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A simple snap-fit and vacuum brazing method has been developed to fabricate three dimensional space
filling octet-truss lattice structures from Ti–6Al–4V alloy sheets. Using strut lengths of 7–25 mm resulted
in a relative density of the lattices ranging from 2% to 16%. The lattice elastic stiffness constants and
strengths have been characterized under through-thickness compression and in-plane shear as a function
of their relative density, and are shown to be well predicted by previously proposed micromechanical
models adapted to account for the increased nodal mass and strut separations of the snap-fit lattice
design. The Ti–6Al–4V octet-truss lattices exhibit excellent mechanical properties compared to other
cellular material – cell topology combinations, and appear to be promising candidates for high tem-
perature applications where a robust mechanical performance is required.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

There are many ways to create 3D space filling cellular materials.
Periodic cellular structures, are constructed from unit cells with
honeycomb (Bitzer, 1997; Wadley, 2003, 2006; Dharmasena,
2008; Russell et al., 2008), tetrahedral (Sypeck, 2002; Kooistra,
2004, 2007; Lim and Kang, 2006), 3D Kagome (Lim and Kang,
2006; Lee et al., 2007; Park et al., 2011), octet truss (Bitzer, 1997;
Fuller, 1961) and pyramidal (Kooistra, 2007; Queheillalt, 2005;
Finnegan et al., 2007; Queheillalt et al., 2008) arrangements of webs
or struts. Tetrahedral, pyramidal and 3D Kagome unit cells require
struts or webs to connect their out of plane members in order for
them to become statically determinant, stretch-dominated struc-
tures (Deshpande et al., 2001). Space filling, structurally efficient
lattices can then be constructed by the assembly of these unit cells
in three dimensions. These statically determinate lattice structures
can act as a material in the sense that their properties are indepen-
dent of the size of the sample, provided its exterior dimensions are
large compared to those of its cells. However, in some sandwich
panel applications (Sypeck, 2002; Kooistra, 2004, 2007; Wang
et al., 2003) it may be preferable to use only the out of plane webs
or struts to maintain separation of the face sheets while utilizing
the faces to ensure unit cell static determinacy. Foams made from
polymers, metals or ceramics with interconnected or closed cells
also provide a means for filling space with a random arrangement
of cells (San Marchi et al., 2002). However, their cells have a vari-
able (but low) strut or web nodal connectivity, and are bending
dominated structures with moduli and strengths that decrease
rapidly as the fraction of solid material (their relative density) is
decreased (Deshpande et al., 2001).

Lattice structures with open cell intermediate face sheets
between the layers of inclined struts, such as the octet-truss lattice
(Bitzer, 1997; Fuller, 1961), have attracted considerable recent
interest since they are structurally more efficient than foams of a
similar density made from the same material. Recent casting
approaches have demonstrated the possibility of making octet-
truss lattices with strut lengths in the 5–10 mm range
(Deshpande et al., 2001), while self-propagating waveguide or laser
based stereo-lithographic methods, when combined with electro-
less nickel plating or vapor deposition have enabled fabrication
of micrometer scale structures (Torrents et al., 2012; Zheng et al.,
2014; Bauer et al., 2014) offering opportunities to exploit other
functionalities of materials available in the small length scale limit.

An octet-truss lattice structure is illustrated in Fig. 1, and was
first proposed by Fuller (1961), as a method for filling 3D space
with a structurally efficient truss structure of arbitrary cell size.
Its nodes form a face centered cubic structure, Fig. 1(b). Since the
structure has a high nodal connectivity of 12, its mechanical
response is stretch-dominated (Deshpande et al., 2001). When
made from high specific modulus and strength materials, the
octet-truss lattice is therefore a weight efficient, stress supporting
cellular topology, with a stiffness and strength predicted to scale
linearly with relative density, �q (the density of the structure divided
by that of the material from which it is made) (Wadley, 2006).
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Fig. 1. (a) An octet-truss lattice constructed by the 3D packing of unit cells. (b) A unit cell of the face centered cubic crystal symmetry octet-truss lattice is composed of a
central octahedral cell constructed with 12 struts that is bounded by 8 edge tetrahedrons. Each node within the octet lattice lies at the intersection of 12 struts.

Fig. 2. Material property charts comparing material stiffness (a) and strength (b) in
compression against density. The experimental data (unit cell response, Table 2)
and predicted range of these properties for the Ti–6Al–4V octet-truss lattice
structure fabricated here (Ti–6Al–4V snap fit octet lattice) have been included for
comparison with other octet lattice truss materials. The grey shaded areas define
regions that cannot be reached under ambient conditions.
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Material property charts are a useful way to compare the
mechanical properties of low density materials. Fig. 2 shows the
density dependent modulus and strength under compressive load-
ing for low density foams (polymer, metal and alumina) and space
filling lattice structures made from investment cast Al–7Si–0.3Mg
(Deshpande et al., 2001), Ti–6Al–4V and Ti–6Al–2Sn–4Zr–2Mo
alloys (Li et al., 2008a,b), similar structures made by electrodeposi-
tion of Ni–7P (Torrents et al., 2012; Zheng et al., 2014), from carbon
fiber laminate composites (Cheung and Gershenfeld, 2013), photo-
sensitive HDDA polymers (Zheng et al., 2014), and by the vapor
deposition of alumina (Zheng et al., 2014; Bauer et al., 2014). The
moduli and strengths of both foams and lattices scale with those
of the materials from which they are made (Gibson and Ashby,
1999; Ashby, 2000), but foams are substantially more compliant
and weaker than lattice topology counterparts (made with the
same density and material) for reasons identified above.

Octet-truss lattice structures made from low density metal
alloys with strut diameters in the millimeter range are potential
candidates for stress supporting aerospace applications. Light-
weight aluminum alloy octet-truss lattice structures have been
made by an investment casting (Deshpande et al., 2001) and by
3D additive manufacturing methods (Rosen, 2007; Chu et al.,
2010; Williams et al., 2011). However, these processes remain dif-
ficult to implement with the highest strength to weight ratio alloys
of aerospace interest. There is particular interest in making octet-
truss structures from titanium alloys since their strength to weight
ratio is approximately twice that of aluminum alloys. Many titani-
um alloys can also be used at continuous service temperatures well
above the limits of other light metal alloys based on aluminum or
magnesium (Kulekci, 2008; Ye, 2003). Some titanium alloys also
have excellent corrosion resistance, and are therefore widely used
in chemical processing equipment (Couper et al., 2009), and heat
exchangers (Lu et al., 1998; Boomsma et al., 2003). The Ti–6Al–
4V alloy is the most widely used titanium alloy, and accounts for
more than 50% of total titanium usage. Its uses include aircraft tur-
bine engine and structural components, fasteners, high perfor-
mance automotive parts, and a variety of marine applications
(Boyer et al., 1993; Ritchie et al., 1999; Brewer et al., 1998; Boyer
and Briggs, 2005; Froes et al., 2004; Gorynin, 1999).

Titanium alloy lattice structures have been fabricated with
aerospace-quality investment casting techniques (Li et al.,
2008a,b). While this approach has the potential to enable fabrica-
tion of complex shaped structures, it is costly to implement, and
requires development of methods to detect and repair the casting
defects often present in investment cast lattice structures (Wang
et al., 2003). Because of the cost and complexity of the titanium
investment fabrication process, there is very limited mechanical
property data for titanium-based lattice structures as a function
of their relative density, Fig. 2.
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Here, we explore the use of a simple ‘‘snap-fit’’ method
(Finnegan et al., 2007) for fabricating the struts and open face
sheets of planar octet-truss structures from thin plate material.
This assembly method is combined with vacuum brazing to
fabricate octet-truss lattices from a Ti–6Al–4V alloy sheet. The
mechanical responses of the titanium octet-truss lattices under
compression and shear have been experimentally investigated,
and their compressive and shear strengths and moduli determined
as a function of lattice density, and compared with microme-
chanical predictions to evaluate the inter relationships between
lattice topology, material properties and relative density.

2. Lattice fabrication, relative density and solid material
properties

2.1. Lattice fabrication

The octet-truss lattice structures were fabricated from Ti–6Al–
4V sheets of a single thickness, t = 1.59 mm, in a three step process
summarized schematically in Fig. 3. The truss row patterns,
Fig. 3(a), and intermediate (open cell) face sheets, Fig. 3(c), were
water jet cut from as-received Ti–6Al–4V sheets forming the
geometries shown in the two figures. Rows of trusses were
collinearly aligned and a second collinear array, oriented at 90�
to the first, was snap-fit attached to their tops forming a [0�/90�]
arrangement of trusses enclosing a pyramidal void shape,
Fig. 3(b). Control of the slot tolerance in the nodal regions enabled
a mechanically stable snap-fitted plane of pyramidal trusses to be
assembled in this way. The truss layer planes were then snap-fitted
into the crosses of the intermediate face sheet and the process
repeated to form the octet-truss lattice, Fig. 3(d). Samples with
square cross section trusses of width t, and various lengths, l, were
made to enable study of the truss slenderness ratio, t/l, upon
mechanical response. The geometric parameters defining the
structures assembled for testing are defined in Fig. 4 and their val-
ues summarized in Table 1 for each test structure. The maximum
gap (determined by the tolerances of the water-jet cutting process)
between struts meeting at the nodes was about 90 lm.

The snap-fit lattice was bonded using a vacuum brazing
approach. A 40Ti–20Cu–20Ni–20Zr (wt.%) braze alloy (Lucas Mil-
haupt) was first applied to the nodal regions of the assembled
structure. The alloy was applied as a powder carried in a polymer
binder. Brazing was accomplished by placing the lattice structures
in a high-temperature vacuum brazing furnace and heating at
10 �C/min to 500 �C, holding for 20 min to volatilize and remove
the polymer binder from the furnace, and then heating to 900 �C
for 30 min at a chamber pressure of �5 � 10�2 Pa. This braze alloy
has a solidus temperature of 848 �C. Once melted, it wetted this
titanium alloy well, and flowed freely to fill small gaps at the nodes
at the brazing temperature used in the study. After brazing, the
furnace was cooled at a rate of 45 �C/min, to 600 �C, at which tem-
perature a 20 min annealing was performed to reduce internal
residual stress. The furnace was finally cooled to ambient tem-
perature at a rate of 15 �C/min.

The strength of a brazed bond between two plates generally
decreases as the gap between them increases. Lap shear test cou-
pons with gaps of �90 lm were included in the brazing runs and
subsequently tested, in accordance with the ASTM D1002 standard,
to ensure adequate bond strength was achieved. The measured
shear strength of 40Ti–20Cu–20Ni–20Zr bonded Ti–6Al–4V sheets
was found to be approximately 450 MPa for a brazed joint gap of
about 90 lm.

Photographs taken from several orientations of one of the
brazed lattice structures later used for compression testing are
shown in Fig. 5. Octet-truss lattice structures for shear testing were
also manufactured with solid external face sheets to facilitate grip-
ping in a shear test fixture. Since the in-plane shear response of the
octet-truss core is anisotropic, the response is dependent on the
direction of shearing. The unit cell sketched in Fig. 4(c) specifies
the shearing direction by the angle, a = 45� or 0�. Photographs of
the shear samples for testing in both a = 45� and 0� orientations
are shown in Fig. 6 during their assembly process so that the orien-
tation of the lattice can be clearly seen. The top row of photographs
shows that a two cell wide, octet-truss core, orientated with
a = 45� can have either two or three nodal connections with the
solid face sheet through which shear loads were applied. Since
the number of nodal connections at the edge of a shear sample
influences the mechanical response, samples with two edge
geometries (identified as Type I and II), were fabricated, and also
shown at various stages of assembly in Fig. 6(a) and (b).

2.2. Relative density

A schematic drawing of the octahedral unit cell of the snap-fit
lattice is shown in Fig. 4(c) together with coordinate systems used
later. It also defines the geometric parameters of the lattice. Note
that for the square cross section truss, t = w, and we selected a truss
inclination angle x = 45� to balance the compressive and shear
responses of the structure. By calculating the volumes of regions
occupied by material, and scaling this by the unit cell volume,
the relative density, �q of the octahedral unit cell of the snap-fit
octet-truss lattice (including nodal mass contributions) is given by;
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and the geometric parameters are defined on Fig. 4.
Eq. (1) was arranged in this way to separate volume contribu-

tions from the trusses (first term of the numerator) and nodes.
Some further simplification can be achieved by introducing non-di-
mensional lengths; �t ¼ t=l, �b ¼ b=l, �c ¼ c=l; �htab ¼ htab=l, �h ¼ h=l and
�m ¼ m=l. As a result, �K1 ¼ K1=l2, �K2 ¼ K2=l, �K3 ¼ K3=l, and
�K4 ¼ K4=l, whereupon;
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It can be shown that in the limit of vanishing node size, Eq. (1)
reduces, in a first order approximation, to the relative density
expression for the ideal octet-truss lattice;

�qoct ¼ 6
ffiffiffi
2
p t

l

� �2

ð3Þ

Octet-truss lattice structures, with the extra mass of nodal mate-
rial accounted for, have a relative density given by Eq. (1), and were
fabricated with relative densities ranging from 2% to 16% by allow-
ing the strut length l to vary between 7 and 25 mm. All the lattice
structures had square cross section struts with a width, w and thick-
ness t = 1.59 mm, and node widths defined by b = 4.76 mm and



Fig. 3. Schematic illustration of the ‘‘snap-fit’’ truss fabrication and assembly method for making the Ti–6Al–4V octet-truss lattice.
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c = 2.24 mm. The relative densities calculated by either Eq. (1) (or by
Eq. (3)) ranged from 2.4% (or 3.4%) for the lowest density sample to
15.9% (or 43.3%) for the highest density sample.
2.3. Solid material characterization

A low magnification micrograph of the nodal region of a brazed
lattice structure taken in the backscattered electron imaging (BSE)
mode1 is shown in Fig. 7(a). It can be seen that the braze alloy wet-
ted the Ti–6Al–4V base metal and was drawn into both the narrow
and wider gaps between the truss members. High magnification
views of both narrow and wider gap areas, marked by dashed boxes
in Fig. 7(a) at the central bond line are shown in Fig. 7(b) and (c).
Since the brazing temperature (900 �C) was below the b-phase tran-
sus temperature (980 �C) for the Ti–6Al–4V alloy (Donachie, 2000),
the original equiaxed a-grain and intergranular b-phase microstruc-
ture of the original alloy was preserved. The average grain diameter
of the a-phase was about 7 lm, while the average thickness of the
b-phase was less than 1 lm, Fig. 8.

A brazed joint typically consisted of three zones marked 1, 2
and 3, Fig. 7(b). Region 1 was the diffusion zone with a fine
Widmanstätten structure in the base alloy near the interface
(Onzawa et al., 1990; Botstein and Rabinkin, 1994; Lugscheider
and Broich, 1995). Region 2 was a b-titanium rich zone next to
the diffusion zone, while region 3 was a brittle intermetallic phase
rich zone at the center of the braze filled region (at center of
Fig. 7(b)). The central (brittle intermetallic phase rich) zone could
be eliminated when the brazing joint clearance was sufficiently
small, as shown in Fig. 7(c). In this case, the brazed joint consisted
of only the diffusion and b-titanium phase zones with a total
thickness of approximately 90 lm. Elemental distribution maps
1 Lighter grey contrast regions correspond to areas with a higher concentration of
high atomic number elements.
corresponding to regions (b) and (c) of Fig. 7 are shown in
Fig. 7(d) and (e) respectively. They show the spatial distribution
of the alloy elements (Ti, Al, V) and those of the braze alloy
(Zr, Ni, and Cu) for both the narrow and wide gap regions of a braze
joint. Substantial lateral diffusion of Zr, Cu and Ni into the titanium
alloy had occurred in the narrow clearance region of a joint. How-
ever, the intermetallic rich region at the center of the wider gap
regions of a joint retained substantial Cu, Zr and Ni from the braze
alloy following the brazing recipe used here.

In order to later predict lattice mechanical properties, the uni-
axial tensile response of Ti–6Al–4V alloy subjected to the same
thermal history as the lattice structures was measured. The tensile
response measured at a strain rate of 10�4 s�1 is shown in Fig. 9.
The elastic (Young’s) modulus, Es and 0.2% offset yield strength,
rys were 123 GPa and 932 MPa, respectively. The tangent modulus,
Et (given by the slope of the true stress–true strain response of the
solid material at the inelastic bifurcation stress, rIE) was obtained
by differentiation of a modified Ramberg–Osgood fit (Rasmussen,
2003) to the measured stress–strain responses. The inelastic bifur-
cation stress was obtained using the tangent modulus theory (Gere
and Timoshenko, 1984; Shanley, 1967) as discussed in Section 4.2.
3. Compression and shear responses

The Ti–6Al–4V octet-truss lattices were tested at ambient tem-
perature in free compression and shear at a nominal strain rate of
3 � 10�4 s�1 in accordance with ASTM standards C365 and C273.
The ASTM C273 standard specifies use of a compression shear plate
configuration and a length to thickness ratio of the shear sandwich
panel larger than 12:1; however, a smaller length to thickness ratio
is also acceptable as later clarified by Adams (Adams, 2007). The
shear samples used here had a length to thickness ratio of about
4:1. The shear response was also dependent upon the direction
of loading with respect to the lattice orientation. Tests were



Fig. 4. The geometries with relevant design variables identified of (a) the out of
plane trusses and (b) the intermediate truss layer, (c) the unit cell of the snap-fit
modified octet-truss lattice with the Cartesian co-ordinate system and loading
directions also specified.
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therefore conducted at two orientations to determine the two
independent in-plane shear tensor strength and modulus
components. The measured load cell forces were used to calculate
the compressive and shear stresses applied to the structure. The
Table 1
Node and strut dimensions for the octet-truss lattices used in this study (unit: mm).

t w b c h

1.588 1.588 4.763 2.235 0.953
sample side lengths are defined using Figs. 5 and 6, as the distances
between the left-and-right edges of the samples while the top-
and-bottom edges were defined by the out-of-plane edge struts.
The volume occupied by the extra edge nodes was not taken into
account since they contribute neither stiffness nor strength (they
could be trimmed off if necessary without changing the mechani-
cal response). The loading directions are shown in Fig. 4(c). A laser
extensometer measured the compressive strain by monitoring the
displacements of the top and bottom perforated intermediate sur-
face layers, and the shear strain by monitoring the displacements
of the shear plates. Unloading–reloading cycles were conducted
prior to the onset of inelastic deformation in order to determine
the elastic stiffness components of the specimens.
3.1. Compression results

The z (through-thickness) direction compressive stress–strain
responses of the lattice structures are shown in Fig. 10. The respon-
se exhibited characteristics typical of cellular structures including;
a region of nominally elastic response, yielding, plastic strain hard-
ening to a peak in strength, followed by a drop in flow stress to a
plateau region and finally rapid hardening associated with contact
of the deformed struts with each other (densification). In contrast
to many foam topology materials, the drop in flow stress after
attainment of lattice strength was very large, and indicative of a
mechanical instability. Photographs of the lattice structures show-
ing characteristic plastic deformation behaviors in compression are
shown in Fig. 11.

The lowest relative density lattice (�q ¼ 2:4%) failed by elastic
buckling of the struts. Higher density samples failed by inelastic
buckling or yielding of the out-of-plane strut members as the
lattice strength was achieved. The out-of-plane struts continued
to buckle with increasing plastic strain, which resulted in
increased deflection of the struts and asymmetrical loading at
the nodes which caused nodal rotation. Strut buckling was
accompanied by a significant drop in flow stress. The in-plane
struts were also subjected to torsion and bending deformations
due to nodal rotations. Lateral (Poisson) expansion of the lattices
was also observed during compression without a lateral bound-
ary constraint. Plastic hinges were formed near the middle and
two ends of the out-of-plane struts. Truss fracture was finally
observed at the plastic hinges of the out-of-plane struts, and
for in-plane struts near their nodal connections due to the sig-
nificant deformation induced by the combined tension, bending
and torsion loading in these regions. The buckled trusses eventu-
ally contacted each other at the densification strain coincident
with rapid hardening of the flow stress versus strain curve. It
is noted here that the flow stress dropped quickly after the peak
in strength, which indicates less than the ideal energy absorp-
tion seen in some other structures (San Marchi et al., 2002;
Gibson and Ashby, 1999; Holloman et al., 2013). This effect is
attributed to the buckling instability of struts made from a low
strain hardening rate (tangent modulus) Ti–6Al–4V alloy. Table 2
summarizes the relative densities (calculated using Eq. (1)), t/l
ratios, elastic compressive moduli and compressive strengths of
the octet-truss lattice compression specimens.

The octet truss does not have long range buckling modes and so
we expect the one layer structure to give representative results for
the peak strength. However, post-peak collapse bands may be
htab x t0 m R

1.588 45� 1.270 1.346 5.080



Fig. 5. Photographs of a Ti–6Al–4V octet-truss lattice compression specimen with a relative density of 4.6%; (a) view in the compression loading direction, (b) a side view
showing the out-of-plane pyramidal struts and (c) an isometric view. (d) Shows a close-up of a brazed node at the side of the sample where three struts from above and below
meet two of the intermediate layer at a sample edge node.

Fig. 6. Photographs of octet-truss shear test structures with a relative density of 10.4%. (a) Corresponds to a Type I sample subsequently loaded at a = 45�, (b) to a Type II
sample also loaded at a = 45� and (c) is a sample to be tested at a = 0�. Photographs of the corresponding disassembled parts before brazing are used to illustrate the internal
truss structures.
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affected by the specimen size employed and will require investiga-
tion in future studies.

3.2. Shear results

The (001) in-plane shear stress–strain responses of the lattice
structures are shown in Fig. 12 for a = 45� and 0�. For test orienta-
tions with a = 45�, each unit cell has four out-of-plane strut mem-
bers loaded in compression and four in tension; whereas, in the
case of shear loading in the a = 0� direction, a unit cell has only
two out-of-plane strut members loaded in compression and two
in tension. The a = 45� samples were fabricated to investigate the
effect of the edge nodal connectivity. The Type I samples had a con-
cave edge truss geometry, Fig. 12(a), while that of the Type II cores
was convex, Fig. 12(b). It is evident that an end nodal deflection in
the z (through-thickness) direction will occur for a = 45� Type II



Fig. 7. (a) Cross-sectional SEM image (in BSE contrast mode) through a brazed node. Higher magnification views of the rectangular areas A and B are shown in (b) and (c)
respectively. Elemental composition maps are shown for region A in (d) and for region B in (e).

Fig. 8. Microstructure within the Ti–6Al–4V struts after the brazing heat treatment
(900 �C, 30 min). The a-phase grain size was approximately 7 lm.

Fig. 9. True tensile stress–strain response of the Ti–6Al–4V alloy after exposure to
the thermal cycle used for brazing. A modified Ramberg–Osgood fit to the stress–
strain response is also shown. The tangent modulus as a function of strain (obtained
as the derivative of the modified Ramberg–Osgood curve) is also overlaid on the
data.
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cores and for a = 0� cores under (001) in-plane shear loading.
However the end nodes of a = 45� Type I cores are stable under
(001) in-plane shear loading.

Most of the samples exhibited stress versus strain responses
typical of lattice sandwich cores including elastic behavior during
initial loading followed by work hardening until the lattice shear
strength was achieved. However, the lowest density sample
(�q ¼ 2:4%) failed by elastic buckling of the out-of-plane struts at
the peak in flow stress. Samples with higher relative densities ini-
tially failed by inelastic buckling or tensile yielding of the out-of-
plane struts. Continued loading eventually resulted in fracture of
the tensile loaded truss members near their nodes when the lattice
shear strength was reached. This was accompanied by an abrupt
drop in flow stress. Plastic buckling of some out-of-plane truss
members at the ends of the shear samples was observed prior to
attainment of the lattice shear strength. This was a manifestation
of the compressive loading component of the ASTM C273 test
method. Deflection of the edge nodes at the two ends of the shear
samples was observed in the cases of a = 0� and 45� Type II. Such
an edge effect is attributed to the lack of loading symmetry, which
resulted in a z (through-thickness) direction force at these end
nodes. The relative densities (calculated using Eq. (1)), t/l ratios,



Fig. 10. Compressive stress–strain responses of snap-fit Ti–6Al–4V octet-truss
lattice samples with different relative densities.
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elastic shear moduli and shear strengths of shear samples are sum-
marized in Tables 3–5.
4. DFA and generalized models for octet-truss lattice

The mechanical properties of the ideal octet-truss lattice
material (attained in the limit of vanishing node volume) have
been analyzed by Deshpande et al. (2001). This DFA model
examined an ideal octahedral cell, and the results apply to the
Fig. 11. Photographs of (a) the (100) and (b) the (110) planes of a lattice with �q ¼ 4:6%

total strain, e, increased.
octet-truss lattice constructed by a 3-D stacking of such octahedral
unit cells. It was shown that for small t/l, the contribution to overall
stiffness of the octet-truss lattice from the bending of the struts was
negligible compared to that from strut stretching. The DFA model
assumed pin-joined struts, and applied a first order approximation

to the relative density with the form �qoct ¼ 6
ffiffiffi
2
p

t
l

� �2 (Eq. (3)) which
slightly overestimates the relative density due to a double counting
of the small nodal volume. The DFA model assumed the octahedral
cell had a ‘‘face-centered-cubic’’ symmetry; there are three indepen-
dent elastic compliance constants, Sij (the contracted indices i and j
are ordered pairs of Cartesian indices) for a cubic system, i.e., the
set {Sxxxx, Sxxyy, Syzyz} (equivalent to {S11, S12, S44} with contracted
indices), and the linear elastic strain, ei and stress, rj tensor relation-
ship took the form (with Cartesian indices);

exx

eyy

ezz

eyz

exz

exy

2
666666664

3
777777775
¼

Sxxxx Sxxyy Sxxyy 0 0 0
Sxxyy Sxxxx Sxxyy 0 0 0
Sxxyy Sxxyy Sxxxx 0 0 0

0 0 0 Syzyz 0 0
0 0 0 0 Syzyz 0
0 0 0 0 0 Syzyz

2
666666664

3
777777775

rxx

ryy

rzz

ryz

rxz

rxy

2
666666664

3
777777775

ð4aÞ

where the components of elastic compliance matrix are given by;

Sxxxx Sxxyy Sxxyy 0 0 0
Sxxyy Sxxxx Sxxyy 0 0 0
Sxxyy Sxxyy Sxxxx 0 0 0

0 0 0 Syzyz 0 0
0 0 0 0 Syzyz 0
0 0 0 0 0 Syzyz

2
666666664

3
777777775
¼ 1

�qoctEs

9 �3 �3 0 0 0
�3 9 �3 0 0 0
�3 �3 9 0 0 0
0 0 0 12 0 0
0 0 0 0 12 0
0 0 0 0 0 12

2
666666664

3
777777775
ð4bÞ
during compression. The development of inelastic truss buckling can be seen as the



Table 2
Relative densities, t/l ratio, experimental and unit cell compressive moduli and strengths of the manufactured snap-fit Ti–6Al–4V octet-truss lattice compression specimens. The
relative densities were calculated using Eq. (1).

Strut length
(l, mm)

t/l Relative
density (�q) (%)

Sample compressive
stiffness (GPa)

Unit cell compressive
stiffness (GPa)

Sample compressive
strength (MPa)

Unit cell compressive
strength (MPa)

Energy absorption per unit
volume, Wv (MPa)

25.400 0.063 2.4 0.49 0.39 4.2 3.5 0.52
16.891 0.094 4.6 0.97 0.78 14.1 11.9 2.99
12.014 0.132 7.8 2.04 1.64 26.3 22.5 6.11
9.728 0.163 10.4 2.69 2.16 35.7 30.8 9.52
8.433 0.188 12.6 3.49 2.81 44.2 38.4 12.24
7.010 0.226 15.9 4.94 3.98 56.5 49.4 21.16
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where Es refers to the Young’s modulus of the strut material. The
principal material axes, as shown in Fig. 4(c), are defined as a Carte-
sian co-ordinate system for the analysis.

4.1. Stiffness predictions

The DFA model (Deshpande et al., 2001) predicts the z ([001]
through-thickness) direction Young’s modulus;

Ezz ¼ RE
el �qoctEs ¼

1
9

�qoctEs ð5Þ

where RE
el is the elastic compressive modulus coefficient with a val-

ue of 1/9, �qoct is the relative density given by Eq. (3), and Es is the
Young’s modulus of the solid material from which the lattice was

constructed. The relative compressive modulus, Ezz
Es
¼ 2

ffiffi
2
p

3
t
l

� �2, is lin-
early related to the elastic compressive modulus coefficient and
the ideal octet relative density, �qoct.

The (001) in-plane shear modulus is given by;

Gzx ¼ RG
el �qoctEs ¼

1
12

�qoctEs ð6Þ

where RG
el is an elastic shear modulus coefficient with a value of

1/12, and the relative (001) in-plane shear modulus is Gzx
Es
¼

ffiffi
2
p

2
t
l

� �2.

The relative shear modulus, Gzx
Es

is therefore linearly related to the

elastic shear modulus coefficient, RG
el, and the ideal octet relative

density, �qoct. The cubic symmetry dictates that the (001) in-plane
shear modulus is independent of the shear direction in this plane.

The DFA model predicts density independent (constant) elastic

stiffness coefficients RE
el and RG

el

� �
; a consequence the DFA models

analysis of an ideal octahedral cell without the nodal volume of
real samples taken into account. This can be addressed using the
free body diagram method (Finnegan et al., 2007), which shows
that the total external force required for each individual strut to
achieve an identical state of strain is a constant. As shown in
Appendix B, the elastic modulus coefficient, Rel, is linearly related
to the specimens octahedral cell height (H), its cross-section area
(A), and the relative density �q now given by Eq. (1);

Rel ¼ Kel
H

lA�q
ð7aÞ

The relative compressive modulus is then given by;

Ezz

Es
¼ RE

el �q ¼ KE
el

H
lA

ð7bÞ

The relative (001) in-plane shear modulus is given by;

G
Es
¼ RG

el �q ¼ KG
el

H
lA

ð7cÞ

where Kel is a constant with KE
el ¼ 2

3 t2 for the compressive modulus

coefficient, and KG
el ¼ 1

2 t2 for the (001) in-plane shear modulus coef-
ficient. The specimen octahedral cell height (H), its cross-sectional
area (A) and the relative density (�q) are all now functions of the
nodal geometry of the lattices tested here.

In the limiting DFA model case, H ¼
ffiffiffi
2
p

l, and A ¼ l2, and the
compressive modulus coefficient, relative compressive modulus,
shear modulus coefficient, and relative shear modulus given by

Eq. (7) reduce to 1
9, 2

ffiffi
2
p

3
t
l

� �2, 1
12, and

ffiffi
2
p

2
t
l

� �2 respectively (i.e. the DFA
model predictions). Eq. (7) is subsequently referred to as a gener-
alized octet-truss lattice elastic modulus model which can be used
to analyze the snap-fit octet-truss lattice whose struts do not make
contact at a node (non-zero values of b, c, h, htab, m, in Fig. 4) and
therefore contains extra nodal mass.

4.2. Strength predictions

4.2.1. Compressive strength
A stretch dominated cellular lattice may collapse under com-

pressive loading by elastic or inelastic buckling, or by plastic yield-
ing depending on the slenderness (t/l ratio for a solid strut of
length l and square cross section of side length t) of the struts.

At high relative densities, l tends towards t, and a lattice will fail
by yielding of the low aspect ratio struts. Lattice strength, rpk then
linearly scales with the yield strength, rys of the solid material, and
the load bearing area (i.e. relative density, �q) of the lattice;

rpk ¼ rys �qRr ð8Þ

where Rr is a lattice topology (strut orientation) dependent
strength coefficient (Wadley, 2006).

At low densities, struts are slender enough to collapse by elastic
buckling prior to compressive plastic yielding, and lattice strength
is obtained by replacing the strut material yield strength, rys in Eq.
(8), with the elastic buckling stress given by;

rE ¼
k2p2EsI

Al2
¼ k2p2Es

12
t
l

� �2

ð9Þ

where I is the second moment of area of the strut, A is the strut
cross-sectional area (I ¼ t4

12 ; A ¼ t2, for a solid strut with square
cross section of side length t) and the factor k is determined by
the end conditions on the buckling struts. If the ends of the struts
are pin-jointed, and can freely rotate k = 1 while selection of k = 2
corresponds to a strut whose ends are buried and cannot rotate dur-
ing buckling.

At intermediate relative densities, buckling occurs after the
stress in the strut has exceeded the proportional limit of the solid
material, but before the stress attains the ultimate strength of the
solid. In this case, the compressive strength of the lattice is con-
trolled by inelastic buckling at an inelastic bifurcation stress given
by the tangent modulus theory (Gere and Timoshenko, 1984;
Shanley, 1967). In this case the compressive strength is found by
replacing Es in Eq. (9) by the tangent modulus Et at an inelastic
bifurcation stress level, i.e., by replacing rE with rIE given by:



Fig. 12. Shear stress–strain responses for (a) Type I and (b) Type II Ti–6Al–4V octet-truss lattice shear specimens of different relative densities loaded in the a = 45� direction.
Lattice responses when loaded in the a = 0� direction are shown in (c). Photographs revealing the failure modes are also shown for Type I (d) Type II (e) and a = 0� (f) shear
samples all with �q ¼ 4:6%.
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rIE ¼
k2p2EtI

Al2 ¼ k2p2Et

12
t
l

� �2

ð10Þ

The DFA model for the ideal octet-truss lattice assumed the
strut material to be elastic-perfectly plastic with a tangent modu-
lus of zero; therefore the only mechanisms for lattice failure were
elastic buckling and plastic yielding. In the case of an ideal octet-
truss lattice with a vanishing node size, and with the principal axes
defined as shown in Fig. 4(c), the DFA model Deshpande et al., 2001
predicts the z (or [001]) direction compressive strength when the
elastic buckling failure mechanism is operative;
rpk
zz ¼

p2Es

36
�qoct

t
l

� �2

ð11Þ

The DFA model assumes k = 1 for the end conditions of the
struts, though the precise value is likely to be influenced by the
node design and the mechanical properties of the solid material
used to make the structure.

In the case of plastic yielding governed failure;

rpk
zz ¼

1
3

�qoctrys ð12Þ



Table 3
Relative densities, t/l ratio, experimental and unit cell shear moduli and strengths of
the manufactured snap-fit Ti–6Al–4V octet-truss lattice shear specimens (a = 0�). The
relative densities were calculated using Eq. (1).

Strut
length
(l, mm)

t/l Relative
density
(�q) (%)

Sample
shear
stiffness
(GPa)

Unit cell
shear
stiffness
(GPa)

Sample
shear
strength
(MPa)

Unit cell
shear
strength
(MPa)

25.400 0.063 2.4 0.35 0.28 2.3 1.9
16.891 0.094 4.6 0.69 0.55 6.7 5.6
12.014 0.132 7.8 — — — —
9.728 0.163 10.4 1.88 1.48 16.9 14.3
8.433 0.188 12.6 — — — —
7.010 0.226 15.9 3.60 2.84 28.5 24.4
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For a material with a non-zero tangent modulus, the inelastic
buckling criterion can be simply obtained by replacing Es in Eq.
(11) with Et, to give;

rpk
zz ¼

p2Et

36
�qoct

t
l

� �2

ð13Þ

In Eqs. (11)–(13), �qoct refers to that given by Eq. (3).
The snap-fit octet-truss lattice structures fabricated here have a

considerable node volume and struts ends are laterally separated
which requires the nodal geometry to be explicitly addressed.
Since the total external force required for each individual strut to
achieve an identical state of strain is a constant, a more general
expression for the compressive strength coefficient (Rr), assuming
pin-joined struts (k = 1), as a function of the specimen octahedral
cell cross-sectional area, A and relative density, �q was derived in
Appendix B;

Rr ¼ Kr
rc

A�q
ð14aÞ

and the relative compressive strength is defined as

rpk
zz

rys
¼ Rr �q ¼ Kr

rc

A
ð14bÞ

where Kr is a constant ¼ 2
ffiffi
2
p

t2

rys
and rc refers to the collapse strength

of a single strut, given by rys in the case of the plastic yielding fail-
ure mode or the critical buckling stresses given by Eqs. (9) and (10)
for the corresponding buckling failure modes, and �q in Eq. (14) is
that defined in Eq. (1). It can be shown that in the limit of vanishing
nodal volume, Eq. (14) reduces to the DFA model prediction (Eqs.
(11)–(13)).

4.2.2. The (0 0 1) in-plane shear strength
The (001) in-plane shear strength depends on the shear loading

direction in the plane. For a ¼ 0�, the measured shear strength spk
0�

is spk
zx, with the principal axes defined as shown in Fig. 4(c). The DFA

model for an ideal octet-truss lattice with vanishing node volume
Table 4
Relative densities, t/l ratio, experimental shear moduli and strengths of the
manufactured snap-fit Ti–6Al–4V octet-truss lattice shear specimens (a = 45�, Type
I). The relative densities were calculated using Eq. (1).

Strut length
(l, mm)

t/l Relative density
(�q) (%)

Shear stiffness
(GPa)

Shear strength
(MPa)

25.400 0.063 2.4 0.31 2.6
16.891 0.094 4.6 0.61 8.5
12.014 0.132 7.8 1.14 15.7
9.728 0.163 10.4 1.76 21.0
8.433 0.188 12.6 2.33 26.7
7.010 0.226 15.9 2.56 34.4
predicts (Deshpande et al., 2001) that failure by elastic buckling
results in a lattice shear strength given by;

spk
0� ¼ spk

zx ¼
p2Es

72
�qoct

t
l

� �2

ð15Þ

For failure by plastic yielding;

spk
0� ¼ spk

zx ¼
1
6

�qoctrys ð16Þ

When failure occurs by inelastic buckling;

spk
0� ¼ spk

zx ¼
p2Et

72
�qoct

t
l

� �2

ð17Þ

In Eqs. (15)–(17) �qoct is that defined in Eq. (3).

In the case of a ¼ 45�, the measured shear strength, spk
45� , of the

ideal octet-truss lattice when failure occurs by elastic buckling is
given by;

spk
45� ¼

ffiffiffi
2
p

p2Es

72
�qoct

t
l

� �2

ð18Þ

When failure occurs by plastic yield, the shear strength is;

spk
45� ¼

ffiffiffi
2
p

6
�qoctrys ð19Þ

While for inelastic buckling, the shear strength is given by;

spk
45� ¼

ffiffiffi
2
p

p2Et

72
�qoct

t
l

� �2

ð20Þ

Eqs. (18)–(20) are DFA model predictions, and �qoct therefore
refers to that given by Eq. (3).

A more general expression for the (001) in-plane shear strength
coefficient (Rs) of the snap-fit octet-truss lattice can be written as a
function of the specimen cross-sectional area, A and relative densi-
ty, �q (see Appendix B);

Rs ¼ Ks
rc

A�q
ð21aÞ

While the relative (001) in-plane shear strength is;

s
rys
¼ Rs �q ¼ Ks

rc

A
ð21bÞ

where Ks is a constant. For a ¼ 0�, Ks ¼
ffiffi
2
p

t2

rys
while for a ¼ 45�,

Ks ¼ 2t2

rys
, if it is assumed that the struts are pin-joined. In Eq. (21),

�q now refers to that given by Eq. (1).

5. Comparison of predictions with measurements

Before comparisons between the measured and modeled prop-
erties of the snap-fit lattice can be made, it is necessary to adjust
the measured properties of the compression, Fig. 5(c) and a ¼ 0�

shear samples, Fig. 6(c), to account for edge struts that belong to
Table 5
Relative densities, t/l ratio, experimental shear moduli and strengths of the
manufactured snap-fit Ti–6Al–4V octet-truss lattice shear specimens (a = 45�, Type
II). The relative densities were calculated using Eq. (1).

Strut length
(l, mm)

t/l Relative density
(�q) (%)

Shear stiffness
(GPa)

Shear strength
(MPa)

25.400 0.063 2.4 0.22 2.0
16.891 0.094 4.6 0.41 6.2
12.014 0.132 7.8 — —
9.728 0.163 10.4 1.07 15.6
8.433 0.188 12.6 — —
7.010 0.226 15.9 1.89 25.6



Fig. 13. Comparisons between the measured and model predicted relative elastic moduli (normalized by solid material modulus) as a function of (t/l)2 and relative density �q
for the snap-fit lattice. The corresponding predictions of the DFA model (which assumes a vanishing node volume) and the generalized octet-truss lattice model (which
accounts for the nodal separation and additional nodal mass of the snap-fit structure) are shown in (a) and (c) as a function of the strut aspect ratio. ‘‘Generalized lattice
model’’ is the abbreviation of ‘‘generalized octet-truss lattice model’’.
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the unit cells of a larger area sample. These edge struts of partial
unit cells contribute both stiffness and strength to the samples
mechanical response. If it is assumed the edge struts of adjacent
cells behave in the same manner as their inner strut counterparts,
the total force required to deform the counterpart lattice without
redundant edge struts can be shown (by taking the ratio of the
number of out-of-plane struts that contribute stiffness/strength
in lattices without extra edge struts to the total number of out-
of-plane struts in the tested samples. All the out-of-plane struts
contribute stiffness/strength for compression samples, whereas
only the 0� orientated out-of-plane struts are taken into account
for the a ¼ 0� shear samples) to be 4/5 that of the snap-fit lattice
samples actually tested. The strength of a lattice without extra
edge struts is then given by this applied force divided by its
cross-sectional area, and is subsequently defined as the unit cell
strength; the unit cell stiffness is then obtained as this stress divid-
ed by the imposed strain. It is noted here that the manufactured
samples have a height of H + t; whereas, the octahedral cell as
shown in Fig. 4(c) has a height of H. Tables 2 and 3 summarize
the sample and unit cell moduli and strengths of both the compres-
sion and a ¼ 0� shear lattice samples. Since there are no redundant
out-of-plane edge struts in the a ¼ 45� shear lattice samples tested
here; the definition of ‘‘unit cell stiffness/strength’’ was not used in
the a ¼ 45� case.

The mechanical properties of a lattice reviewed in Section 4, are
a function of its number and orientation of struts and the strut t/l
ratio, as well as strut material mechanical properties. The nodes
are parasitic mass which do not change the strut response, as long
as k, the factor accounting for the rotational stiffness of the truss
ends, is not affected. The unit cell elastic moduli for compression

and a ¼ 0� shear samples are therefore plotted against t
l

� �2, in
Fig. 13(a) and (c), and the relative compressive and shear strengths

against t
l

� �2 in Figs. 14(a) and 15(a) and (c) since this abscissa scales
with the relative density of both an ideal octet-truss lattice and the
snap-fit structure. The DFA model predictions are overlaid on these
results. The elastic moduli are also plotted against the snap-fit
structures relative density, �q, which includes the parasitic nodal
mass (as given by Eq. (1)), in Fig. 13(b) and (d), and the strength
data in Figs. 14(b) and 15(b) and (d). Generalized octet-truss lattice

model predictions are plotted against both t
l

� �2 and the snap-fit
structures relative density, �q, which takes into account the extra
nodal volume, on all the figures.

The relative elastic moduli (Ezz=Es and G=Es) for the snap-fit Ti–
6Al–4V octet-truss lattice structure deduced from the measured
unit cell relative elastic moduli for compression and a ¼ 0� shear

samples are shown in Fig. 13 as a function of t
l

� �2 and the snap-
fit structures relative density �q. Examination of Fig. 13(a) and (b)
shows that the compressive modulus data is over predicted by
the DFA model but is in excellent agreement with the generalized
octet-truss lattice model which accounts for actual nodal geometry
of the tested samples. Fig. 13(c) and (d) show three sets of
experimental data for the relative shear moduli measured at
a = 0�, and for both the Type I and II shear structures tested at
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a = 45�. It is evident that the DFA model is unable to predict the
snap-fit structures responses; a consequence of the strut separa-
tion at the nodes. By taking into account the nodal geometry, the
generalized octet-truss lattice model predictions agree well with
the a = 45� Type I and a = 0� measurements. However, the general-
ized shear modulus model is still unable to predict the a = 45� Type
II structure response as well. In the DFA model, nodal rotations
during shear loading were constrained by symmetry during the
analysis. In the a = 45� Type II case experiments, insufficient nodal
connectivity at the end nodes of the finite length samples led to
substantial nodal rotation, Fig. 12(e). The edge struts connecting
these end nodes then made a reduced (negligible) contribution to
the core stiffness since they underwent little axial (stretching)
deformation. If the stiffness contribution from the edge struts con-
necting the end nodes (a quarter of the struts) is neglected, the
shear stiffness of the as manufactured a = 45� Type II core would
be approximately 3/4 (by taking the ratio of the number of out-
of-plane struts that contribute stiffness to the total number of
out-of-plane struts in the tested a = 45� Type II shear samples) that
of a = 45� Type I core. The generalized octet-truss lattice shear stiff-
ness model prediction for the a = 45� has been multiplied by 3/4,
and is shown to then be in good agreement with the a = 45� Type

II measurement when plotted against t
l

� �2 in Fig. 13(c) or the snap-
fit structures relative density in Fig. 13(d).

The relative unit cell compressive strength as a function of the

snap-fit structures t
l

� �2 ratio and relative density are shown in
Fig. 14(a) and (b). The unit cell data is compared with both the
DFA model and generalized octet-truss lattice model predictions.
The trend in the experimental data changed abruptly at
�q ¼ 0:046 as the failure mechanism changes from elastic to inelas-
tic buckling of the out-of-plane struts. The measurements are in
good agreement with the generalized octet-truss lattice models
for these two mechanisms: at low relative density (�q < 0:046),
the measurements follow the elastic buckling model. The measure-
ments then become consistent with the inelastic buckling model
when �q > 0:046. Since the Ti–6Al–4V alloy exhibits low strain
hardening, the inelastic buckling model converges rapidly with
the plastic yielding model when �q > 0:10. The generalized octet-
truss lattice model slightly underestimated the compressive
strength for �q > 0:13; consistent with increased node rotation
resistance for high t/l ratios. The generalized octet-truss lattice
model assumed pin-joined struts at these nodes, (k = 1). However
the nodes of the stubby struts appear to have a rotational stiffness
k that lies between 1 and 2 for the octet-truss lattice structures
made here.

Fig. 15 shows the relative (001) in-plane shear strength of
the shear samples versus their relative density and compares
them with both the DFA model and the generalized octet-truss
lattice model predictions for (a) a = 45� (001) in-plane shear
and (b) a a = 0� (001) in-plane shear. Like the compressive
responses, the experimental data changed abruptly at
�q ¼ 0:046, which is consistent with a change of failure mode
from elastic to inelastic buckling. Again, the DFA model is not
able to predict the shear strengths of the snap-fit lattices. The
generalized octet-truss lattice model is able to predict the shear
strength of the a = 0� and Type I a = 45� samples: the measure-
ments follow the elastic buckling mode at low relative density
(�q < 0:046), with a transition to the inelastic buckling mode at
�q � 0:046, and to the plastic yielding mode beyond �q � 0:1.
However, the generalized octet-truss lattice model fails to pre-
dict the case of a = 45� Type II. The discrepancies again arise
from the sample edge effect as mentioned above: the out-of-
plane edge struts connecting the end nodes suffer minimal axial
deformations, and thus make a negligible contribution to the in-
plane shear strength of the core. Since the fraction of out-of-
plane struts that do not suffer an edge effect is 3/4 of the total
pyramidal struts, we estimate that the in-plane shear strength
of the a = 45� Type II cores should be approximately 3/4 that
of a = 45� Type I cores; the measurements are consistent with
this prediction by multiplying 3/4 to the generalized octet-truss
lattice model shear strength prediction for a = 45� Type I cores
(Fig. 15(c)). Comparison of model results and measurements
indicates that for low aspect ratio octet-truss lattice structures,
the in-plane shear strength is sensitive to boundary conditions
when the edge nodes have insufficient nodal connectivity to
induce strut stretching.
6. Comparisons with competing materials

The measured compressive moduli and strengths of the snap-fit
Ti–6Al–4V octet-truss lattices investigated here were included in
the material property charts of Fig. 2. These two maps do not show
the properties of other anisotropic topology cellular structures,
which excel in performance under some loading conditions but
are inferior in others. The properties of the titanium octet-truss lat-
tice are clearly superior to the lattice structures made from invest-
ment cast Al–7Si–0.3Mg (Deshpande et al., 2001), Ti–6Al–4V, and
Ti–6Al–2Sn–4Zr–2Mo alloys (Li et al., 2008a,b), as well as Ni–7P
deposited via electrodeposition (Torrents et al., 2012), lattices
made from carbon fiber laminate composites (Cheung and
Gershenfeld, 2013), photosensitive HDDA polymers and vapor
deposited alumina (with solid trusses) (Zheng et al., 2014), and
are very competitive with the Al2O3-polymer hybrid octet-truss
lattices (Bauer et al., 2014).

The Ti–6Al–4V octet-truss lattices investigated here are more
robust than brittle Al2O3 counterparts, and are expected to retain
good dimensional stability during loading at temperature up to
approximately 400 �C. However, a solid truss has a lower second
area moment than a hollow truss and thus a lower resistance to
elastic buckling; the strengths of the titanium octet-truss lattices
with solid trusses loaded in compression are therefore inferior to
the electrodeposited hollow truss alumina and Ni–7P octet-truss
lattices (Zheng et al., 2014) for densities lower than 0.18 Mg/m3

where the elastic buckling failure mechanism of the solid struts
is dominant (solid model prediction line shown in Fig. 2(b)). How-
ever, it is evident that the predicted compressive moduli of the
titanium octet-truss lattices are superior to the hollow truss Ni–
7P octet-truss lattices (Zheng et al., 2014) and very competitive
with the hollow truss alumina octet-truss lattices (Zheng et al.,
2014) at the lower density range (<0.18 Mg/m3).

The shear moduli and strengths of the Ti–6Al–4V octet-truss
lattices are compared with those of metal and polymer foams
and several engineering alloys and carbon fiber reinforced poly-
mers (CFRP) in Fig. 16. They are significantly superior to foamed
structures and may therefore provide interesting opportunities
for high temperature sandwich panel and thermal management
applications.
7. Conclusions

1. Ti–6Al–4V octet-truss lattice structures with relative densities
in the range 2–16% have been manufactured via a snap-fit
and vacuum brazing approach.

2. The lattice structures elastic stiffness constants and strengths
have been measured under through-thickness free compression

and in-plane shear loading as a function of t
l

� �2 and the snap-fit
structures relative density. The failure mechanism changes
from elastic buckling to inelastic buckling at a relative density
of about 0.05.



Fig. 14. Predicted and measured relative compressive strength (normalized by the
solids yield strength) plotted against (a) (t/l)2 and (b) relative density �q of the snap-
fit structure. Both the DFA model and generalized octet-truss lattice model
predictions are shown in (a) as a function of strut aspect ratio. ‘‘Generalized lattice
model’’ is the abbreviation of ‘‘generalized octet-truss lattice model’’.
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3. The moduli and strengths of the manufactured octet-truss lat-
tice structures are well predicted by a generalized octet-truss
lattice model. However, the (001) in-plane shear moduli and
strengths are sensitive to boundary conditions for small aspect
ratio octet-truss lattice structures.

4. The Ti–6Al–4V octet-truss lattices exhibit excellent overall
mechanical properties competitive with existing materials and
topologies, and appear to be a promising candidate for high
temperature, sandwich panel and other applications.
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Appendix A. Modified Ramberg–Osgood fitting

The true tensile stress–strain curve was separated into two
parts and fitted separately.

For r < r0:2, n = 85, E0 = 123 GPa, r0:2 ¼ 932 MPa, Ramberg–Osgood
fitting
e ¼ r
E0
þ 0:002

r
r0:2

� �n

For r > r0:2, a modified Ramberg–Osgood fitting (Rasmussen,
2003) was applied by moving both vertical and horizontal axes
from the origin to a selected point which enabled a smooth
transition between the two fitting curves. This new origin had
coordinates e1 ¼ 0:0085, r1 ¼ 925 MPa, with an initial Young’s
modulus E1 = 9.77 GPa, The fitting coefficients for the modified
Ramberg–Osgood relation were then n ¼ 1:7, eu ¼ 0:1105,
ru ¼ 1110 MPa, with

e� e1 ¼
r� r1

E1
þ eu � e1 �

ru � r1

E1

� �
r� r1

ru � r1

� �n
Appendix B. Generalized octet-truss lattice model

B.1. Compression

B.1.1. Compressive modulus
Consider an edge clamped out-of-plane strut of the octahedral

cell with length l and square cross section of side length t as shown
in Fig. A1(a). During free compression, both ends of an out-of-plane
strut are able to move due to the Poisson effect of the octahedral
cell. Fig. A1 illustrates the deformation behavior of an end clamped
out-of-plane strut when the octahedral cell is under free compres-
sion. The corresponding free body diagram of such a strut is shown
in Fig. A1(b). With an imposed displacement at one end along z
direction denoted as dzz, the lateral displacement at the other end
along x direction denoted as dxx, the axial force FA and shear force
FS in the strut are given by elementary beam theory

FA ¼ Est2 ðdzz sin x� dxx cos xÞ
l

ðA-1aÞ

FS ¼
12EsIðdzz cos xþ dxx sinxÞ

l3 ðA-1bÞ

where Es is the Young’s modulus of the solid material, x is strut
inclined angle (=45�), I is the second moment of area of the strut
cross section given by I = t4/12 for square cross section of side
length t. The total applied force, Fstrut, on such a single strut in the
z direction follows as

Fstrut ¼ FA sinxþ FS cos x ðA-2aÞ

Eq. (A-2a) applies for fixed-end (built-in) struts (k = 2); for pin-
joined struts (k = 1), the contribution to the stiffness due to the
bending of the struts is negligible, and Eq. (A-2a) reduces to

Fstrut ¼ FA sinx ¼ Est2ðdzz � dxxÞ
2l

ðA-2bÞ

In the case of pin-joined struts, the basic force analysis showed
that the lateral displacement dxx is related to the vertical displace-
ment dzz by

dxx ¼
1
3

dzz ðA-3Þ

Therefore, Eq. (A-2b) reduces to

Fstrut ¼ FA sinx ¼ Est2dzz

3l
ðA-4Þ

Now consider the octahedral cell sketched in Fig. A1(a). The
total force, F, applied on the octahedral cell in the z direction is
equal to 4Fstrut; stress, rzz and strain, ezz applied to the octahedral
cell are related to the force F and displacement dzz via;

rzz ¼
F
A
¼ 4Est2dzz

3lA
ðA-5Þ



Fig. 15. Predicted and measured relative shear strength for a = 45� plotted against (a) (t/l)2 and (b) relative density �q of the snap-fit structure. Both the DFA model and
generalized octet-truss lattice model predictions are shown in (a) and (c). Analogous results for loading at a = 0� are shown in (c) and (d). ‘‘Generalized lattice model’’ is the
abbreviation of ‘‘generalized octet-truss lattice model’’.
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and

ezz ¼
2dzz

H
ðA-6Þ

where H is octahedral cell height H ¼ 2ðl sinxþ hþ 2htabÞ, A is

cross-sectional area (A ¼ 2l cos xþbþcffiffi
2
p

� �2
), as shown in Fig. 4(c). The

effective Young’s modulus Ezz of the octahedral cell in free compres-
sion is then given by;

Ezz ¼
rzz

ezz
¼ 2t2

3
H
lA

Es ðA-7Þ

Eq. (A-7) can be expressed in terms of the relative compressive
modulus as

Ezz

Es
¼ 2t2

3
H
lA
¼ Kel

H
lA

ðA-8Þ

with Kel ¼ 2
3 t2.

B.1.2. Compressive strength
Eq. (A-5) gives the compressive stress rzz applied to the octahe-

dral cell in the z direction; the corresponding axial stress rA in an
out-of-plane strut is given by

rA ¼
Esðdzz � dxxÞffiffiffi

2
p

l
¼

ffiffiffi
2
p

Esdzz

3l
ðA-9Þ

Therefore, the stress applied to the octahedral cell, rzz, can be
expressed in terms of the axial stress, rA, in an out-of-plane strut;
rzz ¼
2
ffiffiffi
2
p

t2

A
rA ðA-10Þ

The out-of-plane strut can support load until its collapse
strength rc is achieved. Therefore, the lattice strength is given by

rpk
zz ¼

2
ffiffiffi
2
p

t2

A
rc ðA-11Þ

Eq. (A-11) can be expressed in terms of the relative compressive
strength of the lattice as

rpk
zz

rys
¼ 2

ffiffiffi
2
p

t2rc

rysA
¼ Kr

rc

A
ðA-12Þ

where Kr is a constant =2
ffiffi
2
p

t2

rys
; rys is the yield strength of the solid

material.

B.2. (001) in-plane shear

B.2.1. (001) in-plane shear modulus
Consider the octahedral cell sketched in Fig. A1(a) with an

applied in-plane shear displacement d0 applied to the top node of
the octahedral cell in the direction defined by an angle a
(0� 6 a 6 45�, due to symmetry). Such a displacement can be
resolved into two components perpendicular to each other as;

d0x ¼ d0 cos a ðA-13aÞ

and

d0y ¼ d0 sin a ðA-13bÞ



Fig. 16. Material property charts showing (a) the shear modulus and (b) the shear
strength experimental data (45� Type I) and model predictions (solid curves) for the
snap-fit Ti–6Al–4V octet lattices investigated here. The shear properties of polymer
and metal foams and several solid materials are also shown for comparison.
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Fig. A1(c) shows an edge clamped strut with length of l and side
length t (width equals to length) and its free body diagram repre-
senting a single out-of-plane strut of an octahedral cell. Symmetry
Fig. A1. Sketch of the deformation of a single out-of-plane strut under uniaxial compressi
and shear forces present when the unit cell is under uniaxial free compression (b) or in
condition dictates that displacements and rotations of nodes apart
from the top and bottom shown in Fig. A1(a) are constrained. The
axial and shear displacements applied to the strut within the plane
parallel to the d0x direction are;

d0a ¼ d0x cos x ðA-14aÞ

and

d0s ¼ d0x sin x ðA-14bÞ

with such a strut subjected to either compression or tensile dis-
placement. According to elementary beam theory, the axial and
shear forces in such a strut are given by

F 0A ¼ Est2 d0x cos x
l

ðA-15aÞ

and

F 0S ¼
12EsId

0
x sin x

l3 ðA-15bÞ

The total force applied along the d0x direction of a unit cell is

F 0x ¼ 2 F 0A cos xþ F 0S sin x
� �

¼ Est2d0x
l

1þ t
l

� �2
" #

ðA-16aÞ

The force applied along the d0y direction is;

F 0y ¼ 2 F 0A cos xþ F 0S sin x
� �

¼
Est2d0y

l
1þ t

l

� �2
" #

ðA-16bÞ

It is noted that Eq. (A-16) was derived assuming fixed-end
(built-in) struts (k = 2); for pin-joined struts (k = 1), the contribu-
tion to the stiffness due to the bending of the struts is negligible,

and the ðt=lÞ2 related terms (i.e., F 0S terms) in Eq. (A-16) disappear,
and the total shear force, F 0, applied on the unit cell is then

F 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 02x þ F 02y

q
¼ Est2d0

l
ðA-17Þ

The total shear stress applied on the unit cell is thus

s ¼ F 0

A
¼ Est2d0

Al
ðA-18Þ

The shear strain

c ¼ 2d0

H
ðA-19Þ
on and in shear. Free body diagram for such a strut showing the combination of axial
shear (c).
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Therefore, the shear modulus of the lattice is

G ¼ s
c
¼ t2H

2Al
Es ðA-20Þ

Eq. (A-20) can be expressed in terms of the (001) in-plane rela-
tive shear modulus as

G
Es
¼ t2H

2Al
¼ Kel

H
Al

ðA-21Þ

with Kel ¼ 1
2 t2.

B.2.2. (001) in-plane shear strength
Eq. (A-18)represents the total shear stress applied on the unit

cell ((001) in-plane shear). The axial stress in an out-of-plane strut
is given by

rA ¼
Esd

0 cos affiffiffi
2
p

l
ðA-22Þ

Therefore, the (001) in-plane shear stress applied to the octahe-
dral cell, s, can be expressed in terms of the axial stress, rA, in an
out-of-plane strut;

s ¼ rA

ffiffiffi
2
p

t2

A cos a
ðA-23Þ

The out-of-plane strut can support load until its collapse
strength rc is achieved. Therefore, the lattice shear strength is
given by

spk ¼ rc

ffiffiffi
2
p

t2

A cos a
ðA-24Þ

Eq. (A-24) can be expressed in terms of the (001) in-plane rela-
tive shear strength of the lattice as

spk

rys
¼

ffiffiffi
2
p

t2

rys cos a
rc

A
¼ Ks

rc

A
ðA-25Þ

where Ks is a constant =
ffiffi
2
p

t2

rys cos a.

Appendix C. Brazed joint minimum shear strength prediction

For the octahedral cell shown in Fig. 4(c), the contact area of
pyramidal struts with the intermediate layer at a node is given by;

Anode ¼ 2bt � t2 ðA-26Þ

Eq. (A-24) indicates that the peak shear force applied to the
octahedral cell is

spkA ¼ rc

ffiffiffi
2
p

t2

cos a
ðA-27Þ

To avoid node shear fracture dominated behavior, the brazed
joint requires a sufficient shear strength to prevent node shear
fracture prior to the attainment of peak stress under (001) in-
plane shear. The minimum shear strength required for the brazed
joint, sbraze is therefore,

sbraze Anode P spkA ¼ rc

ffiffiffi
2
p

t2

cos a
ðA-28Þ

When a ¼ 45�,

sbraze P rc
2t

2b� t
ðA-29Þ

If we conservatively take rc ¼ 1:1 GPa (see Fig. 9) as the col-
lapse strength of a single solid strut (an upper limit for rc),
sbraze P 440 MPa. The measured shear strength of the brazed joint
was 450 MPa; just sufficient to prevent node shear fracture becom-
ing the dominate failure mechanism for the shear samples
manufactured and tested here.

It is also noted that, the node area (2bt � t2) used for the calcu-
lation above is an overly conservative estimate of brazed joint sur-
face area (i.e. the trusses contact area) at a node. In reality, the
brazed joint surface area at a node is larger ð6bt � t2Þ, as the inter-
mediate layer struts also meet the pyramidal struts at this node.
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