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Highlights 

 

 The behavior of wire strand under varying axial tension and torsion is analyzed. 

 An interwire full contact model considering different contact statuses is built. 

 The coupled contact status happens to the strands under some certain axial loads. 

 The stiffness at a large lay angle increases obviously with increasing axial load. 
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Abstract 

A wire rope is often subjected to a varying axial tensile force or torsional moment, resulting in its unstable 

performances. However, this problem has not been studied to date due to the lack of a scheme effectively 

determining the interwire contact status. For this, an interwire full contact model considering different 

contact statuses is established based on contact mechanic and thin rods theories. Then the model is solved 

with the semi-analytical method (SAM), into which the conjugate gradient method (CGM) and fast Fourier 

transform (FFT) are employed for analyzing the contact behavior. With the above contact dealing, the full 

contact performances are achieved for the core-wire contact, the wire-wire contact and the coupled contact 

statuses of the strand subjected to varying axial loads. And it is found that the interwire contact status of the 

strand may change with the varying loads, resulting in the unstable distributions of the interwire contact 

pressure and deformation. Meanwhile, the validity of the proposed full contact model is verified. 

Keywords 

Full contact; Wire rope strand; Stiffness; Axial loads; Semi-analytical method 
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1. Introduction 

A wire rope is used in many applications, such as elevator, hoisting crane, suspension bridge and mine 

hoisting. Besides a remarkable tensile strength, the relative small bending and torsional stiffness make the 

rope easy to be wounded around a sheave or winding drum, which is beneficial to simplify the structures 

that the rope involved. Many wire ropes, like the ones for lifting, work under the circumstances of heavy 

loads. Any failure of the rope may lead to serious consequences, showing that the research on the rope is 

very significant. 

To date, there have been many analytical studies on the mechanical performance of the wire rope, most of 

which were conducted based on the hypothesis of linear elastic. According to the reciprocity theorem of 

Betti (Samras et al., 1974), the stiffness matrix showing the relation between the axial strains and the 

external axial loads of the rope should be symmetric. Considering the extension of wires in a wire rope 

strand, Hruska (1952, 1953) studied the mechanical property of a wire strand, and a strictly symmetric 

stiffness matrix was obtained. However, the torsion and bending of the wires were not included in his works. 

The torsion performance of the wires in the strand was considered by Mcconnell and Zemke (1982), who 

pointed out that the properties of extension and torsion of the strand affect each other. Besides, the symmetry 

of the stiffness matrix by Mcconnell and Zemke was lost. By projecting the bending and torsion moments of 

the wires to the strand’s axis, Machida and Durelli (1973) studied the influence of the wire’s bending and 

torsion on the stiffness of the strand, and they also derived an asymmetric stiffness matrix. Based on 

Costello’s (1983) work that considers the tension, torsion, bending and Poisson’s ratio effect of the wires, 

Kumar and Cochran (1987) obtained a closed-form solution for the asymmetric stiffness matrix of the wire 

rope strand. According to Costello’s model, the cross-sectional moments of the wire are proportional to the 

changes in the curvature and torsion. This dealing was improved by Ramsey (1988) using a differential 

geometric method, and the said moments were thought to depend on not only the above-mentioned changes 

but also the values of the curvature and torsion. Meanwhile, both the stiffness matrixes by Costello and 
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Ramsey are asymmetric. On the basis of the discrete thin rods theory, Sathikh et al. (1996) established a 

linear elastic model and achieved a closed-form symmetric stiffness matrix of a wire rope strand. However, 

the compressibility of the strand core was ignored. The study from Ghoreishi et al. (2007) shows that early 

models involving the axial strand performances have limitations in real applications due to the used 

assumptions (Jolicoeur and Cardou, 1991), such as the wire rope strand is assumed as a linear elastic system. 

Besides the performance of the simple straight wire rope strand, the mechanical property of wire rope 

with multi-stand has also been studied so far. Costello (1997) dealt with the spiral strand as a one-order 

discrete thin rod. Elata et al. (2004) made a wire level analysis on the mechanical property of a multi-strand 

wire rope. However, a “fiber model” was adopted to model the second order helix wire in their study, 

without the consideration of the effects of the bending, torsion and Poisson’s ratio of the wire. Using a 

hierarchical approach, Inagaki et al. (2007) established a model of a second order helix wire and analyzed 

the usage life of the wires. Nevertheless, the radial compression of the wire was ignored. Based on the beam 

hypotheses and thin rods theory, Usabiaga and Pagalday (2008) modeled the helical wires of first and second 

orders in a wire rope with a recursive method, without the consideration of the effect of Poisson’s ratio of 

wires. Spak et al. (2013) conducted an overview on the research progress of wire rope with single and 

multiple strands, and pointed out that the damping property caused by the friction and viscoelastic shear 

effect should be incorporated in modeling wire ropes. Wang et al. (2015) derived the recursive expressions 

of the wires and strand in a wire rope, and the recursive method can be adopted to model a wire rope with 

any form of rope axis. The properties of extension, torsion and bending and the effect of the Poisson’s ratio 

of the wire have been studied in the above-mentioned researches. In real situation, external loads on the wire 

rope may result in the interwire contact. The deformation caused by the interwire contact changes the wire’s 

relative location and interwire clearance, and further influences the mechanical performance of the wire rope. 

However, the interwire contact has not been incorporated in the said studies. 

On the other hand, some studies considering the contact problem of wire rope have been conducted. 
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Kumar and Botsis (2001) calculated the maximum stress of a multi-layer wire rope strand subjected to axial 

tensile and twist moment by use of Hertz theory. And their results show that the elastic modulus has an 

obvious influence on the contact stress of the wire. The initial contact between adjacent wires was 

considered by Prakash et al. (1992), who calculated the bending stiffness of a wire rope strand. Usabiaga et 

al. (2008) experimentally measured the normal contact force between a winding wire rope and sheave. By 

using the finite element method (FEM), Jiang et al. (2008) conducted a simulation analysis on a wire rope 

strand under a constrained torsion condition, and solved the statically indeterminate contact problem. The 

influence of the friction on the coupled contact performance of a wire rope strand was studied by Gnanavel 

et al. (2010), with the adoptions of the equilibrium equation and the Hertz elastic contact theory. Argatov 

(2011) modeled and analyzed the interwire contact property of a wire rope strand subjected to axial and 

torsional loads, using an asymptotic method. Based on the concept “p-extension” and a high-order nonlinear 

spring element in finite element theory, the nonlinear contact in a wire rope strand under small deformation 

condition was modeled by Paczelt and Beleznai (2011). With the adoption of Frenet–Serret frame and 

principal torsion-flexure axes, Xiang et al. (2015) deduced the influences of axial extension and torsion 

loads on the special positions of steel wires in first and second order helix, and studied the wire deformation 

and stress caused by the axial loads. Their work shows that the contact deformation strongly affects the local 

stress in wires. Besides the above-mentioned works, the interwire contact of the wire rope has also been 

simulated by other researchers with FEM (Chen et al., 2015; Erdonmez and Imrak, 2011; Fontanari et al., 

2015; Jiang, 2012; Jiang and Henshall, 1999; Jiang et al., 1999; Stanova et al., 2015; Yu et al., 2014). The 

nonlinear factors, such as the interwire contact and the elasto-plasticity of wire, have also been considered. 

To achieve the numerical precision, nevertheless, dense meshes need to be generated, leading to a heavy 

computation burden. And the solution convergence for the nonlinear interwire contact problem may be hard 

to realize. 

In addition, the constant contact status between wires was used in the past researches. In real operation 
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conditions, however, the load acting on the wire ropes is usually not constant, and the change in the load 

may cause a varying interwire contact status of the wire rope. The changeable phenomenon was also 

mentioned by Gnanavel et al. (2010), who however ignored the interwire contact deformation and did not 

make a deep study on the changeable interwire contact status at varying loads. In view of that the varying 

interwire contact status has not been analyzed in the past researches, therefore, a deep analysis of it is of 

significance for a better deign and maintenance of the wire rope under varying loads. 

To study the interwire contact at varying loads, some difficulties need to be overcome. First, one needs the 

precise solution method analyzing the interwire contact performance parameters, such as the contact 

pressure and contact deformation. This has been accomplished in the recent work of the present authors 

(Meng et al., 2016) with the adoption of the semi-analytical method (SAM). In the solution process with 

SAM, the influence coefficients of the interwire contact deformation due to the contact pressure are 

analytically obtained first, and then the contact pressure and contact deformation are calculated by the use of 

conjugate gradient method (CGM) (Polonsky and Keer, 1999) and fast Fourier transform (FFT) (Liu et al., 

2000), respectively. In addition, the precise evaluation on the contact status between the wires is also needed. 

Although the contact problem of the wire rope was researched in the past years based on the assumption of 

the constant interwire contact status of the wire rope, a scheme analyzing different interwire contact 

behaviors (i.e., full contact) under varying loads has been desired to date. Aiming at this problem, an 

interwire full contact model considering different contact statuses is established in this paper. Based on this 

model, the change in the interwire contact status of the strand under varying loads can be precisely 

determined. Then the interwire contact behaviors at different contact statuses are studied based on the said 

semi-analytical method. Finally, some conclusions are obtained with the full contact analysis. 

2. Full contact model 

2.1. Basic parameters 

The geometrical feature of a wire rope strand investigated in the present study is given in Fig. 1a, in 
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which the symbol h denotes the strand length in undeformed state. The α2 and rh2 are the initial helix angle 

and initial helix radius of the outside wire centerline, respectively. The R1 and R2 are the initial radii of the 

central wire and the outside wire, respectively. As shown in Fig. 1a, the tensile strain t of the strand 

subjected to an axial tensile force and torsional moment is defined as 

 t h h h      (1) 

where the h  refers to the length of the deformed strand. The torsional strain τt of the strand due to the said 

axial loads is 

t h      (2) 

where the Δφ represents the relative rotating angle between the two ends of the strand. 

   
(a)                               (b) 

Fig. 1. Geometrical features. (a) Wire rope strand. (b) Outside wire centerline. 

The schematic of the outside wire centerline of the strand is given in Fig. 1b, in which the symbol s is the 

length of the centerline, and l is the projection length of the centerline on the normal plane of the strand axis. 

The lay angle β is the complementary angle of the helix angle α2 (i.e., β=90°-α2). The barred symbols refer 

to the values considering the deformation of the strand, and it is the same for what follows. For the 

deformation characteristics and the geometrical relations of the strand, the axial tensile strain ξ2 and the helix 

angle 2  of the outside wire are respectively derived as (Meng et al., 2016) 

   
2

2 2h 2
2 2 2 h 2 t t

h 2

sin cot 1 1
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 

 
2 t

2

2

sin 1
arcsin

1

 








  (4) 

where h 2r  is the helix radius of the deformed outside wire centerline. 

In real operation conditions, the interwire contact status probably change due to varying axial loads, 

which has not been considered in past researches (Argatov, 2011; Ghoreishi et al., 2007; Usabiaga and 

Pagalday, 2008). In view of the structural feature of the wire rope strand, the possible contact statuses 

between wires of the strand under a specific axial load are given in Fig. 2, in which the central wire and 

outside wire are denoted with symbols “CW” and “OW”, respectively. According to the position where the 

interwire contact happens (see the contact line in Fig. 2), there exist three cases of the interwire contact 

status, which are the core-wire contact status (contact only happens between the central and outside wires, 

see Fig. 2a), the wire-wire contact status (contact only happens between the adjacent outside wires, see Fig. 

2b) and the coupled contact status (both core-wire contact and wire-wire happen, see Fig. 2c). Different from 

the dealing that the interwire contact status was assumed as constant in past researches, the above three 

contact statuses are determined with a full contact model in the present study. 

 
(a)                          (b)                          (c) 

Fig. 2. Interwire contact statuses of wire rope strand. (a) Core-wire contact status. 

(b) Wire-wire contact status. (c) Coupled contact status. 

To establish the full contact model, the geometrical parameters should be derived according to the 

interwire contact status of the strand. In the undeformed state, the initial helix radius rh2 of the outside wire 

centerline depends on the initial interwire contact status of the strand: 

h2 c-w c-w w-w, ifr r r r    (5a) 

h2 w-w c-w w-w, ifr r r r    (5b) 

 Contact line Contact line

CW CW

OW OW

CW

OW

Contact line
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which means that Eq. (5a) is adopted if the initial interwire contact status is core-wire contact or coupled 

contact, and rc-w=R1+R2. Meanwhile, if the initial wire-wire contact happens, the value of rh2 is evaluated 

with Eq. (5b), and  2 2

w-w 2 2 21 tan 2 sinr R m     . The symbol m2 is the amount of the outside 

wire of the strand. It should be mentioned that the helix angle has an effect on the boundary shape of the 

outside wire in the cross-section of the strand, which has been reported by Karathanasopoulos and 

Angelikopoulos (2016) and Frikha et al. (2013). However, the said boundary shape can be assumed to be an 

ellipse for the wire strands with helix angles normally used, according to the researches by Costello (1997), 

Feyrer (2007) and Ghoreishi et al. (2007). 

With the consideration of the Poisson’s ratio and the flattening effect caused by the interwire contact 

deformation, the values of the axial strain ξ2 and helix angle 2  of the outside wire centerline in the 

deformed state also depend on the interwire contact status of the strand, which is different from the dealings 

in the past studies (Argatov, 2011; Usabiaga and Pagalday, 2008) based on the assumption of constant 

contact status. 

In the case of core-wire contact, the final helix radius h 2r  of the outside wire centerline is expressed as 

h2 1 2 1 2r R R        (6) 

where the radii of the central and outside wires are  1 1 1 11R R     and  2 2 2 21R R    , respectively. 

The ν is the Poisson’s ratio of a wire. The axial strain of the central wire ξ1 is equal to t. δ is the contact 

deformation caused by the core-wire contact. And the subscripts 1 and 2 represent the central wire and the 

outside wire, respectively. According to Eqs. (3), (5) and (6), it yields 

      

 

2 2 2

2 2

1 1 1 1

1


      



  (7) 

where the intermediate variables are defined as  1 2 1 1 1 1 2 h2R R R r         , 2 2 h 2R r  , 

 
2 2

2 h2 t 2cot sinr      and  
2 2

t 21 sin    . Then the helix angle 2  of the outside wire 

centerline in the deformed state can be computed through Eq. (4). 

In the case of wire-wire contact status, the deformation of the wire-wire contact in the normal plane of the 
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contact line is assumed to be δ3. As shown in Fig. 3a, the wire-wire contact deformation δ4 in the outside 

wire’s cross-section is 

4 3 cos     (8) 

where the angle variable   is defined as c2 2    , and the helix angle of the wire-wire contact line 

c2  is calculated with 

2
c2

c2

arctan
2

p

r



   (9) 

Here, the lay length of the deformed outside wire is  2 t h2 22 1 tanp r    . The symbol c2r  is the helix 

radius of the wire-wire contact line (see Fig. 3b) and expressed as (Costello, 1997) 

 

   
 2 2

c2 5 2
2 2

2 2 2 2

tan 2
cot

sin cos 2 sin tan 2

R m
r m

m m

 
 

     


 

  
  (10) 

where the deformation δ5 in the strand’s cross section due to the wire-wire contact is 

4
5

2sin





   (11) 

     
(a)                                (b) 

Fig. 3. Schematic of wire-wire contact. (a) Deformation relation. (b) Cross-section of strand. 

Therefore, the helix radius of the deformed outside wire centerline in the case of wire-wire contact status 

is 

 

 

2

2 5
h 2 2 2

2 2

tan 2
1

sin sin

m
r R

m

  

 


     (12) 
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where the first term is the value of the helix radius of deformed outside wire centerline only considering the 

Poisson’s ratio, and the second term corresponds to the strand’s radial rigid displacement due to the 

wire-wire contact deformation. According to Eqs. (3), (5) and (12), the axial strain of the outside wire in the 

wire-wire contact case can also be obtained with Eq. (7), in which two intermediate variables should be 

replaced with 

 

 

2

2 3
2 2

h 2 2 2 2

tan 2 cos1
1

sin sin sin

m
R

r m

   

  

 
    
  

  (13a) 

 2

2

2 2 2

h 2 2

tan 21
1

sin

m
R

r

 




 
   
  

  (13b) 

Eqs. (13a) and (13b) show that the values of the axial strain ξ2 and the helix angle 2  of the outside wire 

affect each other. The coupling solution of Eqs. (4) and (13) can be realized with an iterative method. 

In the case of coupled contact status, both the mathematical derivations in the cases of core-wire contact 

and wire-wire contact are still valid. For simplifying the analysis, the derivations in the case of core-wire 

contact status are given for the coupled contact status. 

As stated previously, the geometrical parameters of the strand under varying loads are calculated 

according to the interwire contact status, which can be judged with 

c-w w-wr r , core-wire contact status  (14a) 

c-w w-wr r , wire-wire contact status  (14b) 

c-w w-wr r , coupled contact status  (14c) 

where c-wr  and w-wr  are the helix radii when only the core-wire contact and wire-wire contact are 

considered, respectively. And the values of the said radii are expressed as 

   c-w 1 1 1 2 2 2 1 21 1r R R             (15a) 

 
 

 

2

2 3
w-w 2 2 2 2

2 2 2

tan 2 cos
1 1

sin sin sin

m
r R

m

   
 

  


     (15b) 

Assume that the centerlines of the undeformed and deformed outside wires are both helical lines. The 

changes in the components of curvature (i.e., κ2 and 2 ,) and the twist per unit length (τ2) of the centerline 
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are respectively obtained with Eqs. (16a), (16b) and (16c): 

2 2 2 0        (16a) 

2 2

2 2
2 2 2

h 2 h 2

cos cos

r r

 
           (16b) 

2 2 2 2
2 2 2

h 2 h 2

sin cos sin cos

r r

   
         (16c) 

2.2. Force equilibrium of outside wire 

On the basis of the thin rods theory (Love, 1944), the mechanic performances for the strand subjected to 

varying loads is analyzed through an illustrated infinitesimal arc of the outside wire centerline shown in Fig. 

4. In this figure, the global location is denoted with the ex-ey-ez coordinate system. The symbols x, y and z 

represent the normal, binormal and tangential directions at any point on the centerline, respectively. The x- 

and y-directional components of the shearing force on a cross-section of the wire, and tensile force along the 

z direction are denoted with N2, 2N   and T2, respectively. The components of the cross-sectional bending 

moment about the x- and y-directions, and the twist moment about the z axis are represented with G2, 2G  

and H2, respectively. The components of the line load per unit length of the outside wire centerline along the 

x-, y- and z-directions are denoted with symbols X2, Y2 and Z2, respectively. The components of the moment 

per unit length of the outside wire centerline along the x-, y- and z-directions are denoted with K2, 2K   and 

Θ2, respectively. Based on the assumption used in the past literatures (Argatov, 2011; Costello, 1997), the 

tension, curvatures and torsion are thought to be constant along the centerline, and there is no bending 

moment acting on the outside wire. By ignoring the interwire friction, the force equilibrium of the outside 

wire is described as 
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Fig. 4. Schematic of outside wire centerline and interwire contact lines. 

2 2 2 2 2 0N T X        (17a) 

2 2 2 2 2 0G H N         (17b) 

According to the hypothesis of linear elastic theory, the tensile force of the outside wire in Eq. (17a) can 

be written as 

2 2 2 2T E A    (18) 

where E2 and 2A  are the Young’s modulus and the cross-sectional area of the deformed outside wire, 

respectively. The values of the G2, 2G  and H2 can be obtained with the following relations (Ramsey, 1988): 

 
4

2 2
2 2 2 2

4

E R
G


       (19a) 

 
4

2 2
2 2 2 2

4

E R
G


         (19b) 

 
 

4

2 2
2 2 2 2

4 1

E R
H


  


  


  (19c) 

The axial force F and twist moment M acting on the strand are separately expressed as Eqs. (20a) and 

(20b): 

 2

1 1 1 2 2 2 2 2sin cosF E R m T N        (20a) 

 
   

4

t 1 1
2 2 2 h 2 2 2 2 h 2 2

1

sin cos
4 1

E R
M m H N r G T r

 
 


       

  (20b) 

where E1 is the Young’s modulus of the central wire. Besides, the values of all the geometrical variables in 

Eqs. (20a) and (20b) all consider the interwire contact, which is accordance with the real situation of the 
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loaded strand. 

Based on the hypothesis of linear elastic and quasi-static, the axial deformation behavior of the strand 

can be expressed in the following form 

t

t

k kF

k kM

 

 





    
    

     
  (21) 

where the four stiffness matrix components kεε, kθθ, kεθ and kθε are axial tension, torsion and coupling terms, 

respectively. Once values of the F, M, and εt are known, the axial and coupling stiffnesses can be 

respectively calculated with kεε=F/εt and kθε=M/εt under the condition of τt=0 rad/m. Similarly, the torsional 

stiffness kθθ and the coupling stiffness kεθ can be respectively obtained with kθθ =M/τt and kεθ=F/τt under the 

condition of εt =0. 

2.3. Interwire line contact load 

As stated previously, the line load in Eq. (17a) acts on the outside wire centerline. The line action on the 

outside wire can be realized by the interwire contact. The interwire line contact load depends on the change 

in the interwire contact status in the full contact analysis of the strand subjected to varying loads, which is 

different from the situation of constant contact status used in the past researches (Argatov, 2011; Gnanavel et 

al., 2010). 

In the case of the core-wire contact, the initial helix line contact zone between the central and outside 

wires becomes long and narrow due to the contact deformation. With a half width of b1, the centerline of the 

deformed contact zone is defined as the core-wire contact line. The geometrical features of the core-wire 

contact line and the outside wire centerline indicate that the contact load per unit length of core-wire contact 

line (Xc1) can be obtain with (Costello, 1997) 

2
c1

1

X
X

k
    (22) 

where the length ratio of the core-wire contact line to the outside wire centerline in the deformed state is 

defined as    
2 22 2

1 2 c1 2 h 22 2k p r p r    . Here, the c1r  is the helix radius of the deformed core-wire 
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contact line, and c1 1 1r R   . 

If the wire-wire contact occurs, on the other hand, the centerline of the deformed contact zone (with a half 

width of b2) is used, defined as the wire-wire contact line. The load acting on the outside wire centerline is 

supplied by the contact interaction between the outside wires, and the contact load per unit length of 

wire-wire contact line (Xc2) is expressed as (Costello, 1997) 

2
c2

22cos

X
X

k
    (23) 

where k2 is the length ratio of the wire-wire contact line to the deformed outside wire centerline, defined as 

   
2 22 2

2 2 c2 2 h 22 2k p r p r    . The contact angle   in Eq. (23) can be evaluated with the relation 

(Costello, 1997) 

 2

2 2 4

22 2

2 2 2 1

tan 21 1
cos 1 tan 1 sin

cos sin 2

m

m

   
 

 

     
         

    

  (24) 

where 1  is an intermediate variable, and    2 2 2 2

1 2 2 2 2tan cos 2 sin tan 2m m            . 

Besides the above two contact statuses, the coupled contact status stated previously may occur at certain 

operation conditions. For this state, there exists a force balance between the line load per unit length of the 

outside wire centerline (X2), the contact load per unit length of core-wire contact line (Xc1) and the contact 

load per unit length of wire-wire contact line (Xc2), which is written as 

1 c1 2 c2 22cosk X k X X     (25) 

2.4. Interwire contact model 

With respect to the interface where interwire contact happens, the normal Hertzian contact effect is 

considered. Meanwhile, the rotational stiffness effect at the interface of contact (Karathanasopoulos, 2015) 

is neglected based on the assumption that the wire surface is smooth. To establish the interwire contact 

model for the strand at varying loads, the expressions for the contact clearances of the core-wire contact and 

wire-wire contact are derived in this section. Then the load equilibrium between the line contact load and 

contact pressure, along with the relation between the contact pressure and the contact clearance, are given. 
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If the contact between the central and outside wires happens, infinitesimal segments of the central and 

outside wires with the length of ds0 along the contact line are taken for following derivations. As shown in 

Fig. 4, let oc1 denote an arbitrary point on the core-wire contact line, and respectively define lines oc1xc1, 

oc1yc1 and oc1zc1 as the normal, binomial and tangential directions of the core-wire contact line, respectively. 

Consequently, the core-wire contact clearance hc1 at a point (yc1, zc1) on the yc1 axis is obtained as 

       c1 c1 c1 i1 c1 c1 1 c1 c1 1 c1, , , 0,h y z h y z u y z u z     (26) 

where hi1 is the initial clearance between the central and outside wires. The symbol u1 denotes the total 

elastic deformation of the deformed central and outside wires. The initial core-wire clearance hi1 can be 

expressed in a form of a quadratic curve as follow 

 
c1 c1

2

c1
i1 c1 c1

1 2

1 1
,

2y y

y
h y z

R R

 
  
 
 

  (27) 

where 
c11yR  and 

c12 yR  are the yc1 directional radii of surface curvature of the central and outside wires at 

point oc1. And the radius values are obtained with the relations 
c1

2

1 1 cosyR R   and 
c1

2

2 2 cosyR R  . 

Here, the angle variables   and   are defined as  2 c12 arctan 2p r     and 

 2 c1 2arctan 2p r    , respectively. 

With respect to the contact between adjacent outside wires, the normal, binomial and tangential directions 

of the wire-wire contact line at an arbitrary point oc2 are denoted with lines oc2xc2, oc2yc2 and oc2zc2 in Fig. 4, 

respectively. Thus the wire-wire contact clearance hc2 at a point (yc2, zc2) on the yc2 axis is expressed as 

       c2 c2 c2 i2 c2 c2 2 c2 c2 2 c2, , , 0,h y z h y z u y z u z     (28) 

where hi2 is the initial clearance between the adjacent outside wires. The symbol u2 denotes the total elastic 

deformation of the wire-wire contact. The initial clearance hi2 can be expressed as 

 
c 2

2

c2
i2 c2 c2

2

,
y

y
h y z

R
   (29) 

where 
c 22 yR  is the radius of surface curvature of the outside wires at point oc2 along the yc2 direction, and 

c

2

2 2 cosyR R  . 

Since the value of ds0 is taken to be small enough previously, the contact zone Ac between the chosen wire 
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sections can be treated as a rectangular one. Let p(yc, zc) be the contact pressure at point (yc, zc), the load 

equilibrium yields 

 
s 0

s 0

2
c s0 c c c c

2

, d d
d

b

d
b

X d p y z y z


     (30) 

Based on the minimum complementary energy principle, the interwire contact problem are reduced as the 

following extremum problem of a quadratic function (Hu et al., 1999): 

Minimize 
T T

c c

1
( )

2
    W p h p p I p   (31) 

subject to        c c c c c c c c c c, 0, , 0, , , 0h y z p y z h y z p y z      (32) 

where W is the objective function. The symbol hc is the clearance matrix, p is the pressure matrix, and Ic is 

the influence coefficient matrix. The contact pressure and contact deformation can be obtained with the 

conjugate gradient method (CGM) and fast Fourier transform (FFT) adopted by the present authors (Meng et 

al., 2016). Eq. (32) shows that the contact pressure p is larger than zero when the clearance hc=0. Inversely, 

if hc>0, then p is equal to zero, implying the interwire separation. 

In view of the non-conformal contact property of the strand (i.e., the dimension of the contact region is 

much smaller than those of the wires), the deformation u due to the contact pressure p can be calculated with 

Boussinesq theory (Johnson, 1985): 

     
s 0

s 0

2
c c c c c c c c c c

2

, , , d d
d

p

d uu y z G y y z z p y z y z




           (33) 

where the Green’s function of the contact pressure for the deformation is 
p

uG , and 

   * 2 2

c c c c, 1p

uG y z E y z  . The symbol E* denotes the reduced Young’s modulus. For the core-wire 

contact,    * 2 2

1 1 2 21 1 1E E E     . And for the wire-wire contact,  * 2

2 21 2 1E E  . The 

deformations of the central and outside wires satisfy 

 
 

2

1 21

2
2 2 1

1

1

E

E



 





  (34) 

In the present study, all wires are assumed to be made of the same material, i.e., E1=E2=E and ν1=ν2=ν for 

simplifying the calculation. 
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3. Numerical solution 

3.1. Solution process 

The key of solving the full contact model of the wire rope strand established in section 2 is the 

determination of the interwire contact status in the deformed state, due to the fact that the distribution of the 

load between the wires depends on the interwire contact status. A solution process based on a 

semi-analytical method (SAM) for the wire rope strand is proposed in the present study to realize the 

evaluation of the interwire contact behavior of the strand at varying loads. The overall solution process is 

shown in Fig. 5a, and the detailed numerical procedure is as follows: 

Step 1. Assume that the core-wire contact status happens to the wire rope strand under a specific axial 

load (i.e., set the wire-wire contact deformation as zero), and solve the performance of the strand with the 

iterative solution process given in Fig. 5b, where the convergence precision εδ is set as 1.0×10
-4

. 

Step 2. Calculate the helix radius of the deformed outside wire centerline according to Eqs. (15a) and 

(15b), and judge whether the geometrical parameters after deformation satisfy the condition that the adjacent 

outside wires are not in contact (i.e., c-w w-wr r ). If the said condition is satisfied, then the interwire contact 

status at current load step is the core-wire contact status, and go to Step 6. Otherwise, go to Step 3. 

Step 3. Assume that the wire-wire contact status happens (i.e., set the core-wire contact deformation as 

zero), and solve the strand performance with the iterative solution process given in Fig. 5b, where the 

convergence precision εδ is 1.0×10
-4

. 

Step 4. Calculate the helix radius of the deformed outside wire centerline according to Eqs. (15a) and 

(15b), and judge whether the parameters of the deformed strand satisfy the condition that the central and 

outside wires are not in contact (i.e., c-w w-wr r ). If the said condition is satisfied, then the interwire contact 

status at current load step is wire-wire contact, and go to Step 6. Otherwise, it indicates that the 

coupled-contact occurs. 

Step 5. Solve the strand performance at the coupled-contact status with the solution process given in Fig. 
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5c, where the convergence precision εδ is 1.0×10
-4

. Then terminate the solution at current load step. 

Step 6. Increase the load if the maximum axial load on the strand is not reached and go to Step 1, 

otherwise terminate the total solution. 

 
(a)                                 (b)                             (c) 

Fig. 5. Solution process for full contact model of wire rope strand. (a) Overall process. (b) Solution process in core-wire contact 

status or wire-wire contact status. (c) Solution process in coupled contact status. 

3.2. Interwire contact solution 

To realize the above-mentioned full contact solution process of the strand under varying loads, the 

interwire contact behavior should be computed. Considering the coupling relation between the contact 

pressure and contact deformation, an iterative procedure based on the conjugate gradient method (CGM) 

(Polonsky and Keer, 1999) is adopted. The computation domain is {(yc, zc)|-4b≤yc≤4b, -3b≤zc≤3b}, and 

discretized into the jmax(yc direction)×kmax(zc direction) elements, each of which the yc- and zc- directional 

dimensions are ∆yc=8b/jmax and ∆zc=6b/kmax, respectively. Besides, the half-width of contact b is determined 

according to the location where interwire happens: 
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c1
1 2

* 2

1 2

4

sin 1

X
b b

E
R R




 
 

 
 

, for core-wire contact  (35a) 

c2 2
2 *

2X R
b b

E
  , for wire-wire contact  (35b) 

Similar to the dealing in early work of the present authors (Meng et al., 2016), the fast Fourier transform 

(FFT) (Liu et al., 2000) is adopted to calculate the contact deformation. This method can realize the quick 

and precise evaluation of the contact deformation due to its capacity of shorten the computation time. The 

contact deformation u is obtained with 

 c

ˆ ˆˆ ˆIDFTu I p    (36) 

where the symbol “ ” denotes a two-dimensional discrete Fourier transform (DFT), whose inverse 

operation is represented with “IDFT”. The symbol Ic is the influence coefficient of the contact deformation 

due to the contact pressure p. Before the iteration for the interwire contact solution, the influence coefficient 

Ic is computed with the relation 

   
c c

c c

2 2
c c c c c c c

2 2

, , d du

z y

p

z yI j k G j y y k z z y z
 

 
 

        (37) 

where the integral of the Green’s function u

pG  can be analytically derived (Love, 1929). 

4. Model verification 

Before the full contact analysis, the comparison between the maximum contact pressures and changes in 

helix radius of the outside wire by the present full contact model and the FEM result by Jiang et al. (Jiang et 

al., 2008) is given in Fig. 6, where the maximum core-wire contact pressure and the maximum wire-wire 

contact pressure are denoted with σcw and σww, respectively. It should also be mentioned that a negative 

value of the change in helix radius in Fig. 6b indicates that the helix radius decreases. Meanwhile, the result 

only considering the contact between the central and outside wires (the core-wire contact model in Fig. 6), 

along with that obtained with the Costello’s theory (Costello, 1997), is also presented. The results show that 

both the contact pressure in Fig. 6a and the change in helix radius (absolute value) in Fig. 6b, obtained with 
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the core-wire contact model, are larger than the corresponding values with the full contact model. The 

discrepancy can be explained with the fact the contact between adjacent outside wires ignored in the 

core-wire contact model weakens the core-wire contact load, thus making the distribution of interwire 

contact load more uniform. Neglecting the interwire contact deformation, as shown in Fig. 6b, the Costello’s 

theory results in a much smaller change in helix radius than other methods. Moreover, it can be seen from 

Fig. 6a and b that the maximum contact pressure, and the change in helix radius by the present full contact 

model are in good accordance with the corresponding values by the FEM, which proves that the present 

model gives a precise solution of the interwire contact behavior of the wire rope strand. 

   
(a)                                               (b) 

Fig. 6. Results comparison of strand in coupled contact. (a) Maximum contact pressure.  

(b) Change in helix radius of outside wire centerline. 

Utting and Jones (1987) conducted axial tensile tests on simple straight strands with different end 

constraints (i.e., the nominal fixed-end, free-end and partial restraint). Torsional moment M in the nominal 

fixed-end condition, torsional strain τt in the free-end condition, along with the slopes of the torsional 

moment against the tensile and torsional strains in the partial constraint condition were obtained by them. In 

the present study, the axial tensile performance calculation of the strand with lay angles β of 17°, 12.2° and 

9.2° (specimen I, IV and VI in the test by Utting and Jones) are made with the full contact model, and the 

comparison results are given in Tables 1 and 2. The parameters adopted for the comparison are as follows: 

R1=1.97 mm, R2=1.865 mm, E1=E2=197.9 GPa, ν1=ν2=0.3, and the axial tension F is 40 kN. Meanwhile, the 

torsional moment M and the torsional strain τt in the free-end condition by the present model in Table 1 are 
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respectively calculated according to the following relations: 

 t t

k
M F k k

k


 



    , for fixed-end condition  (38a) 

 t

F

k k k k   

 


, for free-end condition  (38b) 

In Table 2, the slopes of the torsional moment against the tensile and torsional strains in the partial 

constraint condition are calculated with the following formulas: 

t

k kM
k

k

 





 


  (39a) 

t

k kM
k

k

 





 


  (39b) 

Meanwhile, the FEM result by Ghoreishi et al. (2007), the result obtained with an asymptotic method 

(AM) by Argatov (2011) as well as the present error relative to the AM result, are also given in Tables 1 and 

2. The data in the tables shows that the present result matches well with the test data, FEM result and the 

AM result. The discrepancy between the present model, FEM and AM results from the different dealings of 

the interwire contact and friction. The FEM simulation by Ghoreishi et al. (2007) only considered the 

contact between the central and outside wires, and adopted a bonded contact model with an infinite friction 

assumption. Both the core-wire contact and the wire-wire contact are considered in the AM and the present 

model, and the interwire friction is also neglected in both models. Different from the AM, however, the 

present model fully considers the effect of the external load on the wire radius in the calculation of the 

bending and twist moments (expressed in Eq. (19)), which is thought to be more reasonable according to the 

real situation. 

Table 1 

Comparison of present model with experimental data (Utting and Jones, 1987), FEM result (Ghoreishi et al., 2007) and AM 

results (Argatov, 2011), for nominally fixed and completely free end conditions. 

Specimen 
M (N·m) (fixed-end) τt (rad/m) (free-end) 

Test FEM AM Present Error (%) 

 

Test FEM AM Present Error (%) 

I (β=17°) 34.4 36.7 38.8 37.9 -2.32 2.4929 2.50889 2.62040 2.57321 -1.80 

IV (β=12.2°) 26 27.2 27.0 27.4 1.48 2.2049 2.12266 2.19051 2.17879 -0.54 

VI (β=9.2°) 18.8 19.9 21.4 20.7 -3.27 1.62025 1.73139 1.78152 1.77556 -0.33 
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Table 2 

Comparison of the present model with experimental data (Utting and Jones, 1987), FEM result (Ghoreishi et al., 2007) and AM 

results (Argatov, 2011), for partially strained ends. 

Specimen 
ΔM/Δεt (kN·m)  ΔM/Δτt (N·m

2
) 

Test FEM AM Present Error (%) 

 

Test FEM AM Present Error (%) 

I (β=17°) 16.2 15.94 14.92 14.49 -2.88 13.7 15.03 14.46 14.71 1.73 

IV (β=12.2°) 20.1 18.84 18.08 18.18 0.55 12.8 12.84 12.52 12.56 0.32 

VI (β=9.2°) 22.9 23.1 22.34 22.34 0 11.6 11.92 11.64 11.65 0.09 

For a further validation of the present model, the stiffness matrix of a wire rope strand obtained with the 

present model is compared with the experiment data by Kumar and Botsis (2001) and the AM results by 

Argatov (2011). The geometrical and material parameters for the comparison are as follows: R1=1.5 mm, 

R2=1.5 mm, E1=E2=E=157.0 GPa, ν1=ν2=0.3 and β=9.6°. The dimensionless stiffness values are given in 

Table 3, where the stiffnesses are defined as  nk k EA  ,  n nk k EA R  ,  3

nk k ER   and 

 4

nk k ER  . The symbols An and Rn are the total cross-sectional area and the radius of the strand, and 

2 2

1 26nA R R   , Rn=R1+2R2. Table 3 shows that the present model gives results in better accordance with 

the experimental data, compared with the AM. Thus, with the consideration of the interaction between the 

interwire coupled contact behavior and the strand’s axial mechanical performance, as well as the effect of 

the deformation on the wire’s bending and twist moments, the established full contact model of wire rope 

strand is verified. 

Table 3 

Comparison of stiffness matrix by present model with reported results. 

Relative stiffnesses k   k   k  k  

Experiment (Kumar and Botsis, 2001) 0.92 0.107 0.215 0.095 

Asymptotic model (Argatov, 2011) 0.95 0.092 0.223 0.080 

Present model 0.95 0.094 0.221 0.081 

5. Results and discussion 

5.1. Performance under varying axial tension 

Based on the established full contact solution scheme, the interwire contact behavior and the axial 

mechanical performance of the strand under varying axial tensile load in fixed-end and free-end conditions 

are analyzed, which has not be realized with past models based on the assumption of constant interwire 
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contact status. The axial torsional strain of the strand τt is 0 rad/m in the axial tensile performance 

calculation under the fixed-end condition, while there is no axial torsion M acting on the strand under the 

free-end condition. 

The maximum contact pressure σ and maximum contact deformation δ of the strands versus the strand 

tensile strain at different lay angles β are shown in Figs. 7-9, in which the subscripts “cw” and “ww” denote 

the core-wire contact and wire-wire contact, respectively. The results shows that the maximum values of the 

contact pressure and deformation under the free-end condition are smaller than the corresponding values 

under the fixed-end condition, which is due to that the strand rotates about its axis during the axial tension 

process under the free-end condition. 

  
(a)                                                (b) 

  
(c)                                                (d) 

Fig. 7. Contact behavior evolution of strand subjected to varying axial tension (β=13°). 

(a) Maximum contact pressure at fixed-end condition. (b) Maximum contact deformation at fixed-end condition. 

(c) Maximum contact pressure at free-end condition. (d) Maximum contact deformation at free-end condition. 
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Figs. 7-9 show that the change rules of the contact behavior of the axially stretched strands with different 

lay angles are different. Under the fixed-end and free-end conditions, the strand with lay angle of 13° lies in 

the core-wire contact status throughout the tension process (see Fig. 7), and the strand with β=15° is in the 

wire-wire contact status (Fig. 8). Different from the behavior of the above two strands, the contact status of 

the strand with β=14° depends on the end condition. Under the fixed-end condition, the strand becomes a 

wire-wire contact status at the beginning of the axial tension, and changes to the coupled contact status at a 

certain axial strain (see Fig. 9a and b). As shown in Fig 9c and d, however, the change rule of the interwire 

contact status of the strand under free-end condition is complex. Only wire-wire contact happens first and 

then the coupled contact status occurs when the strain reaches about 0.0005, which is smaller than the strain 

for the contact status transformation under the fixed-end condition. As the axial tension goes on, the outside 

wires are apart from each other, and the strand turns into the core-wire contact status. 

The above different evolutions result from the combined effect of the lay angle, the interwire contact 

deformation and the effect of the Poisson’s ratio. Before the tensile loading, the interwire contact status 

depends only on the initial lay angle due to the fact that no interwire contact deformation happens and the 

axial strains of the wires are zero. The calculation from Eq. (14c) shows that the value of the critical lay 

angle for the strand is 13.893°, which means that the initial contact status of the strands with lay angles 

smaller or greater than the above critical angle is core-wire contact or wire-wire contact, respectively. 

Moreover, the initial coupled contact happens when the strand’s lay angle equals the said critical lay angle. 

Once the axial tension is loaded, the interwire contact deformation and the radius shrinkage due to the effect 

of Poisson’s ratio of the wires lead to the change in the strand’s geometrical parameters including the lay 

angle and interwire clearance. 

For the strand with initial core-wire contact, the radius shrinkage of the central wire and the contact 

deformation make the outside wire approaching the central wire and its adjacent outside wires. The effect of 

the radius shrinkage of the outside wire is complex. In view of that the central and outside wires are in 
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contact with each other, on the one hand, the radius shrinkage makes the central and outside wires 

approaching to each other, which makes the adjacent outside wires closer. On the other hand, however, the 

radius shrinkage increases the clearance between outside wires, which results in the separation tendency of 

the said wires. The above influencing factors codetermine the interwire contact status of the strand, which is 

judged with Eq. (14). The interwire contact status keeps the core-wire contact when the separation tendency 

of the outside wires is more obvious than the approaching tendency, as shown in Fig. 7. Thus the contact 

fatigue may happen at the contact interface between the central and outside wires of the strand under 

prolonged service. This is not noticed in the past strand researches due to their common assumption of the 

constant tension (Argatov, 2011; Ghoreishi et al., 2007). 

  
(a)                                               (b) 

  
(c)                                                (d) 

Fig. 8. Contact behavior evolution of strand subjected to varying axial tension (β=15°). 

(a) Maximum contact pressure at fixed-end condition. (b) Maximum contact deformation at fixed-end condition. 

(c) Maximum contact pressure at free-end condition. (d) Maximum contact deformation at free-end condition. 
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For the strand with initial wire-wire contact, the contact deformation and the radius shrinkage of the 

outside wire due to the Poisson’s ratio make the adjacent outside wires closer, which results in the 

approaching tendency between the central and outside wires. However, the decrements in the radii of the 

central and outside wires lead to the separation between them. The core-wire contact status is kept if the 

separation tendency is dominant, as shown in Fig. 8. Therefore, the contact between adjacent outside wires 

results more easily in the interwire contact fatigue compared with the core-wire contact. 

  
(a)                                                (b) 

  
(c)                                                (d) 

Fig. 9. Contact behavior evolution of strand subjected to varying axial tension (β=14°). 

(a) Maximum contact pressure at fixed-end condition. (b) Maximum contact deformation at fixed-end condition. 

(c) Maximum contact pressure at free-end condition. (d) Maximum contact deformation at free-end condition. 

Fig. 9 shows that the contact between the central and outside wires happens at a certain axial strain, which 

means that the approaching tendency between the said wires is more obvious than the separation one. This 

phenomenon is not reported in the past researches (Argatov, 2011; Ghoreishi et al., 2007; Jiang et al., 2008; 

Stanova et al., 2015) with the assumption of constant interwire contact status. Meanwhile, it can also be seen 
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from this figure that the contact between the adjacent outside wires is dominant at the early stage of the 

coupled contact of the strand. As the axial tension continues, increasing rates of the contact pressure and 

deformation of the core-wire contact are larger than the corresponding values of the wire-wire contact, 

resulting in the phenomenon that the core-wire contact is dominant after the tensile strain reaches about 

0.0069 and 0.001 (see the point P1 in Fig. 9) under the fixed-end and free-end condition, respectively. 

Consequently, the region where the contact fatigue may happen depends on the end condition and the value 

of the axial strain. The contact fatigue may happen at both the interfaces of core-wire contact and wire-wire 

contact of the strand in a coupled contact status, and the most dangerous region transfers from the wire-wire 

contact interface to the core-wire contact interface as the tensile strain increases. 

To study the axial mechanical performance of the wire rope strand under varying axial tension, the 

evolutions of the dimensionless tensile stiffness k  and coupling stiffness k  of the strands with different 

lay angles are analyzed, which has not been realized in the past researches. As shown in Fig. 10, the 

dimensionless stiffnesses are respectively calculated with  2

h 2k k E r    and  3

h 2k k E r    

(Ghoreishi et al., 2007). The results in this figure show that as the lay angle increases, the k  keeps 

decreasing but the k  increases first and then decreases, indicating that there exists a critical angle that 

leads to a maximum value of k . The obtained conclusion is in accordance with those in the past researches 

(Argatov, 2011; Ghoreishi et al., 2007) based on the assumption of constant interwire contact status. Besides 

this, the present results show that the axial tension also affects the strand stiffness, and the effect of the axial 

tension on the stiffnesses k  and k  depends on the lay angle of the strand, which is not be calculated 

with the past researches (Argatov, 2011; Ghoreishi et al., 2007; Usabiaga and Pagalday, 2008) based on the 

constant interwire contact status. As the tensile strain increases, both k  and k  at small lay angles keep 

stable values, while their values increase at large lay angles. With regard to the wire rope strands under 

varying axial tension, the increment of the load may cause changes in the strand stiffness, which should be 

considered in the design and analysis of the wire rope. 
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(a)                                               (b) 

Fig. 10. Dimensionless stiffness evolution of strand subjected to varying axial tension. 

(a) Tensile stiffness k . (b) Coupling stiffness k . 

5.2. Performance under varying axial torsion 

Beside of the axial tension, the axial torsion is also the common external load for wire ropes. The 

performance of the wire rope strand under varying axial torsion is studied with the full contact model in this 

section, which has not been analyzed in the past researches (Argatov, 2011; Ghoreishi et al., 2007; Jiang et 

al., 2008; Stanova et al., 2015). It should be mentioned that the direction of the axial torsion applied on the 

strand is the same as the lay direction, and the axial tensile strain εt of the strand keeps zero. 

As an example, the contact behavior evolution of the strand with the lay angle β of 14° is given in Fig. 11. 

As the torsional strain increases, both the contact pressure σ and deformation δ due to the wire-wire contact 

increase and their values are positive, while the results due to the core-wire contact keep zero. This 

phenomenon indicates that the strand remains at the wire-wire contact status, and it can be explained 

according to the change in the helix radius of the outside wire centerline of the strand in Fig. 12. The 

positive result here shows that the central and outside wires are separating from each other under the axial 

torsion. As mentioned in section 5.1, the critical lay angle of the strand is 13.893° and thus the initial 

interwire contact status is the wire-wire contact. Consequently, the core-wire contact will not occur as the 

torsion continues. Moreover, it can be concluded that under the axial torsion, a strand with a lay angle larger 

than the critical lay angle keeps at the wire-wire contact status, implying the contact interfaces between the 
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outside wires in danger of contact fatigue failure. 

  
(a)                                               (b) 

Fig. 11. Contact behavior evolution of strand subjected to varying axial torsion (β=14°). 

(a) Maximum contact pressure. (b) Maximum contact deformation. 

 

 

Fig. 12. Change in helix radius of outside wire centerline of strand subjected to varying axial torsion (β=14°). 
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in the beginning of the torsion process. The contact between adjacent outside wires happens when the 

torsion strain reaches about 1.5 rad/m, and the strand turns into the coupled contact status. As the axial 

torsion continues, the dominance of the core-wire contact is weakened, while the contact parameters due to 

the wire-wire contact increase. Then the core-wire contact and wire-wire contact are equal to each other at a 

center torsional strain (see point P1 in Fig. 13), after which the wire-wire contact is dominant. At the stain of 

about 5.5 rad/m, the contact parameters due to the core-wire contact become zero, and the strand turns into 

the wire-wire contact status. 

  
(a)                                               (b) 

Fig. 13. Contact behavior evolution of strand subjected to varying axial torsion (β=13.5°). 

(a) Maximum contact pressure. (b) Maximum contact deformation. 

For purpose of further discussion, the change in the helix radius of outside wire of the strand is given in 

Fig. 14. It can be found from this figure that the curve for the change in the helix radius has two turning 

points (see points A and B in Fig. 14), which are caused by the change of the interwire contact status. At the 
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torsion. Thus the core-wire contact deformation decreases and the central and outside wires are separating 
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(see the variation trend of values on line AB reflecting the coupled contact status in Fig. 14), which finally 

causes the second turning point B of the curve. From the results obtained with the full contact scheme, 

consequently, it can be concluded that the axial torsion can lead to an obvious change of the interwire 

contact behavior, which is not discovered with the past researches (Argatov, 2011; Ghoreishi et al., 2007; 

Jiang et al., 2008; Stanova et al., 2015). And the wire-wire contact is dominant for the strand under a large 

axial torsion. 

 

Fig. 14. Change in helix radius of outside wire centerline of strand subjected to varying axial torsion (β=13.5°). 

 

  
(a)                                               (b) 

Fig. 15. Dimensionless stiffness evolution of strand subjected to axial torsion. 

(a) Torsional stiffness k . (b) Coupling stiffness k . 

Under the condition of varying axial torsional moment, the dimensionless stiffness evolutions of the 

strands with different lay angles are illustrated in Fig. 15. The dimensionless torsional stiffness k  and the 
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coupling stiffness k  are respectively defined as  4

h 2k k E r    and  3

h 2k k E r    (Ghoreishi 

et al., 2007). From the figure, it can be seen that an increment in the lay angle of the strand leads to a larger 

torsional stiffness. However, the coupling stiffness increases first and then decreases as the lay angle 

increases. These rules accord with the conclusions achieved in literatures (Argatov, 2011; Ghoreishi et al., 

2007), in which the assumption of constant interwire contact status was adopted but the effect of the torsion 

on the strand stiffness was ignored. Obtained with the present full contact scheme, moreover, the evolutions 

of the stiffnesses at different lay angles are different. As the axial torsion goes on, the stiffnesses at small lay 

angles almost keep constant and the strands perform stable behavior, while obvious stiffness enhancements 

happen to the strands with large lay angles. From Figs. 10 and 15, it can be concluded that both the varying 

axial tension and torsion can lead to a change in the stiffness of the strand, and the effect of the axial loads 

on the strand performance should be taken into consideration, especially for the strand with a large lay angle. 

6. Conclusions 

In this paper, the full contact research of the wire rope strand under varying axial tension and torsion are 

made with the semi-analytical method (SAM). In doing so, an interwire full contact model considering 

different contact statuses is established based on contact mechanic and thin rods theories, and solved with 

the SAM in which the conjugate gradient method (CGM) and fast Fourier transform (FFT) are used for 

evaluating interwire contact performances. Then the evolutions of the interwire contact pressure, 

deformation and the stiffness of the strands with different lay angles are analyzed, and the associated 

conclusions are given below. 

1) The proposed interwire contact scheme can effectively analyze contact performances at different contact 

statuses of the strand subjected to varying loads, which is not achieved with the contact methods in the 

past researches. 

2) The full contact research shows that as the lay angle increases, the tensile stiffness decreases, torsional 

stiffness increases, while the coupling stiffnesses increase first and then decrease, which coincides with 
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the conclusions with past models. Moreover, it is discovered with the proposed model that as the axial 

loading process continues, the stiffness at a small lay angle keeps stable, while the stiffness at a large lay 

angle increases obviously. 

3) The progressive loading solution based on the full contact scheme shows that the core-wire contact is 

dominant for the small lay angle strands under a large axial tension, while the wire-wire contact is 

dominant for the stretched strands with large lay angles. A large axial torsion is likely to cause the 

wire-wire contact status of the strand, and the coupled contact status happens to the strands under some 

certain axial loads. 

4) The full contact research shows that the external axial tensile and torsional loads have different effects 

on the interwire contact behavior of the strand. The axial tension makes the central and outside wires 

closer, while the axial torsion leads to the approach between adjacent outside wires. 
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Figure captions 

Fig. 1. Geometrical features. (a) Wire rope strand. (b) Outside wire centerline. 

Fig. 2. Interwire contact statuses of wire rope strand. (a) Core-wire contact status. (b) Wire-wire contact 

status. (c) Coupled contact status. 

Fig. 3. Schematic of wire-wire contact. (a) Deformation relation. (b) Cross-section of strand. 

Fig. 4. Schematic of outside wire centerline and interwire contact lines. 

Fig. 5. Solution process for full contact model of wire rope strand. (a) Overall process. (b) Solution process 

in core-wire contact status or wire-wire contact status. (c) Solution process in coupled contact status. 

Fig. 6. Results comparison of strand in coupled contact. (a) Maximum contact pressure. (b) Change in helix 

radius of outside wire centerline. 

Fig. 7. Contact behavior evolution of strand subjected to varying axial tension (β=13°). (a) Maximum 

contact pressure at fixed-end condition. (b) Maximum contact deformation at fixed-end condition. (c) 

Maximum contact pressure at free-end condition. (d) Maximum contact deformation at free-end 

condition. 

Fig. 8. Contact behavior evolution of strand subjected to varying axial tension (β=15°). (a) Maximum 

contact pressure at fixed-end condition. (b) Maximum contact deformation at fixed-end condition. (c) 

Maximum contact pressure at free-end condition. (d) Maximum contact deformation at free-end 

condition. 

Fig. 9. Contact behavior evolution of strand subjected to varying axial tension (β=14°). (a) Maximum 

contact pressure at fixed-end condition. (b) Maximum contact deformation at fixed-end condition. (c) 

Maximum contact pressure at free-end condition. (d) Maximum contact deformation at free-end 

condition. 

Fig. 10. Dimensionless stiffness evolution of strand subjected to varying axial tension. (a) Tensile stiffness 

k . (b) Coupling stiffness k . 

Fig. 11. Contact behavior evolution of strand subjected to varying axial torsion (β=14°). (a) Maximum 

contact pressure. (b) Maximum contact deformation. 

Fig. 12. Change in helix radius of outside wire centerline of strand subjected to varying axial torsion 

(β=14°). 

Fig. 13. Contact behavior evolution of strand subjected to varying axial torsion (β=13.5°). (a) Maximum 

contact pressure. (b) Maximum contact deformation. 

Fig. 14. Change in helix radius of outside wire centerline of strand subjected to varying axial torsion 
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(β=13.5°). 

Fig. 15. Dimensionless stiffness evolution of strand subjected to axial torsion. (a) Torsional stiffness k . (b) 

Coupling stiffness k . 


