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Abstract

When an electric voltage is applied across the thickness of a thin layer of an dielectric elastomer, the layer reduces its
thickness and expands its area. This electrically induced deformation can be rapid and large, and is potentially useful as
soft actuators in diverse technologies. Recent experimental and theoretical studies have shown that, when the voltage
exceeds some critical value, the homogenous deformation of the layer becomes unstable, and the layer deforms into a mix-
ture of thin and thick regions. Subsequently, as more electric charge is applied, the thin regions enlarge at the expense of
the thick regions. On the basis of a recently formulated nonlinear field theory, this paper develops a meshfree method to
simulate numerically this instability.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Dielectric elastomers are being used to develop lightweight, low-cost, and compliant actuators. Potential
applications include artificial muscles for robots, micro air vehicles and medical devices (e.g., Sugiyama
and Hirai, 2006; Kofod et al., 2007; Chu et al., 2006; Pelrine et al., 2000; Zhang et al., 2002; Galler et al.,
2006; Tolksdorf et al., 2001). Partly stimulated by these technological potentials, there has been renewed inter-
est in developing nonlinear field theory of elastic dielectrics (e.g., Dorfmann and Ogden, 2005; McMeeking
and Landis, 2005; Suo et al., 2007; Vu et al., 2007). For example, Suo et al. (2007) have abandoned the trou-
blesome notions of electric body force and Maxwell stress, and formulated a theory consisting of decoupled,
linear partial differential equations and boundary conditions, with nonlinear electromechanical coupling fully
captured by a free-energy function.

On the basis of this theory, the present paper develops a meshfree method to simulate a phenomenon
observed in electrically induced deformation. It was Stark and Garton (1955) who first reported that the
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breakdown fields of polymers reduced when the polymers became soft at elevated temperatures. The phenom-
enon is understood as follows. The electric voltage is applied between the electrodes on the top and the bottom
surfaces of a thin layer of a polymer. As the electric field increases, the polymer thins down, so that the same
voltage will induce an even higher electric field. This positive feedback results in a mode of instability, known
as electromechanical instability or pull-in instability, which causes the polymer to reduce the thickness dras-
tically, often leading to electrical breakdown. This instability has been recognized as a failure mode of the
insulators for power transmission cables (Dissado and Fothergill, 1992).

A different experimental manifestation of the electromechanical instability has been reported recently
(Plante and Dubowsky, 2006). Under certain conditions, an electric voltage can deform a layer of a dielectric
elastomer into a mixture of two regions, one being flat and the other wrinkled (Fig. 1). In the experiment, the
electrodes on the top and the bottom surfaces of the dielectric layer were made of conducting grease, which
applied a uniform electric potential to the elastomer without constraining its deformation.

This experimental observation has been interpreted as follows (Zhao et al., in press). Fig. 2a sketches the
experimental observation with a top view and cross sectional view. Fig. 2b sketches the relation between the
electric voltage U applied between the top and the bottom electrodes and the magnitude of the electric charge
Q on either electrode. When the voltage is small, the elastomer deforms slightly, and the charge increases with
the voltage approximately linearly. As the voltage increases, the elastomer thins down significantly, and a
small increase in the voltage adds a large amount of charge on either electrode. Consequently, the voltage
may reach a peak; as more charge is added on the electrodes, the elastomer thins down further, and the voltage
needed to maintain the charge drops. The peak voltage corresponds to the pull-in instability. When the elas-
tomer is thin enough, however, the large deformation may stiffen the elastomer significantly so that the voltage
must increase again to thin down the elastomer further. At a given voltage, the thin state requires more charge.
Consequently, as more charge is applied, the thin region enlarges at the expense of the thick region. The mix-
ture of the two regions is in equilibrium when the electric voltage is held at a level that makes the two shaded
areas in Fig. 2b equal. The thin region expands laterally more than the thick region, and wrinkles to partially
relieve the elastic energy.
Fig. 1. An experimental observation of electromechanical instability (courtesy of Plante and Dubowsky). A layer of a dielectric elastomer,
coated with conductive grease on top and bottom faces, is pre-stretched using a frame. An electric voltage is applied between the two
electrodes. The layer deforms into a mixture of two regions, one being flat and the other wrinkled. For further experimental details see
Plante and Dubowsky (2006).
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Fig. 2. (a) A schematic of an experimental observation reported by Plante and Dubowsky (2006). A thin layer of a dielectric elastomer is
subject to an electric voltage across its thickness. When the voltage is small, the layer deforms homogeneously, thinning in the thickness
direction and expanding in the lateral directions. When the voltage reaches a certain level, the homogeneous deformation becomes
unstable, and the layer deforms into a mixture of two states, one being flat and the other wrinkled. (b) A schematic plot of the relation
between the voltage applied between the two electrodes and the magnitude of the electric charge on either electrode.
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The analysis of Zhao et al. (in press) assumes that the thin region and the thick region are each in a state of
homogenous deformation, and neglects the constraint between the two regions. Starting with this paper, we
wish to develop methods to analyze the inhomogeneous deformation. This paper is organized as follows. Sec-
tion 2 summarizes the nonlinear field theory of elastic dielectrics. Section 3 describes a procedure to discretize
the field equations using a meshfree method, and solve the resulting nonlinear algebraic equations using the
Newton–Raphson method. Section 4 describes a material model, which we call the ideal dielectric elastomer.
As a first attempt to analyze the transition between the thin and the thick states, Section 5 introduces a two-
dimensional model. Section 6 reports preliminary numerical results.

2. Nonlinear field theory of elastic dielectrics

This section summarizes the nonlinear field theory of elastic dielectrics, following closely the formulation of
Suo et al. (2007). Only the relations relevant to the present work are included; the reader is directed to the original
paper for motivations for various definitions. We model an elastic dielectric as a continuous body of material par-
ticles. The body may extend to the entire space, but may contain interfaces between dissimilar media. Any state of
the body can serve as a reference state. In the reference state, let X be the coordinates of a material particle, dV(X)
be an element of volume around X, and dA(X) be an element of an interface around X.

In the current state at time t, the material particle X is at a place with coordinates xi = xi(X, t). The defor-
mation gradient tensor is
F iJ ðX; tÞ ¼
oxiðX; tÞ

oX J
: ð1Þ
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Imagine that each material particle is connected to a weight that applies a force, and the body is subject to a
field of weights. In the current state, the field of weights applies force ~biðX; tÞdV ðXÞ on the material element of
volume, and applies force ~tiðX; tÞdAðXÞ on the material element of an interface. Let ni(X) be a vector test func-
tion. Define the tensor of nominal stress siJ(X,t) such that
Z

siJ
oni

oX J
dV ¼

Z
~bini dV þ

Z
~tini dA ð2Þ
holds true for arbitrary test function ni(X). The volume integrals extend to the volume of the body in the ref-
erence state, and the surface integral extends to the interfaces in the reference state. In the above definition, the
test function ni(X) needs to have no physical interpretation and can be of any unit. In a special case, when the
test function is a small, actual deformation of the body, dxi(X, t), the right-hand side of (2) is the actual incre-
mental work done by the field of weights. Consequently, the nominal stress is work-conjugate to the deforma-
tion gradient.

To define various electrical quantities, imagine that each material particle is connected to a battery, which
maintains the electric potential of the material particle, U(X, t), with respect to the ground. The material itself
is an insulator, but the battery may pump electric charge from the ground to the material particle. In the cur-
rent state at time t, define the nominal electric field by the gradient of the electric potential:
~EJ ðX; tÞ ¼ �
oUðX; tÞ

oX J
: ð3Þ
Let ~qðX; tÞdV ðXÞ be the electric charge on the element of volume, and ~xðX; tÞdAðXÞ be the electric charge on
the element of an interface. Let g(X) be a scalar test function. Define the vector of nominal electric displace-
ment, ~DJ ðX; tÞ, such that the equation
�
Z

~DJ
og
oX J

dV ¼
Z

~qgdV þ
Z

~xgdA ð4Þ
holds true an arbitrary test function g. This definition is equally valid when we replace ~DI , ~q and ~x by corre-
sponding increments, d~DJ , d~q and d~x. The test function g(X) needs to have no physical interpretation and can
be of any unit. In a special case, when g is the actual electric potential U(X, t), and when the increments d~DJ , d~q
and d~x are used, the right-hand side of (4) is the actual incremental work done by the field of batteries. Con-
sequently, the nominal electric displacement is work-conjugate to the nominal electric field.

For an elastic dielectric, the work done by the field of weights,
R

siJdF iJ dV , and the work done by the field
of batteries,

R
~EJd~DJ dV , are stored fully in the body as the Helmholz free energy. We next localize this state-

ment by introducing an assumption. Let W dV(X) be the Helmholz free energy of a material element of vol-
ume. We assume that, associated with the actual changes, dFiJ and d~DJ , the free energy of the material element
changes by
dW ¼ siJdF iJ þ ~EJd~DJ : ð5Þ
Define the electrical Gibbs free energy by
bW ¼ W � ~EJ
~DJ : ð6Þ
A combination of (5) and (6) gives that
d bW ¼ siJdF iJ � ~DJd~EJ : ð7Þ
Thus, an elastic dielectric is characterized by the Gibbs free energy function bW ðF; ~EÞ. Once this function is
specified, the material laws are
siJ ðF; ~EÞ ¼ o bW ðF; ~EÞ
oF iJ

; ð8aÞ

~DJ ðF; ~EÞ ¼ � o bW ðF; ~EÞ
o~EJ

: ð8bÞ
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According to definition (3), the nominal electric field ~E is invariant when the entire system in the current state
rotates as a rigid body. According definition (1), however, the deformation gradient F varies when the system
in the current state rotates as a rigid body. To ensure that bW is invariant under such a rigid-body rotation,
following a usual practice, we invoke the right Cauchy–Green deformation tensor, CIJ = FkIFkJ, and write
the free energy as a function
bW ¼ bW ðC; ~EÞ: ð9Þ
Consequently, the material laws (8) become
siJ ðC; ~EÞ ¼ 2F iL
o bW ðC; ~EÞ

oCJL
; ð10aÞ

~DJ ðC; ~EÞ ¼ � o bW ðC; ~EÞ
o~EJ

: ð10bÞ
As shown in Suo et al. (2007), definitions (1)–(4) result in a set of linear partial deferential equations and linear

boundary conditions, with the mechanical fields decoupled from the electrical fields. Nonlinearity and electro-
mechanical coupling enters solely through the free-energy function bW ¼ bW ðC; ~EÞ.

In numerical calculations, as well as in device applications, one often invokes small changes near a given
state. Let the given state be characterized by C and ~E. Associated with small changes in the deformation gra-
dient and in the nominal electric field, dFiJ and d~EJ , the changes in the nominal stress and the nominal electric
displacements are
dsiJ ¼ H iJkLdF kL � eiJLd~EL; ð11aÞ
d~DJ ¼ eiJLdF iL þ eJLd~EL: ð11bÞ
The various tangent moduli depend on the given state, and can be calculated from the Gibbs free energy:
HiJkLðC; ~EÞ ¼ 2dik
o bW ðC; ~EÞ

oCJL
þ 4F iM F kN

o bW ðC; ~EÞ
oCJMoCLN

; ð12aÞ

eiJLðC; ~EÞ ¼ �2F iM
o bW ðC; ~EÞ
oCJMo~EL

; ð12bÞ

eJLðC; ~EÞ ¼ � o bW ðC; ~EÞ
o~EJo~EL

: ð12cÞ
3. Discretization and numerical solver

In the current state at time t, interpolate the position vector xi(X, t) and the electric potential U(X, t) as
xiðX; tÞ � X i ¼ NaðXÞuai tð Þ; ð13aÞ
UðX; tÞ ¼ NaðXÞUa tð Þ: ð13bÞ
The index a, as well as the index b below, is reserved for nodes; repeated a (or b) implies summation over all
nodes in the body. The quantities uai(t) and Ua(t) are the discretized displacement and electric potential asso-
ciated with node a. The shape functions Na(X) can be constructed in several ways; we adopt a meshfree pro-
cedure; detailed implementation can be found in Belytschko et al. (1994), Liu et al. (1995) and Chen et al.
(1996).

The test functions are similarly discretized:
niðXÞ ¼ N aðXÞnai; ð14aÞ
gðXÞ ¼ N aðXÞga; ð14bÞ
where nai and ga are the discretized test functions associated with node a.
The discretized deformation gradient and the discretized electric potential are
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F iJ ðX; tÞ ¼ diJ þ
oNa

oX J
uaiðtÞ; ð15aÞ

~EJ ðX; tÞ ¼ �
oN a

oX J
UaðtÞ: ð15bÞ
Substituting (13) and (14) into (2) and (4), and invoking the arbitrariness of the test functions, we obtain that
Z
siJ

oN a

oX J
dV ¼

Z
~biN a dV þ

Z
~tiN a dV : ð16aÞ

�
Z

~DJ
oN a

oX J
dV ¼

Z
~qN a dV þ

Z
~xNa dV : ð16bÞ
For a given elastic dielectric, the free-energy function bW ðC; ~EÞ is prescribed. The material laws (10), in
conjunction with the discretization (15), express the nominal stress siJ and the nominal electric displace-
ment ~DJ in terms of uai(t) and Ua(t). Consequently, (16) is a set of nonlinear algebraic equations for
uai(t) and Ua(t).

At a given time t, we solve the nonlinear algebraic (16) using the Newton–Raphson method. Let uai and Ua

be the values at a particular iteration. Through material laws (10), one can calculate the associated values of siJ

and ~DJ . The increments for the iteration, duai and dUa, are determined by a set of linear algebraic equations:
Z
H iJkL

oNa

oX J

oN b

oX L
dV

� �
dubk �

Z
eiJL

oNa

oX J

oN b

oX L
dV

� �
dUb ¼

Z
~biNa dV þ

Z
~tiNa dV �

Z
siJ

oNa

oX J
dV ; ð17aÞ

�
Z

ekJL
oNa

oX J

oN b

oX L
dV

� �
dubk �

Z
eJL

oNa

oX J

oNb

oX L
dV

� �
dUb ¼

Z
~qN a dV þ

Z
~xNa dV þ

Z
~DJ

oNa

oX J
dV :

ð17bÞ
Given a close enough initial guess, the Newton–Raphson method has a relatively fast convergence rate. To
automate the process of making good guesses, the usual approach is to combine the iteration with an incre-
mental scheme. One divides the external load into a number of increments, uses the reference state as the initial
guess for the first increment, iterates within each increment until convergence, and uses the converged result as
an initial guess for the next increment.
4. Ideal dielectric elastomers

For a given elastic dielectric, the material laws are fully specified by the free-energy function bW ðC; ~EÞ. Writ-
ing an explicit form of this function for any real material is a challenging task. For many dielectric elastomers,
experiments seem to suggest that (a) the true electric displacement is approximately linear in the true electric
field, D = eE, and (b) the permittivity e is approximately independent of the state of deformation (Pelrine
et al., 1998, 2000; Kofod and Sommer-Larsen, 2005; Plante and Dubowsky, 2006). These observations may
be interpreted using a molecular picture. When molecular groups in an elastomer can polarize nearly as freely
as in liquids, e.g., when the degree of crosslink is low and the deformation is well before individual molecular
chains are fully extended, the dielectric behavior of the elastomer is expected to be liquid-like. The linearity
simply suggests that the applied electric field is still too low to perfectly align polar groups (if there are
any) to saturate polarization.

Let W0(C) be the free-energy function of the elastomer in the absence of the electric field. For the ideal
dielectric elastomer, the dielectric energy per unit volume is eE2/2. Recall that the true electric field relates
to the nominal electric field as ~EJ ¼ F iJ Ei, so that E2 ¼ C�1

IJ
~EI

~EJ , where C�1
IJ are the components of the tensor

C�1. Following Zhao et al. (in press), we define an ideal dielectric elastomer by writing the free energy as the
sum of the elastic energy and the dielectric energy:
bW ðC; ~EÞ ¼ W 0ðCÞ �
1

2
eC�1

IJ
~EI

~EJ : ð18Þ
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While it will be interesting to investigate how well the ideal dielectric elastomer represents a real one, in this
paper we will use the ideal dielectric elastomer to develop the theory.

The elastomer is taken to be incompressible. We adopt a series expression developed by Arruda and Boyce
(1993):
W 0 ¼ l
1

2
I1 � 3ð Þ þ 1

20N
I2

1 � 9
� �

þ 11

1050N 2
I3

1 � 27
� �

þ . . .

� �
; ð19Þ
where l is the small-strain shear modulus, I1 = CKK, and N is the number of rigid molecular segments in a
polymer chain between crosslinks.

Inserting (18) into (10), we obtain the material laws:
siJ ¼ 2
dW 0

dI1

F iJ � pF �1
Ji þ e~EL

~EKF �1
Li C�1

KJ ; ð20aÞ

~DJ ¼ e~ELC�1
JL ; ð20bÞ
where p is a penalty coefficient introduced to enforce incompressibility (e.g., Holzapfel, 2001, p. 222).
5. A two-dimensional approximation

The above formulation is valid for three-dimensional fields. While the instability reported by Plante and
Dubowsky (2006) involves three-dimensional deformation, in this first numerical treatment of this instability,
we will formulate an approximate two-dimensional model. Let X3 be the direction along the wave vector of the
wrinkles. In this direction, we expect that the nominal stress s33 is nearly relieved by the wrinkles. Imagine a
slice of the thin film cut along a wrinkle, the slice should be in a generalized plane-stress state rather than a
plane-strain state. In the approximate model, we set s33 = 0. We will study the field in a (X1,X2) plane, and
neglect Fa3, F3C and ~E3; the Greek subscripts run from 1 to 2. We do allow the stretch along the x3 direction,
F33 = k3. The incompressibility of the elastomer relates k3 to the in-plane deformation as
k3 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C11C22 � C2
12

q : ð21Þ
The above two-dimensional approximation is rigorous when the material undergoes a homogenous deforma-
tion and is stress-free in the X3 direction. For situations with coexistent states of different thicknesses, error
occurs in the transition regions between two phases; a more rigorous model will be formulated in a subsequent
paper.

Substituting s33 = 0 into (20a), we find that
p ¼ 2k2
3

dW 0

dI1

: ð22Þ
We can rewrite the in-plane components of the nominal stress tensor as
saC ¼ 2
dW 0

dI1

F aC � k2
3F �1

Ca

� �
þ e~EK

~EHF �1
KaC�1

HC: ð23Þ
The tangent moduli can be calculated from
4
o bW C; ~E
� �

oCCKoCHN
¼ 4

d2W 0

dI2
dCK � k2

3C�1
CK

� �
dHN � k2

3C�1
HN

� �
þ k2

3

2

dW 0

dI
2C�1

CKC�1
HN þ C�1

CHC�1
KN þ C�1

CNC�1
KH

� �� �
� e~EP

~ER C�1
KP C�1

CHC�1
NR þ C�1

CNC�1
HR

� �
þ C�1

CR C�1
KNC�1

HP þ C�1
KHC�1

NP

� �� �
ð24Þ

2
o bW ðC; ~EÞ
oCCKo~EH

¼ e~EN C�1
CHC�1

KN þ C�1
CNC�1

KH

� �
: ð25Þ
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6. Numerical results and discussion

As a numerical example, consider a thin layer of a dielectric elastomer sandwiched between two compliant
electrodes. A voltage U is applied between the two electrodes, and no external forces are applied. When the
voltage is small, the deformation in the layer is homogenous. When the voltage reaches a critical value, how-
ever, the homogenous deformation is unstable, and gives way to inhomogeneous deformation. Zhao et al. (in
press) have analyzed the stability of the homogenous deformation. Here, we will use our numerical procedure
to recover the homogenous deformation, and analyze the inhomogeneous deformation.

We first summarize the basic results of the homogenous deformation. Let H the thickness of the unde-
formed elastomer, and kH be the thickness of the deformed elastomer. In the current state, the nominal elec-
tric field is ~E ¼ U=H , and the true electric field is E ¼ U=ðkHÞ ¼ ~E=k. Due to incompressibility, the stretch in a
direction normal to the thickness is k�1/2. Consequently, I1 = k2 + 2k�1, and the free-energy function of the
elastomer is
Fig. 3.
and tw
charge
bW ðk; ~EÞ ¼ W 0 kð Þ � e
2

~E
k

	 
2

; ð26Þ
where W0(k) is obtained by inserting I1 = k2 + 2k�1 into (19). The nominal stress in the thickness direction is
s ¼
o bW k; ~E
� �
ok

¼ dW 0 kð Þ
dk

þ e~E2k�3: ð27Þ
The nominal electric displacement is
~D ¼ �
o bW k; ~E
� �
o~E

¼ e~Ek�2: ð28Þ
Because no external force is applied, s = 0, and (27) and (28) may be written as
~E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� k3dW 0 kð Þ

edk

s
; ~D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� edW 0 kð Þ

kdk

r
: ð29Þ
This pair of equations define the relation between ~D and ~E, with k as a parameter.
We next use our meshfree code to recover this homogeneous deformation. For the homogenous deforma-

tion, the size of the block is unimportant, and is set to be L · H with the aspect ratio L/H = 1 (Fig. 3), dis-
cretized using 132 nodes. Fig. 4 compares the calculated voltage–charge relation with (29). The voltage is
H

H

+Q

-Q

X1

X2

Φ

A schematic of the computational model. A square block (H · H) of dielectric elastomer, with two sides constrained frictionlessly,
o compliant electrodes deposited on the top and bottom sides. A voltage U is applied between the two electrodes, and induces
+Q on one electrode, and �Q on the other electrode.
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normalized as U= H
ffiffiffiffiffiffiffi
e=l

p� �
, and the charge is normalized as Q= L

ffiffiffiffiffi
el
p� �

. The only dimensionless parameter in

the problem is N in (19). The numerical results agree well with the analytical solutions, even when a homog-
enous deformation is unstable, i.e. the parts in the plot with negative slopes. The exception is when N!1,
where the instability is so catastrophic that even a smallest numerical error makes the Newton–Raphson iter-
ation diverge.

We finally use the meshfree code to simulate inhomogeneous deformation. The size of the block is now set
as L · H, with the aspect ratio L/H = 8 (Fig. 5). The block is discretized using 246 nodes. The material param-
eter is taken to be N = 2.8. To introduce an initial imperfection, we modify the vertical coordinates of three
nodes on the top surface, lowering the middle node by 0.002H, and lowering the two neighboring nodes by
0.001H. We use the total charge Q on the top electrode to control the incremental loading and unloading
process.
0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Analytical N=2.8
Numerical N=2.8
Analytical N=5
Numerical N=5
Analytical N=∞
Numerical N=∞

Fig. 4. A comparison between the numerical and analytical results of the dimensionless voltage versus the dimensionless charge. No initial
imperfection is introduced. For Arruda–Boyce materials (N = 2.8 and 5), the numerical results agree well with the analytical solutions,
even in the region when the homogenous solution is unstable. For neo-Hookean material (N =1), in the region when the homogenous
solution is unstable, the Newton–Raphson iteration fails to converge.

H

+Q

-Q

L

X1

X2

Φ

Fig. 5. A schematic of the computational model of a rectangular block (L · H) of dielectric elastomer, with a small imperfection. (The size
of the imperfection is exaggerated for visual clarity.) The left and bottom sides are constrained frictionlessly. Two compliant electrodes are
deposited on the top and bottom surfaces. A voltage U is applied between the two electrodes, and induces charge +Q on one electrode, and
�Q on the other electrode.
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Four stages of deformation can be observed, noted as B–E in Figs. 6 and 7. (The stage A in Fig. 7 denotes
the reference state.) In stage B, the elastomer is uniformly thinned, all the way until it reaches some point near
the critical voltage, when the homogenous deformation is unstable and a local region thins down preferen-
tially. In stages C and D, the elastomer deforms into a mixture of two states. The voltage keeps constant,
but as electric charge is pumped onto the electrodes, the thin region grows at the expense of the thick region.
From stage C to stage D, instability propagates in the elastomer. In these stage, the numerical solution devi-
ates from the analytical homogenous solution, shown as a horizontal line in Fig. 6. A discontinuity in voltage
near point D can be seen on Fig. 6. The phenomenon can be understood as follows. Although the coexistence
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Fig. 6. Numerical and analytical results of the dimensionless voltage as a function of the dimensionless charge. An Arruda–Boyce material
with N = 2.8 is assumed. Stage A denotes the reference state and is not shown here. States B and E represent two homogeneous states
while C and D are the transition states between states B and E. States C and D corresponding to inhomogeneous deformations and can not
be obtained by analytical method.
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Fig. 7. A sequence of deformation as obtained by numerical simulation. A is the reference state without deformation, stages B and E are in
the conditions when a homogenous solution is stable, and the elastomer deforms uniformly. In stages C and D, two states of different
thicknesses coexist. From stage C to stage D, instability propagates in elastomer. When the charge on the electrodes increases, the thinner
region grows at the expense of the thicker region until the thicker region is exhausted. When the charge decreases, the thinner region
shrinks until it reaches the uniform thicker state.
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of the two states of different thicknesses is having a lower energy than one of the states, there is always a tran-
sition region of finite width that costs extra energy in between the two states. When the thinner state propa-
gates to some point close to the edge, there will be no space for the thicker state to exist. Comparing to that of
a uniform thin state, the energy is higher for a thin state to exist with a transition region, but without the thick
state. As a result, the film snaps down at this point, from the combination of a thin state with an edge of tran-
sition region to a uniform thin state. The deformation becomes homogenous when the thick region is
exhausted. In stage E, the material deforms uniformly again, but with a much thinner thickness. When we
unload the material by withdrawing electric charge from the electrodes, the material relaxes almost along
the same route, except for the position of critical points.

7. Concluding remarks

On the basis of a recently formulated nonlinear field theory of elastic dielectrics, we have developed a mesh-
free code to simulate electrically induced finite deformation in elastomers. The procedure is demonstrated for
the ideal dielectric elastomer, subject to two-dimensional approximations, using meshfree method. We apply
the numerical method to simulate a layer subject to a voltage. When the voltage is small, the deformation of
the layer is homogenous. When the voltage reaches a certain value, deformation becomes inhomogeneous,
with coexistent thin and thick state. At a constant voltage, as the battery pumps more charge to the two elec-
trodes, the thin region expands at the expense of the thick region. The general numerical procedure has the
clear potential to be extended to simulate more complex modes of deformation in dielectric elastomers.
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