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In the scope of linear anisotropic elasticity, the fourth-order elasticity ten-
sor or tetrad has to be identified. This can be done either by measurements
or by numerical simulations. An important task is then to identify a given
tetrad, probably with some experimental or numerical scattering, with one
of the symmetry classes. For this purpose one needs a distance function be-
tween a given tetrad and the class of all tetrads with a particular symmetry,
which is zero if the tetrad obeys this symmetry, or non-zero otherwise. In
this paper we present a fast method to solve these problems. We firstly in-
troduce the 8th order projectors that map any stiffness tetrad into the part
that is invariant under the action of a specific fixed symmetry group. For
this purpose we consider the seven out of the eight symmetry classes that are
distinguishable in linear elasticity. Secondly, since the symmetry axes of the
specific stiffness tensor under consideration is generally not aligned with the
used tensorial basis of the projector, we need to rotate the sample stiffness.
The optimal orientation is obtained when the distance between the rotated
stiffness and the rotated and projected stiffness is minimal. Thus, we need
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to apply only linear mappings and minimize over three Euler angles. The
latter is quite simple, as the domain of the Euler angles is periodic, and the
number of local minima is limited. This procedure has the advantage that
it is applicable in an algorithmic manner, and does not require an a priori
identification of symmetry planes, symmetry axes or component symmetries,
which are only apparent under special choices for the tensorial basis.

Keywords: stiffness tetrad; elastic symmetry; anisotropic distance function; symmetry
groups

1 Introduction

Most materials, like crystals, exhibit spatial symmetries in their structure. These sym-
metries must be reflected in their material properties (Curie, 1894; Neumann, 1885). In
particular, these symmetries must be obeyed by all material tensors which appear in the
constitutive equations. Depending on the tensorial order, the symmetry requirement af-
fects the material property tensor differently. The odd order tensors vanish in case that
the material structure has centro-symmetry, i.e. that −I is in the materials symmetry
group. The subgroups of the orthogonal group are for example detailed in Olive and
Auffray (2014) Sec. 2.3 or Butler (1981) Sec. 5. In general, the higher the tensorial order,
the more symmetries can be distinguished in the material properties. For instance, the
second order heat conduction tensor is isotropic even for cubic crystals, while the fourth
order stiffness tensor (tetrad) with cubic symmetry has three independent parameters,
but an isotropic stiffness tetrad has only 2 independent parameters. Forte and Vianello
(1996) show that in linear elasticity 8 material symmetries can be distinguished, namely
triclinic, monoclinic, orthotropic, tetragonal, trigonal, hexagonal, cubic and isotropic.
For a given stiffness tetrad of unknown symmetry resulting from measurement or nu-
merical simulations the question arises to which symmetry class it belongs. Since the
coefficients of the stiffness tetrad are in general not exact, the affiliation to one of the
eight material symmetry classes may neither be exact. It is therefore reasonable to define
a distance as a deviation measure between a stiffness tetrad and the set of all stiffness
tetrads with a certain symmetry, which we will call the symmetry class. This may serve
to filter stochastic scatterings from measurements, see also Guilleminot and Soize (2010);
Norris (2006). Further, one may be able to reduce the complexity of the elastic model by
replacing a complex (possibly triclinic) stiffness tetrad by a more symmetric candidate
that is close enough to the original stiffness.
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In the literature one can find several approaches to this topic. In Moakher and Norris
(2006) three different distance functions are defined to determine the closest elastic
tensor of arbitrary symmetry to an elasticity tensor of lower symmetry. They consider
the Euclidean/Frobenius norm, the log-Euclidean norm and the Riemannian norm. In
Guilleminot and Soize (2010), these distance measures are used as a starting point
to determine the distances of stochastically generated stiffness tetrads to the set of
transversal isotropic stiffnesses. Böhlke (2001); Fedorov (1968) use the Frobenius norm
to measure the distance between two stiffness tensors as we will do later on. It has
been shown by Gazis, Tadjbakhsh, and Toupin (1963) that the average group action
gives a projection of a stiffness tetrad onto the subset of all stiffness tetrads with a
given symmetry. In Glüge, Weber, and Bertram (2012), in the course of determining the
anisotropy induced by a representative volume element (RVE) of cubic shape, a similar
projection method is used to quantify the anisotropy of a stiffness tetrad and also the
distance to the cubic symmetry class. In the same article one projection is onto the
isotropic stiffnesses and the other one to the cubic stiffnesses of the anisotropy axes that
are aligned with the RVE. Thus we do not need to find the orientation in this special
situation. In the same article, a logarithmic normalization is presented, which ensures
consistency in the sense that the same distance is measured if the inverse of the stiffness
tetrad, namely the compliance tetrad, is considered.
When the anisotropy axes are unknown, the sought distance is w.r.t. a symmetry class,
but not w.r.t. a specific symmetry group. One of the first to take the unknown orientation
into account were Francois, Geymonat, and Berthaud (1998), who inspect pole figures
to determine the symmetry visually. Afterwards, similar to our projection method, a
so called orbit is defined as a collection of all transformations within the chosen group.
In contrast to our approach, Francois, Geymonat, and Berthaud (1998) perform the
minimization of the distance over the Euler angles after the projection. Further, this
problem is addressed in Diner, Kochetov, and Slawinski (2011); Kochetov and Slawinski
(2009), who also use the Frobenius norm and distance functions from transversal and
monoclinic symmetry, respectively. They also take into account the unknown orientation
of the symmetry axes or planes, minimizing over two angles. This is possible due to
a simplification that is only applicable for these two symmetry classes. We will use
this simplification to remove one of the Euler angles from the minimization procedure.
A different approach is chosen by Zou, Tang, and Lee (2013). They determine the
exact symmetry class to which a tetrad belongs by a harmonic decomposition and a
multipole representation of its deviators. Then the angular deviation of the vectors
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from the multipole representation is used as a distance measure. They state that it
is impossible to find a simple function to define the distance between the elastic tensor
measured experimentally and its nearest possible symmetry groups.

Outline. In this article we present a method to determine this distance. As Zou,
Tang, and Lee (2013) state, we can not give a simple, closed form solution for the
problem, but a fast and reliable numerical algorithm instead. To find out the closest
symmetry class of the measured stiffness tetrad we determine the Euclidean distance to
all possible symmetry classes by employing a projection method. Further, we need to find
the closest orientation (see Cowin and Mehrabadi (1987) and Francois, Geymonat, and
Berthaud (1998)). We do this by minimizing the Euclidean distance between the rotated
stiffness to the rotated and projected stiffness over the three Euler angles. Although this
minimization problem exhibits some peculiarities which need to be considered, it leads
to a fast and robust algorithm for finding the distance to the seven non-trivial symmetry
classes of linear elasticity. In addition to these distances, the algorithm gives also the
elements in the respective symmetry classes that are closest to the stiffness tetrad under
consideration. Finally we apply the method to stiffnesses of unknown symmetries which
emerge from RVE simulations of three different sample materials.

2 Determining the distance of a stiffness tetrad to a

symmetry class

2.1 Notation

A direct notation is preferred. Vectors are denoted as bold minuscules (like e), second-
order tensors as bold majuscules (like Q for the rotation tensor), fourth-order tensors as
blackboard bold letters (like the stiffness tetrad K) and higher order tensors as black-

board bold letters with the order denoted above the letter (like the 8th order tensor
〈8〉
P ).

The dyadic product and scalar contractions are denoted like (a ⊗ b ⊗ c) · ·(d ⊗ e) =

(b · d) (c · e)a, with · being the usual scalar product between vectors. The combina-
tion of the scalar products is such that an n-fold contraction of two tensors of order
n inherits the positive definiteness of the scalar product between vectors. Furthermore
we use the Rayleigh product denoted by ∗ which maps all base vectors of a tensor
simultaneously without changing its components. More precisely, for the second or-
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der rotation tensor Q and the fourth order stiffness tensor K the Rayleigh product is
Q ∗ K = Q ∗ (Kijklei ⊗ ej ⊗ ek ⊗ el⊗) = Kijkl (Qei) ⊗ (Qej) ⊗ (Qek) ⊗ (Qel). This
constitutes a linear mapping between tetrads and, thus, allows for a representation by

an 8th order tensor
〈8〉
P . Caligraphic letters denote sets, like Orth+ for the set of proper

orthogonal tensors. Rotations are represented by second order tensors Q. The meaning
of the subscripts depends on the parametrization of the rotations. In case of an axis-
angle parametrization, the lower index indicates the axis and the upper index the angle,
like Qπ/2

e2
for a 90◦ rotation around the e2-axis. In case of a parametrization in Euler

angles, the Euler angles are subscripts, like Qα,β,γ. A single subscript index refers to the
group element, like Q1 for the first group element, double index subscripts are used for
the usual index notation. For rotations we have QT = Q−1. In what follows, G is one
of the subsets of Orth+ that forms a symmetry group that is distinguishable in linear
elasticity, which is detailed in the next section. The set K denotes the vector space of
all stiffness tetrads K.

2.2 Definitions

Stiffness tetrad A stiffness tetrad K is a fourth order tensor that appears in the
generalized Hooke’s law. It is a linear mapping from a second order symmtric strain
tensor ε into a second order symmetric stress tensor σ,

σ = K : ε. (1)

It has the principle symmetry K : ε = ε : K and inherits the index symmetries of the
stress and strain tensors, which are the subsymmetries of K.

Symmetry transformation A tetrad K is symmetric w.r.t. the rotation Q if

K = Q ∗K (2)

holds. Thus, the transformation Q ∗ K does not alter K and is called a symmetry
transformation. The set of all such symmetry transformations form the symmetry group
of the tetrad. Due to the even number of entries in K we have K = −I ∗ K. Thus, all
elements from Orth− can be generated by multiplying the elements of Orth+ with −I.
Therefore, it is sufficient to focus on Orth+ and its subgroups, the expansion to the
whole Orth does not give any new insight for tensors of even order.
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Figure 1: Symmetry inclusion scheme. The arrows indicate a subset relation, pointing
from the larger set to the subset.

Symmetry group All symmetry groups G = {I,Q2, . . . ,Qn} of solids are subgroups
of the orthogonal group Orth+ which is closed under an associative composition Qi =

Qj ·Qk, Qi,j,k ∈ G. Further, it contains the identity I ·Qi = Qi, by which an inverse
is assigned to any group element Qi ·QT

i = I, which is also part of the group. All N
elements Qi can be generated from a non-unique minimum set of generators by these
group operations.
One can see that an expansion of the form G∗ = {I,QTQ2Q, . . . ,Q

TQNQ} with Q ∈
Orth+ produces a symmetry group G∗ which is isomorphic to G. Hence, for all isomorphic
groups one may choose a reference group. The eight reference groups that are used
here are given in Table 1. One can sort the symmetry classes according to the set
inclusion scheme given in Fig. 1, see Bóna, Bucataru, and Slawinski (2004). We refer
to symmetries as higher and lower if a subset relation holds. Lower symmetries include
higher symmetries as special cases, but not all symmetry classes are nested. One can see
that in Fig. 1 trigonal and tetragonal symmetries are not connected by a unidirectional
path of arrows, so there exists no subset relation for these two symmetries. It should
be noted that one can also sort the symmetries into higher and lower by the symmetry
group size N (right column in Table 1).

Symmetry class The symmetry class Ksymi
denotes all stiffness tetrads for which a

rotation Q can be found such that the rotated stiffness is invariant under the action of
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symmetry reference indep. no. of
generators const. K ele. N in G

triclinic I




1 0 0
0 1 0
0 0 1


 21 1

monoclinic Qπ
e1




1 0 0
0 −1 0
0 0 −1


 13 2

orthotropic Qπ
e1
, Qπ
e2




1 0 0
0 −1 0
0 0 −1


,



−1 0 0
0 1 0
0 0 −1


 9 4

trigonal Qπ
e2
, Q2π/3
e3



−1 0 0
0 1 0
0 0 −1


,



−1

2
−
√
3
2

0√
3
2

−1
2

0
0 0 1


 6 6

tetragonal Qπ
e1
, Q3π/2
e3




1 0 0
0 −1 0
0 0 −1


,




0 1 0
−1 0 0
0 0 1


 6 8

hexagonal Qπ
e1
, Qπ/3
e3




1 0 0
0 −1 0
0 0 −1


,




1
2
−
√
3
2

0√
3
2

1
2

0
0 0 1


 5 12

cubic
Q

3π/2
e1

,
Q

2π/3
1√
3
(e1+e2+e3)




1 0 0
0 0 1
0 −1 0


,




0 0 1
1 0 0
0 1 0


 3 24

isotropic Qφ
v, φ and - 2 ∞

v arbitrary

Table 1: Possible symmetries of the stiffness tetrad K

the reference symmetry group symi as labeled in the first column in Table 1,

Q ∗K = Qj ∗ (Q ∗K) ∀Qj ∈ Gsymi
∀K ∈ Ksymi

(3)

which can be written as

O = Q ∗K− (QjQ) ∗K ∀Qj ∈ Gsymi
∀K ∈ Ksymi

. (4)

By the properties of the Rayleigh product this may be rewritten as

O = K− (QTQjQ) ∗K ∀Qj ∈ Gsymi
∀K ∈ Ksymi

. (5)

It is obvious that one can either rotate K and check w.r.t. the reference symmetry group
or keep K fixed and check the rotated reference symmetry group. From a practical point
of view, eq. (4) offers the advantage that the Rayleigh product with Q appears only
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once in each summand, and that only one rotation (only Q, not QT ) is needed.

Distance measure Let us parametrize a rotation Q by three Euler angles α, β and γ.
For stiffness tetrads which do not belong to a certain symmetry class Gsym, a residuum
remains on the left side of eq. (4), i.e.

Ri(α, β, γ) = Qα,β,γ ∗K− (QiQα,β,γ) ∗K Qi ∈ Gsym K ∈ K. (6)

Ri(α, β, γ) is a difference between stiffnesses. We obtain a relative residuum by normal-
izing with ‖K‖. Since ‖Q ∗K‖ = ‖K‖ we can define the relative residuum by

R∗i (α, β, γ) = Qα,β,γ ∗K∗ − (QiQα,β,γ) ∗K∗ Qi ∈ Gsym (7)

with K∗ = K/‖K‖. We can consider the norm ‖R∗i (α, β, γ)‖ as the relative difference
between some stiffness tetrad that belongs to the symmetry class Ksym and the stiffness
tetrad K. The global minimum

d = min
i,α,β,γ

‖R∗i (α, β, γ)‖ (8)

gives the closest relative distance between K and all tetrads that belong to the symmetry
class Ksym.

2.3 Minimization over the elements of the symmetry group by a

projection method

The minimization over the index i that labels the group elements is carried out by
a projection. This projection is basically the average under the action of all group
members. It can be formulated for the seven anisotropic classes with finite group sizes
N as

KG =
1

N

N∑

z=1

(Qz ∗K) . (9)

Because of the linearity of the Rayleigh product in the second argument

Q ∗ (αK1 +K2) = Q ∗ (αK1) +Q ∗K2, (10)
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it is possible to denote this with an 8th order linear mapping
〈8〉
P as

KG =
〈8〉
P :: K with (11)

〈8〉
P =

1

N

N∑

z=1

Qz
imQ

z
jnQ

z
koQ

z
lpei ⊗ ej ⊗ ek ⊗ el ⊗ em ⊗ en ⊗ eo ⊗ ep (12)

which we label
〈8〉
P in anticipation of its projector properties. To demonstrate this prop-

erty, we rotate the mean value with a second group element Qy.

Qy ∗KG =
1

N

N∑

z=1

Qy ∗ (Qz ∗K) (13)

=
1

N

N∑

z=1

(
QyQz

)
∗K (14)

=
1

N

N∑

z=1

Q∗z ∗K (15)

= KG. (16)

The composition of Qy and Qz gives, following the group axioms, a mere re-indexing of

the group members to Q∗z, which does not affect the result.
〈8〉
P acts as the identity on

the set of all K which are G-symmetric, and projects otherwise all non-G-symmetric K
into their G-symmetric part.
The section is concluded by noting that the linearity of the Rayleigh product (eq. 10)
in the second argument together with the definition of symmetry Qi ∗K = K under the
action of Qi imply the convexity of the set of all tensors K that are invariant under the
action of a certain symmetry group G, i.e.

If K1,K2 ∈ Ksym then αK1 + (1− α)K2 ∈ Ksym ∀ α ∈ [0, 1]. (17)

Because of the convexity of the subspace Ksym ⊂ K, the projection operation is unique.
It is not hard to verify that the part of K − KG that is removed by the projection is
perpendicular to the remainder KG, i.e.

(K−KG) :: KG = 0. (18)
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This can be easily seen by expanding the right factor with the projector KG =
〈8〉
P ::

KG and associating it with the left factor. In conjunction, the orthogonality and the
uniqueness due to the convexity of the subset guarantee that the associated distance

between K and
〈8〉
PK is minimal. This has also been found by Gazis, Tadjbakhsh, and

Toupin (1963), Sec. 2.

2.4 Minimization over the Euler angles

2.4.1 Rotation matrix

We have to minimize the distance between the arbitrarily oriented stiffness tetrad and a
chosen fixed reference symmetry class. The orientation is parametrized by three Euler
angles. We use the yaw-pitch-roll convention that rotates w.r.t. the fixed axes firstly by
α around ez, then β around ey and finally by γ around ex (see Morawiec, 2004 Sec.
2.4.1). This leads to a component form of the rotation tensor

Qα,β,γ =




cosα cos β − cos β sinα sin β

cos γ sinα cosα cos γ − cos β sin γ

+cosα sin β sin γ − sinα sin β sin γ

− cosα cos γ sin β cos γ sinα sin β cos β cos γ

+sinα sin γ +cosα sin γ




ei ⊗ ej. (19)

Again, the application of the Rayleigh product can be written as a linear mapping

Qα,β,γ ∗K =
〈8〉
Qα,β,γ :: K with an 8th order tensor which covers the rotation

〈8〉
Qα,β,γ = Qim|α,β,γQjn|α,β,γQko|α,β,γQlp|α,β,γei ⊗ ej ⊗ ek ⊗ el ⊗ em ⊗ en ⊗ eo ⊗ ep (20)

2.5 Combination of projection and rotation

Finally we combine the 8th order projection tensor
〈8〉
P and the 8th order rotation tensor

〈8〉
Qα,β,γ to the final transformation

〈8〉
PQα,β,γ =

〈8〉
P ::

〈8〉
Qα,β,γ . (21)
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I

K∗ KIso

KCub

K∗
〈8〉
P :: K∗

〈8〉
Q

〈8〉
Q :: K∗

〈8〉
PQ :: K∗

d = ‖
〈8〉
Q :: K∗ −

〈8〉
PQ :: K∗‖

Figure 2: Schematic representation of the projection method. The paper plane repre-
sents all stiffness tetrads, where we pick some specific K∗ = K/‖K‖. The
octagonal region is the subset of all cubic stiffness tetrads KCub, w.r.t. fixed
axes. Within this region the solid circle region represents the set of all isotropic
stiffness tetrads KIso as a subset of the octagonal region. The outer circle sec-
tion is a part of the orbit of K under the action of Orth+ depicted as the outer
large dashed circle.

In the projection
〈8〉
PQα,β,γ there are three unknown Euler angles α, β and γ. W.r.t. these

angles, the Frobenius norm on fourth order tensors of the difference between the rotated
K and the rotated and projected K has to be minimized. A sketch of the orbit and
the projection to the symmetry groups is given in Figure 2. This procedure differs from
Francois, Geymonat, and Berthaud (1998) since we first apply the rotation and then
determine the relative distance to the symmetry classes.

d = min
i,α,β,γ

‖
〈8〉
Qα,β,γ :: K∗ −

〈8〉
PQα,β,γ :: K∗‖, K∗ = K/‖K‖. (22)
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2.6 Distance to isotropy

In the case of isotropy, we have a continuous group with infinitely many members and
generators. Therefore we have to apply a different method for defining distances with
the isotropy class. For this purpose we use the isotropic projectors

K = λ1P1 + λ2P2, (23)

P1 =
1

3
I ⊗ I, (24)

P2 = I− P1, (25)

with I the identity tensor on symmetric second order tensors and the eigenvalues λ1,2.
The isotropic projectors map into isotropic 1- and 5-dimensional subspaces of the space
of symmetric second order tensors, namely the spherical and deviatoric subspaces, re-
spectively. Most important for our work is the fact that both of these subspaces are
closed under all proper rotations Q ∈ Orth+. Thus, from the discussion in the previ-
ous section we do not have to distinguish between a reference symmetry group and all
isomorphic symmetry groups in the isotropic case. Consequently, the minimization over
the three Euler angels is not needed and we can directly apply directly the derived 8th

order projector. Generalizing the sums from the discrete sets to integrals (Morawiec,
2004) we get

〈8〉
Piso =

1

|Orth+|

∫

Orth+
QimQjnQkoQlpei ⊗ ej ⊗ ek ⊗ el ⊗ em ⊗ en ⊗ eo ⊗ epdQ (26)

= P1 ⊗ P1 +
1

5
P2 ⊗ P2. (27)

2.7 Minimization procedure

The function value to be minimized is periodic due to the Euler angle parametrization.
It is sufficient to consider the intervals α, γ ∈ [0, 2π) and β ∈ [−π/2, π/2] for the three
Euler angles. Especially when minimizing the distance of a highly symmetric stiffness
tetrad to a high symmetric symmetry class (e.g. both cubic), the actual periodicity
is much smaller than these intervals, and the global minimum has a large number of
equivalent solutions in terms of the Euler angles. The most anisotropic case is when
we seek the distance of a triclinic stiffness tetrad to the monoclinic symmetry class. In
this situation, the global minimum which we seek is two-fold due to the one nontrivial
symmetry operation in the monoclinic case (see Table 1 and Fig. 3). In all other cases the
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multiplicity will be larger than two. It is therefore possible to halve the search interval
without loss of information in general. However, the reduction of the search domain in
the Euler angle space is not trivial, see Jöchen and Böhlke (2012). Nevertheless, in case
of the monoclinic and the transversely isotropic distance functions, one can choose the
symmetry group representation and the parametrization of Orth+ by the Euler angles
α, β and γ such that the distance becomes independent of one of the Euler angles, see
Diner, Kochetov, and Slawinski (2011). To reduce the numerical effort, we apply these
simplifications, detailed in the supplementary material.
Further, it is a well known result from representation theory that at most a four-fold
rotational symmetry can be distinguished in tetrads (Böhlke and Brüggemann, 2001).
For example, hexagonal materials and quasi-crystals with a five-fold symmetry are not
distinguishable from transversal isotropy in linear elasticity, but in case of higher order
theories, like strain gradient elasticity (Olive and Auffray, 2013, 2014). Therefore, the
frequencies at which the distance measure can oscillate over the Euler angles is at most
2π/4/4, taking into account the potential fourfold symmetry of K and of the symmetry
group. For our practical purpose, this means that a fixed discretization of a starting
point grid is sufficient to guarantee the finding of the global minimum. This allows for
an efficient and robust implementation. We employed a gradient based downhill search
method from a conservative starting point grid of 8× 4× 8 points in the space of Euler
angles, with a spacing of π/8. It is clear that the discretization of rotations in terms of
Euler angles is not optimal. The equidistant Euler angle grid results in cluster points in
Orth+. To optimize the numerical effort, one may use starting points that correspond to
a fair discretization of Orth+, see, e.g. Nawratil and Pottmann (2008). However, in our
case, the additional effort is not justified, since we have a small grid of starting points
and apply the distance minimization only to a few stiffness tetrads.
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Figure 3: Minimization landscape when minimizing the distance d of a triclinic K to the
monoclinic symmetry class, with γ fixed and d depending only on α (horizontal
axes) and β (vertical axes). The local minima are colored in blue, local maxima
are colored in red. One can see the poles (β = ±π/2) and a grid (black points)
of the initial values for the local minimization. The overall frequency of the
extrema is π/8, but since they alternate, a spacing of π/4 is sufficient to detect
all the local minima. One can see the presence of a two-fold global minimum.

3 Example applications

In the following subsections we apply the described method to determine the distance
of the stiffness tetrads for an entirely artificial model material. We set up simulations of
uni-, bi- and tridirectionally reinforced fiber-matrix materials, and examine the distances
to the symmetry classes. To model the sample materials we use representative volume
elements (RVE). This is done for two different deformation states. The first one is
the initial state of the undeformed material sample. The second one is after a large
deformation. We use isotropic elastoplastic material laws without hardening for both
components. They are implemented in the user subroutine UMAT of the finite element
program ABAQUS. The material parameters are Young’s modulus E, Poisson’s ratio
ν and the v. Mises yield limit σF. The values for the matrix and fiber material are
EMatrix = 10 000 N/mm2, νMatrix = 0.3, σF,Matrix = 100 N/mm2 for the matrix material,
and EFiber = 100 000 N/mm2, νFiber = 0.3, σF,Fiber = 200 N/mm2 for the fibers. To
determine the macroscopic stiffness tetrads we use the difference quotient out of six test
calculations performing small elastic test strains in different directions. The stresses

and the strains are measured in terms of the 2nd Piola-Kirchhoff stress tensor
2PK

T and
the Green strain tensor EG in the reference placement. In the following we refer to the
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Figure 4: Overview of the three sample materials

initial stiffness with K0 and to the stiffness of the plastically deformed material with K1.
The first material is a unidirectionally reinforced composite with a hexagonal arrange-
ment of the fibers. The effective elastic stiffness tetrad of this composite is transversely
isotropic (see Figure 4(a)). The second sample material is a bidirectionally reinforced
composite with a fiber angle of 90◦. For this material the resulting effective elastic
stiffness tetrad has a tetragonal symmetry (see Figure 4(b)). The third material is
tridirectional reinforced material with a fiber angle of 90◦ between all the three fibers
resulting in a cubic stiffness tetrad (see Figure 4(c)).
The three materials are modeled as representative volume elements (RVE) with peri-
odic boundary conditions (see Glüge, Weber, and Bertram (2012)). The finite element
simulation in ABAQUS is displacement controlled. We use the element type C3D20
which is a three dimensional element with a quadratic ansatz function (20 nodes). The
stiffness tetrads are calculated in the reference placement. Since we have to compare
them in their stress-free placement, we have to push forward K1 with the deformation
gradient F . The following figures show the distance d of the stiffness tetrad of the virgin
(undeformed) material K0 (dark grey) and the stiffness tetrad of the deformed material
after the different tests F ∗K1 (light grey) to the symmetry classes. On the right hand
side of each figure the shape of the undeformed and deformed material and its associated
coordinate system are illustrated.

3.1 Results for the unidirectionally reinforced material

We know that the unidirectional reinforcement results in an hexagonal symmetry of the
initial stiffness tetrad K0. We find this result in all the figures of this subsection (d = 0%

for the dark grey bars of K0). The distance to all symmetry classes except the cubic and

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the isotropic class is zero (see Figures 5 to 10).

3.1.1 Transverse fiber shift

In Figure 5 we see the situation after a shear test with γxy = 0.5. This deformation
causes a movement of the fibers relative to each other. The fiber axis orientation remains
unchanged. For the cubic symmetry class we find a distance of d = 31% and the distance
to the isotropic symmetry class is d = 33%. After the plastic deformation the stiffness
tetrad has changed to K1. Following the results we find out that the symmetry of the
deformed material is almost orthotropic. The reason is the shear number of γxy = 0.5

which leads to a closer fiber arrangement. The distance to the tetragonal symmetry
is already d = 5% and to the initial hexagonal symmetry of the undeformed material
d =8%. The same is true for a shear deformation with γyx = 0.5.

3.1.2 Fiber inclination

Figure 6 shows the results after the shear test with γxz = 0.5 (similar results are obtained
using γyz = 0.5) which leads to the change of the fiber axes orientation. During the
deformation the symmetry remains nearly the same, namely hexagonal. The negligible
distances to the lower symmetry classes result from the fact that the inter-fiber distance
is slightly decreased due to the fiber inclination.

3.1.3 Parallel fiber shift

In Figure 7 we find no change regarding the symmetry since the shear γzx = 0.5 test
alone caused only a parallel shift of the fibers. There is no shift of the fibers and no
change of the axes. This is again true for the shear deformation γzy = 0.5.

3.1.4 Elongation tests

In case of a tension test with εxx = 0.5 as depicted in Figure 8 the material symmetry
becomes tetragonal with a distance of less than 5%. For the trigonal and the initial
hexagonal class the distance results in about 5%. The same is true for a tension test with
εyy = 0.5 because the hexagonal fiber arrangement is destroyed during this deformations.
For a tension test in fiber direction (see Figure 9), εzz = 0.5, there is no change of the
material symmetry because the fibers are only elongated along their axes.
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3.1.5 Mixed mode test

The results for the last test calculation (Figure 10) with a shear deformation of γxy =

γxz = 0.5 and a uniaxial tension of εxx = 0.5 (applied simultaneously) shows a similar
behavior of the symmetry change compared to the first test case with γxy = 0.5 because
the shear in this direction leads to the largest symmetry change. After the deformation
there is a distance of around 5% to the trigonal and the hexagonal symmetry. But we
find that the material can be considered as tetragonal with a distance of only 2%.
In summary it turns out that the plastic deformation of the uniaxial deformed material
leads to a change of the symmetry of the stiffness tetrad. The initial stiffness tetrad
has the hexagonal symmetry. In all cases the symmetry of the stiffness tetrad K1 after
the deformation is at least orthotropic. The distance to the tetragonal, trigonal and
hexagonal symmetry classes remains in the range between 0% and 8%.
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Figure 5: Distance d to the symmetry classes after the deformation γxy = 0.5
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Figure 6: Distance d to the symmetry classes after the deformation γxz = 0.5
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Figure 7: Distance d to the symmetry classes after the deformation γzx = 0.5
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Figure 8: Distance d to the symmetry classes after the deformation εxx = 0.5

F ∗K1

K0

0

5

10

15

20

25

30

d [%]

monoclinic
orthotropic

tetragonal
trigonal

hexagonal
cubic

isotropic

X

Y

Z

X

Y

Z

Figure 9: Distance d to the symmetry classes after the deformation εzz = 0.5
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Figure 10: Distance d to the symmetry classes after the deformation γxy = γxz = 0.5
and εxx = 0.5
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3.2 Results for the bidirectionally reinforced material

The undeformed bidirectionally reinforced material K0 has the tetragonal symmetry (see
Figure 11).

3.2.1 Shear in the fiber plane

After the shear test γxy = 0.5 the material can be considered as orthotropic because the
distance d for K1 is 15,5% to the tetragonal symmetry but less than 1% to the orthotropic
symmetry class. Similar results are obtained by the shear deformation γyx = 0.5. The
reason for the large distance to the initial tetragonal symmetry is the change of the angle
between the fibers during the deformation.

3.2.2 Shear parallel to the fibers

In Figure 12 we find that the material nearly remains tetragonal with a distance of less
than 3% after the deformation γxz = 0.5 (also true for the deformation γyz = 0.5). This
is because the angle between the fibers does not change during this shear deformation
in contrast to the in-plane shear.

3.2.3 Fiber plane inclination

For the deformations γzx = 0.5 (see Figure 13) or γzy = 0.5 the distance to the initial
tetragonal symmetry class also remains in the range of less than 3% which again results
from the unchanged angle between the fibers. The results differ slightly from the forego-
ing case since the planes spanned by the fibers come closer together in the present case.
Also, one fiber gets stretched, while the other is only displaced transversally.

3.2.4 Elongation tests

In Figure 14 the material symmetry has to be considered as trigonal after the elongation
εxx = 0.5 because the distance to the tetragonal class is nearly 5%. The reason is that
after the deformation the spacing between the fibers in y direction is larger than the
spacing between the fibers in x direction. The same is true for an elongation test in y
direction.
Only in the case of an elongation test in z direction as depicted in Figure 15 the material
symmetry remains unchanged after the deformation because the fiber spacing changes
simultaneously and remains the same in both x and y directions.
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3.2.5 Mixed mode test

The deformation with shear γxy = γxz = 0.5 and uniaxial tension εxx = 0.5 (applied
simultaneously) as shown in Figure 16 results in an orthotropic material. The distance
to the tetragonal symmetry class is about 15%.
Summarizing, the initial elastic behavior of the bidirectionally reinforced material is
tetragonal. After different deformations the material remains at least orthotropic.
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Figure 11: Distance d to the symmetry classes after the deformation γxy = 0.5
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Figure 12: Distance d to the symmetry classes after the deformation γxz = 0.5
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Figure 13: Distance d to the symmetry classes after the deformation γzx = 0.5
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Figure 14: Distance d to the symmetry classes after the deformation γxx = 0.5
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Figure 15: Distance d to the symmetry classes after the deformation γzz = 0.5
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Figure 16: Distance d to the symmetry classes after the deformation γxy = γxz = 0.5
and εxx = 0.5
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3.3 Results for the tridirectionally reinforced material

The initial stiffness tetrad K0 of the tridirectionally reinforced material has a cubic
symmetry. We find a distance of about 7% to the hexagonal and about 12% to the
isotropic symmetry class for the dark grey bars of K0 in the following three figures (17
to 19). The trigonal symmetry is included, as the three-fold rotation around the cube’s
space diagonal is a symmetry operation.

3.3.1 Shear tests

Figure 17 shows that after a shear test γxy = 0.5 (true for all other shear tests with
shear direction and shear plane normal parallel to the fiber axes) the material becomes
orthotropic with a distance of only 1% to this class. To all other higher symmetry classes
including the initial cubic one the distances are around 10%.

3.3.2 Elongation tests

By elongating the material parallel to a fiber (example depicted in Figure 18) with
εxx = 0.5 the distance to the cubic symmetry class increases but remains below 5%. The
same is true for the trigonal and tetragonal symmetry classes. The reason is that the
fiber spacing is not the same in all three directions after the deformation.

3.3.3 Mixed mode test

The deformation with shear γxy = γxz = 0.5 and uniaxial tension εxx = 0.5 (applied
simultaneously) in Figure 19 results in a triclinic material because the distance to all
material symmetry classes is clearly larger than 5%.
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Figure 17: Distance d to the symmetry classes after the deformation γxy = 0.5
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Figure 18: Distance d to the symmetry classes after the deformation εxx = 0.5
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Figure 19: Distance d to the symmetry classes after the deformation γxy = γxz = 0.5
and εxx = 0.5
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4 Summary

In this paper we presented a fast algorithm to determine the distance of a measured
stiffness tetrad to all tetrads with a certain symmetry. Using a projection method we
build up an 8th order tensor containing all group elements of the chosen group. After
applying this projector to a given stiffness tetrad, we only have to minimize over the
orientation of the symmetry axis and therefore only over the three Euler angles. Using
this method we investigated a uni-, bi- and tridirectionally reinforced material submitted
to large deformations.
In all cases, the distance measures corresponded well to the apparent symmetry classes.
For example, all bidirectionally reinforced materials (Sec. 3.2) are very close to the or-
thotropic symmetry class. The deviations are due to inhomogeneous deformations inside
the RVE, while the general proximity to the orthotropic symmetry class is due to the
fact that in any bidirectional material with equal fiber properties, three orthogonal di-
rections can be found, namely the fiber plane normal and the two angle bisectors. Other
tests of plausibility, like the presence of trigonal symmetry around the 111-direction in
an orthogonal tridirectional fiber arrangement in the (100) directions are captured as
well (Sec. 3.3).
The proposed methodology relies on the robust determination of the global minimum
of the distance measure over the orientation in terms of Euler angles. Since there are
local minima, a simple gradient approach starting from one point is not sufficient, and
precautions must be taken to ensure the finding of the global minimum. However, this
is not difficult. As the Euler angle space is periodic and may be further reduced by
invoking symmetries from the classes to which the stiffness is projected, it is sufficient to
consider a small minimization domain. We never observed results that are contradictory
to the symmetry class inclusion scheme, see Figure 1 (i.e. the distance to the tetragonal
class is always smaller or equal to the distance to the cubic class, which renders the
presented scheme applicable in an algorithmic manner) which makes us confident that
the applied method is reliable.
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