of the second gradient model, the constraint E ¼ r~u is
considered and thus the second order tensor E has the following
form in axi-symmetric conditions:
E ¼ Err~er �~er þ Ehh~eh �~eh: ð67Þ

Eq. (67) means consequently that Erh ¼ Ehr ¼ 0; Err ¼ @ru and Ehh ¼ u
r.

As clearly @zE ¼ 0 in axi-symmetric conditions, Eq. (2) yields:

rE ¼ ð@rEÞ �~er þ
1
r
ð@hEÞ �~eh: ð68Þ

Since vectors~er and~eh are not depending on r, the partial derivative
of E with respect to the radial coordinate r is:

@rE ¼ ð@rErrÞ~er �~er þ ð@rEhhÞ~eh �~eh: ð69Þ

On the other hand, since Err and Ehh are not depending on h, the par-
tial derivative of E with respect to h is:

@hE ¼ Err ~eh �~er þ~er �~ehð Þ � Ehh ~er �~eh þ~eh �~erð Þ
¼ ðErr � EhhÞ ~er �~eh þ~eh �~erð Þ: ð70Þ

We obtain then the expression of the gradient of the second order
tensor E:

rE ¼ ð@rErrÞ ~er �~erð Þ �~er þ ð@rEhhÞ ~eh �~ehð Þ �~er

þ 1
r
ðErr � EhhÞ½ ~er �~ehð Þ �~eh þ ~eh �~erð Þ �~eh�: ð71Þ

Finally, using the definition of the e, the previous equation can be
recast as:

rE ¼ errr ~er �~erð Þ �~er þ ehhr ~eh �~ehð Þ �~er þ erhh ~er �~ehð Þ �~eh

þ ehrh ~eh �~erð Þ �~eh; ð72Þ

with
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errr ¼ @rErr ¼ @2
r u;

ehhr ¼ @rEhh ¼ @r
u
r

� �
;

erhh ¼ ehrh ¼
1
r
ðErr � EhhÞ ¼

1
r
@ru�

u
r

� �
¼ @r

u
r

� �
; ð73Þ

all the other components are equal to 0. It can be checked that
ehhr ¼ ehrh.
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