
International Journal of Solids and Structures 43 (2006) 1357–1371

www.elsevier.com/locate/ijsolstr
Free vibration analysis of stiffened laminated plates

Guanghui Qing a,*, Jiajun Qiu b, Yanhong Liu a

a Aeronautical Mechanics and Avionics Engineering College, Civil Aviation University of China, Tianjin 300300,

People’s Republic of China
b Department of Mechanics and Engineering Measurement, School of Mechanical Engineering, Tianjin University,

92, Weijin Road, Tianjin 300072, People’s Republic of China

Received 23 January 2004; accepted 4 March 2005
Available online 12 April 2005
Abstract

Based on the semi-analytical solution of the state-vector equation theory, a novel mathematical model for free vibra-
tion analysis of stiffened laminated plates is developed by separate consideration of plate and stiffeners. The method
accounts for the compatibility of displacements and stresses on the interface between the plate and stiffeners, the trans-
verse shear deformation, and naturally the rotary inertia of the plate and stiffeners. Meanwhile, there is no restriction on
the thickness of plate and the height of stiffeners. To demonstrate the excellent predictive capability of the model, sev-
eral examples are analyzed numerically. The model presented in this paper can also be easily modified to solve the prob-
lems of stiffened piezolaminated plates and shells, or plates and shells with piezoelectric material patches.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Conventional metal material stiffened plates are structural components consisting of plates reinforced by
a system of ribs or beams to enhance their load-carrying capacity. There are many practical applications of
such structures. Many stiffened plates are designed to resist vibration due to dynamical loads; the effect of
the stiffeners on the vibration behaviors of plates is known to be significant. Thus it is not surprising that a
number of papers have been devoted to the study of this problem. Mukherjee and Mukhopadhyay (1986),
Mukhopadhyay and Mukherjee (1989) have surveyed different approaches for vibration analysis of
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conventional stiffened plate problems. Many of these approaches can be employed together with the finite
element method (FEM). Five main types of finite element models can be identified (Mukherjee and Mukho-
padhyay, 1986; Mukhopadhyay and Mukherjee, 1989; Holopainen, 1995). The most common method used
in early literature did not account for the effect of transverse shear deformation and the rotary inertia in
both the plate and stiffeners (Liew et al., 1995).

Because the laminated plates or shells with stiffeners or stringers become more and more important in the
aerospace industry and other modern engineering fields, wide attention has been paid on the experimental,
theoretical and numerical analysis for the static and dynamic problems of such structures in recent years.
Turkmen and Mecitoglu (1999) presented a numerical analysis and experimental study of stiffened lami-
nated plates exposed to blast shock waves. Zhao et al. (2002), using an energy approach, investigated
the free vibration of the stiffened simply supported rotating cross-ply laminated cylindrical shells. Sadek
and Tawfik (2000) presented a higher-order finite element model and studied the behavior of concentrically
and eccentrically stiffened laminated plates. Kumar and Mukhopadhyay (2000), mixing plane stress trian-
gular element and discrete Kirchhoff–Mindlin plate bending element, investigated the stiffened laminated
composite plates. Gong and Lam (1998), using layered shell elements for both plate and stiffener in
MSC/Patran and LS-DYNA3D, carried out the transient response analysis of a stiffened composite sub-
mersible hull. Rikards et al. (2001) developed triangular finite element and studied the free vibrations of
stiffened laminated composite shells. Guo et al. (2002) developed a layerwise finite element formulation
and made a buckling analysis of stiffened laminated plates.

In recent years, many investigators have used the state-vector equation to analyze elasticity problem, and
particularly, to treat the problems in anisotropic materials and multi-layered structures. Generally speak-
ing, the state-vector equation for elastic bodies can be derived from the field equation or the various var-
iational principles (Steele and Kim, 1992; Chandrashekara and Santhosh, 1990; Fan and Ye, 1990a,b,c;
Ding and Tang, 1997, 1999; Zou, 1994; Zou and Tang, 1995a,b; Sheng and Ye, 2002a,b, 2003). The
state-vector equation for elastic bodies, derived from the modified mixed Hellinger–Reissner (H–R) varia-
tional principle, has been found being in the form of the canonical equations of Hamilton (Steele and Kim,
1992). Hence, some investigators call the state-vector equation as Hamilton canonical equation (Zou, 1994;
Zou and Tang, 1995a,b). The state-vector equation can then be solved either analytically or numerically,
namely the exact solutions (Steele and Kim, 1992; Chandrashekara and Santhosh, 1990; Fan and Ye,
1990a,b,c; Ding and Tang, 1997) and the semi-analytical finite element solution (Zou, 1994; Zou and Tang,
1995a,b; Sheng and Ye, 2002a,b, 2003). One of the features of the modified mixed H–R variational prin-
ciple or the corresponding state-vector equation is that the stresses and displacements, which are of imme-
diate interest, are treated simultaneously as the components of the six-dimensional state vector (Steele and
Kim, 1992). The prominent advantages using the state-vector equation to handle composite laminates are
the varying material and geometric properties along the independent spatial variable are allowed, and
anisotropic layered materials can be handled (Steele and Kim, 1992). Another outstanding advantage is
to treat the thick plate or multi-layered plate problems. Because of the transfer matrix method being
employed, the number of variables in the equation has no relationship with the thickness and/or the
number of layers of structures, and the solution also provides a continuous transverse stress field across
the thickness of a multi-layered structure (Zou and Tang, 1995a; Sheng and Ye, 2002a,b).

In this paper, a novel mathematical model for the free vibration analysis of stiffened laminated plates
is presented. On the basis of the state-vector equation theory, the algebraic equation of plate and stiff-
eners are established separately. Both the plate and stiffeners are considered as two three-dimensional
elastic bodies. Uniting the equations of plate and stiffeners ensures the compatibility of displacements
and stresses on the interface between plate and stiffeners. The transverse shear deformation and the
rotary inertia are also considered in the model, and the thickness of plate and the height of stiffeners
are not restricted. In section three, several numerical examples are analyzed, and the convergence of
all examples is tested.
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2. The formulation of stiffened laminated plate

A concentrically stiffened laminated plate is shown in Fig. 1.
Assuming the orthotropic symmetry with respect to the coordinate planes (Fig. 1b shows the coordinate

system), the stress–displacement relationships of the material of stiffened laminated plate can be stated as
Fig. 1.
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where the symbols rx, ry, rz, syz, sxz, and sxy are the stress components, respectively. Cij(i, j = 1,2, . . . , 6)
denotes the elasticity coefficient of material and a = o/ox, b = o/oy, c = o/oz. u, v, and w are the displace-
ments in x, y and z directions, respectively.

The modified mixed H–R variational principle (Zou and Tang, 1995a,b) can be shown in the form
d
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A concentrically stiffened laminated plate with four stiffeners (a) A concentrically stiffened laminated plate with four stiffeners,
inated plate and (c) top stiffeners or bottom stiffeners.
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where
q ¼ ½ u v w �T; p ¼ ½ sxz syz rz �T; _q ¼ oq=oz; T ¼ ½ T x T y T z �T
T ¼ ½ T x T y T z �T represents the described stresses acting on the stress boundaries Sr;

�q ¼ ½ �u �v �w �T represents the described displacements acting on the displacement boundaries Su;
The expression of the Hamiltonian function H herein can be written as (Body force is neglected)
H ¼ � 1
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where q is the mass density and x is the natural frequency.
C1 ¼ �C13=C33; C2 ¼ C11 � C2
13=C33; C3 ¼ C12 � C13C23=C33; C4 ¼ C22 � C2

23=C33;

C5 ¼ �C23=C33; C6 ¼ C66; C7 ¼ 1=C33; C8 ¼ 1=C55; C9 ¼ 1=C44
The laminated plate (as shown in Fig. 1b) is considered as an n-layered plate. Using the quadrilateral
element (Fig. 2 shows the local coordinate system of the quadrilateral element), the field functions and
the shape functions are assumed as follows:
u ¼ ½Nðx; yÞ�fueðzÞg; v ¼ ½Nðx; yÞ�fveðzÞg; w ¼ ½Nðx; yÞ�fweðzÞg
sxz ¼ ½Nðx; yÞ�fsxzðzÞg; syz ¼ ½Nðx; yÞ�fseyzðzÞg; rz ¼ ½Nðx; yÞ�fre

zðzÞg
ð4Þ

Niðn; gÞ ¼
1

4
ð1þ ninÞð1þ gigÞ ði ¼ 1; 2; . . . ; 4Þ ð5Þ
The discretization is employed in the x–y plane of a layer (as shown in Fig. 3a, and the shaded part is the
interface of plate and stiffeners).

Assuming the stress boundaries are satisfied (T ¼ T), and the displacement boundaries are satisfied
(q ¼ �q). Substituting Eqs. (4) and (5) into Eq. (2), with using d� = 0 yields element state-vector equation
Ce oH
eðzÞ
oz

¼ KeHeðzÞ ð6Þ
The detailed forms of Ce, Ke, He(z) in Eq. (6) can be found in Appendix A.
Fig. 2. The local coordinate system of quadrilateral element.



Fig. 3. Element mesh of plate and stiffeners where the shaded part is the interface of plate and stiffeners. (a) The element meshes of
plate and (b) the element meshes of stiffeners.
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The standard finite element assemblage process is employed. Hence the global state-vector equation for
mth layer can be obtained
Cm
oHmðzÞ

oz
¼ KmHmðzÞ ð7Þ
The exact solution of Eq. (7) is
HmðzÞ ¼ TmðzÞHmð0Þ ð8Þ
Note that, Tm(z) in Eq. (8) usually equals to eCmKm�z, and the exponential of a matrix could be computed in
many ways such as approximation theory, differential equations, the matrix eigenvalues, and the matrix
characteristics polynomial and so on. In practice, the consideration of computational stability, efficiency
and accuracy indicates that some of the methods are preferable to others, but none is completely satisfac-
tory (Moler and Van, 1978). Hence, the precise integration method (Zhong and Zhu, 1996; Zhong, 2001)
for Eq. (7) is employed in this paper.

In fact, Eq. (8) is available to every layer of a laminated plate, the continuity conditions between jth layer
and (j + 1)th layer can be met by imposing following relations at each interface:
HjðzjÞ ¼ Hjþ1ðzjÞ ðj ¼ 1; 2; . . . ; n� 1Þ ð9Þ

Therefore, the following recursive formation for an n-layered plate can be obtained:
HnðznÞ ¼
Yn
j¼1

T j

 !
H1ð0Þ ð10Þ
Eq. (10) is the relationship of the physics quantities of top and bottom surface of an n-layered plate. As
matter of fact, it is a set of linear algebraic equations in terms of the node displacements and stresses.
The matrix form of Eq. (10) can be written as
qnðzpnÞ
pnðzpnÞ

� �
¼
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11 Tp

12
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� �
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� �
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where superscript p denotes the laminated plate.
The laminated stiffeners (as shown in Fig. 1c) are also considered as an l-layered plate, and assuming the

element mesh in every layer is the same as the shaded part of Fig. 3a. The same procedure above for the top
stiffeners and bottom stiffeners is performed, and yields following equations:
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where superscript ts and bs denote the top stiffeners and the bottom stiffeners, respectively.
It should be noted that the dimensionality of Eqs. (11b) or (11c) is not equal to that of Eq. (11a).
The displacements and stresses on the interface between plate and stiffeners must be continuous. Uniting

Eqs. (11a)–(11c) yields
qðzÞ
pðzÞ

� �
¼
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qð0Þ
pð0Þ

� �
ð12Þ
Because natural frequencies are studied here, the top surface and bottom surface are stress free (the stress
column vector p(z) = p(0) = 0), the following equation can be deduced from Eq. (12):
T21qð0Þ ¼ 0 ð13Þ

To obtain the nontrivial solutions of Eq. (13), the determinant of the characteristic matrix in Eq. (13) must
be zero, namely
jT21j ¼ 0 ð14Þ

The natural frequencies x can be obtained from characteristic polynomial of Eq. (14) through the use of

the bisection method (Johnston, 1982). For the purpose of simplifying the analysis and the accuracy of
results, the dimensionless quantities of u, v, w, sxz, syz, and rz need to be introduced in computer program.
3. Numerical examples and discussions

To illustrate the versatility of the current method, numerical computations have been performed by
using Maple� and Matlab�.

3.1. Verification of the proposed method

An aluminum alloy eccentrically stiffened plate with double stiffeners (Fig. 4), which is a previously
reported experimental and theoretical example (Olson and Hazell, 1977; Zeng and Bert, 2001), is selected
as the first example to validate present method.

Because the compatible finite elements in the x–y plane are used, the natural frequencies should converge
on the values of the mathematical model monotonically, as the number of elements in the discretization is
increased. The results, as listed in Table 1, show that reasonable convergence has been achieved with rel-
atively small decrements in the first four frequencies, never as much as 1%, between corresponding value for
mesh 42 · 42,1 and mesh 51 · 51,1.

It is obvious (see Table 2) that the first three modes are in good agreement with other authors� results,
but for the fourth mode the natural frequency is under-predicted in comparison to the experimental result.
The same situation was mentioned in reference (Olson and Hazell, 1977). The reasons need to be further
investigated, but it is clear that the fourth mode is in an agreement with the corresponding result of
FEM (Olson and Hazell, 1977) and DQ (Zeng and Bert, 2001). It can be also noticed that the natural fre-
quencies obtained using present method are lower than those of FEM (Olson and Hazell, 1977). In the
FEM (Olson and Hazell, 1977), the plate portion of the stiffened panels was modeled with triangular ele-



Table 1
Convergence of natural frequencies (Hz) for eccentrically stiffened plate with double stiffeners and clamped at edges

Mesh (k · m), layer (n) Mode number

Plate Stiffeners 1 2 3 4

11 · 11, 1 1 · 11, 8 1020.4 1360.2 1482.8 1679.9
22 · 22, 1 2 · 22, 8 941.5 1234.3 1359.2 1430.1
33 · 33, 1 2 · 33, 8 932.7 1223.1 1334.7 1422.8
42 · 42, 1 2 · 42, 8 931.6 1221.4 1332.6 1410.1
51 · 51, 1 2 · 51, 8 931.5 1220.9 1331.8 1403.3

Fig. 4. An eccentrically stiffened plate with double stiffeners.

Table 2
Comparison of natural frequencies (Hz) for eccentrically stiffened plate with double stiffeners and clamped at edges

Methods Mode number (error % = 100 · (Present-Ref.)/Ref.)

1 2 3 4

Experimental, Olson and Hazell (1977) 909 (2.475) 1204 (1.404) 1319 (0.970) 1506 (�6.819)
FEM, Olson and Hazell (1977) 965.3 (�3.501) 1272.3 (�4.040) 1364.3 (�2.382) 1418.1 (�1.044)
DQa, Zeng and Bert (2001) 915.9 (1.703) 1242.2 (�1.715) 1344.4 (0.937) 1414.1 (�0.764)
Present 931.5 1220.9 1331.8 1403.3

a Differential quadrature method.
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ments and the stiffeners were modeled by refined beam bending and torsion elements. Both in-plane and
bending motions in the plate were considered, but in-plane inertias were neglected. However, without
any assumption for plate and stiffeners, the transverse shear deformation, the rotary inertia of plate and
stiffeners are considered in the present method. It is obvious that the current model is more advanced.

In the following subsections, several new numerical examples have been analyzed.

3.2. The natural frequencies of stiffened laminated plates

As shown in Fig. 5, the plate has two identical face layers and a core layer. All three layers have the
material properties corresponding to Aragonite crystals (Srinivas and Rao, 1970; Fan and Ye, 1990c) that
have the following stiffness ratios.



Table 3
The natural frequencies (Hz) for eccentrically stiffened laminated plate with double stiffeners and clamped at edges

h (m) Mesh (k · m), layer (n) Mode number

Plate Stiffeners 1 2 3 4

0.08 33 · 33, 4 3 · 33, 8 554.6 897.2 1184.5 1490.8
42 · 42, 4 3 · 42, 8 554.4 895.7 1181.8 1487.1
51 · 51, 4 3 · 51, 8 554.3 895.4 1179.7 1485.9
60 · 60, 4 3 · 60, 8 554.2 895.2 1178.4 1484.8

0.12 33 · 33, 4 3 · 33, 12 660.4 943.2 1389.2 1393.1
42 · 42, 4 3 · 42, 12 659.9 941.8 1385.3 1389.9
51 · 51, 4 3 · 51, 12 659.6 941.5 1382.8 1387.9
60 · 60, 4 3 · 60, 12 659.4 941.1 1382.1 1386.5

0.16 33 · 33, 4 3 · 33, 16 748.2 992.6 1165.4 1386.8
42 · 42, 4 3 · 42, 16 747.9 991.7 1163.5 1384.3
51 · 51, 4 3 · 51, 16 747.4 991.0 1160.1 1380.1
60 · 60, 4 3 · 60, 16 747.3 990.9 1159.7 1379.4

Fig. 5. An eccentrically stiffened laminated plate with double stiffeners C22/C11 = 0.543103, C12/C11 = 0.23319, C23/C11 = 0.098276,
C13/C11 = 0.010776, C33/C11 = 0.530172, C44/C11 = 0.26681, C55/C11 = 0.159914, C66/C11 = 0.262931.
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Assuming C1
11 ¼ 150 GPa and q1 = 1600 kg/m3 for the two face layers C2

11 and q2 for the core layer of the
laminated plate, C1

11=C
2
11 ¼ 2, q1/q2 = 2 and the material properties of stiffeners are the same as those of the

face layers. The numerical results are listed in Table 3.
The first four mode shapes (h at 0.08 m, 0.12 m, and 0.16 m) are depicted in Fig. 6.
The numerical results in Table 3 show that the natural frequencies of the first two modes increase with

the increase of height of stiffeners. However, it is not true for the third mode and the fourth mode. For the
third mode, the natural frequency increases at first, and then decreases. For the fourth mode, the natural
frequency decreases with the increase of height of stiffeners. It is reasonable because the effect of the inertia
terms becomes more prominent for the higher modes with the increase of stiffener height. This situation can
also be explained by the mode shapes. The fourth mode shapes are shown by Fig. 6d, h and l when h at
0.08 m, 0.12 m, and 0.16 m, respectively. Actually, the fourth mode shape changes at different stiffener
height because of the strong effect of the inertia.

In the third example, as shown in Fig. 7, the material and the geometry parameters of every layer and
stiffeners are the same as those in example two, except the height of top and bottom stiffeners is a half of
that of example two (h1 = h/2). The numerical results are listed in Table 4.



Fig. 6. Mode shapes of an eccentrically stiffened laminated plate with double stiffeners. (a) Mode shape 1 (h = 0.08 m, 554.2 Hz), (b)
Mode shape 2 (h = 0.08 m, 895.2 Hz), (c) Mode shape 3 (h = 0.08 m, 1178.4 Hz), (d) Mode shape 4 (h = 0.08 m, 1484.8 Hz), (e) Mode
shape 1 (h = 0.12 m, 659.4 Hz), (f) Mode shape 2 (h = 0.12 m, 941.1 Hz), (g) Mode shape 3 (h = 0.12 m, 1382.1 Hz), (h) Mode shape 4
(h = 0.12 m, 1386.5 Hz), (i) Mode shape 1 (h = 0.16 m, 747.3 Hz), (j) Mode shape 2 (h = 0.16 m, 990.9 Hz), (k) Mode shape 3
(h = 0.16 m, 1159.7 Hz) and (l) Mode shape 4 (h = 0.16 m, 1379.4 Hz).
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The numerical results in Table 4 show that the natural frequencies of the first three modes increase with
the increase of stiffener height. For the fourth mode, the natural frequency increases at first, and then de-
creases. This situation is the same as example two. The same case can be found in the following example
four (see Table 5).

Based on the treatment of the eccentricity of the stiffeners, the previous works on free vibration of con-
ventional eccentrically stiffened plates can be divided into two groups (Harik and Guo, 1993). In the first
group, the eccentricity of the stiffeners is neglected. In the second group, the in-plate displacements are
introduced as independent degrees of freedom to treat the actual plate-eccentric stiffeners system. Conse-
quently, the location of the neutral surfaces is not required to determine the membrane force in the plate
element and the axial force in the stiffener. The present method falls into the second group.

If the eccentricity of stiffened laminated plate is neglected and the neutral surface (see Fig. 8) is assumed
to coincide with the middle surface of the plate and the centroidal axis of the stiffeners, example two can be
modeled by example three. The natural frequencies of modes 1 and 2 of example three are lower than those
of example two.



Fig. 6 (continued )

Fig. 7. A concentrically stiffened laminated plate with double stiffeners.
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The fourth example is relatively complicated (see Fig. 9), the eccentrically stiffened laminated plate with
four T type stiffeners. The plate has two identical face layers and a core layer. The material properties of



Table 4
The natural frequencies (Hz) for concentrically stiffened laminated plate with double stiffeners and clamped at edges

h1 (m) Mesh (k · m), layer (n) Mode number

Plate Stiffeners 1 2 3 4

0.04 33 · 33, 4 3 · 33, 4 502.2 867.1 1083.3 1395.5
42 · 42, 4 3 · 42, 4 501.8 865.5 1080.4 1391.8
51 · 51, 4 3 · 51, 4 501.3 865.2 1078.9 1390.7
60 · 60, 4 3 · 60, 4 501.1 865.0 1078.1 1389.6

0.06 33 · 33, 4 3 · 33, 6 583.1 884.2 1290.6 1558.7
42 · 42, 4 3 · 42, 6 582.5 882.7 1286.9 1554.3
51 · 51, 4 3 · 51, 6 582.4 882.4 1284.8 1552.8
60 · 60, 4 3 · 60, 6 583.4 881.8 1284.1 1552.2

0.08 33 · 33, 4 3 · 33, 8 670.9 922.7 1465.4 1504.3
42 · 42, 4 3 · 42, 8 669.8 922.6 1460.5 1498.1
51 · 51, 4 3 · 51, 8 669.1 921.2 1456.6 1495.4
60 · 60, 4 3 · 60, 8 669.1 921.1 1456.5 1495.2

Table 5
The natural frequencies (Hz) for eccentrically stiffened laminated plate with four T type stiffeners and clamped at edges

h (m) Mesh (k · m), layer (n) Mode number

Plate Webs Flange 1 2 3 4

0.08 32 · 32, 3 2 · 32, 8 4 · 32, 2 810.7 1319.3 1490.2 1998.4
44 · 44, 3 2 · 44, 8 4 · 44, 2 809.6 1314.6 1484.4 1988.1
53 · 53, 3 2 · 53, 8 4 · 53, 2 809.4 1313.9 1481.9 1986.6
62 · 62, 3 2 · 62, 8 4 · 62, 2 809.3 1313.6 1481.7 1986.2

0.12 32 · 32, 3 2 · 32, 12 4 · 32, 2 956.1 1501.1 1674.5 2207.1
44 · 44, 3 2 · 44, 12 4 · 44, 2 955.4 1496.6 1669.0 2196.8
53 · 53, 3 2 · 53, 12 4 · 53, 2 955.6 1495.8 1666.8 2195.9
62 · 62, 3 2 · 62, 12 4 · 62, 2 955.5 1495.4 1666.3 2195.2

0.16 32 · 32, 3 2 · 32, 16 4 · 32, 2 1073.7 1637.5 1813.3 2141.7
44 · 44, 3 2 · 44, 16 4 · 44, 2 1072.2 1634.3 1810.4 2135.7
53 · 53, 3 2 · 53, 16 4 · 53, 2 1072.1 1634.0 1808.2 2131.5
62 · 62, 3 2 · 62, 16 4 · 62, 2 1072.0 1633.9 1807.9 2131.3

Fig. 8. (a) Plate and eccentric stiffener and (b) eccentricity of stiffener is neglected.
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every layer and stiffeners are the same as those in example two. The convergence patterns with different
meshes are tabulated in Table 5. The natural frequencies, as expected, converge from above and reach
an acceptable bound result.



Fig. 10. The stiffener type 2.

Fig. 9. An eccentrically stiffened laminated plate with four T type stiffeners.
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It should be mentioned that, if the cross-section of the stiffener is rectangular, the node number of a layer
of laminated plate determines the number of variables in Eq. (12), that is, the number of variables included
in Eq. (12) has no relationship with the thickness or the number of stiffeners of structures (examples 1–3).
But if the cross-section of stiffener is T type or C type, lateral parts of web should add the number of vari-
ables in the model analyzed (example 4).

On the other hand, in all numerical examples, the stiffener type is 1 and the material is the same over the
cross-section. If there are two or more materials in the cross-section of the stiffener, the present method is
also suitable for this situation without additional equations. This is because Eq. (11a) can be used to handle
the laminated plates that the material of every layer can be different.

If the stiffener type 2 (Figs. 1a and 10) is concerned, the laminated stiffener (as shown in Fig. 10) is con-
sidered as an n-layered plate and there are two or more materials in a layer. This situation is also similar to
the stiffener type 1. The major difference is that we should notice the interfaces of different materials when
we discretize arbitrary layer of the stiffener. One element cannot include two or more materials.
4. Conclusions

In this study, a novel mathematical model for the free vibration analysis of stiffened laminated plates has
been developed. The algebraic equations of the plate and the stiffeners have been established separately.
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The major advantages of the developed model include: (1) the compatibility of displacements and stresses
on the interface between the plate and the stiffeners are ensured through uniting the algebraic equation of
the plate and the stiffeners, (2) the transverse shear deformation and the rotary inertia are considered nat-
urally in the model, (3) the thickness of plates and the height of stiffeners are not limited.

The model can also be easily modified to solve the static or dynamic problems of plates with disconti-
nuity in thickness. If the similar modified H–R mixed variational principle for piezoelectric materials
and corresponding discrete state-vector equation are established, the dynamic behaviors of piezoelectric
plate with piezoelectric patches and cylindrical shells with piezoelectric rings (Lee and Saravanos, 1997;
Lin et al., 1996; Wang et al., 1997) can be analyzed directly by using the present approach.
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Appendix A

The expressions of Ce, Ke, He in Eq. (6):
Ce ¼ diag

Z Z
Xe
NiNjjJjdndg

� �

HeðzÞ ¼ ueðzÞ veðzÞ weðzÞ sexzðzÞ seyzðzÞ re
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� �T
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