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This work analyzes the elastic interaction between two spherical-cap cracks present along the outer
surface of a hollow particle embedded in a dissimilar medium under remote uniaxial tensile loading. A
semi-analytical approach based on an enriched Galerkin method is adopted to determine stress and
deformation fields as functions of particle wall thickness and cracks’ configuration. The present analysis
is limited to multiple interfacial spherical-cap cracks; that is, crack propagation is restrained to the
particle-matrix interface and possibility of crack kinking in the matrix is not considered. Interfacial crack
growth characteristics, conditions for stable crack propagation, equal crack growth, and shielding are
established through energy release rate analysis. The study is relevant to the analysis of tensile and
flexural failure of syntactic foams used in marine and aerospace applications. Results specialized to
glass-vinyl ester syntactic foams demonstrate that particle wall thickness can be used to control crack
stability and growth characteristics as well as tailoring the magnitude of the shielding phenomenon.
Predictions are compared to finite element findings for validation and to results for penny-shaped cracks
to elucidate the role of crack curvature.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Syntactic foams are composite materials obtained by dispersing
hollow particles in a matrix (Narkis et al., 1984) with the twofold
intent of improving properties and reducing density of the matrix.
Selection of constituent materials, particle volume fraction, and
particle wall thickness allows for tailoring the composite proper-
ties (see for example Gupta et al., 2010; Islam and Kim, 2007; John
et al., 2007). The presence of porosity enclosed inside thin inclu-
sions improves dimensional stability by providing low moisture
absorption and thermal expansion (see for example Rohatgi
et al., 2006; Sauvant-Moynot et al., 2006).

Designing marine and aerospace load bearing structures re-
quires a thorough understanding of structure-property correla-
tions and failure mechanisms in syntactic foams. Polymer matrix
syntactic foams have received great attention for their wide appli-
cation spectrum (see for example Bardella and Genna, 2001a; Gla-
dysz et al., 2006; Gupta et al., 2010). Experimental studies on
compressive response of glass-vinyl ester and epoxy syntactic
foams show that failure is largely due to particle crushing (Gupta
et al., 2010; Kim and Plubrai, 2004) whereas the particle-matrix
interface plays an important role in determining the failure mech-
ll rights reserved.

: +1 718 260 3532.
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anisms under tensile and flexural conditions (Gupta et al., 2010;
Tagliavia et al., 2010a; Wouterson et al., 2005). Scanning electron
micrographs of tensile fracture surfaces show interfacial failure
and curvilinear deformation marks in the matrix (see for example
Kishore et al., 2005; Koopman et al., 2006). Similar features are also
found in solid particle filled composites (see for example Lee and
Yee, 2001; Pawlak and Galeski, 2002).

Theoretical studies have elucidated the role of particle wall
thickness and volume fraction on the elastic properties of syntactic
foams by considering perfect bonding at the particle-matrix inter-
face (see for example Bardella and Genna, 2001b; Huang and
Gibson, 1993; Marur, 2005; Porfiri and Gupta, 2009). These studies
are further extended to include compliant interfacial layers in Mar-
ur (2009); within this model, full contact is assumed to be present
at the particle-matrix interface. This approach is not applicable to
the analysis of interfacial cracks formed during debonding, which
is the failure mechanism in syntactic foams under tensile and flex-
ural loading. Such failures are analyzed in a recent work where the
problem of a single partially debonded inclusion embedded in an
infinite matrix and subjected to uniaxial tensile loading is studied
(Tagliavia et al., 2010b). Therein, a computationally efficient ap-
proach based on an enriched Galerkin method is utilized to solve
the set of governing integral equations. The method is similar to
enriched finite element and meshless methods proposed in Ayhan
et al. (2006), Ching and Batra (2001), Fleming et al. (1997), and
Singh et al. (2010), where the basis set is enriched with special
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functions to capture singularities and oscillations of the stress
fields in the proximity of crack tips. A parametric study is con-
ducted to understand the effect of particle wall thickness and deb-
onding extent on elastic compliance, energy release rate (ERR),
stress and displacement distributions along the interface, fracture
mode mixity, and crack kink angle. However, the analysis pre-
sented in Tagliavia et al. (2010b) is limited to two equal spheri-
cal-cap cracks symmetrically located with respect to the loading
direction at the particle poles.

In the presernt work, the framework developed in Tagliavia et al.
(2010b) is extended to the case of two dissimilar interfacial cracks
with the goal of understanding stability, growth characteristics,
and shielding of cracks in syntactic foams. Such extension allows
for ascertaining stability of a system of cracks by characterizing
the system energetics in response to crack surface perturbations.
Moreover, crack growth characteristics are analyzed by studying a
constrained optimization problem to determine conditions for indi-
vidual and equal crack growths. Single and double interfacial crack
scenarios are compared to understand crack shielding and amplifi-
cation phenomena. An extensive parametric study is performed to
elucidate the role of particle wall thickness and crack configurations
in the elastic interaction of spherical-cap cracks along the particle-
matrix interface. This study is applicable to syntactic foams with
low particle volume fraction as it neglects particle-to-particle inter-
actions and focuses on a single inclusion embedded in an infinite
matrix. Results are verified through finite element analysis (FEA)
and compared with findings for penny-shaped cracks (see for exam-
ple Gorbatikh, 2004; Kilic and Madenci, 2007), which enables under-
standing the effect of the interfacial crack curvature on the ERR.

The paper is organized as follows. In Section 2, the problem under
investigation is defined. In Section 3, the set of integral governing
equations for the interfacial stress fields is derived. In Section 4,
the adopted semi-analytical solution is described. In Section 5, fun-
damental concepts of crack energetics are introduced. Results on
glass-vinyl ester systems are presented and discussed in Section 6.
FEA validation, remarks on stability criteria, and comparison with
the penny-shaped crack scenario are presented in Section 7. In
Section 8, main findings from this study are summarized. A series
solution of Navier–Cauchy equation from (Lur’e, 1964) and some
required expressions from (Tagliavia et al., 2010b) are included in
the Appendix.
2. Problem statement

The proposed model geometry consists of a single hollow spher-
ical inclusion embedded in an infinitely extended matrix, see
(a)
Fig. 1. (a) Schematic of model geometry containing two dissim
Fig. 1a. A remote uniaxial tensile loading r1 is applied along the
y-direction. A spherical coordinate system (r,h,/) is selected to de-
scribe displacement and stress fields that are identified using the
notation in Lur’e (1964), see Section A.1 in the Appendix.

Particle geometry is defined by the outer radius a and the radius
ratio g, which is the ratio between the inner and the outer radii.
Two spherical-cap cracks preexist at the poles of the inclusion,
see Fig. 1a. Cracks’ extents are identified by the crack tip angles
a1 and a2 measured from the y-axis, as shown in Fig. 1a. In addi-
tion, materials comprising the inclusion and the matrix are as-
sumed to be homogeneous, isotropic, and linear elastic. Particle
shape, crack geometry, constituents’ material properties, and load-
ing conditions allow the three-dimensional problem to be reduced
to a two-dimensional (2D) one. In what follows, subscripts i and m
refer to the inclusion and the matrix, respectively.

By using the superposition principle, the problem is partitioned
into the three subproblems sketched in Fig. 1b. The subproblems
are: (I) the matrix material with a spherical void of radius a under
remote uniaxial tensile stress r1; (II) the matrix material with a
spherical void of radius a loaded by an unknown traction distribu-
tion represented by r(h) along the radial direction and s(h) along
the circumferential direction, such that r(h) = s(h) = 0 for
� a1 6 h 6 a1 and a2 6 h 6 2p � a2; and (III) a hollow inclusion
loaded by r(h) and s(h) at its outer surface. Since the problem un-
der investigation is symmetric with respect to the y-direction, only
the interval [0,p] is considered in the analysis. In what follows,
superscripts (I), (II), and (III) are used to identify the solution of
the corresponding subproblem.
3. Governing equations

In each constituent, displacement and stress fields can be ex-
pressed in the general series form, reported in Appendix in equa-
tion set (A2), by specializing elastic constants to inclusion and
matrix materials, respectively (Lur’e, 1964). By applying suitable
boundary conditions to each subproblem, solutions for radial and
circumferential displacements at the interface are obtained as
functions of r(h) and s(h). For convenience, these unknown fields
are expressed in terms of solid spherical harmonics, that is,

rðhÞ ¼
X1
n¼0

rnPnðcos hÞ; ð1aÞ

sðhÞ ¼
X1
n¼1

sn
dPnðcos hÞ

dh
: ð1bÞ
(b)
ilar interfacial cap cracks and (b) problem decomposition.
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Here, Pn(cosh) is the nth Legendre polynomial as a function of cosh
and the coefficients rn and sn are given by

rn ¼
ð2nþ 1Þ

2

Z a2

a1

rðhÞPnðcos hÞ sin hdh; ð2aÞ

sn ¼
ð2nþ 1Þ

2nðnþ 1Þ

Z a2

a1

sðhÞdPnðcos hÞ
dh

sin hdh; ð2bÞ

due to the orthogonality of the Legendre polynomials and their
derivative with respect to h in [0,p] and the fact that r(h) and
s(h) are zero for 0 6 h 6 a1 and a2 6 h 6 p. Such unknown stress
fields are determined by imposing the continuity of radial and cir-
cumferential displacements across the intact part of the interface
(a1 < h < a2), that is,

urðaþ; hÞ � urða�; hÞ ¼ uðIÞr ða; hÞ þ uðIIÞr ða; hÞ � uðIIIÞr ða; hÞ ¼ 0; ð3aÞ

uhðaþ; hÞ � uhða�; hÞ ¼ uðIÞh ða; hÞ þ uðIIÞh ða; hÞ � uðIIIÞh ða; hÞ ¼ 0: ð3bÞ

Here, superscripts + and � are used to identify limits from the ma-
trix and inclusion side, respectively. Solutions of subproblems (I)
and (II) are derived in Tagliavia et al. (2010b) under the assumption
of a symmetric crack configuration with respect to the xz-plane of
the particle, namely, a1 = p � a2. As a consequence, only even terms
in equation set (A2) are retained. Releasing this assumption re-
quires keeping both even and odd terms in the series without alter-
ing the solution format. These expressions are not derived here
again and are only reported in equation sets (A5) and (A6). In what
follows, solution of subproblem (III) is treated in detail.

A solution for subproblem (III) exists if the external loading de-
scribes a self-equilibrated system of forces (Lur’e, 1964), that is,

2pa2
Z p

0
½rðhÞ cos h� sðhÞ sin h� sin hdh ¼ 0: ð4Þ

Substituting equation set (1) in Eq. (4) provides

r1 þ 2s1 ¼ 0: ð5Þ

The solution for a hollow inclusion loaded by r(h) and s(h) is writ-
ten in the form of equation set (A2), where the elastic constants are
specific to the inclusion material and the constants An, Bn, Cn, and Dn

are determined by imposing

rðIIIÞrr ða; hÞ ¼ rðhÞ; ð6aÞ

sðIIIÞrh ða; hÞ ¼ sðhÞ; ð6bÞ

rðIIIÞrr ðga; hÞ ¼ 0; ð6cÞ

sðIIIÞrh ðga; hÞ ¼ 0: ð6dÞ

Note that Eqs. (6c) and (6d) correspond to stress-free conditions on
the inner surface of the inclusion.

The solution of equation set (6) is obtained by exploiting the
orthogonality of the sets fPnðcos hÞg1n¼0 and fdPnðcos hÞ=dhg1n¼0 in
[0,p]. For n – 1, equation set (6) reduces to a linear system of
four equations in four unknowns, where An, Bn, Cn, and Dn are
given by

An ¼
a�n CðArÞ

n rn þ CðAsÞ
n sn

h i
2liD

ðAÞ
n

; ð7aÞ

Bn ¼ �
a2�n CðBrÞn rn þ CðBsÞn sn

h i
2liD

ðBÞ
n

; ð7bÞ
Cn ¼
anþ1 CðCrÞ

n rn þ CðCsÞ
n sn

h i
2liD

ðCÞ
n

; ð7cÞ

Dn ¼ �
anþ3 CðDrÞ

n rn þ CðDsÞ
n sn

h i
2liD

ðDÞ
n

: ð7dÞ

The expressions for the coefficients CðArÞ
n ; CðAsÞ

n ; DðAÞn ; CðBrÞn ; CðBsÞn ;

DðBÞn ; CðCrÞ
n ; CðCsÞ

n ; DðCÞn ; CðDrÞ
n ; CðDsÞ

n , and DðDÞn are reported in equation
set (A6) of (Tagliavia et al., 2010b). Note that each coefficient de-
pends on the inclusion material properties and geometry.

If n = 1, Bn vanishes, see Eqs. (A2c) and (A2d). Thus, equation set
(6) becomes a linear system of four equations in three unknowns
A1, C1, and D1. The system can be solved by accounting for Eq. (5)
to give

A1 ¼
r1

8liaðg5 � 1Þðmi þ 1Þ ; ð8aÞ

C1 ¼ 0; ð8bÞ

D1 ¼
a4g5r1

12liðg5 � 1Þ : ð8cÞ

In addition, substituting equation sets (7) and (8) in Eqs. (A2a) and
(A2b) gives

2lm

ar1
uðIIIÞr ða; hÞ ¼ �b

½2ðmi þ 1Þg5 � 12mi þ 3�r1

6ðg5 � 1Þðmi þ 1Þ � 2B1li

a

� �
P1ðcos hÞ

� b
X1

n¼0;n–1

EðrrÞn rn þ EðrsÞn sn

FðrÞn

Pnðcos hÞ;

ð9aÞ

2lm

ar1
uðIIIÞh ða; hÞ ¼ þb

½ðmi þ 1Þg5 � 6mi þ 9�r1

6ðg5 � 1Þðmi þ 1Þ þ 2B1li

a

� �
dP1ðcos hÞ

dh

� b
X1
n¼2

EðhrÞn rn þ EðhsÞn sn

FðhÞn

dPnðcos hÞ
dh

;

ð9bÞ

where b = lm/li and the expressions for the coefficients
EðrrÞn ; EðrsÞn ; EðhrÞn ; EðhsÞn ; FðrÞn , and FðhÞn are reported in equation set
(A7) of (Tagliavia et al., 2010b). In equation set (9), B1 is undeter-
mined and it is physically related to the rigid body motion as evi-
denced in Eqs. (A2a) and (A2b).
4. Semi-analytical solution

4.1. Governing integral equations

By substituting equation sets (A5), (A6) and (9) in equation set
(3) and using equation set (2), the following set of homogeneous
Fredholm integral equations of the first kind is obtained

Z a2

a1

F ðrrÞðh; ĥÞ~rðĥÞdĥþ
Z a2

a1

F ðrsÞðh; ĥÞ~sðĥÞdĥ ¼ vrðh;B1Þ; ð10aÞ

Z a2

a1

F ðhrÞðh; ĥÞ~rðĥÞdĥþ
Z a2

a1

F ðhsÞðh; ĥÞ~sðĥÞdĥ ¼ vhðh;B1Þ; ð10bÞ

Here, ~rðhÞ ¼ rðhÞ=r1 and ~sðhÞ ¼ sðhÞ=r1 are the relative radial and
shear stress fields at the interface, vr(h,B1) and vh(h,B1) are defined
in Eqs. (A9b) and (A9c), respectively, and F ðrrÞðh; ĥÞ; F ðrsÞðh; ĥÞ;
F ðhrÞðh; ĥÞ, and F ðhsÞðh; ĥÞ are the Fredholm kernels given by
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F ðrrÞðh; ĥÞ

¼ sin ĥ
X1

n¼0;n–1

ð2nþ 1Þ
2

AðrrÞn

BðrÞn

þ b
EðrrÞn

FðrÞn

 !
Pnðcos hÞPnðcos ĥÞ

þ 1
4

b½2ðmi þ 1Þg5 � 12mi þ 3�
ðg5 � 1Þðmi þ 1Þ � 2ð8mm � 7Þ

3ðmm � 1Þ

� �
� sin ĥP1ðcos hÞP1ðcos ĥÞ; ð11aÞ

F ðrsÞðh; ĥÞ ¼ sin ĥ
X1
n¼2

2nþ 1
2nðnþ 1Þ

AðrsÞn

BðrÞn

þ b
EðrsÞn

FðrÞn

 !
Pnðcos hÞdPnðcos ĥÞ

dh

þ 4� 5mm

6ðmm � 1Þ sin ĥP1ðcos hÞdP1ðcos ĥÞ
dĥ

; ð11bÞ

F ðhrÞðh; ĥÞ ¼ sin ĥ
X1

n¼0;n–1

ð2nþ 1Þ
2

AðhrÞn

BðhÞn

þ b
EðhrÞn

FðhÞn

 !
dPnðcos hÞ

dh

� Pnðcos ĥÞ þ 3
2

4� 5mm

9ðmm � 1Þ �
b½ðmi þ 1Þg5 � 6mi þ 9�

6ðg5 � 1Þðmi þ 1Þ

� �

� sin ĥ
dP1ðcos hÞ

dh
P1ðcos ĥÞ; ð11cÞ

F ðhsÞðh; ĥÞ ¼ sin ĥ
X1
n¼2

2nþ 1
2nðnþ 1Þ

AðhsÞn

BðhÞn

þ b
EðhsÞn

FðhÞn

 !
dPnðcos hÞ

dh

� dPnðcos ĥÞ
dĥ

þ 11� 13mm

12ðmm � 1Þ sin ĥ
dP1ðcos hÞ

dh
dP1ðcos ĥÞ

dĥ
:

ð11dÞ
4.2. Enriched Galerkin method

A numerical solution of the integral equation set (10) is com-
puted by using an approach based on the Galerkin method (see
for example Babolian and Delves, 1979). In particular, the interfa-
cial stress fields are expanded in terms of linear combinations of
independent basis functions in the solution space. The coefficients
in the expansion are determined by projecting Eqs. (10a) and (10b)
onto the basis sets. More specifically, the stress fields are expressed
as

~rðhÞ ¼
Xdþ1

n¼0

xðrÞn qðrÞn ðhÞ; ð12aÞ

~sðhÞ ¼
Xdþ1

n¼0

xðsÞn qðsÞn ðhÞ; ð12bÞ

where xðrÞn

n odþ1

n¼0
and xðsÞn

n odþ1

n¼0
are unknown coefficients,

qðrÞn ðhÞ
n odþ1

n¼0
and qðsÞn ðhÞ

n odþ1

n¼0
denote the basis functions, and

2d + 4 is the total number of basis functions used for the approxi-

mation. The coefficients xðrÞn

n odþ1

n¼0
and xðsÞn

n odþ1

n¼0
are determined

by solving the following set of 2d + 4 linear equations

Xdþ1

n¼0

xðrÞn

Z a2

a1

Z a2

a1

F ðrrÞðh; ĥÞqðrÞn ðĥÞqðrÞr ðhÞdhdĥ

þ
Xdþ1

n¼0

xðsÞn

Z a2

a1

Z a2

a1

F ðrsÞðh; ĥÞqðsÞn ðĥÞqðrÞr ðhÞdhdĥ

¼ �
Z a2

a1

2lm

ar1
uðIÞr ða; hÞqðrÞr ðhÞdh

þ 2bB1li

a

Z a2

a1

cos hqðrÞr ðhÞdh; ð13aÞ
Xdþ1

n¼0

xðrÞn

Z a2

a1

Z a2

a1

F ðhrÞðh; ĥÞqðrÞn ðĥÞqðsÞr ðhÞdhdĥ

þ
Xdþ1

n¼0

xðsÞn

Z a2

a1

Z a2

a1

F ðhsÞðh; ĥÞqðsÞn ðĥÞqðsÞr ðhÞdhdĥ

¼ �
Z a2

a1

2lm

ar1
uðIÞh ða; hÞqðsÞr ðhÞdh

� 2bB1li

a

Z a2

a1

sin hqðsÞr ðhÞdh: ð13bÞ

For convenience, equation set (13) can be rewritten in the matrix
form as follows

Fx ¼ vðB1Þ; ð14Þ

where the expressions of the matrix F and the column vectors x
and v(B1) are reported in Eq. (A7) and equation set (A9). Recalling
equation sets (2) and (12), Eq. (5) becomes

jTx ¼ 0; ð15Þ

where j is given by Eq. (A9e). Finally, manipulating Eq. (14) and
substituting Eq. (15), B1 is obtained through

jTF�1vðB1Þ ¼ 0: ð16Þ

Once B1 is determined, a solution for the linear system in equation
set (13) is found.

Dealing with interfacial cracks requires coping with singulari-
ties and oscillations of the stress fields in proximity of the cracks’
tips (Kuang and Wang, 1999). Thus, the basis sets are enriched
by special functions that allow for describing these behaviors
(see for example Ching and Batra, 2001; Fleming et al., 1997). As
suggested in Martynenko and Lebedyeva (2006), radial and cir-
cumferential stress fields in the crack tip proximity can be ex-
pressed as a linear combination of two suitable functions, (see
for example Tagliavia et al., 2010b). In this study, two different
cracks defined by the crack tip angles a1 and a2 are considered.
Therefore, four pairs of special functions are used to enrich the ba-
sis sets, namely,

qðrÞ0 ðhÞ ¼ qðsÞ0 ðhÞ ¼
sin c log sin h

2� sin a1
2

� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin h

2� sin a1
2

q ; ð17aÞ

qðrÞ1 ðhÞ ¼ qðsÞ1 ðhÞ ¼
cos c log sin h

2� sin a1
2

� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin h

2� sin a1
2

q ; ð17bÞ

qðrÞ2 ðhÞ ¼ qðsÞ2 ðhÞ ¼
sin c log cos h

2� cos a2
2

� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h

2� cos a2
2

q ; ð17cÞ

qðrÞ3 ðhÞ ¼ qðsÞ3 ðhÞ ¼
cos c log cos h

2� cos a2
2

� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h

2� cos a2
2

q : ð17dÞ

Here, c is the mismatch parameter defined in Dundurs (1969) as

c ¼ 1
2p

log
3bþ 1� 4bmi

3þ b� 4mm
: ð18Þ

Note that when the two materials share the same elastic properties

b = 1 and c vanishes. The remaining smooth functions qðrÞn ðhÞ
n odþ1

n¼4

and qðsÞn ðhÞ
n odþ1

n¼4
are selected consistently with (Tagliavia et al.,

2010b) for computational efficiency. Note that, by taking a1 nonzero
and a2 = 180�, the problem of two spherical-cap cracks reduces to
the problem of a single crack. In this case, Eqs. (17c) and (17d)
are discarded and the basis sets are consistently depleted.
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5. Energetics of a system of cracks

Here, energetics and stability criteria for crack propagation are
discussed. More specifically, growth and interaction of cracks are
studied by analyzing ERRs and their variations. Note that the over-
arching analysis is limited to crack growth along the particle-
matrix interface.

5.1. Energy release rate

By following the classical Griffith’s linear elastic theory for brit-
tle materials (Griffith, 1921) and by assuming a constant pre-
scribed applied load, the ERR can be expressed as follows (see for
example Gdoutos, 2005),

G ¼ � 1
a2

@P
@C
¼ 1

a2

@U
@C

: ð19Þ

Here, P is the potential energy, U is the elastic energy stored in the
material that equals -P, and C is the crack surface area normalized
by a2. For glass-vinyl ester syntactic foams, the assumptions of brit-
tle fracture and linear elastic behavior are consistent with experi-
mental observations under tensile and flexural loading (Gupta
et al., 2010; Tagliavia et al., 2010a). Note that this quantity is occa-
sionally referred to as the strain energy release rate, (see for exam-
ple Gdoutos, 2005).

The elastic energy stored in the composite is computed by using
the Eshelby’s decomposition (see for example Christensen, 1979),

U ¼ U0 þ UINT; ð20Þ

where U0 is the energy stored in case the inclusion is replaced by
the matrix material and UINT is the energy stored in the composite
due to the particle-matrix interaction through the interface. Accord-
ing to Eshelby’s formula, UINT can be computed from the stress and
displacement fields at the particle-matrix interface by

UINT ¼ p
Z p

0
r0

rrða; hÞurðaþ; hÞ þ s0
rhða; hÞuhðaþ; hÞ

� �
a2 sin hdh

� p
Z p

0
rðhÞu0

r ða; hÞ þ sðhÞu0
hða; hÞ

� �
a2 sin hdh: ð21Þ

Here, the superscript 0 refers to the fields computed in case the ma-
trix material replaces the particle, while the other fields are com-
puted by solving the single inclusion problem outlined in
Section 3. Note that r0

rrða; hÞ; s0
rhða; hÞ; u0

r ða; hÞ, and u0
hða; hÞ can be

determined in closed form. In addition, the overall effective compli-
ance along the loading direction is obtained by manipulating
Eq. (20) as reported in Tagliavia et al. (2010b), that is,

S ¼ 3
2

UINT
Em

pa3r2
1
: ð22Þ

Here, S ¼ ðEm=Eeff � 1Þ=U is the change in the relative effective elas-
tic compliance per unit particle volume fraction, Eeff is the effective
elastic modulus along the loading direction, and U is the particle
volume fraction. The estimate in Eq. (22) is expected to be accurate
only for small particle volume fraction due to the dilute nature of
the problem under investigation. Note that S depends on U through
U0, see Tagliavia et al. (2010b), while it is a function of C1 and C2

through UINT.
By recalling Eq. (20) and by using @ U0/@C = 0, Eq. (19) yields

G ¼ Em

ar2
1

G ¼ Em

a3r2
1

@UINT

@C
; ð23Þ

where G is a dimensionless ERR. In a system of two interacting
cracks, the elastic energy stored in the material can be expressed
as a function of the normalized surface areas C1 = 2p(1 � cosa1)
and C2 = 2p(1 + cosa2) corresponding to the crack tip angles a1
and a2, respectively. Therefore, the ERR associated with each crack
is defined as (Nemat-Nasser, 1978)

Gi ¼
Em

ar2
1

Gi ¼
Em

a3r2
1

@UINT

@Ci
; i ¼ 1;2: ð24Þ
5.2. Crack growth

According to the Griffith fracture condition, propagation of the
ith crack, with i = 1, 2, is initiated if the total potential energy is sta-
tionary with respect of the ith crack surface area, that is,

1
a2

@ðPþ DiÞ
@Ci

¼ �Gi þRi ¼ 0: ð25Þ

Here, Di is the energy dissipated in the crack propagation and
Ri ¼ @Di=@Ci is the energy required to form one unit of new surface
area. R1 ¼ R2 ¼ R is assumed to be a property of the interface (see
for example Guo and Sun, 1997; Hamoush and Ahmad, 1989;
Marotzke and Qiao, 1997). Simultaneous crack propagation occurs
if G1 ¼ G2 ¼ R. Crack growth is defined to be stable if propagation
is not spontaneous (Nemat-Nasser, 1978), that is, cracks propagate
only if the applied load is increased.

The analysis of the sign of @Gi=@Ci is sufficient to assess the sta-
bility of the growth of the ith crack as the other crack is held fixed.
More specifically, if @Gi=@Ci is positive the growth is unstable and
is stable if @Gi=@Ci is negative. On the other hand, the stability of
the system of two crack is studied by means of the second variation
of P for any admissible perturbation of crack surface areas dC1 and
dC2 (Suo and Combescure, 1992; Suo and Valeta, 1998), that is,

X2

i;j¼1

@2P
@Ci@Cj

dCidCj

¼�
X2

i;j¼1

@2U
@Ci@Cj

dCidCj

>0; stable
¼0; critical
<0; unstable

8><
>: 8 dC1 P 0 and dC2 P 0:

ð26Þ

Since UINT is a symmetric function of C1 and C2, crack configura-
tions with C1 = C2 satisfy G1 = G2, see Eq. (24). These crack config-
urations are analyzed in what follows and identified by
Ce = C1 = C2. By using the symmetry of UINT with respect to C1

and C2, the stability of Ce is expressed in terms of the dimension-
less ERRs through

@G1=@C1 ¼ @G2=@C2 > 0; unstable;
@G1=@C1 < 0 and @G1=@C2 ¼ @G2=@C1 < 0; stable;
@G1=@C1 < 0 and 0 < @G1=@C2 < j@G1=@C1j; stable:

8><
>:

ð27Þ

Stability of a similar system of cracks is studied in Baza�nt and
Tabbara (1992) and Sumi et al. (1980).

Interfacial crack growth characteristics are determined by min-
imizing the potential energy P. This is achieved by adapting the
constrained quadratic programming on virtual crack extension
presented in Hwang and Ingraffea (2004). For the two crack prob-
lem, the quadratic programming optimization with a linear equal-
ity constraint and bounds reads

Maximize
X2

i¼1

GidCi with respect to dC1 and dC2;

subjected to
X2

i¼1

dCi ¼ c 8dC1 P 0 and dC2 P 0;

ð28Þ

where c is a constant defining the overall surface area generation.
Note that crack surface perturbations in Eq. (28) refer only to prop-
agation and not closing.



Fig. 2. Gi and Gj as functions of Ci for g = 0.1, Cj = 0.28, and i, j = 1, 2 with i – j.
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6. Results and discussion

Here, the semi-analytical solution presented in Section 4 is used
to compute stress and displacement fields at the particle-matrix
interface. These fields are used to evaluate the interaction energy
defined by Eq. (21). Numerical simulations are performed by using
a FORTRAN90 code for a variety of crack configurations and parti-
cle wall thicknesses. Crack tip angles a1 and a2 are varied in steps
of 5� in the ranges [5�,60�] and [120�,180�], respectively, and fur-
ther in steps of 1� in the ranges [60�,70�] and [110�,120�] to better
assess the interaction of the cracks as the crack tips approach each
other. Numerical results for equal crack configurations, that is, sce-
narios in which a1 = p � a2, are taken from (Tagliavia et al., 2010b).
The number of independent configurations is reduced to half by
noticing that crack configurations identified by the angle pairs
(a1,a2) and (p � a2,p � a1) are equivalent. For the selected ranges
of a1 and a2, both C1 and C2 vary in the interval [0,4.13].

Kernels of the integrals in equation set (13) are numerically
approximated. Numerical analyses show that the matrix F is
non-singular and the solutions for the stress and displacements
fields are accurate if d is set to 7 and 400 or more terms are re-
tained in the kernels. Note that for a2 = 180�, d reduces to 5. The
ERR is computed by fitting UINT with a 8th order polynomial of
even powers of the crack surface area and differentiating by fol-
lowing Eq. (24).

The role of particle wall thickness is investigated for a wide
range of g that spans between quasi-solid (g = 0.1) to very thin-
walled inclusions (g = 0.94). The matrix F can be written as the lin-
ear combination of matrices whose entries are independent of g,
see for example Eq. (A7) and equation set (A8). Determining such
entries requires numerical integration that, nevertheless, depends
only on the crack configuration. Thus, parametric studies on the ef-
fect of wall thickness are easily implemented in the enriched
Galerkin method providing an advantage with respect to FEA,
where changing the problem geometry requires addressing a dif-
ferent representative volume element.

Glass-vinyl ester syntactic foam system is selected as reference
in the further discussion. Accordingly, numerical results are com-
puted using Em = 3.21 GPa, mm = 0.3, Ei = 60 GPa, and mi = 0.21 as re-
ported in Tagliavia et al. (2010a). The corresponding material
mismatch parameters are b = 4.98 � 10�2 and c = �8.16 � 10�2.
In addition, particle of one unit outer radius is selected in the
geometry.
Fig. 3. Numerically predicted crack growth evolutions for g = 0.1.
6.1. Stable growth of equal cracks

Based on Eq. (27), the stability of the simultaneous propagation
of two equal cracks is analyzed. Numerical analysis shows that the
system is unstable for low values of Ce and stable after crossing a
threshold Ce = Cst for any particle wall thickness. The position of
the threshold value depends on g. More specifically, Cst increases
from 2.27 to 3.55 as g increases from 0.1 to 0.94, thus causing a
reduction in the stable crack growth region. Note that the corre-
sponding values (a1,a2) for Cst = 2.27 and Cst = 3.55 are
(50.26�,129.74�) and (64.27�,115.73�), respectively. Numerical
findings on solid particle filled composites reported in Benabou
et al. (2005) and Cho et al. (2006) are in line with the semi-
analytical results for g = 0.1 presented here.

The behavior of a representative unstable crack configuration
Ce = 0.28 corresponding to a1 = 17� is described by means of the
ERRs in Fig. 2. For g = 0.1, Fig. 2 shows Gi and Gj as functions of
Ci for Cj = 0.28 and i, j = 1, 2 with i – j. The intersection of Gi and
Gj corresponds to the crack configuration Ce = 0.28. As shown in
Fig. 2, a small positive C2 perturbation from the equilibrium pro-
duces an increment of G2 and a decrease in G1, and viceversa. Thus,
only the perturbed crack is able to propagate. In addition, Fig. 2
shows that G1 ¼ G2 only if C1 = C2. Similar behavior is found for
any selection of g, showing that simultaneous crack propagation
is only possible if C1 = C2.

6.2. Crack growth characteristics

By applying the algorithm in Eq. (28) to the two crack problem
and selecting c = 0.02 corresponding to 0.16% of the particle outer
surface area, characteristics of crack growth for the case of a qua-
si-solid inclusion (g = 0.1) are obtained and presented in Fig. 3 as
functions of C1 and C2.

The graph shows the presence of two regions, labeled as A and
B, corresponding to crack configurations that evolve by increasing
C2 and C1, respectively. The inversion of the regions A and B with
respect to the set of equal crack configurations, named D, for
Ce > 3.66 identifies the transition from individual to equal crack
growth. For i = 1, 2, any positive perturbation on Ci of a crack
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configuration with Ce < 3.66 provides an increment in Ci. Thus, the
perturbation causes a symmetry breaking. Conversely, any positive
C2 perturbation of a crack configuration with Ce > 3.66 provides an
increment in C1 and viceversa. Thus, the system propagates by
reestablishing the symmetric configuration C1 = C2. Numerical re-
sults are largely independent of c within the investigated range of
[0.01,0.06].

The analysis in Fig. 3 can be complemented with tensile stress–
strain plots that describe the composite overall response to crack
propagation. As an example, two widely different initial crack con-
figurations of (17�,158�) and (64�,115�) and the corresponding
crack growth paths, named Path1 and Path2, are considered to de-
scribe stable and unstable crack growths, see Fig. 3. Crack propaga-
tion starts when the ERR of the leading crack is equal to R, see Eq.
(25). Thus, the remote stress increases linearly with the strain until
crack propagation initiates. The slope of the stress–strain graph is
given by the composite effective elastic modulus Eeff that depends
on U, see Eq. (22). Fig. 4a depicts stress–strain graphs for U = 0.1
and R ¼ 1:3 MPa mm. The value of R is selected to be in line with
fracture toughness and tensile strength data on glass-polymer syn-
tactic foams (see for example Gupta et al., 2010; Wouterson et al.,
2005). Note that the initial slopes are different since Eeff depends
on C1 and C2. Once propagation is initiated, changes in the crack
configurations are computed by using a control scheme on the
crack surface area which allows for covering simulated crack
growth branches (see for example Barpi and Valente, 1998; Saleh
and Aliabadi, 1995). According to this iterative procedure, a virtual
crack increment is considered and stress–strain values are com-
puted at each step from the change in the effective elastic modulus
(Carpinteri and Monetto, 1999). In other words, after the crack
propagation initiates, production of crack surface area is used to
(a)

(b) (c)

Fig. 4. (a) Stress–strain curves for crack propagation along Path1 and Path2 and
close up of the post-critical behavior for (b) Path1 and (c) Path2.
compute the critical stress and the effective modulus, which are
in turn used to determine the strain.

The post-critical behaviors of Path1 and Path2 are drastically
different as shown in Fig. 4b and c. In particular, Path1 presents
a snap-back instability, see (Baza�nt and Planas, 1998), due to the
unstable growth that propagates in the region A where only C2 in-
creases. As a consequence, both stress and strain values decrease.
The spontaneous crack propagation terminates at point P in
Fig. 4b that corresponds to the crack configuration of
(17�,111.5�). At this point, the crack ERR is equal to R but its rate
of increase with respect to the crack extent is negative (Lee et al.,
1996). After point P, the propagation is not spontaneous as shown
by the increase in the stress. Similar instabilities are reported for
multiple delaminations in laminated composites (see for example
Andrews et al., 2006; Andrews and Massabò, 2007; Andrews and
Massabò, 2008).

The post-critical behavior of Path2 is characterized by softening,
see Fig. 4c. Since the initial configuration of Path2 is located in a
stable zone of the region A, crack propagation is not spontaneous.
Thus, the increase of C2 is possible only by increasing the stress.
The change in the slope of the stress–strain graphs is due to the
crack propagation. It is worth noticing that such apparently abrupt
change in the curve slope does not imply a sharp modification in
the composite effective modulus. Indeed, the composite effective
modulus corresponds to the ratio between stress and strain rather
than to the slope of the curve as per the adopted computational
procedure. The approximately piecewise linear behavior of the
stress–strain graph reflects a smooth decay of the stress and strain
ratio from the initial slope. When G1 becomes larger than G2, the
system keeps evolving in the region B by increasing C1. Finally,
after the corresponding crack configuration C1 = C2 is achieved,
the cracks propagate according to an equal crack growth regime.
Note that eventually the cracks are expected to kink in the matrix
as the interaction between the crack tips becomes more
pronounced.

6.3. Effect of crack interaction on ERRs

Comparisons of the ERR between the single and the double
crack scenarios are drawn to describe the interaction between
two interfacial spherical-cap cracks. The propagation of a crack in
presence of another fixed crack is simulated by holding the value
of a2 constant and calculating UINT for different values of a1.

In a system of two cracks, a fixed crack modifies the propaga-
tion of the other crack leading to an amplification or a shielding
effect, that is, an increase or decrease in ERR as compared to the
case of a single crack. In practical terms, an amplified interfacial
crack has more energy available to propagate than a single crack,
thus weakening the interface. On the other hand, a shielded inter-
facial crack needs a higher load to initiate crack propagation, thus
toughening the interface. The single crack (solid lines) and the dou-
ble crack (dashed lines) cases are reported in Fig. 5 for two repre-
sentative particle wall thicknesses. The tip angles of the fixed crack
are selected to be a2 = 175� and a2 = 120� in Fig. 5a and b to de-
scribe a small and a relatively large defect, respectively. As shown
in Fig. 5a, the presence of a small crack does not produce notable
changes in the ERR of a single crack except for C1 above 3.9. In con-
trast, a prominent shielding effect is observed for a relatively large
crack in Fig. 5b. In this study, evidence of amplification phenomena
is not found for any investigated configuration, consistently with
plane strain/stress problems for arc cracks along the interface be-
tween a circular inclusion and a dissimilar infinite medium (see
for example Prasad and Simha, 2002). In addition, similar findings
are reported for multiple delaminations in laminated plates where
amplification or shielding effects occur depending on crack extents
and locations (see for example Andrews et al., 2006).



(a) (b)

Fig. 5. Comparison of G1 as a function of C1 between a single crack (a2 = 180�) and a double crack scenario with a fixed (a) a2 = 175� and (b) a2 = 120�.
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Fig. 6 shows G180
1 as a function of C1 and g in a 2D contour plot.

Here, the superscript 180 refers to the corresponding a2 value, in
degrees, selected in this case. The dashed line identifies the locus
of the maxima of G180

1 , named Cc, as a function of g. The existence
of a maximum implies that unstable propagation transitions to sta-
ble growth after crossing the dashed line in Fig. 6 for any particle
wall thickness. This behavior may be attributed to the Poisson’s ra-
tio effect, that minimizes the contribution of the opening mode on
the variation of G180

1 as C1 increases (Benabou et al., 2005). As the
particle wall thickness decreases, Cc increases and the correspond-
ing G180

1 value decreases, see Fig. 6. This implies toughening of the
interface and increase of the range for stable growth. Such observa-
tions can be attributed to the fact that thinner particles act as soft-
er reinforcements similar to those studied in Kinloch et al. (2005).

The effect of particle wall thickness on cracks’ interaction is
analyzed by considering the ERR of a crack propagating in presence
of another fixed crack with a smaller extent, namely for C1 > C2.
This builds on the observations that the larger crack generally
propagates first, see Figs. 2 and 3. In Fig. 7a, G180

1 � G1 is displayed
as a function of C2 and a2. For each selected a2 value, the two func-
tions are evaluated at C1 = C2 + 0.1. Fig. 7a illustrates that G180

1 � G1
Fig. 6. G180
1 as a function of g and C1 in a 2D contour plot. The dashed line identifies

the locus of the maxima of G180
1 .
is always positive, thus a shorter fixed crack generates a shielding
effect regardless of C2 and g. Moreover, the shielding effect
increases as C2 is increased or g is decreased. Similar findings
are obtained by varying C1 � C2 in the range [0.1,0.5].

Fig. 7b shows @G180
1 =@C1 (solid lines) and @G1=@C1 (dashed lines)

as functions of g for C1 = C2 + 0.1 and different a2 values. For
a2 > 130�, the presence of a fixed crack does not change the stabil-
ity of the other crack. Both @G180

1 =@C1 and @G1=@C1 are positive for
the entire g range. Thus, the propagation of a crack is spontaneous
irrespective of the presence of another crack on the opposite pole
of the particle. On the other hand, a large fixed crack can stabilize
the growth of the other crack depending on the particle wall thick-
ness. More specifically, it is observed that @G1=@C1 is negative and
@G180

1 =@C1 is positive for g < 0.55 and a2 = 130� and for
0.75 < g < 0.88 and a2 = 120�, see the horizontal marker in Fig. 7b.

7. Remarks

The accuracy of the semi-analytical solution is validated with
FEA results obtained using the commercial code ANSYS 11.0 and
the representative volume element described in Tagliavia et al.
(2010b). Results are specialized to g = 0.936, which corresponds
to K46 glass particles produced by 3M, MN, that are widely used
to fabricate syntactic foams (Bardella and Genna, 2001a; Gupta
et al., 2010; Wouterson et al., 2005). Radial and shear stresses at
the particle-matrix interface are compared in Fig. 8a and b, respec-
tively, for four values of a1 while a2 is maintained constant at 175�.
Generally, Fig. 8 shows a close agreement between the two solu-
tions. The relative error for any selected field k(h) is defined as

XN

i¼1

ðkGalðhiÞ � kFEAðhiÞÞ2
" #1=2 XN

i¼1

ðkGalðhiÞÞ2
" #�1=2

; ð29Þ

where hi are the circumferential positions of the nodes used in FEA
and the superscripts Gal and FEA identify the field values computed
using the Galerkin and the finite element method, respectively. Er-
rors are found to be less than 0.65% in all cases.

Fig. 9 shows comparisons of UINT and G1 as functions of C1 be-
tween three different methods, namely, the enriched Galerkin
method, the finite element method, and the Galerkin method
where the special functions in equation set (12) are discarded. In
FEA, UINT is indirectly computing by calculating S from the work
done by the external traction and using Eq. (22); the ERR is com-
puted using Eq. (24). Comparisons are presented for two a2 values,
175� and 120�, in Fig. 9a and b, respectively. Omission of the



(a) (b)

Fig. 7. (a) G180
1 � G1 as a function of g for C1 = C2 + 0.1 and different a2 values. (b) Comparisons between @G180

1 =@C1 (solid lines) and @G1=@C1 (dashed lines) as functions of g
for C1 = C2 + 0.1 and different a2 values.

(a) (b)

Fig. 8. Comparison of (a) normalized radial stress and (b) normalized shear stress at the particle-matrix interface as functions of h between FEA results (squares) and Galerkin
method predictions (solid lines) for a2 = 175�, d = 7, and g = 0.936. Semi-analytical solutions are plotted 0.001� away from crack tips.

(a) (b)

Fig. 9. UINT and G1 computed with three different methods for g = 0.936 and (a) a2 = 175� and (b) a2 = 120�. Solid lines identify the enriched Galerkin method, dashed lines the
Galerkin method, and dots the FEA results.
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singularity functions overestimates the elastic energy of interac-
tion between the particle and the matrix for any value of a2, see
Fig. 9. The resulting difference varies in the ranges 0.11–61% and
6–11% for a2 = 175� and a2 = 120�, respectively. The difference



Fig. 11. Comparison between Gps and G180
1 as functions of C1 in logarithmic scale.
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between the enriched and standard Galerkin methods is noticeable
for ERR results, that are based on indirect computations. Consider-
able discrepancies are also observed in stress distributions that
show errors as large as 60% as per the definition in Eq. (29). On
the other hand, for all cases under investigation, the difference be-
tween the enriched Galerkin method and FEA results is less than
2.25%.

Fig. 10 illustrates the subset of crack configurations Ce, named
Css, that identifies the passage from individual to equal crack
growth along with the set Cst as functions of g. As g varies from
0.1 to 0.94, Css increases from 3.66 to 3.86. The values of (a1,a2)
corresponding to Css = 3.66 and Css = 3.86 are (65.8�,114.2�) and
(69�,111�), respectively. In general, the quantity Cst cannot be
computed by considering two equal crack as in Tagliavia et al.
(2010b) due to the nature of conditions in Eq. (27) where mixed
derivatives appear. Nevertheless, in this study it is found that
@G1=@C2 ¼ @G2=@C1 < 0 for any Ce. For Ce < Cst the system in
unstable for any particle wall thickness. For Cst < Ce < Css, the sys-
tem is stable but the crack propagation features the growth of an
individual crack. Finally, stability and equal crack growth are guar-
anteed when Ce > Css. Note that the difference between Css and Cst

decreases as g increases.
The effect of the interfacial spherical-cap crack curvature on the

ERR is investigated by comparison with a penny-shaped crack at
the interface of two elastic half-spaces subjected to a remote ten-
sile loading perpendicular to the interface (see for example Rice,
1988). Following (Chiu and Lin, 2009; Gosz et al., 1998), the ERR
of an interfacial penny-shaped crack, named Gps, is obtained as

Gps ¼
p

4lm

ð1þ 3b� 4bmiÞð3þ b� 4mmÞ
4bð1� miÞ þ 4ð1� mmÞ

jKj2; ð30Þ

where K is the complex stress intensity factor expressed by Kassir
and Bregman (1972)

K ¼ 2r1
ffiffi
t
pffiffiffiffi
p
p !ð2� ıcÞ

! 1
2� ıc
� � ; ð31Þ

where t is the radius of the penny-shaped crack, ı ¼
ffiffiffiffiffiffiffi
�1
p

, and ! is
the Euler’s Gamma function (see for example Abramowitz and Ste-
gun, 1965). When the elastic material properties of the two media
are equal, Eq. (31) reduces to the stress intensity factor of a penny
shaped crack in a homogeneous material reported in Sneddon
(1979) and Eq. (30) reduces to the corresponding ERR (see for
Fig. 10. Cst and Css as functions of g.
example Huang, 1995; Taya, 1981). Note that the dimensionless
ERR of a penny shaped crack, named Gps, is obtained from Eq. (30)
as follows
Gps ¼
Eeff

ar2
1

Gps: ð32Þ
Fig. 11 compares Gps and G180
1 for a glass-vinyl ester system. In par-

ticular, G180
1 is evaluated for two extremely different radius ratios,

namely g = 0.1 and g = 0.94. Gvinyl ester
ps and GGlass

ps refer to a penny-
shaped crack in vinyl ester resin and glass material, respectively.
As shown in Fig. 11, G180

1 presents a non-monotonic behavior for
any particle wall thickness as compared to penny-shaped cracks.
Therefore, the stable crack growth studied earlier and observed in
Fig. 7, can be attributed to cracks’ curvature at the particle-matrix
interface.
8. Conclusions

Elastic interactions between spherical-cap cracks at the parti-
cle-matrix interface of syntactic foams under remote tensile load-
ing are studied in this work. A semi-analytical solution based on an
enriched Galerkin method is used to derive stress and displace-
ment fields along the particle-matrix interface including the crack
tip vicinity, where singularities and oscillations occur. ERRs for
different crack configurations and particle wall thickness are
computed and used to understand conditions for stable crack
propagation, equal growth, and shielding. Results are specialized
to glass-vinyl ester systems used in marine applications.

Analysis shows that crack stability is greatly influenced by the
particle wall thickness and configuration of the system of cracks.
Small cracks tend to individually grow irrespective of the particle
wall thickness. On the other hand, equal crack growth is observed
for larger cracks and the critical size for transition is controlled by
particle wall thickness. Such growth characteristics are also
evinced from representative stress–strain curves that show the
occurrence of snap-back instability and softening behaviors. In
addition, cracks’ shielding is observed irrespective of particle wall
thickness. Comparison with an interfacial penny-shaped crack
shows that the curvature of particle-matrix interface alters the
crack stability.
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Appendix A

A.1. Lur’e general solutions for displacements and stresses in spherical
coordinates

The Navier–Cauchy equation for an isotropic and homogenous
body in absence of body forces is

ðkþ lÞrðr � uÞ þ lDu ¼ 0; ðA1Þ

where k and l are the Lamé’s constants and u is the displacement
vector. By referring to the spherical coordinate system in Fig. 1a
and assuming cylindrical symmetry with respect to the y-direction
and with respect to the xz-plane, the nonzero components of the
displacement and stress fields can be expressed following (Lur’e,
1964) as

urðr; hÞ ¼
X1
n¼0

Anðnþ 1Þðn� 2þ 4mÞrnþ1 þ Bnnrn�1�

þ Cn

rn
nðnþ 3� 4mÞ � Dnðnþ 1Þ

rnþ2

	
Pnðcos hÞ; ðA2aÞ

uhðr; hÞ ¼
X1
n¼1

Anðnþ 5� 4mÞrnþ1 þ Bnrn�1 þ Cn

rn
ð�nþ 4� 4mÞ




þ Dn

rnþ2

	
dPnðcos hÞ

dh
; ðA2bÞ

rrrðr;hÞ ¼ 2l
X1
n¼0

Anðnþ1Þðn2�n�2�2mÞrnþBnnðn�1Þrn�2�

� nCn

rnþ1 ðn
2þ3n�2mÞþDnðnþ2Þðnþ1Þ

rnþ3

	
PnðcoshÞ; ðA2cÞ

srhðr; hÞ ¼ 2l
X1
n¼1

Anðn2 þ 2n� 1þ 2mÞrn þ Bnðn� 1Þrn�2�

þ Cn

rnþ1 ðn
2 � 2þ 2mÞ � Dnðnþ 2Þ

rnþ3

	
dPnðcos hÞ

dh
; ðA2dÞ

rhhðr;hÞ ¼ �2l
X1
n¼1

Anðn2 þ4nþ2þ2mÞðnþ1Þrn þn2Bnrn�2
��

� Cn

rnþ1
nðn2 �2n�1þ2mÞ þDnðnþ1Þ2

rnþ3

#
PnðcoshÞ

� Anðnþ5�4mÞrn þBnrn�2 þ Cn

rnþ1
ð�nþ 4�4mÞþ Dn

rnþ3


 	

�dPnðcoshÞ
dh

coth

�
: ðA2eÞ

Here, An, Bn, Cn, and Dn are unknown coefficients, m is the Poisson’s
coefficient, and Pn(cosh) is the nth Legendre polynomial in cosh. Fur-
ther note that the Lame’s coefficients can be written in terms of m
and the Young’s modulus E. Legendre polynomials and their deriv-
atives are orthogonal with respect to h in the range [0,p]. In
addition,
Z p

0
Pnðcos hÞPnðcos hÞ sin hdh ¼ 2

2nþ 1
; ðA3aÞ

Z p

0

dPnðcos hÞ
dh

dPnðcos hÞ
dh

sin hdh ¼ 2nðnþ 1Þ
2nþ 1

: ðA3bÞ
A.2. Solutions of subproblems (I) and (II)

Subproblem (I) is symmetric with respect to the equatorial
plane of the spherical void for any value a1 and a2. The external
load can be expressed in polar coordinate following (Lur’e, 1964) as

�rrrðhÞ ¼
r1
3
½1þ 2P2ðcos hÞ�; ðA4aÞ

�srhðhÞ ¼
r1
3

dP2ðcos hÞ
dh

: ðA4bÞ

Thus, the solution of subproblem (I) is written by using the first two
even terms of the series in Eqs. (A2a) and (A2b) as follows

2lm

ar1
uðIÞr ða; hÞ ¼

3ðmm � 1Þ½4þ 5ðmm þ 1Þ� cosð2hÞ
2ð5m2

m � 2mm � 7Þ ; ðA5aÞ

2lm

ar1
uðIÞh ða; hÞ ¼

15ðmm � 1Þ sinð2hÞ
2ð5mm � 7Þ : ðA5bÞ

Subproblem (II) is generally referred to as external (Lur’e, 1964).
Since stress and displacement fields vanish as r ?1, the constants
An and Bn in equation set (A2e) are zero. Thus, solution of subprob-
lem II is obtained from equation set (A2e) by specializing the elas-
tic constants to the matrix material, applying the suitable
boundary conditions, and solving for Cn and Dn. After manipulation,
the displacement fields at r = a are

2lm

ar1
uðIIÞr ða; hÞ ¼

X1
n¼0

AðrrÞn rn þ AðrsÞn sn

BðrÞn

Pnðcos hÞ; ðA6aÞ

2lm

ar1
uðIIÞh ða; hÞ ¼

X1
n¼1

AðhrÞn rn þ AðhsÞn sn

BðhÞn

dPnðcos hÞ
dh

; ðA6bÞ

where the expressions for the coefficients AðrrÞn ; AðrsÞn ; BðrÞn ; AðhrÞn ;

AðhsÞn , and BðhÞn are reported in equation set (A5) of (Tagliavia et al.,
2010b).

A.3. Matrix form of the linear system in equation set (13b)

The matrix F is a square matrix composed of four
(d + 2) � (d + 2) as

F ¼
Z a2

a1

Z a2

a1

Rrr Rrs

Csr Css

� 

dhdĥ; ðA7Þ

where each block can be written as

Rij ¼

F ðrjÞðh; ĥÞqðiÞ0 ðhÞq
ðjÞ
0 ðĥÞ � � � F ðrjÞðh; ĥÞqðiÞ0 ðhÞq

ðjÞ
dþ1ðĥÞ

..

. . .
. ..

.

F ðrjÞðh; ĥÞqðiÞdþ1ðhÞq
ðjÞ
0 ðĥÞ � � � F ðrjÞðh; ĥÞqðiÞdþ1ðhÞq

ðjÞ
dþ1ðĥÞ

0
BBB@

1
CCCA;
ðA8aÞ

Cij ¼

F ðhjÞðh; ĥÞqðiÞ0 ðhÞq
ðjÞ
0 ðĥÞ � � � F ðhjÞðh; ĥÞqðiÞ0 ðhÞq

ðjÞ
dþ1ðĥÞ

..

. . .
. ..

.

F ðhjÞðh; ĥÞqðiÞdþ1ðhÞq
ðjÞ
0 ðĥÞ � � � F ðhjÞðh; ĥÞqðiÞdþ1ðhÞq

ðjÞ
dþ1ðĥÞ

0
BBB@

1
CCCA:
ðA8bÞ

All the others terms in Eqs. (14) and (15) are obtained by manipu-
lating equation set (13b), thus can be written as follows
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x ¼ xðrÞ0 ; xðrÞ1 ; � � � ; xðrÞdþ1; xðsÞ0 ; xðsÞ1 ; � � � ; xðsÞdþ1

� �T
;

ðA9aÞ

vrðh;B1Þ ¼ �
2lm

a
uðIÞr ða; hÞ

r1
� B1 cos h

" #
; ðA9bÞ

vhðh;B1Þ ¼ �
2lm

a
uðIÞh ða; hÞ

r1
þ B1 sin h

" #
; ðA9cÞ
vðB1Þ ¼
Z a2

a1

vrðh;B1ÞqðrÞ0 ðhÞ; � � � ; vrðh; B1ÞqðrÞdþ1ðhÞ; vhðh;B1ÞqðsÞ0 ðhÞ; � � � ; vhðh;B1ÞqðsÞdþ1ðhÞ
� �T

dh; ðA9dÞ

j ¼
Z a2

a1

cos h sin hqðrÞ0 ðhÞ; � � � ; cos h sin hqðrÞdþ1ðhÞ; � sin2 hqðsÞ0 ðhÞ; � � � ; � sin2 hqðsÞdþ1ðhÞ
� �T

dh: ðA9eÞ
Note that in Eq. (A9e) the definition of P1(cosh) is used.
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