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The paper investigates the existence of Love wave propagation in an initially stressed homogeneous layer
over a porous half-space with irregular boundary surfaces. The method of separation of variables has
been adopted to get an analytical solution for the dispersion equation and thus dispersion equations have
been obtained in several particular cases. Propagation of Love wave is influenced by initial stress param-
eters, corrugation parameter and porosity of half-space. Velocity of Love waves have been plotted in
several figures to study the effect of various parameters and found that the velocity of wave decreases
with increases of non-dimensional wave number. It has been observed that the phase velocity decreases
with increase of initial stress parameters and porosity of half-space.
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1. Introduction

The nature of different seismic waves is studied in theoretical
seismology and also has some practical importance in the field of
Civil Engineering, Rock Mechanics and Geophysical Prospecting.
The propagation of Love waves in a homogeneous medium over
semi-infinite porous medium has importance in earthquakes engi-
neering and seismology on account of the occurrence of porosity,
inhomogeneity in the crust of the Earth as the Earth is supposed
to be made up of different layers. In the beneath of Earths surface
the porous layer is naturally found. In general the pores contain
hydrocarbon deposition such as gas and oil. Most oil and gas
deposits are found in sandstone or limestone is very much like a
hard sponge, full of holes but not compressible. These holes or
pores can contain water or oil or gas and rock will be saturated
with one of these three. The holes are much tinier than sponge
holes but they are still holes and they are called porosity and the
layer is called porous layer. The studies of Love wave propagation
in a liquid saturated porous medium play an important role in the
field of Geophysical problems leading to the exploration of oil and
underground water. The propagation of Love wave in elastic media
with irregular boundary surfaces is also important leading to better
understanding and prediction of seismic wave behaviour at conti-
nental margins, mountain roots, etc. Propagation of surface waves
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in a homogeneous medium over an inhomogeneous elastic half-
space are well known and prominent feature of wave theory. Quite
a large amount of information about propagation of seismic waves
is documented in well-known books written by Biot (1965), Ewing
et al. (1957), Gubbins (1990), etc.

The stress generated in a medium, referred as initial stress and
may be developed in media due to natural phenomena or by any
artificial stress. The Earth may be assumed as an elastic solid
layered medium under high initial stresses. These initial stresses
contribute a significant influence on elastic waves produced by
earthquakes. Many researchers have devoted their work to solve
various problems on the propagation of surface waves. Dey et al.
(1996) discussed about propagation of Love waves in heteroge-
neous crust over a heterogeneous mantle. They (Dey et al., 2004)
also studied about propagation of Love waves in an elastic layer
with void pores. The influence of anisotropy on the Love waves
in a self-reinforced medium was formulated by Pradhan et al.
(2003). Sharma (2004) established a mathematical expression
about wave propagation in a general anisotropic poroelastic med-
ium with anisotropic permeability phase velocity and attenuation.
Kalyani et al. (2008) have made finite difference modeling of seis-
mic wave propagation in monoclinic media.

Propagation of seismic waves in layered media bounded by
different forms of irregular boundaries has been investigated by
many authors. Wolf (1970) observed the propagation of Love
waves in layers with irregular boundaries. The dispersion
equation for Love wave due to irregularity in the thickness of
non-homogeneous crustal layer was obtained by Chattopadhyay
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Fig. 2. Case I: dimensionless phase velocity i as a function of dimensionless wave

number kH of Love waves for different values of initial stresses ﬁ and 2”7\,

(1975). The influence of irregularity and rigidity on the propaga-
tion of torsional wave was developed by Gupta et al. (2010a).
Chattaraj et al. (2013) introduced the dispersion equation of Love
wave, propagating in an irregular anisotropic porous stratum
under initial stress. Chattopadhyay et al. (2010) studied about
propagation of SH waves in an irregular non-homogeneous mono-
clinic crustal layer over a semi-infinite monoclinic medium. Prop-
agation of Love wave at a layered medium bounded by irregular
boundary surfaces was developed by Singh (2011). Dispersion of
horizontally polarized shear waves in an irregular non-homoge-
neous self-reinforced crustal layer over a semi-infinite self-rein-
forced medium was derived by Chattopadhyay et al. (2013). Liu
and He (2010) studied the properties of Love waves in layered
piezoelectric structures.

A good amount of research has been done by many authors in
the field of Love wave propagation. Ke et al. (2006) studied the
Love waves in an inhomogeneous fluid saturated porous layered
half-space with linearly varying properties. Ghorai et al. (2010)
shown the Love waves in a fluid-saturated porous layer under a
rigid boundary and lying over an elastic half-space under gravity.
Propagation of Love waves in an orthotropic Granular layer under
initial stress overlying a semi-infinite Granular medium was estab-
lished by Ahmed and Abd-Dahab (2010). Gupta et al. (2010b)
discussed the effect of initial stress on propagation of Love waves
in an anisotropic porous layer. Disturbance of SH-type waves due

to discontinuity of shearing stress in a visco-elastic layered half-
space was formulated by Pal and Sen (2011). Kielczynski et al.
(2012) observed the effect of a viscous liquid loading on Love wave
propagation.

Recently numerous papers have been done by many researchers
in the field of wave propagation. Such as Gupta et al. (2013a) dis-
cussed about the propagation of Love waves in a non-homogeneous
substratum over an initially stressed heterogeneous half-space.
Love waves in the fiber-reinforced layer over a gravitating porous
half-space was investigated by Chattaraj and Samal (2013). Possi-
bility of Love wave propagation in a porous layer under the effect
of linearly varying directional rigidities was introduced by Gupta
et al. (2013b). SH-type waves dispersion in an isotropic medium
sandwiched between an initially stressed orthotropic and hetero-
geneous semi-infinite media were studied by Kundu et al. (2013).
Manna et al. (2013) formulated Love wave propagation in a piezo-
electric layer overlying in an inhomogeneous elastic half-space.
Bacigalupo and Gambarotta (2014) discussed about second-gradient
homogenized model for wave propagation in heterogeneous peri-
odic media. Propagation of Love wave in fiber-reinforced medium
lying over an initially stressed orthotropic half-space was obtained
by Kundu et al. (2014).

In this paper, the propagation of Love wave in a homogeneous
irregular layer over an elastic porous half-space has been briefly
studied. Both the layer and half-space are considered under the
effect of initial stress. The dispersion relations have been derived
in some particular cases by taking irregular boundary surfaces,
a;cos(bx) and a,cos(bx), where a; and a, are amplitudes of the
surfaces. The influences of porosity, initial stress parameters and
corrugation parameter have discussed graphically.

2. Mathematical formulation of the problem

We consider an initially stressed (P) elastic homogeneous layer
M : 21(x), 71(x) — H < z over an initially stressed (P’) porous half-
space, M, : J5(X) < z < ccasshowninFig. 1, where H can be assumed
as the average thickness of the upper layer. The x axis and y axis are
considered as two perpendicular Cartesian coordinates lying hori-
zontally and vertically coordinate with positive direction pointing
downward can be taken as z axis. Where /; (x) and 4, (x) are continu-
ous functions of x independent of y and consider as the irregular
boundaries of the layer. The x axis is parallel to the direction of prop-
agation of waves. So, the non-zero field of quantities representing the
motion are only function of x, z and time t.

The functions, 4;(x) can be taken as periodic in nature and their
Fourier series expansions are provided as Singh (2011)

00
B =Y (A e, j=1,2. (1)
n=1
Here the Fourier series expansion coefficients are #, and # ,, the
wave number is p, an is the wavelength, n is the order of series

expansion and i = v—1. We assumed a very small amplitude of
irregular boundaries compared with the wavelength.

3. Dynamics of upper homogeneous layer

The upper layer of the formulated problem is considered as
initially stressed homogeneous medium. Let u;, z; and w; be the
displacements along x, y and z directions respectively. First, we
look for the equations governing the propagation of Love wave in
homogeneous elastic medium. In this medium waves are propagat-
ing along x axis. The equations of motion for a homogeneous elastic
solid in the absence of body forces in component form are (Biot,
1965)
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Fig. 3. Case II: dimensionless phase velocity jasa function of dimensionless wave

number kH of Love waves for different values of initial stresses - and £,
doqq 0612 013 aw, _ dwy uy
x T +m P vy )= r
()62] 90 9093 7 vy
+ y + 0z ( X ) pl o2 0 (2)

%'F%'F%_P(a_;) :p1%7
where wy, wy and w, are the rotational components along x, y and z
directions respectively. Here ¢ are the incremental stress compo-
nents and p, is the density of the material in this medium.

In case of homogeneous medium Hooke's law gives the
equation

G,‘j = ZA&U =+ Z,U] 81']‘, (3)
where /, p, are Lame’s constants, and ¢; = 1 (ZZ' + 35’)

Applying the Love wave conditions u; =0=w; and
v1 = v1(x,z,t) for the medium, then the strain components will be

&1 =0,

&2 = l on
2 0x’

&2 =0,

E13 = O

&3 = 1 o%;
2 0z’

&33 =0.

The volume strain A or cubical dilatation, is the change in volume

per unit volume. For small strain A = &;7 + &; + &33.
The stress components will be calculated as

011 = AA611 + 2,611 =0,

012 = AAo1x + 2/.1,1812 =l %7

Oy = Aoy + 2/11822 = 07

4
g13 =0, @)
3 :M]%y
o33 = 0.

Using the stress, strain relations and components condition for Love
waves, the equation of motion (2) is written as
& vy +821/1 ( P ) Fvi 100

oxr oz 2, ) ox2 oot

()

where shear velocity, f; = %.

Let us assume the solution of the above equation be
v1(x,2,t) = Vi (2)e**-D where k is the wave number and c is the
phase velocity of Love waves. Therefore Eq. (5) takes the form

v,
dz?

whereq:,/[ﬁﬁ—g—]} andg“:ﬁ.

+Iq?V, =0, (6)

Therefore the displacement of the upper homogeneous medium
is

v1(x,2,t) = (B "% 4 Bye k%) eikix-ct), (7)

where B; and B, are arbitrary constants.

4. Dynamics of lower porous half-space

We consider an initial stress anisotropic porous half-space. Let
(uz, v2,w,) are components of displacement vector of solid and
(Uy,Vy,W,) are components of displacement vector of the liquid
part of a porous material in the direction of x, y, z respectively.
Neglecting the viscosity of water, the dynamic equations of motion
in a porous layer under the compressive initial stress P/, in the
absence of body forces, can be written as Biot (1965)

0ty 4 0Ty 4 9113 0w, 00y
wx tay ta p(e)y 5 3t2 (pnu2+p12 )

i b} bl ow,\

Py 0 0 P (%) = (0 + pigVy), (8)
C ¢ o),

}TBI +0132 +0% - p(é_?) = 512 (P1w2 + ppW2),

ot o or &

(P12U2 + P3oUsx), P12z + P2 Vy),

o or oy o
oo
oz ot
where 7 (i,j=1,2,3) are the incremental stress components of
solid and 7’ is the stress vector due to liquid part of porous. This
stress vector 7' is related to the fluid pressure p by the relation
—1' = fp, where f is the porosity of the layer. The angular compo-
nents w,, )} and ), are defined as

(P12W2 + P W2),
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Fig. 4. Case III: dimensionless phase velocity j-asa function of dlmensmnless wave

number kH of Love waves for different values of initial stresses - and J
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Fig. 5. Case I: variation of phase velocity ;- with wave number kH of Love waves for
different values of d.
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The mass coefficients p,;, p;, and p,, are related to the density
p', p, and p,, of the layer, solid and liquid, respectively, by

P+ Pi=0-ps P2+ Px=FPw (10)

the mass densities of the bulk material is

P = Pi1 + 2P+ P = Ps+F(Pu = p5)- (11)
These mass co-efficients also obey the following inequalities

PPz — Pir > 0. (12)
The stress-strain relations for the water saturated anisotropic por-
ous layer under the normal initial stress P are

T11 = (A+Pex+ (A— 2N+ P)ey, + (F+ P)e, + Qe,
Ty = (A — 2N)ex + Aey, + Fe,, + Qe,

T3z = Fex + Fey, + Ce,, + Qg,

P11 >0, py >0, py <0,

(13)
T2 = 21\]6.’,0,7
T3 = 2Leyz»
T3 = 2LeZX7

where A, F, C, N and L are elastic constants for the medium; in
particular, N and L are the shear moduli of the anisotropic
layer in the x and z direction respectively and e;=31

(:3%; + 3%), &= ",—lff + %’,y + ‘)T‘ix The positive quantity Q is the measure
of coupling between the change of volume of solid and liquid.

The dynamic Eq. (8) has been constructed by coupling the Biot’s
dynamic equations in an initially stressed medium (Biot, 1965) and
the dynamic equation for a poro-elastic medium (Biot, 1956).

For the propagation of Love waves, we know that the direction
of particle displacement is parallel to the plane of propagation. The
displacement along the x axis and z axis vanishes, as well as the

rate of change along y axis is also absent i.e., we have

l,l2:07 W2:07

vy = 12(X,2,t)
14
Ux = 0, Wz = 07 } ( )

V,=V(x,zt).
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Fig. 6. Case II: variation of phase velocity ;- with wave number kH of Love waves for
different values of d.

These conditions will produce only the ey, and e,, strain compo-
nents and the other strain components will remain zero. Hence

the stress—strain relations are
T3 = 2Ley;, Tz = 2Ney,. (15)

Substituting relations (15) into Eq. (8), the equations of motion
which are not automatically satisfied are

Ty | 0T 0Ty, (00 &
8X + ay + az P (8}() _8t2 (p11y2+plzv}’)7
ot o

=0= prel (912”2 + pzzvy)-

7o
Since v, = v1(x,2,t), V, = V(x,z,t) and with the help of (14) and
(15), the above equations transforms into

P\ &*v, v, &
(N 75) 3x22 +1L 3222 = @(anZ +p12VY), (16)
PY
W(pnvz +p5V) =0. (17)

From 25 (p1, 02 + p5,V) = 0 and py, 05 + py,V = d” (say)

d’ — aviey
P22
2 92 / 2
Now, %5 (p1 22 + pypV) = d %2 where d' = py, — b,
Hence Eq. (16) can be written as

P 82112 821)2 ,022)2
(N_7>W+L 2 (18)

From Eq. (18) we found that the velocity of shear wave along x

V=

P T
direction is (Nd,Z) and along the z direction is \/dz

The shear wave velocity in the porous medium along the x
direction can be expressed as

g, 3 N
_ _ here d — 7, _ /12 AL
ﬁ d/ ﬂZ d where T V2 ’ :BZ pﬂ

B, is the velocity of shear wave in the corresponding initial stress-
free, non-porous, anisotropic, elastic medium along the direction

(19)
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Fig. 7. Case III: variation of phase velocity % with wave number kH of Love waves
for different values of d.

of x, { 2N is the non-dimensional parameter due to the initial
stress P’ and

P _ P13 P23
BPYER] V ;0 - (20)
P 3=, Y23 = 0
are the non-dimensional parameters for the material of the porous
layer as obtained by Biot (1956).

Thus, one gets the following:

T =

i. d — 1, when the layer is non porous solid.
ii. d — 0, when the layer is fluid.
iii. 0 < d < 1, when the layer is poro-elastic.

For the Love wave propagating along the x direction, the solu-
tion of Eq. (18) may be taken as
V2 (X, 2, t) = Vo (z)e=0 (21)

applying (21) in Eq. (18), we get

+q*K*V, =0, (22)

1 P
4 2
q= L<cd N+2)

Therefore, the solution of Eq. (22) takes the form as

V,(z) = Bse77% 1 Byei’®, where B; and B, are arbitrary
constants.

We are interested in the solution of Eq. (22) which is bounded
and vanishes as z—soo. So the solution of Eq. (18) can be taken as

Uy = ByeiTkzpikix—ct), (23)

This is the displacement on an initially stressed porous half-space,
where

) c2d - (N-L ¢z 1-¢
q_w (-5 yd{ﬁ_%_ dg}

/:%7 C _ZN’ ﬁZ

N and k is the wave number.
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Fig. 8. Case I: variation of phase velocity ﬁ with corrugation parameter ba of Love
waves for different values of (,bH).

5. Boundary conditions

In the present problem we have considered a homogeneous
layer under initial stress whose free surface is traction free and
hence the shearing stress component vanishes there. At the com-
mon boundary of homogeneous layer and porous half-space the
displacement of the particles and the tangential stress components
are continuous. The boundary conditions can be written mathe-
matically as.

(i) At z = /1 (x)
(ii) At z = 2 (),
(@) v1 =1,
(b) [023 — 75012], =

—H7 [0'23 — ),’10'12]% =0.

[‘523 — /1/2‘512},\,,2.

A S Y — )
where 2} =51, 1) =52

6. Dispersion relation
Using Egs. (7) and (23) the stress components into the above
boundary conditions 5(i) and 5(ii), we get

(@+74)B €W — (q -+ 7 Bye ittt — o, (24)

Bield’z  Bye-ai2 _ Byelkiiz = 0, (25)

f(q — 75)Bie" ¥ — p1y(q + 75)Bye "2 + (Lq' + Nij)Bse "2 = 0.
(26)
Eliminating the arbitrary constants B;, B, and B; from Egs. (24)-
(26), we get
(q+ 2t —(q+27)e

elkqu e~ ikq/y

(g —)e*2 —p(q + 2y)ekak

—ikq(7q—H) 0

_eikq//iz = 07
+(Lg + Nijy)e ki
which reduces to

(L + N25)[(g-+ 2y )e ot
+ (G 2)(q - ettt

(q _ /’L'l )eikQ(/ﬁ */-VZ*H):I
— Wy (q = 74)(q+ Ay)e MV =,

which takes the form
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tan

kH /L]+/L2”

i E-5) T HM <Al
(o) i (=) + (1)

It is observed from Eq. (27) that the first part of the equation is real
and the second part is complex, so the wave number must be a
complex value.

Equating real and imaginary parts of Eq. (27) we obtain

(27)

tan|k(H — A1 + A2) i—1+i
R 5 2,

1-2
o) je 14 B
d AR 244

- 1 (28)
(§-1+50) + 2\ frd (5 - 5E) + (2= 1)

which is the phase velocity equation of Love-type waves in a
pre-stressed homogeneous medium over a porous half-space under
initial stress and

c? P

We described this velocity as damping phase velocity and it may be
neglected.

7. Particular cases
7.1. Case I:

When the upper layer is bounded by a plane surface z = —H i.e.,
J1 = 0 and intermediate surface is periodic nature, represented by
/2 = acos(bx), then 2} = 0 and %, = —ab sin(bx). In this case, the dis-
persion equation (28) becomes

2
tan | k(H + acos bx) C—z -1+

Iz 24,

Eq. (30) gives the dispersion relation, depends on the elastic param-
eters, initial stress parameters, porosity of the half-space, the ampli-
tude of the irregular boundary surface and the frequency of the Love
wave. The velocity of the surface wave must be 8, < ¢ < §, for the
existence of Love wave.

7.1.1. Subcase I

If the upper layer of above case is initial stress-free, homoge-
neous elastic layer (i.e., ;£- = 0) over an initially stress free, non-
porous, homogeneous elastlc half-space (ie, £ =0 y=1,
d=1, N=L = u,) then Eq. (30) reduces to Singh (2011)

w8
G-

This is the dispersion equation of Love wave in a homogeneous
layer over a homogeneous half-space.

tan (31)

C2
k(H + acosbx) 7 1]|=
1

7.1.2. Subcase II

If the amplitude of the lower periodic surface is zero, i.e., a = 0,
and both the layers are initial stress-free, non-porous, homoge-
neous then Eq. (30) reduces to Ewing et al. (1957)

1-¢
2 B2
kH <;2—1> ] _ZZ()
1 1 2 _1
(i)
Eq. (32) gives the phase speed c of Love wave in a homogeneous
layer over a homogeneous half-space.

tan (32)

7.2. Case II:

When the surfaces of the upper layer and lower half-space are
bounded by a periodic surface z= —H+acos(bx) ie,
/1 = acos(bx) and intermediate surface is a plane surface i.e.,
/2 =0 then 2| = —absin(bx) and 7, = 0. In this case dispersion
equation (28) reduces to

P
tan | k(H — acosbx -14+—
{ ( ) o
Ix_a) [@a_ P
_ I 7 I 1+ 24 A (33)

(ﬁ2 1 +2ﬂ1>

Eq. (33) gives the frequency equation of Love wave in a homoge-
neous irregular boundary surface under initial stress over a plane
surface initially stressed porous half-space.

— ibasin(bx), /yd (CZ ]7_>

7.2.1. Subcase 1

In dispersion equation (33) if the upper layer is initial stress-
free (i.e., ﬁ = 0), homogeneous elastic layer overlying an initial
stress-free, non-porous, homogeneous elastic half-space (i.e.,
P =0, y=1,d=1, N=L=y,) then Eq. (33) reduces to

c? m
g—l}—<%_>

tan {k(H acos bx) e .
ty i 2
- mba sin(bx) //‘f 1
(34)

This is the dispersion equation of Love wave in a homogeneous
layer over a homogeneous half-space.

7.2.2. Subcase 11

If the amplitude of the upper periodic surface is neglected, i.e.,
a = 0, and lower half-space is initial stress-free, non-porous homo-
geneous medium, then Eq. (33) reduces to Eq. (32), which is the
same relation as in Ewing et al. (1957).

7.3. Case III:
When the surfaces of upper and lower half-space are bounded

by periodic surfaces z = —H + a;cos(bx) i.e., /; = ajcos(bx) and
Jo = aycos(bx),  respectively then A} = —a;bsin(bx) and

/5 = —ba, sin(bx). In this case dispersion equation (28) reduces to
tan | k{H + (az — ay)cosbx} ¢ 1+ P
2— W S5 EYPE
B 214

L e
I yd( d /;f) /fz ]+2;¢,

(/;2 1 +2# ) ba, sm(bx){ yd(F—i) + (%—l)baz sin(bx)}‘
(35)
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Eq. (35) represents the dispersion equation for Love wave propaga-
tion in two layers bounded by periodic boundaries. It is clear that
the phase velocity of Love wave depends on the elastic parameters
and amplitudes of the irregular boundary surface. If a; = a, =g,
then Eq. (35) reduces to

c? P
tan|kH, |——1+-—
{ Ve 2

f (PR i TR
(%—H—ﬁ)—basin(l::x){,%1 yd(%—%)—i—(%—])basin(bx)}.
(36)

7.3.1. Subcase I

In this case if the upper layer is without initial stress, homoge-
neous elastic layer and lower half-space is non-porous, homoge-
neous elastic layer without initial stress (i.e, £=0, y=1, d=1,
N =L = u,) then Eq. (36) reduces to

C2
tan|kH,|— — 1
B
RN

<%— )—basin(bx){ﬁj—j (%— )-&-(%—

1)ba sin(bx)}
37)
which is the dispersion equation of Love wave in a homogeneous

medium over a homogeneous half-space bounded by the periodic
boundaries.

7.3.2. Subcase I

If the amplitude of the irregular boundary surfaces are
neglected, i.e., a =0, and both the layers are initial stress-free,
non-porous, homogeneous then the frequency equation (36)
reduces to Ewing et al. (1957)

12
tan | kH <Cz_1> _&M
bi

e

This is the classical dispersion equation of Love wave in a homoge-
neous layer overlying a homogeneous half-space.

(38)

8. Numerical calculation and discussion of dispersion equations

In order to show the effects of different values of initial stresses,
porosity and the variation of phase velocity with the corrugation
parameter on the propagation of Love waves, numerical computa-
tion of Eq. (28) were performed in three different cases with differ-
ent values of parameters representing the above characteristic. For
the computational purpose, we consider some numerical data,
U, =323 x 10" N/m? and p, = 2802 kg/m? for upper layer and
for lower porous half-space numerical values are taken from
Chattaraj and Samal (2013) as L=0.1387 x 10" N/m2,N =
0.2774x10"N/m?, p,; =1.926137 x 10° kg/m3, p,, =—0.002137 x
10°kg/m3, p,, =0.215337 x 10> kg/m3, f =0.26. We also have con-
sidered ba=0.05, hH=1.40 and %=0.04. Using above numerical
data, results are presented in Figs. 2-10. Figs. 1, 5 and 8 are plotted
from the dispersion equation (30). Figs. 3, 6 and 9 represents from
dispersion equation (33). Figs. 4, 7 and 10 are plotted from the dis-
persion equation (35).

Fig. 2 shows the variation of dimensionless phase velocity
against dimensionless wave number for different values of initial

stress parameters in case I. Values of ﬁ and % for curve 1, curve

2, curve 3, curve 4 and curve 5 have been taken as 0.0, 0.1, 0.2,
0.3 and 0.4. In this figure curve 1 represent the dispersion relation
(31), which gives the phase velocity of Love wave when both the
layers are initial stress free. Curves 2-5 represents the dispersion
curve for Love wave when both the layer and half-space are under

compressive initial stresses i.e., ﬁ, % > 0. As the compressive ini-

tial stresses increase, the dimensionless phase velocity ' decreases
in a particular wave number kH. At the initial stage of wave num-
ber curves are accumulating that although the compressive initial
stress varies, velocity remains constant for that particular wave
number. Curves being little far from each other and decreases with
the increases of wave number.

Fig. 3 shows the variation of phase velocity as a function of
wave number for case II. The curves are plotted for different values
of initial stress parameters. The values of all parameters are taken
same as Fig. 2. From the figure we have seen that the phase velocity
decreases with increase of initial stress parameters. Fig. 4 repre-
sents the dispersion curve of Love wave against non-dimensional
wave number for the case Ill when a = a; = a,. The curves are plot-
ted for different values of initial stress parameters. The curves of
the figure give the same results as Fig. 2.

In Fig. 5 (case I) study has been made to get the effect of poros-
ity in the lower half-space. The figure has been represented for the
dimensionless phase velocity 7 against non-dimensional wave
number kH. The curves are plotted for different values of poro-
elastic constant d and fixed values of initial stress parameters
3 = 0.35 and P = 0.35. The values of d for curve 1, curve 2, curve

3, curve 4 and curve 5 have been taken as 0.01, 0.02, 0.03, 0.04 and
0.05 respectively. It has been found that the phase velocity of Love
wave decreases for the increasing value of poro-elastic constant d.
The curves being very little far from the wave number 0.4.

Fig. 6 shows the study of dimensionless phase velocity as a
function of non-dimensional wave number for the case II. The
curves have been plotted for fixed values of initial stress parame-
ters and different values of d. The values of ﬁ and ZP_N have been

taken as 0.2 and 0.2, respectively and the values of d have been
taken same as Fig. 5. These curves show that the phase velocity

0.9

0.8

0.7F

c/ﬁo’——>

0.5F

. x/H=0.02, bH=1.20

——2. x/H=0.04, bH=1.40
0.4r
— 3. x/H=0.06, bH=1.60

—4. x/H=0.08, bH=1.80

0.3 . . )
0 1 2 3 4 5
ba >
Fig. 9. Case II: variation of phase velocity % with corrugation parameter ba of Love
waves for different values of (¥, bH).
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Fig. 10. Case III: variation of phase velocity % with corrugation parameter ba of
Love waves for different values of (¥, bH).

decreases with the increases of poro-elastic constant. Again curves
in Fig. 7 represent dimensionless phase velocity against dimen-
sionless wave number for the case Ill when a = a; = a,. The curves
are plotted by taking same numerical results as Fig. 5. From the
curves it is found that the phase velocity decreases when poro-
elastic constant of the half-space increases.

Figs. 8-10 show the variation of non-dimensional phase veloc-
ity £-asa function of dimensionless corrugation parameter ba for
different values of ¥ and bH. In case I, Fig. 8 represents the phase
velocity of Love wave for fixed values of initial stress parameters
and poro-elastic constant and different values of (¥, bH). The val-
ues of (£,bH) for curve 1, curve 2, curve 3 and curve 4 have been
taken as (0.02,1.20), (0.04,1.40), (0.06,1.60) and (0.08,1.80)
respectively. From this figure it is observed that phase velocity
increases with the decrease of ba. It also shows that the curves of
7 start from a single point at ba =0 and increases with the
increase of & and bH.

In Fig. 9 which shows case II, the values of % and bH have taken
same as Fig. 8. It has been found that phase veloc1ty decreases
with the increases of ba. Again it is noted that the phase velocity
curves start from a single point and increase with the increase of
(3, bH).

Fig. 10 represents case III, where a;, a, both are assumed to be
a and numerical values of the parameters are taken same as Fig. 8.
It is observed from this figure that the value of phase velocity =
increases with the increase of corrugation parameter ba. Again in
this case the phase velocity curves are accumulated at ba = 0 and
it increases as the values of (%, bH) increases. Thus we have
observed that the phase velocity of Love wave is influenced by
the roughness of the interface.

9. Conclusions

Propagation of Love wave in an initially stressed homogeneous
layer overlying a porous half-space under initial stress with irreg-
ular boundary surfaces has been studied in details. The solutions
for displacement in the layer and half-space have been derived
separately in closed form. The dispersion equation of Love wave
in a different type of irregular boundary surface layer over an ini-
tially stressed porous half-space has been derived. This dispersion
equation is reduced to some particular type of irregular layer

bounded by a plane surface and a periodic boundary. The phase
velocity has been found as a function of wave number and corruga-
tion parameter. The numerical computations of particular cases are
performed and effect of initial stress parameters, poro-elastic con-
stant and corrugation parameter are studied graphically. From the
above figures it may conclude that:

e As depth increases the velocity of surface wave decreases which

is the well-known nature of seismic wave.

As initial stresses in the layer and lower half-space increases the

velocity of surface wave decreases.

e In the above three particular cases, phase velocity of Love type
wave decreases with the increase of porosity of the half-space.
It is also observed that velocity curves are accumulated after a
particular wave number at kH = 0.4 i.e., after that particular
wave number the velocity of wave does not take any effect of
poro-elastic constant.

e When the intermediate surface of the layers is periodic, the
phase velocity decreases with the increase of ba for different
values of (%,bH). It is also noted that the curves started from
a single point and increases with the increase of corrugation
parameters.

e Again, when the surface of the upper layer is periodic the veloc-
ity of wave increases with the increase of ba for different values
of (&,bH). It is also noted that the velocity of wave stated from a
single point and increases with the increase of corrugation
parameters. Therefore, it has been realized that the phase veloc-
ity of Love wave is influenced by roughness of the interface.

Finally, when both the layer and half-space are homogeneous with
plane surface boundaries then the dispersion equation reduces to
the general equation of Love wave by Ewing et al. (1957).

References

Ahmed, S.M., Abd-Dahab, S.M., 2010. Propagation of Love waves in an orthotropic
granular layer under initial stress overlying a semi-infinite granular medium. J.
Vib. Control 16 (12), 1845-1858.

Bacigalupo, A., Gambarotta, L., 2014. Second-gradient homogenized model for wave
propagation in heterogeneous periodic media. Int. J. Solids Struct. 51, 1052-
1065.

Biot, M.A., 1956. Theory of deformation of a porous viscoelastic anisotropic solid. J.
Appl. Phys. 27, 459-467.

Biot, M.A., 1965. Mechanics of Incremental Deformation. John Willey and Sons, New
York, London.

Chattaraj, R., Samal, S.K., 2013. Love waves in the fiber-reinforced layer over a
gravitating porous half-space. Acta Geophys. 61 (5), 1170-1183.

Chattaraj, R., Samal, S.K., Mahanti, N., 2013. Dispersion of Love wave propagating in
irregular anisotropic porous stratum under initial stress. Int. J. Geomech. 13 (4),
402-408.

Chattopadhyay, A., 1975. On the dispersion equation for Love wave due to
irregularity in the thickness of non-homogeneous crustal layer. Acta Geophys.
Pol. 23, 307-317.

Chattopadhyay, A., Gupta, S., Singh, A.K., Sahu, S.A., 2010. Propagation of SH waves
in an irregular non-homogeneous monoclinic crustal layer over a semi-infinite
monoclinic medium. Appl. Math. Sci. 4 (44), 2157-2170.

Chattopadhyay, A., Gupta, S., Sahu, S.K., Singh, A.K., 2013. Dispersion of horizontally
polarized shear waves in an irregular non homogeneous self-reinforced crustal
layer over a semi-infinite self-reinforced medium. J. Vib. Control 19 (1), 109-
119.

Dey, S., Gupta, S., Gupta, A.K., 1996. Propagation of Love waves in heterogeneous
crust over a heterogeneous mantle. |. Acta Geophys. Pol. Poland XLIX (2), 125-
137.

Dey, S., Gupta, S., Gupta, A.K.,, 2004. Propagation of Love waves in an elastic layer
with void pores. Sadhana 29, 355-363.

Ewing, W.M., Jardetzky, W.S., Press, F., 1957. Elastic Waves in Layered Media.
McGraw-Hill, New York.

Ghorai, A.P., Samal, S.K., Mahanti, N.C., 2010. Love waves in a fluid-saturated porous
layer under a rigid boundary and lying over an elastic half-space under gravity.
Appl. Math. Modell. 34 (7), 1873-1883.

Gubbins, D., 1990. Seismology and Plate Tectonics. Cambridge University Press,
Cambridge.

Gupta, S., Chattopadhyay, A., Kundu, S., 2010a. Influence of irregularity and rigidity
on the propagation of torsional wave. Appl. Math. Sci. 4 (17), 805-816.


http://refhub.elsevier.com/S0020-7683(14)00270-4/h0005
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0005
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0005
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0010
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0010
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0010
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0015
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0015
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0020
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0020
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0025
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0025
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0030
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0030
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0030
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0035
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0035
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0035
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0040
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0040
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0040
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0045
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0045
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0045
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0045
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0050
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0050
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0050
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0055
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0055
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0055
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0055
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0060
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0060
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0065
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0065
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0065
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0070
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0070
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0075
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0075

S. Kundu et al./International Journal of Solids and Structures 51 (2014) 3689-3697 3697

Gupta, S., Chattopadhyay, A., Majhi, D.K,, 2010b. Effect of initial stress on
propagation of Love waves in an anisotropic porous layer. J. Solid Mech. 2 (1),
50-62.

Gupta, S., Majhi, D.K,, Kundu, S., Vishwakarma, S.K., 2013a. Propagation of Love
waves in non-homogeneous substratum over initially stressed heterogeneous
half-space. Appl. Math. Mech. Engl. Ed. 34 (2), 249-258.

Gupta, S., Vishwakarma, S.K., Majhi, D.K., Kundu, S., 2013b. Possibility of Love wave
propagation in a porous layer under the effect of linearly varying directional
rigidities. Appl. Math. Modell. http://dx.doi.org/10.1016/j.apm.2013.01.008.

Kalyani, V.K,, Sinha, A., Pallavika, Chakraborty, S.K., Mahanti, N.C., 2008. Finite
difference modeling of seismic wave propagation in monoclinic media. Acta
Geophys. 56 (4), 1074-1089.

Ke, LL., Wang, J.S., Zhang, Z.M., 2006. Love waves in an inhomogeneous fluid
saturated porous layered half-space with linearly varying properties. Soil Dyn.
Earthquake Eng. 26, 574-581.

Kielczynski, P., Szalewski, M., Balcerzak, A., 2012. Effect of a viscous liquid loading
on Love wave propagation. Int. J. Solids Struct. 49, 2314-2319.

Kundu, S., Gupta, S., Manna, S., 2013. SH-type waves dispersion in an isotropic
medium sandwiched between an initially stressed orthotropic and
heterogeneous semi-infinite media. Meccanica. http://dx.doi.org/10.1007/
s11012-013-9825-5.

Kundu, S., Gupta, S., Manna, S., 2014. Propagation of Love wave in fiber-reinforced
medium lying over an initially stressed orthotropic half-space. Int. J. Numer.
Anal. Methods Geomech. http://dx.doi.org/10.1002/nag.2254.

Liu, J., He, S., 2010. Properties of Love waves in layered piezoelectric structures. Int.
J. Solids Struct. 47, 169-174.

Manna, S., Kundu, S., Gupta, S., 2013. Love wave propagation in a piezoelectric layer
overlying in an inhomogeneous elastic half-space. J. Vib. Control. http://
dx.doi.org/10.1177/1077546313513626.

Pal, P.C,, Sen, B., 2011. Disturbance of SH-type waves due to shearing-stress
discontinuity in a visco-elastic layered half-space. Int. . Mech. Solids 6 (2), 176-
189.

Pradhan, A., Samal, S.K., Mahanti, N.C., 2003. The Influence of anisotropy on the Love
waves in a self-reinforced medium. Tamkang J. Sci. Eng. 6 (3), 173-178.

Sharma, M.D., 2004. Wave propagation in a general anisotropic poroelastic medium
with anisotropic permeability: phase velocity and attenuation. Int. J. Solids
Struct. 41, 4587-4597.

Singh, S.S., 2011. Love wave at a layer medium bounded by irregular boundary
surfaces. J. Vib. Control 17, 789-795.

Wolf, B., 1970. Propagation of Love waves in layers with irregular boundaries. Pure
Appl. Geophys. 78 (1), 48-57.


http://refhub.elsevier.com/S0020-7683(14)00270-4/h0080
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0080
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0080
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0085
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0085
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0085
http://dx.doi.org/10.1016/j.apm.2013.01.008
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0095
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0095
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0095
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0100
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0100
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0100
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0105
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0105
http://dx.doi.org/10.1007/s11012-013-9825-5
http://dx.doi.org/10.1007/s11012-013-9825-5
http://dx.doi.org/10.1002/nag.2254
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0120
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0120
http://dx.doi.org/10.1177/1077546313513626
http://dx.doi.org/10.1177/1077546313513626
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0130
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0130
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0130
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0135
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0135
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0140
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0140
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0140
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0145
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0145
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0150
http://refhub.elsevier.com/S0020-7683(14)00270-4/h0150

	Love wave dispersion in pre-stressed homogeneous medium over a porous half-space with irregular boundary surfaces
	1 Introduction
	2 Mathematical formulation of the problem
	3 Dynamics of upper homogeneous layer
	4 Dynamics of lower porous half-space
	5 Boundary conditions
	6 Dispersion relation
	7 Particular cases
	7.1 Case I:
	7.1.1 Subcase I
	7.1.2 Subcase II

	7.2 Case II:
	7.2.1 Subcase I
	7.2.2 Subcase II

	7.3 Case III:
	7.3.1 Subcase I
	7.3.2 Subcase II


	8 Numerical calculation and discussion of dispersion equations
	9 Conclusions
	References


