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Many industrial bulk solids are commonly stored in open stockpiles that are progressively formed by
depositing from above. A classic phenomenon concerning such simple piles is the observation of a signif-
icant pressure dip in the vertical pressure on the base underneath the apex which is counter-intuitive as
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this is the location where a maximum pressure might be expected. Numerous experimental, analytical
and numerical studies have been conducted to investigate this problem over the last few decades, but
a comprehensive understanding of the problem remains elusive. Mechanical anisotropy developed dur-
ing pile formation process has recently been suggested to be the main cause of the pressure dip. However,
more recent finite element method (FEM) studies have predicted a pressure dip beneath the apex using
isotropic material models. The review of the literature shows a lack of understanding of the underlying
mechanism and the roles of various factors on the prediction of the pressure dip, such as the progressive
mesh activation, stress dependency of modulus and plastic failure parameters. The aim of this paper is to
investigate the effects of these factors by modelling a set of conical sandpile experiments formed on a
rigid base by concentrated deposition. The results show that significant pressure dip can be predicted
without considering material anisotropy. However, within the realm of elasto-plastic models investi-
gated, it appears that the prediction of pressure dip requires a model considering the construction pro-
cess and the associated plastic deformation. Incorporating stress-hardening elasticity enhances
significantly the extent of the dip. The results demonstrate that a greater mobilisation of the base shear
traction is an important mechanism in enhancing the arching effect that leads to a significant central

pressure dip.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Conical piles of granular solids can be found in many industrial
sites. These piles are usually progressively formed by depositing
from above. A classic phenomenon concerning such simple piles
is the observation that the pressure distribution beneath the pile
shows a marked local minimum beneath the apex (Fig. 1) which
is often referred to as a “pressure dip”. This observation is coun-
ter-intuitive as this would be the location expected to have the
maximum pressure. Although this “sandpile problem” has mostly
been studied as an interesting scientific anomaly (Cates et al.
1998), it does have significant economic importance in terms of
bulk solid stockpiles in industry. The solid is often recovered using
a retrieving feeder beneath the stockpile, which means that one as-
pect of stockpile design is to determine the base pressure
distribution.
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Despite many studies by both the physics and engineering com-
munities over several decades, a comprehensive understanding of
the counter-intuitive phenomenon of pressure dip remains elusive.
Good reviews of previous analytical, numerical and experimental
studies of the problem can be found elsewhere (Savage 1997; Cates
et al. 1998; Savage 1998; Atman et al. 2005) and will not be re-
peated here. Early theoretical studies on the sandpile problem have
mostly adopted analytical continuum approaches (e.g., Wittmer
et al. 1996), analytical microscopic models (e.g., Liffman et al.
1994; Huntley 1999) or discrete element method (DEM) (e.g.,
Luding 1997; Matuttis 1998), with very few adopting the finite ele-
ment method (FEM).

As a deduction of a heated debate on the fundamental laws of
force transmissions in granular materials (de Gennes 1999; Gold-
enberg and Goldhirsch 2005; Luding 2005), it is argued that the
mechanical anisotropy (direction dependent properties) should
be responsible for the pressure dip phenomenon. Goldenberg and
Goldhirsch (2008) concluded that the presence or absence of a
dip is determined by the degree of anisotropy in the mechanical
properties which depend on the way the pile is constructed. In-
deed, numerical modelling adopting anisotropic material models
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Fig. 1. Vertical base pressure underneath a conical pile of small iron ore pellets
(redrawn after Ooi et al. 2008).

have been shown capable of predicting a pressure dip. For exam-
ple, Savage (1998) suggested that the material properties resulted
from avalanching during the pile construction may show different
modulus in the plane parallel to the free surface from that in the
direction perpendicular to it. His simulation adopting an aniso-
tropic elastic model successfully produced a significant pressure
dip. This approach was further supported by experimental evi-
dence by Atman et al. (2005) who adopted parameters deduced
from test and simulated a clear dip although it is smaller than that
from experiment.

In contrast, several FEM studies have also predicted a pressure
dip beneath the apex using elasto-plastic material models without
the inclusion of apparent material anisotropy. Anand and Gu
(2000) conducted elastic—plastic calculations of a conical pile using
the “double-shearing” constitutive model implemented through an
explicit code. Following the Mohr-Coulomb yield condition, the an-
gle from the maximum principal stress direction to the slip direction
in their formulation was defined as ¢ = 1[4 £ @2, where @ is the
internal friction angle of the solid. Additional slumping of the pile
occurred during the settling process because the initial slope angle
was intentionally set larger than the maximum mobilized internal
friction angle. The predicted vertical stress distribution showed a
clear dip under the apex. The simulated plastic shear strain was
small close to the top surface and the core of the pile, but large in be-
tween. They concluded that the cause of the dip was the non-homo-
geneous plastic strain that occurred during the process of the
slumping, coupled with the evolution of the internal friction
coefficient.

Al Hattamleh et al. (2005) employed a multi-slip formulation of
double-shearing type constitutive model in their granular heap
calculation. Based on the idea that the initial slip direction is very
much dependent on the granular microstructure relating to factors
such as depositional history and angularity, the initial slip direc-
tion measured from the principal direction was treated as a mate-
rial parameter rather than fixed. The construction of the granular
heap was simulated incrementally in five stages. Calculations with
different initial slip directions were carried out, and very pro-
nounced stress dips were predicted in all cases except the one with
& =1m/4 £ of2, where o is the angle of repose of the pile and was set
equal to the internal friction angle at constant volume state ®,.
They predicted localized plastic strain around the apex with the
rest of the pile in an elastic state and argued that strain localization
is the main cause of the pressure dip.

Examples of successful prediction of pressure dip also include
Modaressi et al. (1999) and Tejchman and Wu (2008). The former
predicted a significant pressure dip using Hujeux’s model (Aubry
et al,, 1982), and the latter used a micro-hypoplasticity model
(Wu et al. 1996) which considers the effect of the direction of
deformation rate. Both considered the construction history by
modelling the pile in several successive inclined layers.

Whilst the above mentioned FEM studies adopted more com-
plex elasto-plastic models, some other studies have shown that a
pressure dip can also be predicted by adopting simpler elastic—
plastic models. For example, Modaressi et al. (1999) predicted a
small dip using the associated Drucker-Prager model. Jeong and
Moore (2010) adopted a Mohr-Coulomb model with Janbu type
stress-dependent modulus (Janbu 1963) and predicted a dip with
its size comparable to previous experimental observations (Smid
and Novosad 1981; Vanel et al. 1999; McBride 2006). Their results
were very sensitive to the number of construction layers and the
Poisson’s ratio adopted in the FEM computations.

Though a pressure dip has been predicted in aforementioned
FEM studies, the underlying mechanism of the emergent dip dur-
ing the FEM pile modelling process is still largely unclear. For
example, in some studies the construction history of a pile was
implicated by means of elastic anisotropy (Savage 1998; Atman
et al. 2005). In other studies, the construction history was explicitly
modelled by either including some small slumping during the pile
settling process (Anand and Gu 2000), or using progressive mesh
activation scheme (Modaressi et al. 1999; Al Hattamleh et al.
2005; Tejchman and Wu 2008; Jeong and Moore 2010). Al
Hattamleh et al. (2005) also additionally introduced initial weak
planes to further reflect the effect of construction history. These
studies using different FE modelling procedures have predicted dif-
ferent plastic strain distributions, and proposed different causes for
the pressure dip. There may be some links between all these mech-
anisms, which are not at all clear. There are also uncertainties in
the relative importance of elastic parameters and plastic parame-
ters. Since sophisticated constitutive models often involve a large
number of parameters, it is difficult to distinguish their roles in
the predicted behaviour.

The aim of this study is to investigate the roles of several key
factors that are most probable in affecting the pressure dip phe-
nomenon. These include progressive mesh activation, stress
dependency of modulus and the role of plasticity in producing
the pressure dip. This study is limited to piles formed on a rigid
base by concentrated deposition where the “pressure dip” is more
likely present. By adopting isotropic constitutive models, material
anisotropy was intentionally excluded to test whether it is indis-
pensible for a pressure dip. Simple general elastic and elasto-plas-
tic models were chosen so that the roles of basic elastic and plastic
parameters in producing the numerical solution can be explored
more clearly.

2. Finite element modelling
2.1. Reference test pile

The conical pile test conducted by Ooi et al. (2008) with mini
iron ore pellets centrally poured on a rigid base was used as refer-
ence data in this study. Fig. 1 shows the measured normal base
pressure distribution. The pile had a mean radius of R, =0.554 m
and angle of repose of oo = 29°. The pellets had very rough surface
and were relatively uniform in size with a mean diameter of
d, =3 mm. They were approximately spherical and had a relatively
uniform bulk density which was relatively insensitive to packing.
The loosest and densest bulk densities achieved in control tests
were 2260 and 2370 kg/m>. A bulk density of p =2260kg/m>
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was adopted in the simulations because the pile was small and the
particles underwent intensive surface shear flow during the forma-
tion process leading to a relatively loose packing.

2.2. Progressive mesh activation scheme

The progressive mesh activation scheme has been adopted previ-
ously by the silo research community (e.g., Rotter et al. 1998; Holst
et al. 1999; Yu, 2004) and geotechnical researchers (e.g., Clough and
Woodward 1967; Kulhawy and Duncan 1972; Rowe and Skinner
2001). The numerical implementation of such a progressively layering
process is achieved by discretising the final geometry of the model into
many layers in the FE mesh, with each layer activated in the FE
computation in a sequence consistent to the construction history.
The complete mesh for the final geometry is generated at the
beginning, but the gravity and stiffness for all layers are switched off
(“deactivated”). The stiffness for the lowest layer is then activated
and its gravity gradually applied. Once equilibrium of the layer is
reached, the next layer up is activated (in stiffness) in a “strain/
stress-free” state, and its gravity gradually applied. Computation is
continued until equilibrium is reached for the structure consisting of
the current active layer and all layers below it. The layer above the cur-
rent active layer is then activated. The process continues until all the
layers are activated and the whole structure reaches equilibrium.

Considering the modelling procedure of such a scheme and its
difference from the “switched-on” loading have not been clearly pre-
sented elsewhere, a benchmark test example is presented in the
Appendix. The example for an elastic rectangular body under its own
gravity shows that the switched-on gravity procedure can produce sig-
nificant horizontal stresses in the body. Whilst this is real if the body is
formed as a whole in one step, it is wrong if the body is formed in a pro-
gressive manner in which case the horizontal stress should be zero. The
progressive mesh activation scheme can effectively reduce this hori-
zontal stress, and eventually eliminate it if numerous of construction
layers are used. Sandpiles are obviously formed progressively, and
thus a progressive mesh activation scheme is necessary.

The application of this scheme to the sandpile modelling is
based on the observation that during a pile formation process, par-
ticles are settled in successive inclined layers (Fig. 2), with the ear-
lier layers being deformed under their own weight before the next
layer is laid on. Fig. 2 shows such layered pattern in an example
“two dimensional” thin planar pile. The pattern for three dimen-
sional conical piles shall be similar.

2.3. Numerical implementation of pile construction

In this simulation, the sandpile was modelled as a static axi-
symmetric problem, so the effect of inertia was neglected and

the pile was assumed to be axisymmetric during the whole forma-
tion process. All calculations were performed using Abaqus/Stan-
dard v6.9 (SIMULIA 2007).

The final geometry of the pile was discretised into a number of
layers with the innermost cone as the first “layer”. Fig. 3 shows an
example FE mesh with five layers of elements (N, = 5) representing
five successive construction layers (Ny=5). Abaqus element type
CAX6 was adopted. The bottom boundary of the pile was fixed in
both horizontal and vertical direction, representing a rough and ri-
gid base in a physical test. All construction layers are of constant
thickness and inclined at the angle of repose (29°). The dynamic ef-
fect of particle impacting, flowing and avalanching during the
deposition process is neglected.

It is also worth noting, in the mesh pattern of an earlier study
(Ai et al. 2009), the central base node only had connectivity to a
single triangular element, which was found to give a poor stress
evaluation at the node (a central kink in the predicted stress distri-
bution). In the mesh adopted in this study (Fig. 3), the central base
node has connectivity with two triangular elements, which was
found to be able to effectively eliminate the above central kink
phenomenon.

2.4. Constitutive models and parameters

Five well-known constitutive laws for granular solid, including
two elastic models and three elastic-plastic models, were explored
in this study. They are: (1) linear elastic (LE); (2) porous elastic
(PE); (3) linear elastic with Mohr-Coulomb plasticity (LEMC); (4)
linear elastic with Drucker-Prager plasticity (LEDP) and (5) porous
elastic with Drucker-Prager plasticity (PEDP). These models have
been successfully applied to model many granular solids problems
in previous studies (e.g., Ooi et al. 1996; Ooi and She 1997; Holst

Fig. 3. FE mesh with N, = N, =5 to simulate progressive sandpile formation.

Fig. 2. Layering pattern during the formation of a thin planar test pile. The particles were centrally deposited into a narrow space confined by two transparent Perspex walls.
The particles were mini iron ore pellets that were generically black in colour, but some of them were dyed white before deposition. We repeatedly deposit a certain amount of

black particles and followed by white particles to produce the layering effect.
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Fig. 4. Mohr-Coulomb (M-C) and Drucker-Prager (D-P) yield surfaces in the
deviatoric plane.

et al. 1999; Chen et al. 2001; Goodey et al. 2003; Goodey et al.
2006). The formulation of these models and selection of their
parameters are briefly introduced below. Terminology for the mod-
el parameters as in Abaqus is adopted.

2.4.1. Linear elastic model and parameters

Earlier studies have shown that the magnitude of the Young's
modulus has negligible effect on the prediction of stresses in gran-
ular solids in many situations (e.g., Rotter et al. 1998; Savage
1998). The Young’s modulus for the linear elastic model was cho-
sen as 2.0 MPa. The Poisson’s ratio v has been shown to be an
important parameter (e.g., Ooi and Rotter 1990) but it is not easy
to measure. The common values adopted in these studies, how-
ever, were not far from 0.3. In this study, v=0.3 was chosen as
the reference value while a parametric study is conducted to inves-
tigate its effect later in this paper.

2.4.2. Porous elastic model and parameters

The porous elastic model is a nonlinear, isotropic, elastic model
in which the equivalent pressure stress (also often referred as the
mean stress or the hydrostatic stress) p = —(g1 + g3 + 03)/3 varies
as an exponential function of the volumetric strain:

K Do+ D\ el
Eon (B s

where J¢ — 1 is the nominal volumetric strain; x is the logarithmic
bulk modulus and ey is the initial void ratio of the solid; po and p,
are the initial values of the equivalent pressure stress in the solid

Table 1

Principal parameters used in FE calculations.
Parameter Symbol Value Unit
Density p 2260 kg/m>3
Pile radius Ry 554 mm
Angle of repose o 29 °
Elastic modulus E 2.0 MPa
Poisson’s ratio v 0.3
Initial void ratio e 1
Tensile limit pfl 10 Pa
Log. bulk modulus K 0.002
Initial stress Do 0 Pa
MC friction angle D 29 °
MC dilation angle W 20 °
MC cohesion c 1 Pa
DP friction angle Dyp 45 °
DP dilation angle Vap 20 °
DP cohesion Cap 1 Pa

and the elastic tensile stress limit of the solid respectively. This
model allows either a zero or nonzero elastic tensile stress limit,
p. The incremental deviatoric stress tensor dS is related to the
incremental deviatoric part of the total elastic strain de® , through

dS = 2Gde* (2)
where G is the instantaneous shear modulus, given by

3(1 - 2v)(1 + eo)

= 2(1+v)K

(p+ P (3)

In this study, the Poisson’s ratio v is deemed to be constant in
the elastic range, so that the elastic shear stiffness increases as
the material is compacted. The relationship between the tangent
elastic modulus and the equivalent pressure stress p is therefore
given as

E=2G(1+v)
_3(1-2v)(1 +eo) el k Po +1{
= (p+ps 1+1+eoln P (4)

Egs. (1) and (4) mean that po + p, must not equal zero for the
model to work. Ideally, for cohesionless dry granular solids, the
elastic tensile stress limit p, should be zero. It is feasible to adopt
a zero p in most soil mechanics problems because soil samples
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are usually in a pre-stressed state so the value of po is not zero.
However, it is not applicable to current sandpile formation
modelling since the initial stress should be zero. As one of the
two values must be nonzero, in the sandpile calculations con-
ducted in this study, po was set as zero and a very small value of
p'=10Pa was chosen. The sensitivity of the results to the value
of P is explored later in this paper.

Normalised vertical pressure
©c o 0o o o 0o o o o
- 3% w N [¢)] [e)] ~l [o+] [(e}

-

o

------- Hydrostatic
—R=R,
—— R=0.75R,
—— R=0.5R,
S —— R=0.25R,

o

0.2 0.4 0.6 0.8 1

Normalised radial position

Fig. 9. Vertical base pressure distribution in piles with different sizes.



986 J. Ai et al./International Journal of Solids and Structures 50 (2013) 981-995

Fig. 10. Evolution of active plastic zone in a pile with N, = N, = 40 (dark zone represents solid in plastic state). (a) after 10 layers; (b) after 20 layers; (c) after 30 layers; (d)

after 40 layers.

The value of logarithmic bulk modulus k can vary considerably for
granular solids. Goodey et al. (2003) showed for a low stress level (up to
50 kPa), the x value is rather small for stored solids (e.g., k = 0.002 for
Leighton Buzzard sand and x =0.0025 for pea gravel). In sandpile
investigated in this study, the stress level is no higher than 5 kPa, so
K = 0.002 was chosen as the reference value. The void ratio of the gran-
ular solids typically ranges from 0.5 to 1.5. The initial void ratio was
assumed to be eg = 1 in this study. The effects of these three param-
eters are investigated in a parametric study later in this paper.

2.4.3. Mohr-Coulomb plastic model and parameters
The Mohr-Coulomb (MC) yield function F,. can be written as

ch=Rch*Ptan¢>*C=0 (5)
in which

1 . T 1 T
RmL‘ = m Sin (@ +§) +§ Ccos (@ +§> tan¢ (6)

where Rn:(0, ¢) is a measure of the shape of the yield surface in the
deviatoric plane and ® is the deviatoric polar angle; q is the Mises
equivalent stress; @ is the slope of the yield surface in the p-R;,,.q
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Fig. 11. Equivalent pressure stress p distribution (Unit: Pa).

stress plane and is commonly referred to as the internal friction an-
gle of the material; and c is the cohesion of the material. The MC
flow potential G, adopted in Abaqus is a hyperbolic function in
the meridional stress plane and the smooth elliptic function
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proposed by Menetrey and William (1995) in the deviatoric stress
plane (see SIMULIA 2007).

Commonly the friction angle @ is found to be very close to the
repose angle « of the formed pile. A reference value was therefore
chosen as @ = o = 29°. A value of 1 = 20° was chosen as the refer-
ence dilation angle. The real cohesion should be almost zero for
dry cohesionless pellets, while in practice a nonzero cohesion
parameter c (Eq. (5)) may be obtained from shear test results due
to linear fitting of a curved failure surface. A very small reference
value ¢ =1 Pa was chosen in this study, which is mainly to avoid
numerical difficulties. The effects of these parameters are investi-
gated in the next section.

2.4.4. Drucker-Prager plastic model and parameters
The Drucker-Prager (DP) yield function Fy, is given below:

Fyp =q—ptangy, —cqp =0 (7)

where @y, is the slope of the yield surface in the p-q stress plane
and is here referred to as the DP friction angle; cgp is referred as
the DP cohesion.

In the present study, the DP parameters are not directly avail-
able from experiments. However, the DP yield surface can be
matched to the MC yield surface under specific loading conditions,
as first suggested by Drucker and Prager (1952). Such a match can
be represented by the coincidence points that two yield surfaces
have in the deviatoric plane (as shown in Fig. 4). The relationships
between these two sets of parameters from MC and DP models can
be found as:
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The above equations are dependent on the value of angle ©®.
Therefore, by choosing different value of angle ®, the matched val-
ues between the two models are different, and the two yield sur-
faces would have different coincidence points in the deviatoric
plane. Fig. 4 shows two extreme cases: one with the DP circle
coinciding with the external apices of the MC hexagon and the
other inscribing to the MC hexagon. The former corresponds to a
tri-axial compression condition while the latter corresponds to a
plane strain condition with associated flow (Drucker and Prager
1952). As confined by the two extreme cases, in a full range of
©, the following relationships can be found:

tan ¢dp =

3sin¢ gtan¢dp<3651r.l¢ 7
\/3 +sin’ ¢ sin¢
3cos¢ <G 6co§¢ (9a,b)

/3+sin2¢ ¢ ~3-sing

For @ =29° and c =0, Eq. (9) yields @4, =39 ~ 49° and cgp = 0.
The exact match for an axisymmetric loading condition as
required in current axisymmetric sandpile modelling is not avail-
able. An empirical relationship drawn from a parametric study of
the axisymmetic footing problem was given by Zimmermann
et al. (2009) as
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Fig. 13. Effect of friction angle ®g, (N = Ny =40). (a) vertical base pressure; (b)
predicted plastic zone with @4, = 60°.

Fig. 14. Effect of dilation angle /g, (Ne;= Ny =40). (a) vertical base pressure; (b)
predicted plastic zone with /g, = 45°.
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which give @4, =45° and ¢4, = 0 when @ =29° and c = 0. These 1w
matched values provide a basis on which the effect of the MC 0.9 SN Hydrostatic
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unstable under gravity, because sandpile is unstable with @ < . In
this study, the DP friction angle and DP dilation angle were chosen
as 45° and 20°, respectively.

All the parameters adopted in the FE calculations for the refer-
ence case are summarised in Table 1.

3. Results and discussions
3.1. Effect of constitutive models

3.1.1. Results based on the “switched-on” construction

The predicted base pressure distributions underneath the sand-
pile at the final stage for different constitutive laws using the
switched-on gravity loading procedure is compared with experi-
mental observation in Fig. 5. The pressure was normalised using
the hydrostatic pressure under the apex at the base p = YH, where
7 is the bulk density and H,, is the height of the pile. Fig. 5a shows
that all five elastic and elastic-plastic models predicted the maxi-
mum vertical pressure to be at the centre, which concur with the
results of Savage (1998) FEM calculations. The base pressure is
lower than the hydrostatic value towards the centre and slightly
higher than the hydrostatic value elsewhere, satisfying the global
equilibrium in the vertical direction. However, different models
predicted different values of the maximum vertical pressure, indi-
cating that different amounts of the weight are deflected away
from the centre. Compared with the LE elastic model, the PE elastic
model predicted a higher value of the central vertical pressure,
while the three elastic-plastic models all predicted lower values
indicating that plasticity has resulted in a greater distribution of
the central loads radially outwards.

10 o
(a) g | == pF=10,000Pa J
= 8 — p#'=1,000Pa //'
a -~ p#'=100Pa P

7’

2 7 | — pe=10Pa 7
w |
o 6 | - p#=1Pa ”/
5 51— p=01Pa /
-8 4 ’
£ &
2 3 I
(72} s,
o 2 4
w /

1 /’

0 4

14 12 10 8 6 4 2

(b)10 r
9 | / — x=0.0002
. — x=0.002
< 8
o —- k= 0.008
s 7
w g |
g
5 6|
= al
£
L 3
@
w 2|

0 05 1 1.5 2 2.5 3 3.5 4

Equivalent pressure stress p (kPa)

Michalowski and Park (2004) proposed an internal arching
mechanism in a pile, such that the vertical base pressure distribu-
tion cannot follow the shape of the pile in order to satisfy both
force and moment equilibrium of the pile body. This implies that
no pile with cohesionless solids can be obtained in an ideally fric-
tionless flat base, except in extreme cases such as that the particles
are aligned in vertical columns with no horizontal interaction. In
contrast, a larger base shear force may facilitate a larger arching ef-
fect, resulting in the resultant vertical reaction force being further
away from resultant gravitational force.

The predicted base shear traction distributions shown in Fig. 5b
support this proposition. Compared with the LE model, the PE
model produced comparable magnitude of maximum base shear
traction that occurred at a smaller radial position, resulting in a
smaller total shear force. The LEMC, LEDP and PEDP models all pro-
duced larger shear tractions than the LE and PE elastic models that
gave a larger arching effect and resulted in smaller central base
pressures.

3.1.2. Results based on the progressive mesh activation scheme

Next, the predicted base pressure distributions for different
constitutive laws using progressive mesh activation procedure
with N = 40 construction layers are shown in Fig. 6. The two elas-
tic LE and PE models both predicted highest vertical pressure at the
centre, while a central dip in vertical pressure was predicted by all
of the elastic-plastic models. The predicted shear tractions were
much larger than in the switched-on procedure for the elastic—
plastic models, amongst which the PEDP model produced the larg-
est dip and the LEMC model produced the smallest dip. It is noted
that the rate of increase of shear traction from the centre as
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represented by the initial slope of the shear traction curves is
important in relation to the size of predicted dip. As shown in
Fig. 6b, a larger initial slope corresponds to a larger extent of cen-
tral vertical pressure suppression. The slope of the shear traction
curve at the centre is largest for the PEDP model and smallest for
LEMC model. For all the computations presented in both Fig. 5
and Fig. 6, the mobilised friction coefficient on the base (ratio of
shear traction to vertical pressure) was well below 0.4, confirming
the fully rough base assumption made in the calculations is valid.

The comparison between Fig. 5 and Fig. 6 shows that the effect
of progressive mesh activation procedure appears to be different
when elastic or elastic-plastic models is used. The results also
support the proposition that material plasticity is important for
predicting the sandpile phenomenon. In addition, the stress-
dependency of the elastic modulus appears to be able to signifi-
cantly enhance the pressure dip. Since all numerical predictions
so far still under-predicted the magnitude of the central pressure
dip, this factor may provide a further insight into the phenomenon
and will be explored further.

3.1.3. Effect of number of construction layers

Based on the understanding of the benchmark test illustrated
above, the effect of number of construction layers on sandpile
modelling was explored. The result using PEDP (porous elastic with
Drucker-Prager plasticity) model with parameters listed in Table 1
(except Pgp, = 50°) is shown in Fig. 7. It is shown that all cases pre-
dicted a central pressure dip except the switched-on gravity case
(Ng=1) which predicted the maximum pressure at the centre.
The result also shows that the greater the number of construction
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layers used, the larger was the size of the dip predicted. This result
indicates that the numerical process of layer construction signifi-
cantly affects the prediction. This suggests that modelling the pro-
gressive loading history during sandpile formation may be vital in
numerical modelling of sandpile. Since the modelled pile had a
height of around 0.3 m and the mean particle diameter of 3 mm,
the maximum number of layer won’t exceed 100 if the thickness
of one layer is assumed as equal to the mean particle diameter.
The relationship between layer thickness and predicted pressure
dip is given in the inset of Fig. 7 for the range of N, =1 ~ 80. The
results suggest that very large number of layers would be required
to predict the pressure profile more accurately.

3.2. Evolution of stress distribution and plastic zone during sandpile
formation

Since the porous elastic with Drucker-Prager plasticity PEDP
model produced the largest dip and closest prediction to the exper-
imental data, the PEDP model with progressive mesh activation
scheme is used in the rest of the paper to further investigate the
sandpile behaviour.

Major questions on sandpile behaviour during formation in-
clude: (1) whether the pressure dip is localised at the bottom
boundary or if it propagates up to the apex of the pile; (2) whether
the pressure dip develops from the beginning of the formation, and
its size increases during the pile formation process; (3) how does
the plastic zones distribute within the solid and evolve during
the formation process. Fig. 13-15 show the main FEM results using
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the PEDP model and progressive mesh activation procedure with
40 layers of elements and construction layers (N = N, = 40).

Most of the earlier experiments only measured the base pres-
sures, so the stress distributions inside the pile were unknown. By
using the photoelastic technique, some studies (Geng et al. 2001;
Zuriguel and Mullin 2008) have obtained the stress field within
two dimensional piles, showing that the pressure dip exists not
only at the bottom boundary but also inside the pile at all levels.
The present FEM study concurs with this observation as can be seen
from the contour of the predicted vertical stress ¢, in Fig. 8a and the
vertical stress along the horizontal paths at different heights after
pile construction in Fig. 8b. The pressure dip propagated up to the
top with the dip size decreasing from the base upwards.

Fig. 9 compares the vertical base pressure distribution from four
piles with radius of R=0.25R,, 0.5R,, 0.75R, and R,, representing
different stages of the formation process. In order to eliminate
the effect of mesh density and layer density (c.f. Fig. 7), all the four
pile models had the same number of construction layers and
elements. Fig. 9 shows clearly that the normalised pressure dip is
predicted to be independent of the pile size. This suggests the pres-
sure dip develops from the beginning of the pile formation and its
relative size remains the same during the whole progressive for-
mation process. The validity of this observation lies in the fact that
the simulation was treated as static, so the solid deposition rate
and impact energy were not considered. The solid deposition rate
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and impact energy can affect the resultant pressure distribution:
this requires further investigation and is beyond the scope of this
study. Another important factor is that the finite size of the depo-
sition stream was ignored in the simulation. In reality, the size of
deposition stream would be relatively large compared to the tran-
sient pile size when the pile is small. Experimental studies have
suggested that the relative deposition size has a significant effect
on the dip formation (Vanel et al. 1999; Geng et al. 2001; Ai 2010).

The evolution of plastic zone during pile formation is illustrated
in Fig. 10. The elastic and plastic zones are represented by light and
dark grey areas respectively. The FEM computation predicted a
small elastic inner core surrounded by large zones in the yielding
state. Such a pattern has some similarity to some earlier solutions
of admissible stress field that contain a pressure dip (e.g., Didwania
et al. 2000; Michalowski and Park 2004). The patterns of the elastic
and plastic zones were similar at different loading stages. Note that
part of the plastic zone at an earlier layering stage might become
elastic at a later stage. This phenomenon indicates that the mate-
rial was in a plastic state when it was newly layered on the existing
pile, and part of it became elastic due to an increase of confining
stress when subsequent layers were added.

Fig. 11 shows the distribution of the equivalent pressure stress
p within the pile. Because the instantaneous elastic modulus is
dependent on the value of p according to Eq. (4), the variation of
the elastic stiffness in this model is directly related to the distribu-
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tion of p, with the stiffness increasing when p increases. The elastic
stiffness generally increases with depth at a given radial position.
The largest elastic stiffness at each height level is some radial
distance away from the centre, giving rise to an elastically softer
central core surrounded by a stiffer region if the contribution from
plasticity is ignored. Although most of the solid in the pile was
predicted to yield plastically at some stage during the formation
process, the elastic stiffness would still be affecting the initial plas-
tic flow. This may be one of the reasons for the larger pressure dip
predicted by the PEDP model than that by the LEDP model where
the elastic modulus is constant everywhere (Fig. 6a).

3.3. Effect of plastic parameters

Plastic failure appears to play an important role in producing
the pressure dip as has been shown in Fig. 6. It is therefore neces-
sary to explore the effects of the plastic parameters on the predic-
tion. Fig. 12 shows the predicted base pressure distribution with
different values of cohesion c. In the reference case, the cohesion
was chosen as a very small value ¢4, = 1 Pa to represent the cohe-
sionless solid. It is clear from Fig. 12a this treatment is valid since
the predicted pressure distribution remained essentially the same
when cgp, is smaller than 10 Pa. As ¢y, increased further, more solid
behaved elastically which resulted in a smaller pressure dip. If cgp
is very large (e.g. cgp =10 kPa), all the solid became elastic so the
solution reduced to purely elastic prediction as no plastic failure
is possible. It is evident that the curve with ¢4, =10,000 Pa in
Fig. 12 is the same as that predicted by the purely elastic PE model
in Fig. 6a. With a value of cohesion cgp, = 1 kPa the plastic zone was
confined to the middle of the pile (Fig. 12b), as which is not realis-
tic one would expect the free surface to be in a yield condition.

Fig. 13a shows the effect of friction angle @g4,. An increase of the
friction angle results in smaller pressure dip and higher maximum
vertical pressure. Fig. 13b shows the plastic zone predicted with
@4, = 60°, where the size of the plastic zone decreased and occu-
pied only the upper part of the pile, compared with the reference
case of &g, =45° (Fig. 10d). No converged solution was achieved
with values of ®g, smaller than 45°. As suggested in previous
section, the pile would not be physically stable with & < «, so no
stable static solution may be obtained.

Jeong and Moore (2010) found the effect of dilation angle to be
negligible in his computations. This study found dilation angle to
have a noticeable though limited effect on the prediction.
Fig. 14a shows that a larger dilation angle resulted in a slightly lar-
ger pressure dip, but it has little effect on the plastic zone
(Fig. 14b). The dilation angle controls the plastic volume change
during shear failure, and a larger dilation angle leads to a larger in-
crease in volume during plastic state. The radial component of this
volume increase would promote a larger base traction, which pro-
duces a larger arching effect and thus a larger pressure dip.

It is also of interest to compare the predictions from the Mohr-
Coulomb model and the Drucker-Prager model. As suggested in
the previous section, the comparison of these two models has to
be based on a comparable MC friction angle @ and a DP friction an-
gle @4,. Eq. (9) gives the comparable value of the DP friction angle
in range of @g, = 39° ~ 49° for a MC friction angle of & = 29°. Fig. 6a
has shown that the LEMC model with & =29° predicted a smaller
pressure dip than the LEDP model with @4, = 45°. Fig. 15a further
shows the LEDP model with @4, = 49° still predicted a larger dip
than the LEMC model with @ = 29°. No converged solution was ob-
tained for friction angles smaller than @& =29° for the MC model
and @y, =45° for the LEDP model as the solid is at a physically
instable configuration. The pattern of the plastic zone predicted
by the LEMC model is slightly different from those predicted by
the DP model (Fig. 15). It may thus be concluded that for the same
failure properties, the DP model predicted a larger pressure dip

than the MC model. Nevertheless, further investigation is still
needed to fully understand this phenomenon.

3.4. Effect of elastic parameters

Fig. 16 shows the almost identical predictions using the LEDP
model with different value of elastic modulus E ranging from
0.2 MPa to 2000 MPa. This is consistent with the conclusion of
some previous calculations in silos (e.g., Ooi and Rotter 1990;
Goodey et al. 2003; Goodey et al. 2006) where the stress distribu-
tion is not sensitive to the magnitude of the elastic modulus.

The second elastic parameter, the Poisson’s ratio, shows a sig-
nificant effect on the pressure dip prediction. A larger Poisson’s ra-
tio results in a large pressure dip (Fig. 17a). It may be noted that in
the calculations by Jeong and Moore (2010) where a dip size as
large as in experiment was predicted, a large value of Poisson’s ra-
tio v = 0.45 was adopted. As the Poisson’s ratio controls the elastic
strain of the pile in the horizontal direction when the pile is loaded
in vertical direction, a larger Poisson’s ratio would naturally
increase the lateral elastic expansion. This lateral expansion tends
to generate a larger base traction which in turn results in an en-
hanced arching effect. The effect of an increase of the Poisson’s ra-
tio and the dilation angle is similar: increasing the radial expansion
respectively in the elastic and plastic part. The size of plastic zone
was predicted to reduce with an increase of the Poisson’s ratio and
the larger pressure dip (Fig. 17b). This effect is in contrast to the ef-
fect of plastic parameters where a larger plastic zone corresponded
to a larger pressure dip.

The porous elastic stress-dependent modulus has been shown in
Fig. 6a to play a vital role in producing the largest pressure dip that
has the closest match to the experiment. Here the effect of the por-
ous elastic parameters is explored. Among the five input parame-
ters in the porous elastic model in Abaqus (Logarithmic bulk
modulus x, initial equivalent pressure stress po, elastic tensile stress
limit p,%, initial void ratio ey and Poisson’s ratio v), the value of po
was always set as zero, so did not feature in this parametric study.
To better illustrate the effect of each parameter in the porous elastic
model, the elastic modulus E and the elastic nominal volumetric
strain J% — 1 were evaluated against the equivalent pressure stress
p, as shown in Figs. 18 and 19. It is shown that the p-E relationship
(given by Eq. (4)) is almost linear in the range of p in this example
pile. The equivalent elastic modulus E starts from zero at the nega-
tive value of p,# and may increase at different rates according to the
various input parameters. The elastic nominal strain J — 1 devel-
ops similarly at different rate for all parameters, except for Poisson’s
ratio v which doesn't affect the value of J — 1 according to Eq. (1).

The effect of the tensile stress limit p, on the pressure dip prediction
was explored using a DP friction angle &g, = 60° (Fig. 20b) and all other
cases were explored using @, =45° (Fig. 20a, ¢ and d). As shown in
Fig. 204, the effect of the Poisson’s ratio in the prediction using PEDP is
consistent to that using LEDP as described earlier (Fig. 17). Fig. 20c and
d show that the logarithmic bulk modulus and initial void ratio have al-
most no influence in the large practical range explored. This suggests
that the increasing rate of the instantaneous elastic modulus E with
the equivalent pressure stress p is not important in producing the pres-
sure dip. However, the value of the tensile stress limit p, has a very sig-
nificant effect on the prediction (Fig. 20b). The effective range of
modulus E (Fig. 18) is confined to the range with positive p. As a result,
the value of p,# determines the starting value of the instantaneous elastic
modulus E (Fig. 18) in the pile calculation: a large input value of p re-
sulted in a large starting value of E. Fig. 20b shows that when the value of
pincreased the size of the predicted pressure dip decreased and finally
disappeared when p® increased beyond the maximum tensile stress in
the pile. In the other direction, as the value of p, approached zero, the
prediction converged. This behaviour suggests the magnitude of the ini-
tial value of the elastic modulus has an important influence in the
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prediction. It indicates that methods adopting a constant elastic modu-
lus (e.g. LEMC, LEDP) are not capable of capturing this important stress-
dependent characteristic of granular solids.

4. Concluding remarks

This paper has presented an investigation into the pressure dip
phenomenon using the finite element (FE) method. The effects of
factors including the progressive mesh activation, stress-
dependent elastic modulus and plastic failure parameters have
been explored by modelling a conical sandpile adopting five rela-
tively simple elastic and elasto-plastic constitutive models.

The results have shown that significant pressure dip can be pre-
dicted without incorporating material anisotropy. However, no
pressure dip can be predicted without considering the progressive
mesh activation process or plasticity. Significantly smaller pressure
dip than observed in experiments is predicted when using a linear
elasto-plastic model incorporating progressive mesh activation
process. The inclusion of stress-hardening elasticity is important
in significantly enhancing the dip, to the extent in close agreement

(a)

993

with experimental observations. A similarity of the plastic zone
pattern has also been observed between the FE predictions and
earlier limit analysis solutions. The effects of the elastic and plastic
parameters have been explored. Apart from the internal friction
angle, the results have suggested that the Poisson’s ratio and the
dilation angle have some effects on the size of the pressure dip.
The results have shown a strong relationship between the develop-
ment of base shear, internal arching and pressure dip.
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Appendix A. Benchmark test of progressive mesh activation

The effect of progressive mesh activation on the behaviour of
structures under self-weight may be illustrated by a simple exam-
ple as shown in Fig. A1l. The model consists of a rectangular body
supported on a frictionless rigid surface and settles under gravity.
For simplicity and without the loss of generality, the system is as-
sumed to be both geometrically and materially linear.

When the rectangular body deforms under switched-on gravity
loading (the leftmost case in Fig. Ala), it can be proven that unless
the Poisson’s ratio equals to zero there exist in the body non-zero
shear stresses 1y, as well as horizontal stresses o, which are tensile
in the upper part and compressive in the lower part of the body, in
additional to vertical stresses. Because the system is linear elastic,
the “switched-on” case can be decomposed into Cases A and B with
boundary conditions identical to their parent case, except that the
gravity is only activated in the lower or the upper half respectively
(Fig. Ala). The stress field of the “switched on” case is equivalent to
the superposition of those of Case A and Case B.

The situation is different for progressive mesh activation. As
shown in Fig. A1b, when the rectangular body is constructed in
two stages (leftmost case in Fig. Alb), it should instead be
decomposed into Cases C and B, where Case C has both the stiffness
and loading of the upper half deactivated. Similarly, the decompo-
sition of an N layer case is shown in Fig. Alc. It should be noted that

the treatment of the stiffness activation for the newly added layer
is very important in a progressive mesh activation scheme for
modelling progressively formed structures.

For switched-on gravity loading, the deformation of the lower
layer is restrained by the upper layer in Case A so there is no stress
discontinuity. For the case of two-layer progressive mesh activation
case, when the lower layer is constructed, its gravitational body
force results in a tensile horizontal stress o, at the top and a com-
pressive g, at the bottom of the lower layer. When the upper layer
is added but before its body gravity is applied, the upper layer is
stress free. This induces a stress discontinuity in o, at the boundary
between the two layers. When the gravity is applied to the top layer,
itresults in a tensile o, at the top of the upper layer, but a compres-
sive g, towards the bottom of the upper layer. This in turn induces a
compressive gy in the lower layer which compensates some tensile
oy at the top of the lower layer but the stress discontinuity between
the two layers still exists. If the body is constructed with many more
layers (leftmost case in Fig. A1c), both the value of g, and the extent
of discontinuity between the layers are progressively reduced.

The phenomenon discussed above is confirmed by the numeri-
cal results shown in Fig. A2. An elastic body with a width of
L,=2.0m and height of L,=1.0m was used to calculate the
horizontal stress distribution, constructed with 1, 2, 5 and 40 lay-
ers. A density of p = 1.0 kg/m?, elastic modulus of E = 1.0 MPa and
Poisson’s ratio of v =0.3 were used in the calculations. Only the
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right half of the body was modelled and discretised into 40 x 40
square 8-noded quadratic elements. It is shown that large gradient
of horizontal stress is produced in the body if constructed by the
“Switched-on” loading procedure, while almost uniform and
zero-valued horizontal stress is produced by progressive layering
procedure. In addition, the number of construction layers also
plays an important role on the magnitude of the stress discontinu-
ity at the interfaces between the layers.
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