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a b s t r a c t 

The problem of a Timoshenko beam of finite length loaded by concentrated forces and couples and per- 

fectly bonded to a homogeneous elastic and isotropic half plane is considered in the present work. In 

particular, the effects induced by shear deformation of the beam on the contact stresses arising at the 

interface between the beam and the underlying half plane are investigated accurately. An asymptotic 

analysis of the stress field at the beam ends and in the neighborhood of the loaded section of the beam 

allows us to characterize the singular nature of the peeling and shear stresses. The problem is formu- 

lated by imposing the strain compatibility condition between the beam and the half plane, thus leading 

to a system of two singular integral equations with Cauchy kernel. The unknown interfacial stresses are 

expanded in series of Jacobi orthogonal polynomials displaying complex singularity. This approach allows 

us to handle the oscillatory singularity and to reduce the integral equations to a linear algebraic sys- 

tem of infinite equations for the unknown coefficients of the interfacial stresses, which is solved through 

a method of collocation. The interfacial peeling and shear stresses and, in turn, the displacement field 

along the contact region have been calculated under various loading conditions applied to the beam. The 

internal forces and bending moments along the beam have been calculated varying the shear and flexu- 

ral stiffness of the beam. The complex stress intensity factors and the strength of the stress singularities 

have been assessed in detail. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Contact problems between beams, plates, bars, strips etc. and

an elastic substrate attracted a lot of interest in the field of solid

mechanics in order to predict the mechanical behavior of a va-

riety of composites systems, specially used in civil and mechan-

ical engineering. As an example, steel panels and plates are of-

ten stiffened by metallic strip-like elements in order to increase

their out-of-plane strength, their bending stiffness and, in turn,

their buckling load. This is a key issue concerning offshore plat-

forms, bridge decks and other kinds of structures which require

high-performance mechanical behavior, avoiding excessive weight

and materials consumption (e.g. Grondin et al . , 1999 ). 

Fibre reinforced polymer (FRP) bonding is widely used as an ef-

fective method to strengthen existing reinforced concrete (RC) ele-

ments, thus improving their resistance and toughness and, in turn,

their service life. Typical failure mode affecting this kind of sys-
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ems occurs with an interfacial crack between the FRP stiffener and

he RC plate, growing toward the free ends of the stiffener ( Oehlers

nd Seracino, 2004 ). 

In the framework of civil engineering, simplified analyses of

he soil-structure interaction are usually performed by modeling

he building foundations like beams (for strip-like foundation) or

lates (for raft foundation) supported by an elastic half plane (e.g.

olf, 1988 ). 

In the last decades, the scientific community has focused its at-

ention in renewable energy generators. Among these, a promis-

ng technique to produce “green” energy consists in applying

iezoelectric patch-like or strip-like transducers to existing flexible

tructures (typically, cantilever beams and walls), thus converting

he vibration motion of the hosting structural elements into elec-

rical energy. Similarly, smart sensors and actuators can be applied

o existing structures to monitoring their mechanical behavior in

ime (e.g. Lin and Liu, 2006 ). 

In microelectronics, many MEMS and NEMS like bulk acoustic

esonators, high density capacitors, coplanar plate varactors, skin-

ike circuits, crystalline undulators (e.g. Guidi et al., 2007; Lan-

oni et al., 2008; Lanzoni and Radi, 2009 ) and other miniaturized

ackages involve thin films and coatings deposited onto a sub-

trate ( Gevorgian, 2009 ; Shen, 2010 ). These microsystems are often

http://dx.doi.org/10.1016/j.ijsolstr.2016.04.021
http://www.ScienceDirect.com
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ubjected to high residual stresses taking place during their fab-

ication process (a comprehensive reference about the mechani-

al behavior of piezoelectric multilayer actuators can be found in

allas, 2007 ). 

In order to predict the mechanical response of this kind of com-

osite structures, a proper investigation of the stress and strain

elds arising at the interface is mandatory. Special attention must

e paid to stress and strain concentrations which can lead to loss

f adhesion, debonding and other damaging phenomena affecting

he durability and stability of this kind of devices. 

In many studies, films (or stiffeners) bonded to a compliant

ubstrate are modeled like bars or membranes, neglecting their

ending stiffness. Such an assumption allows ignoring the in-

erfacial peeling stress. As an example, Arutiunian (1968) solved

he problem of a thin film bonded to an elastic half plane sub-

ected to a thermal variation. Later, a simpler method was adopted

y Erdogan and Gupta (1971) and Morar and Popov (1971) , who

olved the problem of a strip bonded to a half plane subjected to

xial loads applied at the ends of the coating. Using a similar ap-

roach, Guler (2008) considered the problem of thin cover plates

onded to a graded substrate. A detailed analysis about the stress

ingularity in thin films welded to an elastic half plane under var-

ous loading conditions can be found in Lanzoni (2011) (for the

tress singularities of a membrane stiffener with variable thickness

ee also Erdogan and Ozturk, 2008 ). A bar model has been adopted

y Villaggio (2003) to study the brittle detachment of a stiffener

elded to an elastic plate. 

A number of numerical analyses have been also performed to

tudy the mechanical behavior of single or multi-layered systems

nvolving thin films and coatings. As an example, finite element–

oundary integral equation methods (FE-BIE) have been widely

sed to investigate bars and membranes bonded to an elastic half

lane (e.g. Takahashi and Shibuya, 1997, 2003; Tullini et al, 2012 ).

n these studies, the problem is devised by using a mixed varia-

ional formulation involving the Green function for the half plane. 

Nonetheless, if the coating flexural stiffness becomes significant,

hen the membrane models become inappropriate and the bend-

ng rigidity of the coating must be necessarily taken into account.

n this case, both shear and peeling stresses arise at the interface

etween the cover and the substrate. 

One of the earliest studies concerning the contact problem

mong beam elements has been performed by Timoshenko (1925) .

his author studied a bimetal strip under bending or thermal

oads and solved the problem by imposing the compatibility be-

ween the axial strains of both beams in contact, neglecting the

ccurrence of interfacial stresses. Later, the approach has been ex-

ended by Suhir (1986) by introducing “interfacial compliance” pa-

ameters to describe the deformation of the cross section of the

eams under the shearing load over the beam thickness. More-

ver, the interfacial shear and peeling stresses are found as ex-

onential functions of the axial coordinate. This method has been

mployed to investigate the effects induced by thermal stress in

ultilayered structures ( Suhir, 1988 ) and the peeling stress as a

unction of a “through-thickness” spring parameter ( Suhir, 1989 ).

ndeed, the approach adopted by Timoshenko (1925) gives exact

esults only if the Young modulus multiplied by the square of

he thickness for the two strips is the same ( Moore and Jarvis,

004 ). 

Shield and Kim (1992) performed an analytical study dealing

ith an Euler-Bernoulli beam welded to an elastic half plane under

ymmetric loads applied at the ends of the beam. These Authors

xpanded the interfacial stresses in series of orthogonal Chebyshev

olynomials displaying square root singularity at the beam ends.

s pointed out by the Authors, the membrane approximation may

rovide rough predictions, in particular for systems sensitive to

ode I failure. 
(  
However, the Euler–Bernoulli beam model cannot be adopted

or analyzing elements characterized by a significant shear defor-

ation, like short beams, or when the constituent material is com-

liant with respect to shear loads, like for FRP profiles, whose

olymeric (thermoset or thermoplastic) matrix exhibits low shear

trengths and shear moduli ( Barbero, 1999 ). In such cases, the

imoshenko beam model reveals more effective than the Euler–

ernoulli theory, in particular for dynamical analyses. As an exam-

le, transversal vibrations of railways have been studied taking into

ccount their cross-sectional deformation by modeling the railway

rack as Timoshenko beams on elastic ground ( Wu et al . , 1999 ).

oreover, Timoshenko beam theory has been recently used to in-

estigate the vibration frequencies of carbon nanotubes character-

zed by small length-to-diameter ratios (e.g. Wang et al., 2006 ). 

Only few analytical studies dealing with Timoshenko beams

n contact with elastic substrates can be found in the Literature.

mong these, Essenburg (1962) considered a Timoshenko beam

upported by a Winkler foundation and he found a closed form so-

ution of the governing equation. Li et al . (1988) studied the unilat-

ral frictionless contact between a Timoshenko beam resting on an

lastic layer supported by a rigid base by using a Gauss–Chebyshev

uadrature method. Bjarnehed (1993) performed a numerical in-

estigation of the problem of a Timoshenko beam resting on an

lastic cushion bonded to an orthotropic half plane. Tezzon et al .

2015) used a coupled FE-BIE method to model shear deformable

eams bonded to an isotropic elastic half-space. However, to the

uthors knowledge, a closed form solution of the interfacial stress

eld of a Timoshenko beam bounded to a half plane under various

oading conditions has not been found yet. 

In the present work, the contact problem of a Timoshenko

eam of finite length bonded to a homogeneous elastic half plane

s investigated. The proposed approach consists in the imposition

f the strain compatibility condition between the beam and the

alf plane by expanding the interfacial stresses in series of orthog-

nal Jacobi polynomials. This representation allows to remove the

ingularity of the integral equations derived from the strain com-

atibility condition. Then, by using a collocation technique, the

roblem is reduced to a linear algebraic system of equations for

he unknown coefficients of the series expansions for the interfa-

ial stresses. The present study allows to investigate the distribu-

ion of peeling and shear interfacial stresses within the contact re-

ion varying the stiffness parameters of the beam, with particular

mphasis to the effects of shear deformation. A detailed analysis of

he strength of the stress singularities at the ends of the beam is

rovided. In this respect, the present study represents an extension

f the work performed by Shield and Kim (1992) . 

The paper is organized as follows. In Section 2 , the governing

quations for the beam and the half plane are reported and the

ethod used to solve the singular integral equations is discussed

herein. An asymptotic analysis of the interfacial stresses at the

eam ends is performed in Section 3.1 . The singular nature of the

nterfacial stresses in the neighborhood of a concentrated load ap-

lied at the inner of the beam is investigated in Section 3.2 . Some

elevant loading conditions are discussed in detail in Section 4 . The

ain results in terms of interfacial stresses distribution, stress in-

ensity factors and strength of stress singularities are reported for

ome typical symmetric as well as skew-symmetric loading condi-

ions in Section 5 . Finally, conclusions are drawn in Section 6 . 

. Governing equations 

Let us consider a Timoshenko beam of length 2 a with a rect-

ngular cross section of height h and unitary width, subjected

o a system of axial and shear forces ( N 1 , N 2 ), ( T 1 , T 2 ) and

ending moments ( M 1 , M 2 ) applied at both ends of the beam

shear forces are taken positive if upward directed; axial forces are
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Fig. 1. A Timoshenko beam bonded to a half plane (a); free-body diagram of a beam bonded to a half-plane subjected to edge loads (b). 
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positive if rightward directed, bending moments are positive if

counterclockwise), as shown in Fig. 1 . The beam is supposed per-

fectly bonded to an elastic half plane. In absence of further exter-

nal loads applied to the system, the equilibrium equations of the

beam read: 

N 

′ + τ = 0 , T ′ + q = 0 , M 

′ − T + τ
h 

2 

= 0 , (1)

being N, T and M the internal axial force, shear force and bending

moment, respectively, applied at the beam cross section, whereas

τ and q denote the shear and peeling tractions, respectively, (posi-

tive directions are depicted in Fig. 1 b), arising at the interface be-

tween the beam and the half plane, and prime denotes differenti-

ation with respect to coordinate x , namely (…) ′ = ∂ (…) / ∂ x . 
The constitutive relations together with the kinematic assump-

tions for the Timoshenko beam give: 

M 

E b I 
= ϕ 

′ , u 

′ 
b = 

N 

E b A 

+ ϕ 

′ h 

2 

, v ′ b = −ϕ + 

χT 

G b A 

(2)

where E b = E 0 or E 0 /(1 −νb 
2 ) denote the Young modulus of the

beam under generalized plane stress or plain strain conditions, re-

spectively, νb is the Poisson ratio of the beam, A and I are the area

and the moment of inertia of the beam cross section respectively,

G b represents the shear modulus of the beam, whereas χ denotes

the dimensionless shear factor, i.e. χ = 6(1 − v b G b / E b )/5 or χ =
[6 −v b (1 + v b ) G b / E b ]/5 under plane stress or plane strain condi-

tions, respectively ( Cowper, 1966; Tullini et al . , 2013 ). Note that, in

Eq. (2) , v b ( x ) denotes the transverse deflection of the beam along

the y axis, u b ( x ) is the axial displacement of the beam cross section

at the interface, i.e. at y = 0, and ϕ( x ) denotes the rotation of the

beam cross section, positive if counterclockwise. According to the

classical beam theory, the cross section of the beam is assumed to

preserve its planarity after bending. The equilibrium conditions of

the beam read: 

N ( x ) = N 1 + 

∫ a 

x 

τ ( s ) ds , T ( x ) = −T 1 + 

∫ a 

x 

q ( s ) ds , 

M ( x ) = M 1 + T 1 ( a − x ) + 

h 

2 

∫ a 

x 

τ ( s ) ds 

+ 

∫ a 

x 

q ( s ) ( x − s ) ds , for | x | ≤ a. (3)

Then, by assuming a unitary width of the beam cross section

(i.e. A = 1 · h ), the axial strain along the interface reads: 

u 

′ 
b (x ) = 

N 1 

E b h 

+ 

1 

E b h 

∫ a 

x 

τ (s ) ds + 

h 

2 E b I 
[ M 1 + T 1 (a − x )] 

+ 

h 

∫ a 

[ hτ (s ) + 2 q (s ) (x − s )] ds, for | x | ≤ a. (4)

4 E b I x u  
The rotation ϕ( x ) of the beam cross section is found by integrat-

ng Eq. (2) 1 : 

(x ) = 

M 1 x 

E b I 
+ 

T 1 
2 E b I 

(2 ax − x 2 ) + 

h 

2 E b I 
x 

∫ a 

x 

τ (s ) ds 

+ 

h 

2 E b I 

∫ x 

0 

sτ (s ) d s − 1 

2 E b I 

∫ a 

0 

s 2 q (s ) d s 

+ 

1 

2 E b I 

∫ a 

x 

(s − x ) 
2 
q (s ) ds + ϕ p , for | x | ≤ a, (5)

eing ϕ p a constant of integration to be determined. Thus, the

lope v ′ b ( x ) of the beam reads: 

 

′ 
b (x ) = −M 1 x 

E b I 
− T 1 

2 E b I 
(2 ax − x 2 ) − h 

2 E b I 
x 

∫ a 

x 

τ (s ) ds 

− h 

2 E b I 

∫ x 

0 

sτ (s ) d s + 

1 

2 E b I 

∫ a 

0 

s 2 q (s ) d s + 

− 1 

2 E b I 

∫ a 

x 

(s − x ) 
2 
q (s ) ds − ϕ p − χT 1 

G b h 

+ 

χ

G b h 

∫ a 

x 

q (s ) ds, for | x | ≤ a, (6)

here relation ( 2 ) 3 for the Timoshenko beam has been used. Note

hat the slope v ′ b is positive if clockwise, according to the refer-

nce system adopted (see Fig. 1 b). 

The mechanical behavior of the homogeneous isotropic elastic

alf plane is defined by the Poisson ratio νs and the Young mod-

lus, namely E s under plane stress condition or E s /(1 −νs 
2 ) under

lane strain condition. Then, the normal strains at the boundary of

he half plane become ( Johnson, 1985 ): 

 

′ 
s (x ) = − 2 

E s π

∫ a 

−a 

τ (ξ ) 

ξ − x 
d ξ + 

(
2 

E s 
− 1 

2 G s 

)
q (x ) 

v ′ s (x ) = − 2 

E s π

∫ a 

−a 

q (ξ ) 

ξ − x 
d ξ −

(
2 

E s 
− 1 

2 G s 

)
τ (x ) , for | x | ≤ a, (7)

eing G s = E s /2(1 + νs ) the shear modulus of the half plane. 

The strain compatibility conditions between the beam and the

alf plane require: 

 

′ 
b (x ) = u 

′ 
s (x ) , v ′ b (x ) = v ′ s (x ) , for | x | ≤ a. (8)

After the introduction of ( 7 ), eqns ( 8 ) form a system of two sin-

ular integral equations with Cauchy kernel, which can be straight-

orwardly solved following Erdogan et al . (1973) by expanding the

nknown shear and peeling stresses in series of Jacobi orthogonal
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olynomials, namely: 

(x ) = E s (a + x ) s (a − x ) s 
∞ ∑ 

n = 0 
C n P n 

(s , s ) (x/a ) , 

q (x ) = E s (a + x ) s (a − x ) s 
∞ ∑ 

n = 0 
D n P n 

(s , s ) (x/a ) , for | x | ≤ a, (9) 

here P n 
( s , s ) ( x ) is the Jacobi polynomial of order n and the in-

ex s of the polynomials denotes the singular strength of the in-

erfacial stresses at the end of the bonded region, i.e. at x = ±
 , where Re( s ) = −1/2 will be found in Section 3 ,. Therefore, se-

ies expansions ( 9 ) allow to remove the singularity in Eq. (8) , be-

ng ( a + x ) s ( a −x ) s the proper weight function for P n 
( s , s ) ( x ) (see

ppendix A ). By introducing the representation ( 9 ) for the interfa-

ial stresses, the singular integrals involved in Eqs. (7) and ( 8 ) can

e evaluated in closed form by using the results ( A4 )-( A5 ). Hence,

f a finite number N of terms is considered in the series ( 9 ), then

he compatibility conditions ( 8 ) are imposed in N + 1 properly se-

ected collocation points x k . As well known, in the present case,

he optimal collocation points are the roots of the Jacobi polyno-

ial P N + 1 ( s , s ) ( x ), i.e. x k : P N + 1 ( s , s ) ( x k ) = 0, with k = 1, 2, …, N + 1.

ince an explicit closed form expression for the roots x k of the Ja-

obi polynomials cannot be found, then the roots of the real Jacobi

olynomial P N + 1 ( −1/2, −1/2) ( x ) have been chosen here as collocation

oints for the sake of simplicity, namely 

 k = cos 

(
πk 

2( N +1) 

)
, with k = 1 , 2 , ..... , N +1 , (10) 

oinciding with the roots of the Chebyshev polynomial of first kind

f order N + 1. The proposed approach allows us to transform the

ntegro-differential system ( 8 ) into a linear algebraic system that

an be solved for the unknown coefficients C n , D n of the interfacial

tresses introduced in ( 9 ) up to an arbitrary large value of terms.

he regularity of this kind of algebraic system and the rate of con-

ergence have been studied in detail (e.g. Erdogan, 1969 ). 

Once the strain field at the interface is known, the displacement

eld of the beam at the interface can be obtained by properly in-

egrating the strain field of the beam: 

 b (x ) = −N 1 x 

E b A 

+ 

h 

4 E b I 
[2 M 1 x + T 1 (2 ax − x 2 )] + 

(
1 

E b A 

+ 

h 

2 

4 E b I 

)

×
[

x 

∫ a 

x 

τ (s ) ds + 

∫ x 

0 

sτ (s ) ds 

]

+ 

h 

4 E b I 

[∫ a 

x 

q (s ) (x −s ) 
2 
d s−

∫ a 

0 

s 2 q (s ) d s 

]
+ u p , for | x | ≤ a

v b (x ) = −M 1 x 
2 

2 E b I 
− T 1 

6 E b I 
(3 a x 2 − x 3 ) − h 

2 E b I 

[
x 2 

2 

∫ a 

x 

τ (s ) ds 

+ 

1 

2 

∫ x 

0 

s 2 τ (s ) ds 

]

− h 

2 E b I 

[∫ a 

0 

s (x − s ) τ (s ) ds 

]
+ 

x 

2 E b I 

∫ a 

0 

s 2 q (s ) ds − 1 

2 E b I 

×
[∫ a 

x 

q (s ) (x s 2 + 

x 3 

3 

− x 2 s ) ds + 

1 

3 

∫ a 

x 

q (s ) ds 

]
+ 

−ϕ p x − χT 1 
G b A 

x + 

χ

G b A 

[
x 

∫ a 

x 

q (s ) ds + 

∫ x 

0 

sq (s ) ds 

]

+ v p , for | x | ≤ a, (11

eing u p and v p constant of integrations of the displacement field

hich assessment is not mandatory as they represent arbitrary

igid motions. 
Furthermore, by integrating equations ( 7 ), the displacements of

he points on half plane surface read ( Johnson, 1985 ): 

 s ( x ) = 

2 

E s π

∫ a 

−a 

τ ( ξ ) Log | ξ − x | d ξ + 

(
1 

E s 
− 1 

4 G s 

)

×
[∫ x 

−a 

q ( ξ ) d ξ −
∫ a 

x 

q ( ξ ) d ξ

]
, 

v s ( x ) = 

2 

E s π

∫ a 

−a 

q ( ξ ) Log | ξ − x | d ξ −
(

1 

E s 
− 1 

4 G s 

)

×
[∫ x 

−a 

τ ( ξ ) d ξ −
∫ a 

x 

τ ( ξ ) d ξ

]
(12) 

Note that the frictionless contact can be simply retrieved by

olving Eq. (8) 2 for τ ( x ) = 0. On the other hand, the purely mem-

rane behavior of the coatings can be recovered by considering

q. (8) 1 only, neglecting the terms depending upon the bending 

igidity E b I . Moreover, the behavior of an Euler–Bernoulli beam can

e exactly retrieved by solving the system ( 8 ) neglecting the terms

epending upon the shear stiffness G b / χ (namely for G b / χ → ∞ ).

lso the (frictionless or not) contact problem of a rigid indenter

pplied at the surface of a half plane is provided by the present

pproach for large values for the parameter E b I. 

Note that the problem is governed by three independent di-

ensionless parameters, namely E s / E b , a / h and E s χ / G b . The first

arameter accounts for the relative stiffness of the beam with re-

pect that of the half plane; whereas the second one depends on

he slenderness of the beam. The shear stiffness of the beam is

aken into account through the third parameter: as it increases, the

hear compliance of the beam increases with respect its flexural

ompliance, thus increasing the effects induced by shear deforma-

ion on the system. 

It is worth noting that all the integrals involved in the expres-

ions ( 7 ), ( 11 ), ( 12 ) and, in turn, the displacements and the inter-

al forces applied to the beam can be calculated in closed form by

eans of the relations reported in Appendix. 

. Asymptotic analysis 

.1. Asymptotic analysis of the interfacial stresses at the beam ends 

In the present section, the behavior of the stress and displace-

ent fields at the beam ends is investigated by performing a pre-

iminary asymptotic analysis by imposing the continuity of trac-

ions and displacement between the beam and the elastic half

lane (a comprehensive review about the origins of asymptotic

rocedures in stress analysis can be found in Hills et al . (2004 )).

rom Eqs. (1) to ( 2 ), the following differential equations hold for

he Timoshenko beam: 

 b A 

(
u b 

′′ − ϕ 

′′ h 

2 

)
+ τ = 0 , 

G b A 

χ
( v b ′′ + ϕ 

′ ) + q = 0 , 

E b Iϕ 

′′′ + q + τ ′ h 

2 

= 0 . (13) 

Then, by using relations ( 13 ), the interfacial stresses can be ex-

ressed in terms of the displacement field as: 

= −E b A 

(
u b 

′′ − ϕ 

′′ h 

2 

)
, q = −E b Iϕ 

′′′ + E b A 

h 

2 

(
u b 

′′′ − ϕ 

′′′ h 

2 

)
= 0 . 

(14) 

ith reference to a polar coordinate system { r, θ} centered at the

eft end of the beam (see Fig. 2 a), an Airy stress function for the

symptotic fields in the isotropic half plane near the end points

f the beam can be assumed in the form φ( r, θ ) = Re[ r s + 2 F ( θ )],

here the complex exponent s defines the stress singularity and
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Fig. 2. Polar coordinate system adopted for the asymptotic analysis at the beam edges (a) and at an inner loaded section (b). 
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the function: 

F (θ ) = a sin (s +2) θ+ b cos (s +2) θ+ c sin sθ+ d cos sθ, (15)

provides the angular variation of the asymptotic fields ( Williams,

1959 ). The corresponding stress components in the isotropic half

space near the left end of the beam are: 

σθθ = 

∂ 2 φ

∂ r 2 
= Re [ r s (s + 1)(s + 2) F (θ )] , 

σrθ = − ∂ 

∂r 

(
∂φ

r∂θ

)
= −Re [ r s (s + 1) F ′ (θ )] . (16)

Due to the continuity of tractions across the interface, a similar

asymptotic behavior must be imposed for the interfacial stresses at

the beam ends, i.e.: 

τ = O( r s ) , q = O( r s ) , as r → 0 . (17)

Then, in order to accomplish relations ( 13 )–(14) as r approaches

0, the displacement and rotation fields of the beam must display

the following asymptotic behavior: 

ϕ = O( r s +2 ) , u = O( r s +2 ) , v = O( r s +2 ) , as r → 0 . (18)

The displacement field within the half plane corresponding to

the Airy stress function ( 16 ) (see Barber (2010) , Tables 8.I and 9.I)

under plane strain condition reads ( Williams, 1959 ): 

u θ = 

1 

2 G s 
r s +1 [ −F ′ (θ ) − 4(1 − νs )(c cos sθ − d sin sθ )] + O( r s +2 ) ,

u r = 

1 

2 G s 
r s +1 [ − (s + 2) F (θ ) + 4(1 − νs )(c sin sθ + d cos sθ ) ] 

+O( r s +2 ) , as r → 0 . (19)

Therefore, the Airy stress function must satisfy the following

conditions in order to match with the asymptotic behavior of the

displacement of the beam along the interface ( 18 ), namely at θ =
0: 

F ′ (0) + 4 c(1 − νs ) = 0 , (s + 2) F (0) − 4 d(1 − νs ) = 0 . (20)

Namely, at leading order the constraint due to the beam on the

elastic half plane is equivalent to a rigid constraint. Moreover, the

boundary conditions on the free boundary of the half plane, i.e. at

θ = − π , require: 

σθθ (−π) = r s (s + 1)(s + 2) F (−π) = (b + d) cos πs 

−(a + c) sin πs = 0 , 

τ (−π) = r s (s + 1) F ′ (−π) = [ cs + a (s + 2)] cos πs 

+[ b(s + 2) + ds ] sin πs = 0 . (21)

 

Conditions ( 20 ) and ( 21 ) lead to an algebraic homogeneous lin-

ar system that can be written in the following matrix form: 

 

 

 

 

2 + s 0 4 + s − 4 νs 0 

0 2 + s 0 s − 2 + 4 νs 

− sin πs cos πs − sin πs cos πs 

(2 + s ) cos πs (2 + s ) sin πs s cos πs s sin πs 

⎞ 

⎟ ⎟ ⎠ 

×

⎛ 

⎜ ⎜ ⎝ 

a 

b 

c 

d 

⎞ 

⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎝ 

0 

0 

0 

0 

⎞ 

⎟ ⎟ ⎠ 

. (22)

The system ( 22 ) admits non trivial solution if and only if the

ollowing characteristic equation holds true: 

 

4 π is + 2 

5 − 4 νs (3 − 2 νs ) 

3 − 4 νs 
e 2 π is + 1 = 0 . (23)

Eq. (23) admits the roots e 2 π i s = − (3 −4 νs ) 
±1 . Then, in order

o recover a finite energy flux as r approaches 0, the admissible

tress singularity obtained from Eq. (23) is 

 = −1 

2 

+ iε, where ε = 

1 

2 π
ln (3 − 4 νs ) , (24)

s well as its conjugate value s̄ . Therefore, the real part of the ex-

onent s is −1/2 whatever be the Poisson ration νs of the sub-

trate. As expected, the imaginary part of s depends on the Pois-

on ratio of the half plane νs only. Note that Eq. (20) of Shield and

im (1992) is exactly retrieved. Note also that the classical square

oot singularity, namely s = − 1/2, is recovered for νs = 0.5 (in-

ompressible half plane). 

The angular variation of the Airy stress function ( 15 ) corre-

ponding to the eigenvalue ( 24 ) provided by the eigenvalue prob-

em ( 22 ) is then 

 (θ ) = 2 C e −
3 
2 iθ e εθ { (1 + 2 iε) e 2 iθ sin θ + i [ e iθ + e 2 ε(π+ θ ) ] } , (25)

here C is a real constant that cannot be determined from the

igenvalue problem ( 22 ). Note that the eigenfunction correspond-

ng to the eigenvalue s̄ is just the complex conjugate of F ( θ ), so

hat 

(r, θ ) = C r 
3 
2 Re [ r iε F (θ )] . (26)

The stress field corresponding to the Airy stress function ( 26 ) is

hen 

θθ = C r −
1 
2 Re 

[ (
1 

2 

+ iε 
)(

3 

2 

+ iε 
)

r iε F (θ ) 
] 
, 

σrθ = −C r −
1 
2 Re 

[ (
1 

2 

+ iε 
)

r iε F ′ (θ ) 
] 
. (27)

According to Rice (1988) , the complex stress intensity factor K

 K 1 + i K 2 can be defined as the limit 

 = 

√ 

2 π lim 

r→ 0 

( σθθ + i σrθ ) θ=0 

r −
1 
2 + iε 

= C 

√ 

π
(1 + e 2 πε ) [ − 8 ε + (3 − 4 ε 2 ) i ] . (28)
2 
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A similar analysis can be performed also under plane stress

ondition. In this case the oscillatory singularity is defined by the

oefficient 

 = 

1 

2 π
ln 

3 − νs 

1 + νs 
. (29) 

.2. Asymptotic analysis of the interfacial stresses at the loaded 

ection 

The behavior of the stress field in the neighborhood of a con-

entrated load applied at the middlespan of a Timoshenko beam

s investigated in the present section. In this case, the slope of the

imoshenko beam displays a discontinuity at the point of appli-

ation of a transversal load due to the shear deformability of the

eam. As a consequence, by considering a power law singularity as

n Section 3.1 no solution can be found which satisfies the continu-

ty of tractions and displacements between the beam and the half

lane. Therefore, we have to look for a more general asymptotic

xpansion of the stress and displacement fields in the half plane

nder the loaded section, which allows for a logarithmic stress sin-

ularity as suggested by Sinclair (2004) . 

Making reference to a polar coordinate system { r, θ} centered at

he middlespan of the beam (see Fig. 2 b) in correspondence of the

oaded section, the leading order stress and displacement fields in

he elastic half plane take the following form according to Sinclair

2004) : 

θθ (r , θ ) = (1 + ln r )[ c 1 cos 2 θ + c 2 sin 2 θ ] + (3 + 2ln r ) c 3 

− θ ( c 1 sin 2 θ − c 2 cos 2 θ − 2 c 4 ) , 

σrθ (r , θ ) = (1 + ln r)[ c 1 sin 2 θ − c 2 cos 2 θ ] + θ( c 1 cos 2 θ

+ c 2 sin 2 θ ) − c 4 , 

u r (r , θ ) = 

r 

2 G s 
{ ( c 1 cos 2 θ + c 2 sin 2 θ )ln r +[1 + (1 − κ)ln r] c 3 

− θ ( c 1 sin 2 θ − c 2 cos 2 θ )+ 

− (1 − κ) c 4 } , 
u θ (r , θ ) = 

r 

2 G s 
{ ( c 1 sin 2 θ − c 2 cos 2 θ )ln r − [1 + (1 + κ)ln r] c 4 

+ θ ( c 1 cos 2 θ + c 2 sin 2 θ ) 

+ (1 + κ) c 3 } , (30) 

eing κ = 3 −4 νs for plane strain and κ = (3 −νs )/(1 + νs ) for plane

tress. 

By assuming a logarithmic singularity for the interfacial stress

eld under the loaded section of the beam, i.e.: 

= O(ln r ) , q = O(ln r ) , as r → 0 , (31)

hen, the coefficient multiplied by r ln r in the displacement com-

onents ( 30 ) 3,4 must vanish. It follows that the displacement field

f the elastic half plane must satisfy the following two indepen-

ent conditions: 

 1 + (κ − 1) c 3 = 0 , c 2 − ( κ + 1 ) c 4 = 0 , (32)

Accordingly, the asymptotic behavior of the interfacial stresses

ecome: 

σθθ (r , π/ 2 ) = c 3 [ 2 + κ + (1 + κ)ln r] + c 4 π(1 − κ) / 2 , 

σθθ (r , − π/ 2 ) = c 3 [ 2 + κ + (1 + κ)ln r] + c 4 π( κ − 1 ) / 2 , 

σrθ (r , π/ 2 ) = c 4 [ κ + (1 + κ)ln r] + c 3 π( κ − 1 ) / 2 , 

σrθ (r , − π/ 2 ) = c 4 [ κ + (1 + κ)ln r] + c 3 π(1 − κ) / 2 , as r → 0 . 

(33) 

It is worth noting that the axial strain and the slope of the

eam are discontinuous at x = 0, namely across the section of the
eam where the external loads and moment are applied. Indeed,

he presence of the axial load N 0 , the transverse load T 0 and the

ouple M 0 applied at the section x = 0 yield therein a jump in the

xial strain u b 
′ (0), in the slope v b 

′ (0) and in the curvature of the

eam at x = 0, respectively: 

u 

′ 
b ( 0 ) 

]
= 

N 0 

E b A 

, 
[
v ′ b ( 0 ) 

]
= −χT 0 

G b A 

, 
[
u 

′ 
b ( 0 ) 

]
= −M 0 h 

2 E b I 
, (34) 

here [ f ( x )] denotes the jump of the function f ( x ) at x . Obviously,

iscontinuities in the stress field of the half plane also occur in

ight of the strain compatibility conditions ( 8 ), and these condi-

ions allow to find out the constants c 3 , c 4 . 

In particular, if a concentrated axial load N 0 acts at the mid-

lespan of the beam, then, due to symmetry, one has τ ( x ) = τ ( −x )

nd q ( x ) = − q ( −x ), so that c 3 = 0 and the peeling stress turns out

o be discontinuous across the section at x = 0, namely: 

(x ) ∼ c 4 [ κ + (1 + κ)ln | x | ] , q (x ) ∼ c 4 π(κ − 1 )sign( x ) / 2 . (35)

Furthermore, by imposing that [ u ′ s (0)] = N 0 / E b A , and inserting

xpressions ( 35 ) into the expression of the axial strain of the half

lane surface ( 7 ) 1 , one finds: 

 4 = 

E s 

2 π

N 0 

E b A 

1 

(1 + νs ) κ
. (36) 

The case of a couple M 0 applied at the middlespan of the beam

s analogous to that of a concentrated axial load. In this case, ac-

ording to ( 34 ) 3 , one has [ u ′ s (0)] = M 0 h /2 E b I, c 3 = 0 and 

 4 = 

E s 

4 π

M 0 h 

E b I 

1 

(1 + νs ) κ
. (37) 

Note that, the slope v ′ s ( x ) under a concentrated axial load or

ouple, is continuous across the loaded section, namely at x = 0.

ote also that, for an Eulero–Bernoulli beam loaded by a concen-

rated axial load or couple, the same asymptotic behavior ( 35 ) is

ound for the interfacial stresses. 

A transversal concentrated load applied at the middlespan of

he beam produces a jump in the slope of the beam according to

 34 ) 2 , so that [ v ′ s (0)] = −χT 0 / G b A . Symmetry conditions imply τ ( x )

 − τ ( −x ) and q ( x ) = q ( −x ), so that c 4 = 0. Then, the interfacial

tresses in the neighborhood of the loaded section of the beam be-

ave asymptotically as: 

(x ) ∼ c 3 π(κ − 1 )sign( x ) / 2 , q (x ) ∼ c 3 [2+ κ + (1 + κ)ln | x | ] , 
(38) 

here 

 3 = 

E s 

2 π

χT 0 
G b A 

1 

(1 + νs ) κ
. (39) 

Differently from the problem of an E–B beam loaded by a con-

entrated axial load or couple, the axial strain u ′ s ( x ) is continuous

cross the section loaded by the transversal load. In this case, both

he strain and stress fields of the beam and, in turn, those of the

lastic half plane are continuous across the loaded section of the

eam (see Appendix B ). 

. Results related to some relevant loading cases 

.1. Solution of symmetric edge-loading condition 

In this section, a symmetric loading applied at the beam ends is

onsidered (see Fig. 3 a). Owing to symmetry, both integration con-

tants ϕ p and u p are zero. Moreover, the interfacial shear stress τ is
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Fig. 3. Beam/half-plane system subjected to symmetric (a) and skew-symmetric (b) edge loads. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Timoshenko beam bonded to a half-plane subjected to concentrated loads. 
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an odd function, whereas the peeling stress q is an even function.

Thus, the interfacial shear and peeling stresses can be straightfor-

wardly expanded in series of Jacobi polynomials, namely: 

τ (x ) = E s (a + x ) s (a − x ) s 
2 N +1 ∑ 

n =1 , 3 , 

C n P n 
(s , s ) (x/a ) , 

q (x ) = E s (a + x ) s (a − x ) s 
2 N ∑ 

n =0 , 2 , 4 , 

D n P n 
(s , s ) (x/a ) , for | x | ≤ a, (40)

being P n 
( s , s ) the Jacobi polynomials of order n . 

The equilibrium conditions of the beam along the x and y axes

require 

∫ a 

−a 

τ ( s ) ds = 0 , 

∫ a 

−a 

q ( s ) ds = 2 T 1 , (41)

respectively. Note that condition ( 41 ) 1 is fulfilled since expression

( 40 ) 1 does not contain the term C 0 . Moreover, the equilibrium con-

dition ( 41 ) 2 entails (see identity A3): 

D 0 = 

2 T 1 �(3 / 2 + s ) 

a 2 s +1 E s 
√ 

π�(s + 1) 
. (42)

Actually, being D 0 given by Eq. (42) , condition ( 8 ) 1 is imposed

at the N + 1 collocation points, whereas condition ( 8 ) 2 is imposed at

the same points except x N + 1 . Thus, the system of 2 integral equa-

tions ( 8 ) leads to an algebraic system of 2 N + 1 equations in the

N + 1 unknowns coefficients C i ( i = 1, 3, 5, …., 2 N + 1), and N coef-

ficients D j ( j = 2, 4, …., 2 N ). 

The singular behavior of the interfacial stresses at the beam

ends ( x = ±a ) can be properly investigated by means of the peel-

ing and shear stress intensity factors (SIFs) K I and K II , defined as

( Mahajan et al . , 2003 ): 

K I (±a ) = lim 

x →±a 

q (x ) 

(a ∓ x ) 
s = ±2 

s E s a 
s 

N ∑ 

n =0 , 2 , 

D n P n 
(s , s ) (±1) , 

K II (±a ) = lim 

x →±a 

τ ( x ) 

(a ∓ x ) 
s = ±2 

s E s a 
s 

N ∑ 

n =1 , 3 

C n P n 
(s , s ) (±1) , (43)

respectively. 

4.2. Solution of skew-symmetric edge-loading condition 

In this section, a skew-symmetric loading condition is consid-

ered, as shown in Fig. 3 b. Similarly to the symmetric layout, now

the interfacial shear stress τ must be an even function, whereas

the peeling stress q is an odd function. The integration constant ϕ p 

is a further unknown to be determined by solving the strain com-

patibility condition, whereas v p is null. Thus, the interfacial shear

and peeling stresses can be expanded in series of Jacobi polynomi-
ls as follows: 

(x ) = E s (a + x ) s (a − x ) s 
2 N ∑ 

n =0 , 2 , 4 , 

C n P n 
(s , s ) (x/a ) , 

q (x ) = E s (a + x ) s (a − x ) s 
2 N +1 ∑ 

n =1 , 3 , 

D n P n 
(s , s ) (x/a ) , for | x | ≤ a. (44)

The equilibrium conditions of the beam along the x and y axes

equire 
 a 

−a 

τ (s ) ds = 2 N 1 , 

∫ a 

−a 

q (s ) ds = 0 . (45)

Note that condition ( 28 ) 2 is fulfilled since expression ( 27 ) 2 does

ot contain the term D 0 ; moreover, the equilibrium condition ( 28 ) 1 
ntails: 

 0 = 

2 N 1 �(3 / 2 + s ) 

a 2 s +1 E s 
√ 

π�(s + 1) 
. (46)

The strain compatibility conditions ( 8 ) are imposed at the N + 1

ollocation points x k given in Eq. (10) . Here, both conditions ( 8 )

re imposed at the N + 1 collocation points, thus giving an algebraic

ystem of 2( N + 1) equations in the N unknowns coefficients C i ( i =
, 4, 6, …., 2 N ), N + 1 coefficients D j ( j = 1, 3, …., 2 N + 1) and the

nknown ϕ p . 

.3. Solution of concentrated loads applied at the middlespan of the 

eam 

Let consider a Timoshenko beam bonded to a half plane and

ubjected to a concentrated axial load N 0 or a couple M 0 applied

t the middlespan section, as reported in Fig. 4 . In this case, the

nterfacial stresses are assumed in the form: 

(x ) = E s (a + x ) s (a − x ) s 
2 N ∑ 

n =0 , 2 , 4 , 

C n P n 
(s , s ) (x/a )+ c 4 (1 + κ)ln | x/a | , 

q (x ) = E s (a + x ) s (a − x ) s 
2 N +1 ∑ 

n =1 , 3 , 

D n P n 
(s , s ) (x/a ) 

+ c 4 
π

(κ − 1 )sign( x ) , for | x | ≤ a, (47)

2 
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a b

Fig. 5. Beam subject to two horizontal end forces: dimensionless (a) interfacial shear stress and (b) peeling stress for γ = 100 (green dashed line), γ = 10 (magenta dotted 

line), γ = 1 (pink dash-dot line) and for an Euler-Bernoulli beam (black solid line). Symmetry holds for negative x coordinate. 
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here the constant c 4 is given by ( 36 ) or ( 37 ) according to the

oading condition. 

If a concentrated transversal load T 0 acts at the middlespan of

he beam (see Fig. 4 a), the following expressions are considered for

he interfacial stresses: 

( x ) = E s (a + x ) s (a − x ) s 
2 N +1 ∑ 

n =1 , 3 , 

C n P n 
(s , s ) (x/a )+ c 3 

π

2 

(1 − κ)sign( x ) ,

q (x ) = E s (a + x ) s (a − x ) s 
2 N ∑ 

n =0 , 2 , 4 , 

D n P n 
(s , s ) (x/a ) 

+ c 3 (1 + κ)ln | x/a | , for | x | ≤ a, (48)

here the constant c 3 takes the expression ( 39 ). 

. Results 

Results in terms of interfacial shear and peeling tractions are

iven in the present section varying the dimensionless parameter

= E s χ / G b . Note that small values of the parameter γ denote a

eam with high shear rigidity; conversely, large values of γ denote

ompliant beams with respect the substrate in terms of shear de-

ormation. The case of an Euler–Bernoulli beam can be recovered

s the limiting case of a Timoshenko beam for γ → 0. All the re-

ults reported in the following have been obtained by assuming

lane stress condition and, for sake of definiteness, νb = 0; νs =
.2, E s / E b = 0.1 and a / h = 5. Symmetric edge loading conditions

re considered first. 

The dimensionless shear and peeling stresses τ ( x )/( N 1 / E b A ),

 ( x )/( N 1 / E b A ) of a Timoshenko beam loaded at its ends by two

ymmetric axial loads N 1 are reported in Fig. 5 versus the di-

ensionless longitudinal coordinate x/a , for different values of the

arameter γ , namely γ = 1, 10, 100 (label “E–B” in the plot leg-

nd stands for Euler–Bernoulli beam). As reported in Fig. 5 a, as

increases, the interfacial shear stress monotonically decreases

in modulus) within the whole contact region, and the maximum

agnitude of the stress distribution occurs for γ = 0, i.e. for an

uler-Bernoulli beam. Conversely, the peeling stress exhibits a non-

onotonic trend within the contact region, as reported in Fig. 5 b.

n particular, it is compressive in the neighborhoods of the beam

nds, whereas it becomes tensile under the middle part of the

eam. Indeed, the tensile end forces N 1 together with the inter-

acial shear tractions deflect the beam and tend to uplift it from
he half plane in the middle of the contact region. As expected,

or large values of γ the peeling stress tends to concentrate at the

eam ends; conversely, as γ decreases, it becomes significant also

t the middlespan of the beam. Note that the effect of a thermal

ariation �T acting on the beam can be recovered by applying two

pposite axial end loads N 1 = E b A αb �T , being αb the coefficient of

hermal expansion of the beam. 

A beam loaded by two transversal loads applied at its ends has

een also considered (see Fig. 6 ). Differently from the previous

oading case, the peeling stress exhibits monotonic behavior within

he whole contact region, whereas the interfacial shear stress dis-

lays opposite signs at the middlespan and at the ends of the

eam. Moreover, the shear tractions change sign and quickly grow

p at the beam ends, thus exhibiting a boundary layer behavior ac-

ordingly to the results obtained by Shield and Kim (1992) for the

uler–Bernoulli beam. In particular, the zero of the shear stress is

ound to move toward the beam ends increasing γ , and the mag-

itude of the shear tractions increases with γ in proximity of the

eam ends. This trend is confirmed by the analysis of the SIFs also

see Fig. 11 b). 

The interfacial tractions due to two opposite end couples are

hown in Fig. 7 . For such a loading condition, the variation of the

eeling stress along the interface displays a trend similar to that

bserved for a beam subjected to two axial loads applied at the

eam ends. Conversely, the magnitude of the interfacial shear trac-

ions grows up near the beam ends as γ increases. However, a

on-monotonic trend is observed in the middlespan of the beam

arying γ , as reported in Fig. 7 a. As expected, due to symmetry

he shear stress vanishes at the middlespan of the beam whatever

he parameter γ . 

The shear and peeling stresses for a Timoshenko beam loaded

y an internal axial load applied at the middlespan section are re-

orted in Fig. 8 a and b, respectively, for some specific values of

he parameter γ . The shear stress is found to be almost indepen-

ent of γ in the whole contact region. Moreover, as displayed by

ig. 8 a, the shear stress is singular both at the ends ( x / a = ±1)

nd under the concentrated load (i.e. at x = 0), and it assumes the

ame sign within the whole contact region. As displayed in Fig. 8 b,

he peeling stress assumes finite values and vanishes at about 7/10

f the half-length of the beam whatever the parameter γ . Then,

t takes the opposite sign going toward the beam ends, where it

isplays singular behavior. Note also that, according to expressions

 35 ) 2 and ( 36 ), the jump exhibited by the peeling stress across
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a b

Fig. 6. Beam subject to two vertical end forces: dimensionless (a) interfacial shear stress and (b) peeling stress for γ =100 (green dashed line), γ =10 (magenta dotted line), 

γ =1 (pink dash-dot line) and for an Euler-Bernoulli beam (black solid line). Symmetry holds for negative x coordinate. 

a b

Fig. 7. Beam subject to two end moments: dimensionless (a) interfacial shear stress and (b) peeling stress for γ =100 (green dashed line), γ =10 (magenta dotted line), 

γ =1 (pink dash-dot line) and for an Euler–Bernoulli beam (black solid line). Symmetry holds for negative x coordinate. 

a b

Fig. 8. Beam subject to a horizontal concentrated force a) interfacial shear stress and (b) peeling stress for γ =10 (magenta dotted line), γ =5 (red dashed line), γ =1 (pink 

dash-dot line) and for an Euler–Bernoulli beam (black solid line). Symmetry holds for negative x coordinate. 
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a b

Fig. 9. Beam subject to a vertical concentrated force (a) interfacial shear stress and (b) peeling stress for γ =10 (magenta dotted line), γ =5 (red dashed line), γ =1 (pink 

dash-dot line) and for an Euler-Bernoulli beam (black solid line). Symmetry holds for negative x coordinate. 

a b

Fig. 10. Beam subject to a couple (a) interfacial shear stress and (b) peeling stress for γ =10 (magenta dotted line), γ =5 (red dashed line), γ =1 (pink dash-dot line) and 

for an Euler–Bernoulli beam (black solid line). Symmetry holds for negative x coordinate. 
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Table 1 

Dimensionless real and imaginary parts of the stress intensity factors K I ( a ) and 

K II ( a ) for a beam subjected to symmetric and skew-symmetric horizontal forces 

at the ends. 

Symmetric E–B γ = 100 γ = 200 γ = 300 γ = 400 γ = 500 

Re( K I ) 0 .240 0 .008 0 .006 0 .004 0 .004 0 .003 

Im( K I ) 0 .624 0 .081 0 .056 0 .043 0 .035 0 .029 

Re( K II ) −1 .365 −1 .104 −1 .079 −1 .070 −1 .064 −1 .061 

Im( K I ) −2 .742 −2 .245 −2 .198 −2 .179 −2 .170 −2 .164 

Skew E–B γ = 100 γ = 200 γ = 300 γ = 400 γ = 500 

Re( K I ) 0 .569 −6 .457 −8 .254 −9 .128 −9 .646 −9 .990 

Im( K I ) 1 .676 −12 .861 −16 .008 −17 .813 −18 .896 −19 .618 

Re( K II ) −5 .104 −5 .869 −5 .722 −5 .622 −5 .555 −5 .507 

Im( K II ) −10 .295 −12 .918 −12 .879 −12 .862 −12 .840 −12 .821 

f  

b  

t

 

i  

F  

b  
he loaded section does not vary with γ . In particular, for the val-

es of the parameters here considered one finds q (0)/( E s N 0 / E b A ) ∼=
.12518. 

The shear and peeling stresses under a beam loaded by a

ransversal concentrated force T 0 applied at the middlespan of the

eam are reported in Fig. 9 . Differently from the previous load-

ng condition, the peeling stress is singular both at the middlespan

f the beam and at the beam ends, whereas the shear stress is

iscontinuous across the loaded section, namely at x = 0. In par-

icular, for γ = 1, 5, 10 one finds τ (0)/( E s T 0 h 
2 / E b I ) = 0.09921;

.49603; 0.99206, respectively, whereas τ (0) = 0 for an Euler–

ernoulli beam. It is worth noting that both the shear and peel-

ng stresses near the beam ends decrease as γ increases, whereas

pposite behavior is observed in the neighborhood of the loaded

ection. 

Fig. 10 a and b concern the shear and peeling stresses of a Tim-

shenko beam loaded by a couple applied at the middlespan. As

ound for an axial concentrated load, the peeling stress is finite

t x = 0, and one finds q (0)/( E s M 0 h / E b I ) ∼= 

0.05952 whatever the

arameter γ . The largest values of the peeling stress along the

onded region occur for an Euler–Bernoulli beam. The shear stress

s singular both at the beam ends and at the section loaded by

he couple, and it does not significantly vary with γ . Differently
 t  
rom the case of an axial concentrated load, the shear stress at the

eam ends assumes opposite sign with respect to that assumed in

he neighborhood of the loaded section (from the same side). 

Finally, the strength of the interfacial stresses has been stud-

ed for various loading conditions varying γ , as reported in Fig. 11 .

or convenience, the values of the stress concentration factors have

een listed in Tables 1–6 for relevant values of the parameter γ for

he examined loading cases. A remarkable difference between the
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a b

c d

e f

Fig. 11. Dimensionless real and imaginary parts of the stress intensity factors K I ( a ) and K II ( a ) for (a) horizontal end forces; (b) vertical end forces and (c) end couples; (d) 

horizontal midpoint force; (e) vertical midpoint force; (f) midpoint couple varying γ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Dimensionless real and imaginary parts of the stress intensity factors K I ( a ) and 

K II ( a ) for a beam subjected to symmetric and skew-symmetric vertical forces at 

the ends. 

Symmetric E–B γ = 100 γ = 200 γ = 300 γ = 400 γ = 500 

Re( K I ) 0 .818 5 .852 7 .181 7 .829 8 .213 8 .468 

Im( K I ) 1 .598 11 .442 14 .081 15 .390 16 .176 16 .700 

Re( K II ) 0 .627 1 .244 1 .137 1 .065 1 .016 0 .982 

Im( K II ) 1 .354 3 .332 3 .388 3 .382 3 .370 3 .359 

Skew E–B γ = 100 γ = 200 γ = 300 γ = 400 γ = 500 

Re( K I ) 0 .826 5 .893 7 .212 7 .854 8 .236 8 .488 

Im( K I ) 1 .611 11 .523 14 .149 15 .450 16 .230 16 .751 

Re( K II ) 0 .660 1 .257 1 .140 1 .062 1 .011 0 .975 

Im( K II ) 1 .422 3 .355 3 .388 3 .371 3 .352 3 .336 
symmetric and skew-symmetric axial loads applied at the beam

ends is displayed in Fig. 11 a (see also Table 1 ). In particular, both

the real and imaginary parts of the SIFs K I ( a ) and K II ( a ) are not

significantly affected by the parameter γ when two opposite ax-

ial loads act on the beam ends. As expected, K II ( a ) is greater than

K I ( a ). Conversely, when the axial loads have the same direction,

then K II ( a ) is greater than K I ( a ) only for small values of the param-

eter γ . Indeed, both the real and imaginary parts of K I ( a ) monoton-

ically increases with γ and they overcome those of K II ( a ) approx-

imately for γ > 90. Fig. 11 b and Table 2 deal with a Timoshenko

beam loaded by two symmetric and skew-symmetric transversal

end loads. No significant differences are found between these load-

ing conditions. Indeed, for both loading conditions, the real and
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Table 3 

Dimensionless real and imaginary parts of the stress intensity factors K I ( a ) and 

K II ( a ) for a beam subjected to symmetric and skew-symmetric couples at the 

ends. 

Symmetric E–B γ = 100 γ = 200 γ = 300 γ = 400 γ = 500 

Re( K I ) 0 .767 0 .355 0 .208 0 .154 0 .122 0 .101 

Im( K I ) 1 .544 0 .667 0 .431 0 .319 0 .254 0 .211 

Re( K II ) 0 .085 −0 .462 −0 .496 −0 .507 −0 .512 −0 .515 

Im( K II ) 0 .249 −0 .896 −0 .979 −1 .009 −1 .024 −1 .033 

Skew E–B γ = 100 γ = 200 γ = 300 γ = 400 γ = 500 

Re( K I ) 0 .761 1 .342 1 .545 1 .647 1 .707 1 .747 

Im( K I ) 1 .527 2 .645 3 .047 3 .250 3 .373 3 .456 

Re( K II ) 0 .133 −0 .068 −0 .104 −0 .123 −0 .134 −0 .142 

Im( K II ) 0 .345 0 .043 0 .018 0 .004 −0 .005 −0 .012 

Table 4 

Dimensionless real and imaginary parts of the stress intensity factors K I ( a ) and 

K II ( a ) for a beam subjected to a horizontal midpoint force. 

E −B γ = 100 γ = 200 γ = 300 γ = 400 γ = 500 

Re( K I ) 0 .194 −3 .210 −4 .215 −4 .644 −4 .873 −5 .198 

Im( K I ) 0 .686 −6 .748 −8 .614 −9 .614 −10 .224 −10 .736 

Re( K II ) −1 .999 −2 .410 −2 .397 −2 .306 −2 .269 −2 .241 

Im( K II ) −4 .321 −5 .969 −5 .979 −5 .941 −5 .905 −5 .900 

Table 5 

Dimensionless real and imaginary parts of the stress intensity factors K I ( a ) and 

K II ( a ) for a beam subjected to a vertical midpoint force. 

E–B γ = 100 γ = 200 γ = 300 γ = 400 γ = 500 

Re( K I ) 0 .008 0 .009 0 .007 0 .002 −0 .001 −0 .002 

Im( K I ) 0 .002 0 .026 0 .017 0 .013 0 .010 0 .007 

Re( K II ) 0 .061 0 .040 0 .036 0 .033 0 .033 0 .032 

Im( K II ) 0 .131 0 .077 0 .069 0 .067 0 .065 0 .064 
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Table 6 

Dimensionless real and imaginary parts of the stress intensity factors K I ( a ) and 

K II ( a ) for a beam subjected to a midpoint couple. 

E–B γ = 100 γ = 200 γ = 300 γ = 400 γ = 500 

Re( K I ) −0 .006 0 .560 0 .703 0 .782 0 .813 0 .869 

Im( K I ) −0 .014 1 .154 1 .497 1 .618 1 .712 1 .801 

Re( K II ) 0 .019 0 .157 0 .148 0 .141 0 .136 0 .132 

Im( K II ) 0 .038 0 .415 0 .405 0 .406 0 .406 0 .405 
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maginary parts of K I ( a ) monotonically increases with γ , whereas

 II ( a ) is not significantly affected by variations of γ except for γ
pproaching 0. 

The strength of the stress field for a beam loaded by end cou-

les is reported in Fig. 11 c. When the couples have the same

ign, K I ( a ) monotonically decreases whereas K II ( a ) monotonically

ncreases (in modulus) with γ . Conversely, when the couples have

pposite signs, K I ( a ) monotonically increases whereas K II ( a ) is not

ignificantly influenced by variation of γ , except for very small val-

es of γ , as confirmed by Table 3. 

The singularity of the interfacial stresses under a beam loaded

y an inner axial concentrated load has been studied also, and rel-

vant results are reported in Fig. 11 d and Table 4 . Similarly to the

roblem of two symmetric end couples, in this case also a mono-

onic trend is observed both for K I ( a ) and K II ( a ) varying γ . How-

ver, for sufficiently large values of γ , both the real and imaginary

arts of K II ( a ) are not significantly influenced by the parameter γ .

his behavior resembles that reported in Fig. 11 a for two skew-

ymmetric axial loads. 

A nonmonotonic trend of K I ( a ) with γ is observed in Fig. 11 e for

 beam subjected to a transversal load applied at the middlespan.

n particular, both the real and imaginary parts of K I ( a ) attain a

aximum approximately for γ = 12. Both the real and imaginary

arts of K II ( a ) decrease instead with γ , and for γ > 200 the real

art of K II ( a ) is almost constant (see also Table 5 ). 

The singularity of the interfacial stresses when a couple acts at

he middlespan of the beam is similar to that found for an inner

xial concentrated load (see Fig. 11 d). As displayed in Fig. 11 f, as γ
ncreases both the real and imaginary parts of K ( a ) and K ( a ) in-
I II 
rease with γ and they reach a plateau approximately for γ > 100.

his trend is confirmed by the values reported in Table 6. 

The effect of the slenderness a / h of the beam has not been

iscussed here because the parameter a / h plays a role similar to

he parameter γ used by Lanzoni (2011) to investigate the con-

act problem of a thin film. Therefore, as the ratio a / h decreases,

he interfacial stresses tend to concentrate at the beam ends and,

ccordingly, the stress intensity factors K I ( ±a ) and K II ( ±a ) are ex-

ected to increase (in modulus). This occurrence is confirmed also

y the analysis performed by Shield and Kim (1992) for the prob-

em of an Euler-Bernoulli beam bonded to an elastic half plane. 

. Conclusions 

An analytical investigation of the interfacial stress field taking

lace in a Timoshenko beam bonded to an elastic half plane and

ubjected to various loading conditions has been performed in the

resent work. The problem has been solved by imposing the com-

atibility between the strain fields of the beam and the half plane,

nder plane strain or generalized plane stress conditions. The un-

nown interfacial stresses have been expanded in series of orthog-

nal Jacobi polynomials. The present study allows to evaluate in

etail the influence of the shear deformation of the beam, together

ith its axial and bending stiffness, on the stress singularities and

tress concentration factors produced by the action of concentrated

xternal loads and couples. The asymptotic analysis of the stress

eld at the beam ends as well as in the neighborhood of concen-

rated loads applied at the middlespan of the beam has been car-

ied out in order to properly assess the singular nature of the shear

nd peeling stresses. In particular, a complex power singularity of

he interfacial stresses is found at the beam ends. The correspond-

ng singularity oscillatory index is found to depend on the Poisson

atio of the half plane only. Moreover, under the action of a con-

entrated axial force or a couple applied at an inner section of the

imoshenko beam, a logarithmic singularity is found for the shear

tress, whereas the peeling traction exhibits a finite jump across

he loaded section of the beam, and a similar behavior is found

lso for an Euler–Bernoulli beam. In proximity of the inner section

f a Timoshenko beam loaded by a concentrated transversal load,

he peeling stress displays a logarithmic singularity whereas the

hear stress is finite and discontinuous across the loaded section.

f the same loading condition is applied to an E–B beam, then fi-

ite and continuous stress and strain fields are found. It is worth

oting that the magnitude of the interfacial stresses in the neigh-

orhoods of the loaded section can be found by imposing that the

eam and the half plane suffer the same jump in the strain. 

The present model can be straightforwardly used to properly

nvestigate strain and stress concentrations in various compos-

te systems, like microelectronic packages characterized by small

ength-to-thickness ratio, thick coating-substrates systems, short 

trip-like foundations, etc., where the effect induced by the shear

eformation is expected to play a relevant role. 

In a forthcoming work the Authors will perform the buckling

nalysis of a Timoshenko beam bonded to an elastic half plane un-

er several loading conditions, thus evaluating the effect induced

y the shear deformation on the critical buckling load and the cor-

esponding deformed shapes of the beam. 
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Appendix 

A. Useful formulas and results 

Some formulas and results that have been used in the main text

are reported in the following. 

The following identity based on the rule of integration by parts

has been used to find the analytical expressions of the displace-

ments and internal forces applied to the beam: 

∫ ρ

0 

..... 

(∫ ψ 

0 

(∫ x 

0 

(x − s ) p(s ) ds 

)
dx 

)
d ψ = 

1 

n ! 

∫ ρ

0 

(ρ − s ) 
n 

p(s ) d s,

(A1)

where n is the number of integrations and p ( s ) a given smooth

function within the domains of integration. 

As known, Jacobi polynomials P n 
( s , s ) ( x ) are orthogonal on the

interval [ −1, 1] with respect the weight (1 + x ) s (1 −x ) s , i.e. ( Szegö,

1939; Gradshteyn and Ryzhik, 2007 ): ∫ 1 

−1 

(1 + x ) 
s 
(1 − x ) 

s 
P (s,s ) 

n (x ) P (s,s ) 
m 

(x ) dx 

= 

2 

2 s +1 �2 (s + n +1) 

n !(2 s + 1 + 2 n )�(2 s + 1 + n ) 
δnm 

, (A2)

with Re( s ) > −1, and m, n ∈ N 0 . 

From ( A2 ), the following identity is retrieved, being P 0 
( s , s ) ( x ) =

1: 

∫ 1 

−1 

(1 + x ) 
s 
(1 −x ) 

s 
P (s,s ) 

n (x ) dx = 

2 

2 s +1 �2 (s +1) 

�(2 s + 2) 
δn 0 = 

√ 

π�(s +1) 

�(s + 3 / 2) 
δn 0 , 

(A3)

from which the Eulerian beta integral is obtained. Moreover, the

following result holds: ∫ 1 

−1 

x (1 + x ) 
s 
(1 − x ) 

s 
P (s,s ) 

n (x ) dx = 

√ 

π�(s +2) 

2�(s + 5 / 2) 
δn 1 . (A4)

From the interfacial stresses ( 9 b), the normal strains of the half

plane can be calculated analytically by using the following result

(e.g. Karpenko, 1966 ): 

∫ 1 

−1 

(1 + x ) 
s 
(1 − x ) 

s 
P (s,s ) 

n (x ) 

t − x 
dx 

= π

[
cot (πs ) P (s,s ) 

n (t) (1 + t) 
s 
( 1 − t) 

s − 2 

2 s 

sin ( πs ) 
P (−s, −s ) 

n +2 s 
( t) 

]
. 

(A5)

The Jacobi polynomial can be represented in terms of the

Gauss hypergeometric function 2 F 1 (…) as ( Abramowitz and Stegun,

1972 ): 

P (s,s ) 
n (t) = P (s,s ) 

n (1) 2 F 1 

(
−n , 1 + 2 s + n, 1 + s, 

1 − t 

2 

)
. (A6)

The displacements for the half plane surface can be evaluated

in closed form by using the following identities based on relations

( A5 ) and ( A6 ): ∫ 1 

−1 

Log| t − x | P (s,s ) 
n (x ) (1 + x ) s ( 1 − x ) s dx 
= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

π
2 n 

(
cot [ π(s + 1)] P (s +1 ,s +1) 

n −1 
(t) (1 + t) 

s +1 
(1 − t) 

s +1 

− 2 2(s +1) 

sin [ π(s +1)] 
P (−s −1 , −s −1) 

n +1+2 s 
(t) 

)
, for n = 1 , 2 , 3 , .... ;

1 
2�( 1 / 2+ s ) �( 3 / 2+ s ) { 2 πcsc (πs )�( 3 / 2 + s ) (−t cos (πs )�

( 1 / 2 + s ) 2 F 1 (1 / 2 , −2 s, 3 / 2 , t 2 ) 

+ 

√ 

π [ p F q ({ 1 , −2 s, 1 , { 1 − s, 2 } , 1 / 2)+ 

+(t − 1) p F q ({ 1 , −2 s, 1 } , { 1 − s, 2 } , (1 − t) / 2)]) − 4 

−s π�

( 1 + 2 s ) 
(
H 1 / 2+ s + ln (4) 

)} , for n = 0 , 

(A7)

eing H n the n th harmonic number and p F q (…) is the regularized

eneralized hypergeometric function. Moreover, one has: 

 t 

−1 

(1 + x ) 
s 
(1 − x ) 

s 
P (s,s ) 

n (x ) dx −
∫ 1 

t 

(1 + x ) 
s 
(1 − x ) 

s 
P (s,s ) 

n (x ) dx 

 

⎧ ⎨ 

⎩ 

2 t 2 F 1 ( 
1 
2 
, − s , 3 

2 
, t 2 ) , for n = 0 ;

− (1 −t 2 ) 
s +1 

n 
P (s +1 ,s +1) 

n −1 
(t) , for n = 1 , 2 , 3 , .... 

(A8)

In order to evaluate the internal forces and bending moment of

he beam according to eqns ( 3 ), the following identities have been

sed 

∫ 1 

t 

(1 + x ) 
s 
(1 − x ) 

s 
P (s,s ) 

n (x ) dx 

= 

⎧ ⎨ 

⎩ 

√ 

π�(1+ s ) 
2�(3 / 2+ s ) − t 2 F 1 ( 

1 
2 
, − s , 3 

2 
, t 2 ) for n = 0 ;

1 
2 n 

P (s +1 ,s +1) 
n −1 

(t) (1 + t) s +1 ( 1 − t) s +1 for n = 1 , 2 , 3 , .... ;∫ t 

−1 

(1 + x ) 
s 
(1 − x ) 

s 
P (s,s ) 

n (x ) dx 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

√ 

π�(1+ s ) 
2�(3 / 2+ s ) + t 2 F 1 ( 

1 
2 
, − s , 3 

2 
, t 2 ) for n = 0 ;

1 
2 n 

[(
1 −(−1) 

n +1 

2 

)
P (s +1 ,s +1) 

n −1 
(0) − P (s +1 ,s +1) 

n −1 
(t) (1 + t) 

s +1 

(1 − t) 
s +1 

]
for n = 1 , 2 , 3 , .... ;

(A9)

eing | t | ≤ 1. 

The stress intensity factors can be straightforwardly evaluated

y considering that 

P (s,s ) 
n (1) = 

�(n + s +1) 

n !�(s + 1) 
, 

 

(s,s ) 
n (−1) = (−1) n 

�(n + s +1) 

n !�(s + 1) 
. (A10)
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Moreover the following identities have been used to perform

he asymptotic analysis reported in Section 3.2 ( Boros and Moll,

004 ): 

 1 

−1 

ln | x | 
t − x 

dx 

= 

[ 
PolyLog 

(
2 , 

1 

| t| 
)

− PolyLog 

(
2 , − 1 

| t| 
)

− iπ ln | t| 
] 

sign (t) , 

 1 

−1 

sign (x ) 

t − x 
dx 

= ln 

(
1 

t 2 
− 1 

)
, with | t | ≤ 1 . (A11) 

. Asymptotic analysis of the interfacial stresses in the neighborhood 

f a transversal load applied to an Euler–Bernoulli beam 

Let us consider an Euler–Bernoulli beam laying on an isotropic

alf plane and loaded by a transversal concentrated load T 0 . By

ssuming that the normal and shear contact stresses under the

oaded section behave as 

= O( xln | x | ) , q = O(1) , as x → 0 (B1)

he general expression of the biharmonic Airy stress function for

he isotropic half plane is given by the following series expansion

 Sinclair, 2004 ): 

( r, θ ) = 

∞ ∑ 

n =0 

r n +2 { c 1 n cos ( n + 2 ) θ + c 2 n cos nθ

+ [ a 1 n cos ( n + 2 ) θ + a 2 n cos nθ ] ln r + 

−θ [ a 1 n sin ( n + 2 ) θ + a 2 n sin nθ ] , as r → 0 . (B2) 

Due to the symmetry of the problem here considered, only even

erms in the angular coordinate θ have been retained in ( B2 ). The

orresponding stress components can be derived from the Airy

tress function as 

θθ = 

∂ 2 φ

∂ r 2 
, σrr = 

1 

r 

∂φ

∂r 
+ 

1 

r 2 
∂ 2 φ

∂ θ2 
, σrθ = − ∂ 

∂r 

(
1 

r 

∂φ

∂θ

)
. (B3)

Then, the following expressions for the stress field in the half

lane are found from ( B2 ) and ( B3 ): 

σrr (r , θ ) 

= 

∞ ∑ 

n =0 

r n { [(1 − 2 n ) a 2 n − (n + 1)( n − 2) c 2 n ]cos nθ

−[(3 + 2 n ) a 1 n +( n + 1)( n − 2) c 1 n ]cos( n + 2) θ

+( n +1)[(2 − n ) a 2 n cos nθ − ( n +2) a 1 n cos( n + 2) θ ]ln r, 

+ ( n +1)[(2 + n ) a 1 n θ sin( n + 2) θ + ( n − 2) a 2 n θ sin nθ ] } , 
σθθ (r , θ ) = 

∞ ∑ 

n =0 

r n { [(3 + 2 n ) a 1 n + (n + 1)( n + 2) c 1 n ]cos( n +2) θ

+ [(3 + 2 n ) a 2 n +( n + 1)( n − 2) c 2 n ]cos nθ

+( n +1)( n +2)[ a 1 n cos( n +2) θ + a 2 n cos nθ ]ln r 

−( n +1)( n +2) θ [ a 1 n sin( n + 2) θ − a 2 n sin nθ ] } , 
σrθ (r , θ ) = 

∞ ∑ 

n =0 

r n { [( n + 1)( n + 2) c 1 n +(3 + 2 n ) a 1 n ]sin( n +2) θ

+ [(1 + 2 n ) a 2 n + n (n + 1) c 2 n ]sin nθ

+( n +1)[( n +2) a 1 n sin( n +2) θ + n a 2 n sin nθ ]ln r 

+ ( n +1) θ [( n +2) a 1 n cos( n + 2) θ + n a 2 n cos nθ ] } , as r → 0 . 

(B4) 
The corresponding strain field can be calculated by using the

onstitutive stress-strain relations ( Barber, 2010 ): 

ε rr = 

κ + 1 

8 G s 
σrr − 3 − κ

8 G s 
σθθ , ε θθ = 

κ + 1 

8 G s 
σθθ − 3 − κ

8 G s 
σrr , 

 rθ = 

1 

2 G s 
σrθ , (B5) 

eing κ = 3 −4 νs for plane strain and κ = (3 −νs )/(1 + νs ) for plane

tress, respectively. After properly integrating the strain compo-

ents ( B5 ) and considering the symmetry conditions, the following

isplacement field in the half plane is retrieved: 

 s u r (r, θ ) 

= A 2 cos θ − A 1 sin θ − 1 

2 

∞ ∑ 

n =0 

r n +1 { [ c 1 n (n + 2) + a 1 n ] cos (n + 2) θ

+[ c 2 n (n + 1 − κ) + a 2 n ] cos nθ + [(n + 2) a 1 n cos (n + 2) θ

+(n + 1 − κ) a 1 n cos nθ ] ln r, 

−θ [(n + 2) a 1 n sin (n + 2) θ + (n + 1 − κ) a 2 n sin nθ ] } , 
 s u θ (r, θ ) 

= B 1 r − A 1 cos θ − A 2 sin θ

+ 

1 

2 

∞ ∑ 

n =0 

r n +1 { [ c 1 n (n + 2) + a 1 n ] sin (n + 2) θ

+[ c 2 n (n + 1 + κ) + a 2 n ] sin nθ

+[(n + 2) a 1 n sin (n + 2) θ + (n + 1 + κ) a 2 n sin nθ ] ln r, 

+ θ [(n + 2) a 1 n cos (n + 2) θ + (n + 1 + κ) a 2 n cos nθ ] , as r → 0 . 

(B6)

here A 2 is a constant proportional to a rigid body motion along

he vertical direction. Then, Eqs. (13) require: 

E b I 
d 4 

d r 4 
u θ (r, π/ 2)+ σθθ (r, π/ 2) − h 

2 
d 
dr 

σrθ (r, π/ 2) = 0 , 

σrθ (r, π/ 2) − E b A 

d 2 

d r 2 
[ u r (r, π/ 2) − h 

2 
d 
dr 

u θ (r, π/ 2)] = 0 , 
(B7) 

eing ϕ( r , π /2) = 

d 
dr 

u θ ( r , π /2). Moreover, the following condition

ust be imposed under the loaded section of the beam: 

E b I 
d 3 

dr 3 
u θ ( r, π/ 2 ) 

]
r=0 

= T 0 . (B8) 

The symmetry of the problem entails u r (0, ±π /2) = 0 and u θ ( r ,

/2) = − u θ ( r , −π /2), thus finding A 1 = B 1 = 0. Furthermore, ac-

ording to condition ( B1 ) 2 , the peel stress must take a finite value

nder the loaded section. Such an assumption, together with the

ymmetry condition ϕ(0) = 0, implies 

 10 = a 20 = 0 . (B9) 

It should be remarked that Eq. (B7) provide relations between

onstants of orders n th, ( n + 1) th and ( n + 2) th . Then, some of the

onstants can be evaluated by truncating the series expansions of

he stress and displacement fields to the ( n + 2)th order, and then

mposing that conditions ( B7 )–(B8) hold up to the order n . How-

ver, the asymptotic analysis cannot define all the coefficients. As

n example, by taking the terms in the series ( B2 ) up to the or-

er n = 6, then only some of the coefficients a in and c in for n =
–4 and i = 1, 2 can be assessed. In particular, the following terms

an be determined from conditions ( B7 )–(B8) independently of the

oefficients c in : 

a 11 = −T 0 G s h ( 2 + κ) / (12 κπE b I) , 

a 21 = −T 0 G s h/ (4 κπE b I) , 

a 12 = T 0 G s [8( κ − 3) κ − (κ + 3)(κ + 1) G s h ( h 

2 / E b I + 4 / E b A )] / 

(192 κ2 πE b I) , 

 22 = −T 0 G s [8 κ + (κ + 1) G s h ( h 

2 / E b I + 4 / E b A )] / (48 κ2 πE b I) . 
(B10) 
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