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We present a dimensional analysis and self-similar solutions for linear elastodynamics with extensions to
dynamic fracture models based on cohesive traction-separation relations. We formulate the problem
using differential forms in spacetime and show that the scaling rules expressed in terms of forms are sim-
pler and more uniform than those obtained for tensor representations of the solution. In the extension to
cohesive elastodynamic fracture, we identify and study the influence of certain intrinsic cohesive scales
on dynamic fracture behavior and describe a fundamental set of nondimensional groups that uniquely
identifies families of self-similar solutions. We present numerical studies of the influence of selected non-
dimensional parameters on dynamic fracture response to verify the dimensional analysis, including the
identification of the fundamental set for cohesive fracture mechanics. We show that distinct values of a
widely-used nondimensional quantity can produce self-similar solutions. Therefore, this quantity is not

Traction-separation relation
Ductile-to-brittle transition

fundamental, and it cannot parameterize dynamic, cohesive-fracture response.

Published by Elsevier Ltd.

1. Introduction

There are numerous applications of dimensional analysis! and
similarity methods? in the fields of fluid mechanics, thermomechan-
ics, electromagnetics and astronomy by Langhaar (1951), Sedov
(1959), Huntley (1967), Isaacson and Isaacson (1975) and Szirtes
(1998). Although applications of these methods to solid mechanics
exist, they are less common and tend to be more limited in scope.
For example, the analyses of elastodynamics in Miles (1960) and
Norwood (1973) yield both the similarity variables and the complete
similarity solutions, but only for specific planar configurations.

Historically, the application of dimensional analysis to model-
ing of fatigue and fracture of materials was limited by inadequate
knowledge of the significant variables that govern these phenom-
ena (Langhaar, 1951; Wagner, 1984). Nonetheless, several
applications to Linear Elastic Fracture Mechanics (LEFM) can be
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! Dimensional analysis is a method by which we can deduce information about a
given phenomenon by assuming only that the phenomenon can be described by
dimensionally-consistent relations between a selected set of variables (Langhaar,
1951). It can generate a partial solution to nearly any problem with relatively little
effort, even when a complete mathematical formulation of the problem is not
available (Wagner, 1984).

2 Similarity methods attempt to represent families of solutions that share a
common form when expressed in terms of certain nondimensional similarity variables.
Techniques used to identify the similarity variables include dimensional analysis
(Birkhoff, 1948), group theory (Morgan, 1952), universal graph methods (Szata, 2001)
and integral transforms (Norwood, 1973).
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found in the literature. Carpinteri (1982) and Wagner (1984) de-
rive complete sets of nondimensional parameters using the Buck-
ingham theorem (Buckingham, 1914), including the familiar
Griffith’s form in the latter work. Setien and Varona (1996) discuss
the computation of stress intensity factors in the context of dimen-
sional analysis, and Szata (2001) derives fatigue crack growth rates
in isotropic bodies via the universal graph method, which differs
slightly from the Buckingham method.

Progress in understanding the microscopic mechanisms of
material failure enable new applications of dimensional analysis.
For example, dimensional analysis has been used to determine size
effects and the dominant failure modes in fracture. Kysar (2003)
considers dislocation-induced deformations to obtain a set of non-
dimensional parameters that control crack-tip energy dissipation
and to identify the dominant failure mode, ductile or brittle, at
the onset of crack propagation.

Cohesive models are among the most effective, and currently
the most popular, class of continuum numerical models for dy-
namic fracture. They developed from the cohesive zone models
first introduced by Dugdale (1960) and Barenblatt (1962). Cohesive
models simulate crack initiation and extension by modeling the
macroscopic effects of various nonlinear damage processes in the
neighborhood of the crack tip. A constitutive relation, called a
traction-separation relation (TSR), describes the tractions acting
across a cohesive interface as nonlinear, bounded functions of
the interface separation.

A limited literature on dimensional analysis of cohesive fracture
models exists. Carpinteri (1989, 1991) demonstrated that a nondi-
mensional brittleness factor, obtained from cohesive scales and a
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domain dimension, determines the transition from ductile to brit-
tle failure. Tvergaard and Hutchinson (1992) examine crack growth
in an elastic-plastic solid with an idealized TSR and express the
critical stress intensity factor required to advance the crack in
terms of other nondimensional parameters. Xu and Needleman
(1994) emphasize the importance of nondimensional parameters
and propose a “key dimensionless group” for the cohesive fracture
problem. Camacho and Ortiz (1996) derive an intrinsic cohesive
time scale 7, for specific loads and a specific geometric configura-
tion, in a study of dynamic spall strength. Pandolfi et al. (1999)
observe that 7 influences the minimum time step required to
ensure a convergent time-stepping algorithm for dynamic fracture.
Rahulkumar et al. (2000) express the macroscopic fracture energy
in viscoelastic solids in terms of bulk and cohesive nondimensional
parameters. Carpinteri et al. (2003) use fractal topology to further
investigate the brittleness factor and its relation to scale-invariant
cohesive models.

In this work (see also Abedi, 2010), we present a systematic
dimensional analysis for linearized elastodynamics, without
restrictions on the spatial dimension and configuration of the
spacetime analysis domain. We seek conditions for scaling the
fields of an elastodynamic system so that the resulting system also
satisfies balance of momentum, kinematic compatibility and the
governing constitutive relation. We extend our dimensional analy-
sis of linearized elastodynamics to include cohesive models of
dynamic fracture, and to the authors’ knowledge, a similarly
complete treatment has not been reported before. Our analysis
reveals the fundamental set of nondimensional parameters required
to represent all families of self-similar cohesive fracture solutions.
Using this information, the solution to any problem with specific
material properties, cohesive parameters and loading can be easily
generalized to a family of self-similar solutions.

We use the results of our dimensional analysis to derive intrin-
sic scales that govern cohesive fracture problems. In particular, we
obtain intrinsic cohesive length and time scales, L and 7. In the case
of self-similar solutions, the sizes of the spatial domain and the
cohesive process zone scale with L. We show that the cohesive
time scale 7 is a function of the cohesive scales for separation
and strength, é and &, respectively. In fact, the value of T we derive
coincides with the one reported for the spall-strength example in
Camacho and Ortiz (1996).

We investigate changes in the self-similar solutions due to
changes in various intrinsic cohesive scales, including &, &, 7 and
a scale for work of separation ¢. Moreover, we introduce two
groups of nondimensional cohesive parameters that describe the
problem data. Members of the first group relate the spatial and
temporal scales of the analysis domain to L and 7, while members
of the second group relate measures of the loading components to
corresponding cohesive scales. We use the spacetime discontinu-
ous Galerkin (SDG) method (Abedi et al., 2006a,b, 2009) in numer-
ical studies of cohesive fracture mechanics to verify our
dimensional analysis. These studies confirm the predicted one-
to-one correspondence between specific selections of the funda-
mental nondimensional set and families of self-similar solutions.
They also show that a widely-used nondimensional parameter in
the cohesive fracture literature is not fundamental. That is, distinct
values of this parameter can generate self-similar solutions, so
taken alone, it does not provide a useful parameterization of
cohesive-fracture response.

We use differential forms and the exterior calculus on mani-
folds to formulate the initial and boundary-value problem of
elastodynamics directly on spacetime manifolds; cf. (Abedi et al.,
2006a, 2009; Miller et al., 2009). This approach has several
advantages in the spacetime setting relative to conventional
tensorial representations, as described in the following section.
However, both for the convenience of the reader unfamiliar with

this branch of mathematics and to demonstrate one of the advan-
tages of differential forms notation, we present the main results of
our dimensionless analysis in Section 3 in both conventional tenso-
rial and forms notations. Our presentation of numerical results in
Section 4 uses conventional notation and does not require
knowledge of exterior calculus.

2. Formulation

In this section, we formulate the initial and boundary-value
problem for linearized elastodynamics, and then extend it to prob-
lems that include cohesive fracture interfaces modeled with trac-
tion-separation relations (TSRs). Our formulation systematically
combines space and time quantities, and, following the develop-
ment in Abedi et al. (20063, 2009) and Miller et al. (2009), it uses
the notation of differential forms on spacetime manifolds. This ap-
proach provides a direct, coordinate-free notation that can be used
to express fluxes across spacetime interfaces with arbitrary orien-
tation. For example, we combine the stress and linear momentum
density fields in a single form that delivers momentum flux density
across any spacetime d-manifold. This leads to concise representa-
tions of the governing equations that emphasize the notion of con-
servation on spacetime control volumes.

Although differential forms are not widely used in solid
mechanics, their use is well justified in the spacetime setting. In
contrast to traditional tensor notation, for example, we can use dif-
ferential forms to express the Rankine-Hugoniot jump conditions
without referring to unit normal vectors on spacetime manifolds.
This is a significant advantage, since no objective metric is avail-
able in classical mechanics to define magnitude and the orthogo-
nality property for spacetime vectors. Similarly, the spacetime
Stokes theorem has a simple and elegant structure when written
for differential forms, but its expression for spacetime tensor fields
is problematic due to the absence of an objective definition for
spacetime normal vectors.

Perhaps the most important advantage of the differential forms
notation is that certain intrinsic relations between the spacetime
mechanics fields, while obscured by tensorial notation, become
clearly evident under differential forms notation. For example, in
the dimensional analysis below, only four independent scalings ap-
pear when forms notation is used, while eight scalings are required
with tensorial representations.

2.1. Spacetime analysis domain and differential forms notation

Let D be the reference spacetime domain, an open (d + 1)-man-
ifold in E? x R, where d is the spatial dimension. The coordinates
(x%,...,x4t) = (x,t) in D are defined with respect to the ordered ba-
sis (eq,...,e4,€;) and are understood to be material coordinates
associated with the undeformed configuration of a body followed
by the time coordinate. The dual basis is denoted (e',...,e% e").
From here on, we adopt the standard summation convention with
Latin indices ranging from 1 to d. We employ differential forms
with scalar, vector, covector, tensor and cotensor coefficients and
follow the convention that symbols displayed in italic bold fonts
denote differential forms, while symbols in upright bold fonts
denote vector, covector, tensor or cotensor fields. Thus, s and s
denote, respectively, the differential form for stress and the stress
tensor field, as explained below.

The standard basis for spacetime 1-forms is {dx!,...,dx% dt}. The
spacetime volume element is the (d+1)-form given by Q:=
dx! A---A dx? A dt, where “A” is the exterior product operator on
forms; cf. (Spivak, 1965; Fleming, 1964; Arnold, 1989). We have
the standard basis for d-forms, {#dx’, xdt}, in which % is the Hodge
star operator and the indices of xdx’ shall, from here on, be treated
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as subindices for purposes of the summation convention. These
satisfy dx! A xdx¥ = 5/Q, dt Axd¥ =0, dt A%dt =Q and dx'A
*dt = 0. For example, in the case d = 2, we have Q = dx! A dx?> A dt,
*dx! = dx? A dt, *dx? = —dx! A dt and #*dt = dx' A dx>.

The temporal insertion is defined in terms of the standard inser-
tion (contraction) operator as, i := ig,, in which e, is a vector field
on D with uniform value e, For d=2, for example, we have
ixdx! = —dx?, ixdx? = dx' and ixdt=0.

Let @ and g be r- and s-forms on D, respectively, let a and b be
m- and n-tensor fields on D with m > n, and let w be a scalar field
on D. We write aa and bg to denote an r-form and an s-form with
tensor coefficients of order m and n, respectively. The exterior
product of ax and bg is the (r+s)-form with tensor coefficients
of order m — n given by

ax ADbp = a(b)(a A B), (1)

in which a(b) is the standard tensor mapping of b by a into a
(m — n)-tensor field. We introduce a special 1-form with vector
coefficients, dx := e; dx’, and a corresponding d-form with covector
coefficients, %dx := e'*dx’.

Let « be an r-form defined on a t-manifold Q, and let I" be a s-
manifold, such that r < s <t and I' ¢ Q. We use a| to denote the
restriction of a to I', a r-form on I'". The interpretation of the restric-
tion operation is straightforward when s=t; it only involves
restriction to the submanifold I" with no alteration of the form. It
has more subtle implications when s < t. First, we must sometimes
interpret the restriction to I" in the sense of the trace operator. This
is the case, for example, when Q C D is open and I" C Q. Second,
we must account for the fact that the cotangent spaces, TpI" and
T,Q, are distinct at any P € I'. The cases where t —s=1and r=1,
s are of particular interest in this work. In these cases, the dimen-
sion of T, I is one less than the dimension of T;Q, and we must use
a suitably reduced basis for covectors (s-covectors) to express the
restriction as a 1-form (s-form) on I". See Section 2.3 for a more de-
tailed discussion of restrictions of spacetime forms on D to vertical
d-manifolds.

We work with forms whose coefficients might suffer jumps, so
we must interpret the exterior derivative operator weakly, in the
sense of distribution theory (Arnold, 1989). Thus, the exterior deriv-
ative of a form, indicated by the exterior derivative operator d,
generally contains a diffuse part and a jump part. Following
the convention used in Miller et al. (2009), we use da to denote
the diffuse part of the exterior derivative of any form « and
write the jump part separately and explicitly. As shown below,
the Rankine-Hugoniot jump conditions for elastodynamics arise
naturally as the jump parts of exterior derivatives that appear in
the spacetime governing equations for kinematic compatibility
and momentum balance.

Spacetime d-manifolds play an important role in our formula-
tion, and certain special configurations of d-manifolds are of partic-
ular interest. A d-manifold with a uniform time coordinate is
horizontal, and a d-manifold on which the time coordinate is inde-
pendent of the spatial coordinate is vertical. The intermediate case,
i.e.,, d-manifolds where the spatial coordinates locally parameterize
the temporal coordinate, are inclined.

The jump part of the exterior derivative of a across any d-man-
ifold embedded in D is a function of the restriction of a from
opposing sides of the manifold. For any open Q C D, we use undec-
orated symbols and symbols decorated with a superscript “+” to
denote, respectively, the interior and exterior restrictions of a dif-
ferential form to Q. Then, for any Q c D, we define the jump in f
across 0Q as,

H;ﬂ]z)g =f +‘0Q _fli)Q‘ (2)

2.2. Mechanics fields

Let the ordered set P(D) = {Q,}" , be a partition of the space-
time domain D into N open subdomains with regular boundaries
such that D = (J,Q,. Let L*(D) and H' (Q) be the Hilbertian Sobolev
spaces of order 0 on D and order 1 on Q, respectively. We define a
broken Sobolev space on P, V:={weL*(D):w|,, € H'(Q,),
a=1,...,N}, in which w is a covector field on D, (i.e., a 0-form
with covector coefficients), and note that V admits covector fields
with jumps between adjacent subdomains.

2.2.1. Kinematic quantities

Let u denote the displacement covector field on D, u = u;e'. The
velocity v and the linearized strain E are 1-forms on D with covector
coefficients given by v := vdt = ve'dt and E := E A dx = E(e,) dx, in
which v = ze' is the velocity covector field and the linearized strain
cotensor field, E = Eye' @ e/: E;=Ey;, is defined such that the value
of E(ey) is a covector field. The velocity-strain is the 1-form with
covector coefficients defined by,

¢:=v+E. 3)

2.2.2. Force-like quantities

The force-like quantities include two d-forms with vector coef-
ficients: the linear momentum density, p = pxdt, and the stress,
s = sA%dx = s(e¥)xdx¥. The vector field p and the second-order ten-
sor field s (under the assumption of balance of angular momen-
tum) have the Cartesian component expansions, p=p'e; and
s=se; © e;:s¥ = ¢, on D. We combine the linear momentum den-
sity and the stress in a single d-form,

M::p_s7 (4)

called the spacetime momentum flux. The momentum flux M acts on
any oriented, spacetime d-manifold embedded in D to deliver the
flux of linear momentum across the manifold. We also introduce
the body force as a (d + 1)-form with vector coefficients given by
b=bQ, in which b=b'e; is the vector field on D for body force
per unit mass. The corresponding form for body force per unit vol-
ume is given by b := pb, where p is the mass density per unit vol-
ume in the reference configuration.

2.3. Governing equations

2.3.1. Kinematic compatibility

The kinematic compatibility relations couple the independent
displacement, velocity and strain fields. The displacement-velocity
relation requires that for all @ c D,

[(du — v) A xdi], g =0, (5a)
[u],o *dt],, =0, (5b)

where I'yJ is the jump set of u.> The diffuse part of the displace-
ment-velocity relation (5a) enforces the characteristic relation,
u-v=_0. In lieu of (5b), we enforce the stronger condition that,
for all 9 c D,

(W) — uly0) *dt],, =0, (6)

where u;,, is the restriction to 9Q of a target displacement field that
is uniquely defined on every non-vertical d-manifold embedded in
D. We note that (5b) is trivially satisfied on any vertical d-manifold
(because *dt|,, = 0 on vertical manifolds), and observe that sum-
ming Eq. (6) for adjacent subdomains Q on opposing sides of any
non-vertical manifold on the interior of D implies (5b). That is, in

3 The jump set of a form is the set of all points where the form’s coefficient field is
discontinuous. This definition also applies to tensor fields when viewed as 0-forms.



R. Abedi, R.B. Haber / International Journal of Solids and Structures 48 (2011) 2076-2087 2079

addition to enforcing the jump condition across any interior non-
vertical manifold, we also require the jumps from both sides to van-
ish independently with respect to a common target field on the
manifold. Consistent with the principle of causality, the target value
u;, on non-vertical manifolds is taken as the trace of u from the
earlier side of the manifold or is computed directly from initial data
on 9D (Abedi et al., 2006a; Miller et al., 2009). The value of u;, is
immaterial, and need not be specified, on vertical parts of 9Q.
The tensorial representation of the velocity-strain relation is,

Vv-E=0, (7)

in which V is the symmetric part of the spatial gradient operator.
This equation holds wherever ¢ is continuous. However, we need
an associated jump condition on & to complete the exterior deriva-
tive. It is convenient to express the complete velocity-strain com-
patibility relation, including the jump part, in terms of the weak
exterior derivative of &. For all open regions © c D and for all sym-
metric, second-order tensor fields T on D, we have

(de A T)|Q\rjE =0, (8a)
[sﬂf)g A T|3Q = 07 (Sb)

in which I, is the jump set of &, and T:=T A i%dx. It is easily shown
that (8a) is equivalent to (7).

Let the target velocity-strain, g;,, be a single-valued 1-form on
09Q, similar to u},, but computed from prescribed initial/boundary
data for & or from the solution to a local Riemann problem, as ex-
plained later. Then, parallel to our treatment of (5b), we replace
(8b) with the stronger condition, for all Q c D,

(850 — &log) ATlpo = 0. 9

In addition to enforcing initial/boundary conditions and (8b) across
interior d-manifolds (9) requires the solution to preserve the char-
acteristic structure of the governing system across all interior inter-
faces between adjacent spacetime subdomains. In other words, any
jumps that arise in the solution for & must be consistent with the
principle of causality. .

The tensorial strain-displacement relation is, (E — Vu)|_ o= 0.
If the initial data satisfy this condition, then (5) and (8) are suffi-
cient to enforce the strain-displacement relation everywhere.
From here on, we assume that the initial data satisfy this condition,
and do not include explicitly the strain-displacement relation in
our governing system of equations.

2.3.2. Constitutive relation

We introduce a linear transformation, denoted by C, that maps
1-forms with covector coefficients into d-forms with vector coeffi-
cients such that

M = C(¢(E,Vv)) := p1(v)*dt — C(E) A *dx on D (10)

in which 1 = é'e; e;, the scalar p > 0 is the mass density field, and
the positive fourth-order elasticity tensor field, €= C/le;» e;
e, ® e, exhibits the standard major and minor symmetries. Eqs.
(3), (4) and (10) imply the familiar tensorial component relations,
p' = pdUy; and s¥ = (WM,

2.3.3. Balance of momentum
Balance of linear momentum requires that for all 9 c D,

AqM—/QB:O. (11)

Eq. (11) also implies balance of angular momentum under our a pri-
ori assumption that the stress tensor field s is symmetric (Abedi

et al,, 2006a). Let I'}, be the jump set of M on D. Then for all
Q C D, the system

(dM - b)| o,
[M]”ag = 0-,

=0, (12a)
(12b)

enforces (11) via the Stokes theorem while accounting for possible
jumps in M. The tensorial form of (12a) is [V-s+b —pjQ =0 on
Q\ I',. Thus, (12a) is the forms representation of the equation of
motion. It can also be shown that (12b) is the forms representation
of the Rankine-Hugoniot condition that governs shocks in p and s.
That is, the Rankine-Hugoniot condition is simply the jump part
of the equation of motion.

Once again, we replace the basic jump condition (12b) with a
stronger condition,

M, —M|,, =0 YQcCD, (13)

in which the target momentum flux M* is defined uniquely on every
d-manifold embedded in D through the initial/boundary conditions
or the solution to a local Riemann problem (Abedi et al., 2006a). In
addition to enforcing the boundary and initial conditions, writing
the jump condition from each side with respect to M, requires that
the solution for M preserves the characteristic structure of the elas-
todynamic system across all interior d-manifolds embedded in D. In
other words, the solution must satisfy simultaneously the Rankine-
Hugoniot condition and the principle of causality.

2.4. Initial and boundary data

Given suitable prescribed data for b as well as the initial and
boundary data, and subject to the symmetry constraint on the
stress tensor, the governing equations, (5), (8), (10) and (12), fully
define the elastodynamic initial boundary value problem. In gen-
eral, the spacetime domain boundary 9D might include inclined
segments that model moving boundaries. For simplicity, we focus
here on a more typical problem, depicted in Fig. 1, where 9D is
comprised of a horizontal d-manifold at the initial time, denoted
by D', a horizontal d-manifold at the terminal (final) time, de-
noted by D, and a collection of vertical d-manifolds that connect
oD and §D'. The latter collection, denoted by 9D, represents the
spacetime extension of the boundary of a fixed reference spatial
domain. In this subsection, we consider the specification of initial
data on 9D, boundary data on D" and free, unconstrained condi-
tions on &P for the simplified spacetime domain geometry. We
stress, however, that the dimensional analysis to follow is valid
for more general domain configurations, including those whose
boundary includes inclined segments.

D"
A,

| an
|

\_/Ir)/k/il/. T
8 S

Fig. 1. Cylindrical spacetime domain and boundary partition for d = 2.
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The restrictions of the velocity-strain and the momentum flux
to the horizontal, initial boundary #D' simplify according to,
&l,p = E|,5 and M|, = p|,». Thus, we express the initial condi-
tions for displacement, strain and linear momentum density on
oD' through the jump conditions (6), (9) and (13), by setting
wo=u &= E and M;,; = p, in which an overbar de_notes pre-
scribed initial data. Recall that, by assumption, u and E are kine-
matically compatible.

The solution is unconstrained on the terminal boundary 6D,
another horizontal d-manifold where the simplifications,
&|ypt = E|ypr and M|, = p|,pr, hold. We model the free conditions
by setting u . =u|,;, & = E|,;r and M = p|,. Thus, (6), (9)
and (13) are trivially satisfied on D',

The remainder of 9D consists of the collection of vertical d-
manifolds that comprise dDP. Since (6) is trivially satisfied on
any vertical manifold, there is no need to specify u ,. In prepara-
tion for enforcing the boundary conditions, we choose a disjoint
partition of D" into a Dirichlet part 9D* and a Neumann part
dDM. On any vertical d-manifold I', we have (e AT)|r=WVAT)|r
(for any T defined as above) and M| = —s| . Thus, we enforce the
Dirichlet boundary conditions by setting &, = in (9) and

ope = —S|ype iN(13), where @ is the prescribed boundary velocity.

We similarly enforce the Neumann boundary conditions via
(13) and (9) by setting M;,m = —S and &} y = ¥|,,m, in which s de-
notes the prescribed boundary traction.

2.5. Extension to incorporate cohesive models

Cohesive interfaces are often added to the elastodynamics prob-
lem to model crack nucleation and growth. In its most basic form, a
cohesive interface is a material surface embedded in the interior of
the analysis domain across which jumps in the kinematic fields are
permitted and the momentum flux is described by a cohesive trac-
tion-separation relation. In the spacetime setting, as is the case for
all material surfaces, cohesive interfaces are modeled as vertical d-
manifolds. It is useful, then, to consider the relation between the
spacetime momentum flux M and the tensorial representation of
surface traction on vertical d-manifolds.

Let I" be a vertical d-manifold embedded in E¢ x R, as illustrated
in Fig. 2 for the case d=2. To facilitate a description of the re-
stricted cotangent space T*I', we define on I' a local frame,
{g",ef}f:1 :e! L T'T'|w, with local coordinates {)_(,-,t}f:], in which
underlined symbols denote items referred to the local frame. In
contrast to the (d + 1)-manifold, P c E? x R, where the standard
basis for d-forms in local coordinates is {*dx* *dt}?_,, the basis
for d-forms on the d-manifold I" is the singleton set, {%dx'}. Thus,
the expansion of the stress form s with respect to the local frame
involves a linear combination of d-forms:

t
A
t , —_ o, €2
9, € 7
1
X1, € 217§1
r

Fig. 2. Local coordinate system on a vertical 2-manifold I" embedded in F? x R.

S :=S A *dx = s A e xdx* = s(e")xdx*. (14)

However, the restriction, &/, is a top form on I" that involves only a
single d-form:

S|, =sAelkdx! = s(e')xdx!, (15)

since xdx¥|- = %dt| = 0 for k > 1. Recalling the Cauchy relation and
that the unit covector e! is everywhere normal to the cotangent
space (T*I')|w, it is clear that s(e') and xdx' are, respectively, the
surface traction field and the singleton basis for top d-forms, both
on the d-manifold I'. In other words, s| is the surface traction d-
form on I'. Note that the restriction operation on s maps a d-form
with vector coefficients on the (d + 1)-manifold D into a top d-form
with vector coefficients on the d-manifold I'; i.e., it involves more
than a simple trace operation.

Let I" denote the collection of all the cohesive interfaces in a gi-
ven elastodynamic model, and consider all Q c D599 N T » .2
Since I' is entirely vertical, we have, uxdt|~ =0 for arbitrary
u, 8'? = v\; and M'F = —s\;. For each subdomain 9, we choose

& = (16)

rnog  'rnag’

Thus, the kinematic jump conditions, (6) and (9), are trivially satis-
fied, allowing independent motion of the material on each side of
the cohesive interface. It only remains, then, to specify the function
that uniquely determines s on I" according to the TSR.

In general, we write,

7 (17)

. =s(u,v,s
- =5(u,.5)

in which § = §%dx! is a top form on the d-manifold I" whose coef-
ficient s is the surface traction field generated by the cohesive TSR.
Thus, (13) enforces the cohesive traction condition. From here on,
but without affecting the generality of our dimensional analysis,
we focus on the simplest and most common constitutive relation
for §, a TSR written on I as,

§([ul;36,5,0-) = of(5 ' [ul;0r), (18)

in which fis a normalized TSR function that relates normalized trac-
tion to normalized separation, the covector field [[g}]; is the cohesive
separation on I' and o~ is the local orientation on I'. The parameters
& and & are reference scales for the cohesive traction and the
cohesive separation. For example, ¢ is sometimes taken to be the
cohesive strength, with  the cohesive separation that corresponds
to ¢ in the TSR.

We shall use the notation, (k);k=1,...,d, where (1):=1,(2):=1I
and (3) := Ill, to map the local, coordinate directions x;; k=1,...,d
on I into the normal (I) and tangential (II,Ill) modes of cohesive
separation. The cohesive modal works of separation are given by,

b = / s(ze*) - ekd¢  (no sum on k), (19)
Jo

in which we have suppressed the secondary parameters in s, cf.
(18).

Eq. (18) does not imply equal cohesive strengths, equal critical
separations or equal works of separation across the separation
modes. The cohesive parameters, & and 5, only provide dimen-
sional scaling for the TSR. However, (18) does imply fixed ratios be-
tween the modal cohesive strengths and between the modal
critical separations in the dimensional analysis presented in
Section 3.

Cohesive models can also be parameterized by the work of
separation and either of & or 4. Thus, alternative forms of (18)
are given by

4 From here on, we use a superposed tilde *’ to denote a quantity defined on,
restricted to or associated with a cohesive interface.
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S([ul;:0r) = 8 ' [ul0r) = £h(3 ' [ulsor) (20)

where ¢ is a reference scale for work of separation, and the values of
g and h are vector fields on I'.

3. Dimensional analysis
3.1. Elastodynamic processes

We define an elastodynamic process as an ordered set
{u, &, M, C, b, u, & M, (x,t)} that satisfies the governing equa-
tions of momentum balance and kinematic compatibility subject
to the the corresponding jump conditions, including the initial
and boundary conditions as well as the constitutive relations. We
similarly define an elastodynamic cohesive process as an ordered
set {u, &, M, C, 8§, b, u, & M; (x,t)} that additionally satisfies
the cohesive TSR (18).

We categorize the members of elastodynamic processes as
follows.

1. Kinematic fields: The kinematic solution fields are the displace-
ments u and the velocity-strain & = v + E. The prescribed initial
and boundary data in @ and & = ¥ + E comprise the kinematic
loading.

2. Force-like fields: The spacetime momentum flux M = p — s, is the
force-like solution field. The force-like loading includes the
body force per unit volume b as well as the initial and boundary
datain M = p —5.

3. Constitutive parameters: These include the linear transformation
C, defined by the elasticity tensor C and mass density p. When a
cohesive fracture model is included, we also have the cohesive
traction s, whose coefficient s can be expressed in terms of the
normalized TSR function f and the cohesive scales, G and J; cf.
(18).

4. Spacetime coordinates: The spacetime coordinates (x,t) parame-
terize the spacetime analysis domain D.

We consider below independent scalings of the members of an
elastodynamic process and investigate the conditions under which
the scaled system is itself an elastodynamic process. We also de-
scribe a similar dimensional analysis of elastodynamic cohesive
fracture processes. These analyses identify key nondimensional
groups that govern the response of elastodynamic systems in gen-
eral and dynamic cohesive fracture models in particular, and we
investigate the influence of each nondimensional group on the sys-
tem response.

We carry out our dimensional analyses using differential forms
notation, but consider scalings of both the forms overall and of just
the form coefficients, as would be done in analyses using conven-
tional tensor notation. We show that to obtain a scaled elastody-
namic process, the velocity scalings implied by the spatial and
temporal coordinate scalings and by the scalings of the material
properties must be identical. We also find that only four distinct
scalings are required to define an elastodynamic process when
we work directly with forms, while eight are required when tensor
notation is used. This simplification provides new evidence of the
elegance and insight afforded by the use of differential forms and
the exterior calculus in spacetime mechanics analysis.

3.2. Scaled elastodynamic processes

Let {u, & M, C, b, u, &, Mi(x, t)} be an elastodynamic
process, and let {w’, &, M', C', b/, W, &, M’;(x,t')} be a scaled
system defined according to the relations,

= Jy0l, (21)

in which o and o’ are members (or member components) of the ori-
ginal process and the scaled system, and 4, is a scaling factor spe-
cific to «. For generality, we provide independent scalings for the
components of & M and C. For each member of the process, we will
use the font of the subscript o to distinguish the scaling factor for
the overall form from the scaling factor for its vector or tensor coef-
ficient. For example, /; and 2; denote, respectively, the scaling fac-
tors for the (d + 1)-form b and the vector field b. Next, we develop
the necessary conditions on the set {/,} to ensure that the scaled
system is also an elastodynamic process.

According to (21) the scalings of the spacetime coordinates are®
X=/xX t=.t (22)

and the resulting scalings between the bases for 1-forms, d-forms
and (d + 1)-forms in the two systems are,

dx' = Jxdx’ dx =/ dx dt = Jdt, (23a)
*dx' = 781 kdx” Kdx = 78 xdX xdt = kdt, (23b)
Q=49 (23c)
Since

U (ll")  JwOu  Ou O(uu") iy ou" (24)

X OUnxT)  dxoxiT Ot () i of
and according to (21) and (23), if the scaled system satisfies the
kinematic compatibility relations, then the kinematic forms and

their tensor coefficients must transform as,

U= /)y U=y, (25a)

v=Iy¥ v="Vv, (25b)
At

E=/.E E=""F, (25¢)
Ax

= &= /u&, (25d)

so that Jy = Ay = Jg= A While Ay = Ay/: and Ag = Ay//x. Thus, all of
the kinematic forms share a common scaling, Ay, while the three
scalings for their vector and tensor coefficients are distinct. To en-
sure that the kinematic jump conditions are satisfied everywhere
in the scaled system, it is necessary and sufficient that the pre-
scribed kinematic initial and boundary data satisfy

=il 0=yl (26a)

V=¥ V="0vV, (26b)
At

E=/,E E=2"F, (260)
Ax

= &= JuE. (26d)

Next we consider conditions which guarantee that the scaled
system satisfies the constitutive relations. Combining (10) with re-
sults from (23) and (25), we obtain scaling relations that govern
the body force and the momentum-flux components,

b=72b b=l (27a)
Ly il v
=Ty p= Ty, (27b)
At ‘it
S=Ichid?s  s= }“ZAS’. (27¢)
X

so that i, = Apiu/ic and As = Achu//x.

5 For simplicity, we restrict our attention to equal scalings in all spatial directions.
Our results can easily be extended to accommodate distinct scales for each direction.
However, the scalings of the cohesive parameters introduced in Section 3.3 would
then depend on the local orientation of the spacetime manifolds that model cohesive
interfaces.
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Finally, we identify conditions which ensure that the scaled sys-
tem satisfies the equation of motion. We use (23), (27) and the
Chain Rule to rewrite the equation of motion for the unscaled sys-
tem in terms of scaled quantities:

}“5;““ P|Q =0 (28)
't

_ . Y _
[V-s+b-pjQ= [/,—SVS’JFA,,D’—
x
In order for the scaled system to be an elastodynamic process, we
must have [V -s§' + b’ — p']Q = 0. Combining this result with (27)
and (28) delivers,

oy = (292)
X t
N S (29b)
At /Lp
Combining these results with (27), we obtain
b=Jb p=ip s=xs =>M=;M, (30)

s0 that Jg = m = Jp = 4s = Actull 20e = Apduil /. That is, all the
force-like forms share a common scaling factor, /;, while the scaling
factors for their vector and tensor coefficients are distinct. To ensure
that the momentum-flux jump conditions are satisfied everywhere
in the scaled system, it is necessary and sufficient that the pre-
scribed initial and boundary data satisfy

M=/ ,M p=ipp, §=Iis. (31)

Let ||C|| be a measure of the elasticity tensor. Then the elastic
wave speeds are proportional to /||C||/p. As a result,
Jey = +/%c/7, is the scaling factor for the elastic wave speeds due
to the scaling of the material properties. Let us also define
e, = Jx/ % as the velocity scaling implied by the spacetime coordi-
nate mapping. For the scaled problem to be an elastodynamic pro-
cess, (29b) requires /., = Z,. That is, the scaling of the elastic wave
speeds due to scaling the material properties must match the
velocity scaling implied by the scaling of the spacetime coordi-
nates. From here on, we write this common scaling as . = \/ic/%,.

In summary, the scaled system is an elastodynamic process if
the scalings of the spacetime coordinates and the tensorial repre-
sentations of the mechanical fields satisfy

Ix = Ache, (32a)
, Ju
M=Iu Ay =y =— )*:/'LE:—, (32]3)
At ;Lx
Aplu Ach Apiu
g = if = s = ix“ Jp=lp= it (32¢)

When working with forms, the same requirements simplify to

Ix = e, (33a)
Ja =g = Juy (33b)
PR Al

W= = dp = (33¢)

All the scaling values in (32) and (33) are written with respect to Ac,
2p» 2¢ and Zy. In fact, we can choose any other set of four scalings
from which to derive the rest.

3.3. Elastodynamic cohesive processes: scalings, fundamental set of
nondimensional groups and intrinsic scales

In this subsection, we discuss the scaling of elastodynamic
cohesive processes and investigate a fundamental set of nondi-
mensional groups that uniquely identifies families of self-similar
solutions. We also identify certain dimensional parameters as

intrinsic scales and describe how each of these influences the elas-
todynamic cohesive response.

3.3.1. Scalings

Let {u,&,M,C,S,b,u1,& M; (x,t)} be an elastodynamic cohesive
process, and let {w',&,M',C’,§',b/,w,&,M'; (X, ')} be a scaled sys-
tem that is defined according to (18). We seek the conditions under
which the scaled system is also an elastodynamic cohesive process.
That is, in addition to the conditions for a general elastodynamic
system, it must also satisfy (17) and (18). Recalling 8|7 = v|7 and

M'F = —s\;, and according to 9, 13 and (33), we get

Js =y, Js=lu. (34)

The cohesive scaling factors, /s and 23, are natural choices for defin-
ing the scaling of an elastodynamic cohesive process. We must se-
lect two additional scaling factors to determine all the scaling
factors in (32). Here, we choose two that govern the constitutive
relation for the bulk material, /. and 7.

3.3.2. Nondimensional groups
We obtain a nondimensional representation of the solution by
setting

lo=Is=0G <= Jp=21"6, J5=0, l=cCo, Ap= Py

(35)

in which pg and ¢y are reference scales for the wave speed and mass
density of the bulk material.® From here on, we assume that the bulk
material is homogeneous, and we set pg = p and ¢y = ¢4, Where ¢4 is
the dilatational wave speed,’

T
Cq = max 1/ S MMM (36)
n:n|=1 1%

Eq. (35) implies that ¢’ = &' = 1. Moreover, the wave speeds and the
density are scaled by co and po, respectively. In particular,
c=p =1

All the scales in (32) can be expressed in terms of those in (35).
The nondimensional, tensorial representation of the solution is

X ;b
0 (=% (37a)
v=" v=Y g%
0 v v
=2 v=Y F-YE (37b)
5 v v
Gy g S
pfa_p 6.7
b-'h o_Sp g_5
bfpi} P=2p S==%. (37¢)

where 7 and » are intrinsic time and velocity scales associated with
the TSR, as explained below. When working with forms, the same
relations simplify to

_ X oL (382)
TCq T
T P . (38b)
5 5 5 5
-2 Mg M (38¢)
m m m

6 Recall that & and 6 are reference scales for the cohesive traction and the cohesive
separation in the TSR, cf. Section 2.5.

7 However, we can extend our results to cover non-homogeneous materials by
substituting co and py for ¢4 and p.
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where 1 := 7L is the cohesive model’s intrinsic momentum
scale, in which L = c47 is an intrinsic length scale for the cohesive
process-zone size (see below).

Eq. (37) demonstrates that the domain dimensions, the loads
and the material properties must scale in a particular way to obtain
a cohesive elastodynamic process. For example, the nondimen-
sional Dirichlet and Neumann boundary data, v/ and §’, must al-
ways scale, respectively, with 7 and &.

Let @1, », E, p, ¢ and b be measures for the load data,
u, v, E, p, sand b. Also, let L and 7 be length and time measures
for the spacetime domain D, and assume that the ratios,
u/3, v/#, EJE, p/p, 6/G, b/, L/L and /%, are fixed for a family
of scalings of a given cohesive elastodynamic process. Then,
according to our previous discussion, the family of scaled systems
are cohesive elastodynamic processes with self-similar solutions.

We define a fundamental nondimensional set as a collection of
independent, nondimensional parameters having a one-to-one
correspondence between families of self-similar solutions and
the values of the set. That is, fixing the values of all members of
the fundamental set identifies a unique family of self-similar solu-
tions, and any two problems with self-similar solutions must have
identical values for all members of the fundamental set. Moreover,
the members of the set must be independent in the sense that no
member of the set can be expressed as a function of the other
members. Accordingly, the set of nondimensional ratios listed in
the preceding paragraph constitutes a fundamental nondimen-
sional set for TSR-based cohesive elastodynamic fracture.

In general, the specific choice of non-dimensional parameters in
the fundamental set is not unique. However, the above list of ratios
is a natural choice because each member is the ratio of a spacetime
domain or loading measure to a corresponding cohesive scale.

3.3.3. Intrinsic cohesive scales

We showed in Section 2.5 that any two members of {G, 5, $},% in
combination with the bulk material properties, p and cq, are suffi-
cient to describe the scaling properties of a TSR; cf. (20). Here we
choose & and & as the independent parameters. In general,
¢ = 766, in which the dimensionless factor y depends on the choice
of the independent cohesive scales and on the type of the cohesive
model. We simplify this relation for purposes of dimensional analy-
sis to ¢ = 5. The reference scales for the TSR are then, &, 6 and

¢ =69, (39a)

7P (39b)
~(7

p=2_9 (39¢)
T pCq

- ¥ & &

E=—"=—" x—, 39d
¢~ pa el (359)

p=pi=", (39)

Cd
. pcis |[Cll¢
L=c4T= 5 PRt (39f)

in which 7, », E, p and L are, respectively, dimensional scales for
time, velocity, strain, linear momentum density, and length. The
second, alternative expression for L in (39f) arises from (39a) and
the definition of cq4 in Section 3.2.

The above equations and cohesive scales are valid for general
mixed-mode conditions. While they remain valid for single-mode
problems, different choices for the wave speeds and cohesive
parameters that define the cohesive scales might be more appro-
priate in a particular setting. For example, in pure mode-II and

8 Recall that ¢ is a reference scale for work of separation; cf. Section 2.5.

mode-IIl settings, the shear-wave speed c, is the natural choice
for the wave speed, and we would substitute cs for cq4 in all equa-
tions following (36). Moreover, the appropriate normal or tangen-
tial components of cohesive traction and separation should be used
for ¢ and 6 in each case. Next, we discuss the influence of the
dimensional parameters on various aspects of the cohesive
response.

The cohesive parameters and the bulk material properties deter-
mine the cohesive length scale, L. Although L and & share a common
dimension, length, they have distinct physical interpretations. The
cohesive length scale L reflects the cohesive process-zone size, while
the cohesive separation scale  influences the amplitude of the dis-
placement field. Both cohesive length scales are independent of
the spatial length scale L of the analysis domain.

There are several estimates in the literature for the quasi-static
process-zone size (Rice, 1968, 1980). For isotropic materials they
can be presented in the combined form,

£ =t <g> i (40)

where p and v are the shear modulus and Poisson ratio, ¢ is set
equal to the cohesive strength and the constant factors, { and ¢, de-
pend on the details of the TSR and on the convention that defines
the process-zone size. For instance, under mode I conditions, Rice
(1968) estimated { =1/4 for the Dugdale model (Dugdale, 1960),
and proposed ¢ =9/16 for potential-based TSRs (Rice, 1980). The
process-zone size in the dynamic setting is proportional to A°. Fur-
thermore, it depends on the crack speed, 7, and approaches zero as
the crack speed approaches the Rayleigh wave speed (Freund, 1990;
Yu and Suo, 2000).

There is a close connection between L/L and the brittleness of
the response. We are not aware of any discussion of this issue in
the dynamic fracture literature, but we note here two related re-
sults from studies of quasi-static fracture. Carpinteri (1989), Carp-
interi (1991) and Carpinteri et al. (2003) define a nondimensional
brittleness number for beams, s := ¢/(Gh), in which h is the beam
depth. They demonstrate that the nondimensional quantity,
sgh/(eul) = E¢/(G21), in which &, := 6/E and [ is the beam span,
determines the transition from ductile to brittle fracture; cf. Egs.
(15) and (17) in Carpinteri et al. (2003). Recalling (39f), we have
sgh/(eul) oc L/L when [ is set equal to the domain length scale, L.
Harder (1991) investigates the ductile-to-brittle transition for an
initial crack of length a in an infinite domain with tensile loading
normal to the crack direction. He defines a brittleness modulus,
b = a/l., in which the characteristic cohesive length scale is given by
l. = E$/6%  L; cf. (39f). Based on his analysis, Harder predicts a
transition from ductile to brittle fracture when b exceeds a critical
brittleness modulus, b.. Thus, the reciprocal of the nondimensional
quantity of Carpenteri et al. and Harder’s brittleness modulus are
proportional to the dimensionless parameter, L/Z (c¢f. Section
3.3.2), when the beam span | and the crack length a are used,
respectively, as the domain length scale, L.

Next, we hold fixed the material parameters, C and p, and hence
the wave speeds, to investigate the influence of the cohesive
parameters in (39) on the system response. Consequently, the pairs
(%,L) and (G, ¥) are interchangeable for this study. Subject to these
conditions, we categorize the applied loads in (37) into three
groups, each with a distinct scaling. First, the initial displacement
u scales with §; second, the body force b is proportional to p/7;
and third, all boundary conditions as well as the initial linear
momentum density and the initial strain are proportional to .

We next consider the cohesive scales, 7, &, o and ¢, and discuss
the impact on the system scalings when the bulk material
parameters and one cohesive scale are held fixed and the others
are allowed to vary. First, let the cohesive time scale 7 be fixed,
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and let the separation scale & vary. This corresponds to uniform
scaling of the TSR on both the separation and stress axes, because
fixed 7 implies G « 6. We also have # «  and ¢ « 2. By construc-
tion and by (32a), the spatial and temporal dimensions of the do-
main are unchanged. However, all of the load values scale
linearly with 4.

Now consider the case where & is fixed and & is varied. This cor-
responds to scaling the separation axis in a graph of the TSR. In this
case, L,7,¢ « 5, and the displacement and initial-displacement
fields (37b) also scale linearly with 6. That is, both the undeformed
and deformed spacetime configurations as well as the temporal
axis scale proportionally to 3, so that & and M do not change. This
invariance is also evident in the initial-boundary conditions, which
are unchanged. The body force b, however, scales as 1/4.

Finally, consider varying ¢ with o held fixed. This yields ¢ o &
and L,T < 1/6. Now the scaling is on the stress axis of the TSR
graph, with the separation axis fixed. Clearly, the displacement
and the initial displacement do not change. However, all of the
other initial-boundary conditions scale linearly with &, and we
have b x 62.

Finally, we consider the case where ¢ is fixed. This situation has
significant practical importance, since we are often able to measure
directly a material’s specific fracture energy, from which we can
compute ¢. We must then identify the remaining cohesive param-
eters with the computed value of ¢ held fixed. Let & be the control
for the remaining cohesive parameters. Then 7 « &, é < 1/6, and
7,L o 6-2. The displacement solution and the initial displacements
are proportional to 1/6, while the spatial and temporal coordinates
scale as 1/62. All initial-boundary conditions scale linearly with &,
and b « &3.

4. Numerical verification

This section presents numerical results that verify our dimen-
sional analysis. We demonstrate the one-to-one correspondence
between families of self-similar solutions and specific values of
the fundamental set. That is, all of the nondimensional values in
the fundamental set are equal for two problems if and only if their
solutions are self-similar.

Clearly, not all nondimensional parameters pertinent to a given
physics are fundamental. Typically, a dimensional analysis begins
with the identification of a set of key physical parameters. Then
a set of nondimensional parameters are derived by applying
dimensional consistency arguments to this set. For example, the
normalized cohesive strength, 6* := ¢/E, is a nondimensional quan-
tity that Xu and Needleman (1993) proposed to parameterize gen-
eral CFM response and that is often used to characterize the
artificial compliance of intrinsic cohesive models; see, for example
(Zhang et al., 2007). However, we demonstrate below that distinct
values of this quantity can produce self-similar solutions; hence it
is not fundamental and cannot distinguish cohesive models with
distinct response. Indeed, the facts that 6* is proportional to E
(see (39d)) and that the ratio, F/E, is fundamental (cf. Section
3.3.2) imply that 6* cannot be fundamental. In fact, the normalized
load intensity, ¢’ := 6 /6 or, equivalently, its reciprocal, is the fun-
damental parameter that characterizes cohesive strength; we com-
pare and contrast it with ¢* in this numerical study.

Numerical modeling of dynamic CFM can be very challenging. A
robust numerical model must resolve sharp wave fronts and cap-
ture very large gradients in the vicinity of a cohesive process zone
whose size vanishes, in the limit, as the crack speed approaches the
Rayleigh wave speed. We use the SDG finite element method, as
described in Abedi et al. (2006a,b, 2009), to meet these require-
ments. The SDG method’s element-wise balance properties, linear
computational complexity, and powerful spacetime adaptive
meshing capabilities, combined with two adaptive error indicators

that limit numerical dissipation in the bulk and ensure an accurate
rendering of the TSR along the cohesive interface, provide the nec-
essary resolution. These adaptive SDG models accurately deter-
mine the extent of the process zone, and they do not suffer the
nonphysical crack speeds generated by some models due to lift-
off effects; see, for example (Xu and Needleman, 1994).

4.1. Problem description

Fig. 3 shows a plate subjected to in-plane stress loading; it con-
tains a half-plane crack, but is otherwise unbounded. We choose
the coordinate system (x1,X,), so that the semi-infinite crack coin-
cides with the negative part of the x,-axis and the crack tip posi-
tion is at the origin at times t<0. We prescribe traction-free
conditions on the crack faces at all times and a suddenly applied,
spatially uniform, mode-I far-field traction loading with intensity
S... Sharp wavefronts generated by the far-field loading reach the
crack plane from both sides at t=0.

We use a bulk material model that approximates the elastic
properties of polymethyl methacrylate (PMMA): Young’s modulus,
E=3.24 GPa; Poisson’s ratio, v=0.35; and mass density,
p = 1190 kg/m>. The corresponding dilatational, shear and Rayleigh
wave speeds are cq =2090 m/s, ¢s = 1004 m/s, and cg = 938 m/s.

We introduce a cohesive interface along an assumed crack path,
{(x1,x2): X1 = 0,x, > 0}, to model fracture. The extent of the compu-
tational domain is taken sufficiently large to prevent reflected
waves from affecting the cohesive response. We exploit symmetry
about the x,-axis and use a dimensionally consistent regularization
of the Heaviside temporal variation of s, cf. (Abedi, 2010), to re-
duce computational cost.

Our cohesive constitutive relation is a specialization of the
exponential TSR developed by Xu and Needleman (1994), in which
the critical separations and the works of separation are equal for
the normal and tangential directions. Although more physically
realistic models are available, this simple idealization suffices for
purposes of verifying our dimensional analysis. The function f in
(18) then takes the form,

f<[[u1]>: Ayexp(1 — 4y — 43) 7 (1)
[u2] 245(1 4 Ay) exp(1 — 4y — A3)

in which 4, := [[ul]]/S and 4, := [[uz]]/S are, respectively, normalized
separations in the normal and tangential directions. The cohesive
strength in the normal direction, 7, is attained at the critical normal
separation, [u;] = 6. Following Xu and Needleman (1994), we use
6=4.0x10"* mm.

The analysis domain is unbounded in space and time, and all
loading and initial data vanish except the far-field traction, 5.
Thus, ¢’ is the only relevant fundamental nondimensional param-
eter in this problem; cf. Section 3.3.2. In the absence of the crack,
the normal traction acting on the crack plane at t=0" is 25.., due
to additive interference between the two incident waves. Thus,
0 = 25, is an appropriate choice for the load scale, and we obtain
6’ = 25, /c for the normalized load intensity.

Soo
\ T

initial crack tip )

T

X |

W

(0.0]

Fig. 3. Domain and load description for a plate containing a half-plane crack.
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Table 1
Normalized load intensities and cohesive strengths for analysis cases.
Case a o*
(normalized load intensity) (normalized cohesive strength)
I 107! 10!
1l 10714 107!
il 10714 1072

We analyze three cases to check the predictions of our dimen-
sionless analysis and to investigate the suitability of the normal-
ized strength, 6*, for parameterizing cohesive response. Each
case is identified by specific choices for ¢’ and ¢*, as listed in Table
1. Cases I and II have distinct values of the fundamental parameter
¢’ to model low- and high-amplitude loading. According to our
dimensional analysis, they should generate distinct, non-self-sim-
ilar solutions. On the other hand, they share the same value of
* used by Xu and Needleman (1994), which suggests, if our anal-
ysis is correct, that this widely-used nondimensional parameter
cannot distinguish problems with fundamentally different solu-
tions. Cases Il and III share the same value of ¢'. Thus, our dimen-
sional analysis predicts that they produce self-similar solutions
despite having distinct values of ¢*.

4.2. Comparison of results

Figs. 4-6 present nondimensional numerical results for crack-
tip velocity and trajectory and for the size of the cohesive process

—Case |
—Case II
o7 Case III
5 10 15 20 25
t(ps)
(a) Crack-tip speed versus time.
1t
0.8
~_ 0.6
-3
0.4
—Case I
0.2 —Case 11
0 ‘ ‘ ""“Case 111
0 500 1000 1500 2000
t/

(b) Normalized crack-tip speed versus normalized time. Normal-
ized results for self-similar Cases II and III coincide.

Fig. 4. Crack-tip velocity.
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4007""‘Case 111
3

200t
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Fig. 5. Normalized crack-tip position versus normalized time. Normalized results
for self-similar Cases Il and III coincide.
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Fig. 6. Normalized CPZ size versus normalized crack-tip velocity. Normalized
results for self-similar Cases II and III coincide.

zone (CPZ). The crack-tip position, denoted as g, is the current x,-
coordinate of the crack tip, and the crack-tip velocity is the time
derivative, a. According to common convention, we define the
CPZ size, denoted by A, as the distance between the nominal
crack-tip position and the trailing edge of the CPZ, where the nom-
inal crack-tip position is the location where the critical separation,
5, is attained. The Xu and Needleman TSR generates tractions that
only vanish asymptotically for large separations, so we define the
trailing edge of the CPZ as the location behind the crack tip where
the normal traction falls to 1% of the cohesive strength, ¢. Alterna-
tive definitions of A are possible, but reasonable options generally
scale A by a factor that is only O(1).

Fig. 4(a) presents histories of crack-tip velocity in dimensional
form. In all cases, the crack velocity approaches the Rayleigh wave
speed, cg = 938 m/s. We observe apparently distinct results for the
three cases, with the fastest acceleration and earliest onset of crack
propagation occurring in Case II, with high-amplitude loads and
higher cohesive strength, and the slowest acceleration and latest
onset in Case I, with low-amplitude loads and higher cohesive
strength.

Fig. 4(b) presents the same results in nondimensional form,
using normalized time, t' = t/7 (cf. (37a)), and normalized crack-tip
velocity, @ := a/cg. In this format, the results for Cases II and III
are indistinguishable, with identical, immediate onsets and accel-
erations, indicating that these cases produce self-similar solutions.
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The results for the low-amplitude loading Case I are clearly dis-
tinct. The delayed onset of crack growth and the lower initial
crack-tip velocity of Case I make clear that there is no combination
of scalings under which the solution to this problem is self-similar
to the others. Fig. 5 presents crack-tip trajectories in nondimen-
sional form, where the nondimensional crack-tip position is given
bya = a/z, and Fig. 6 presents nondimensional results for normal-
ized CPZ size, defined by A’ := A4/A° as a function of normalized
crack-tip velocity, @.° Both figures confirm that the solutions for
Cases II and III are self-similar, even though they use distinct values
for 6*, because they share the same value for the fundamental
parameter, ¢’. The solution for Case I is fundamentally different, with
lower values of A’ at lower crack-tip velocities, despite sharing the
same value of ¢* with Case II.

Fig. 6 also compares our transient numerical results to the esti-
mate for dynamic CZP size reported by Freund (1990) and Yu and
Suo (2000), based on caveats of steady-state propagation and the
LEFM small-scale-yielding (SSY) assumption. As expected, the esti-
mate delivers A’ equal to unity for the quasi-static condition,
@ = 0. The estimate also predicts that the CPZ size vanishes as
a — 1. Although the estimate was derived under the assumption
of steady-state propagation, it is expected to remain valid for un-
steady conditions when the SSY caveat is satisfied and the normal-
ized crack speed, @', does not change appreciably during crack
extensions on the order of the CPZ-size (Freund, 1990). The results
in Fig. 6 support this expectation. The SSY assumption is fairly well
satisfied in all three cases considered here, but we expect increas-
ing violation of the SSY caveat as the load intensity, ", increases.!°
Thus, the high-amplitude loading in Cases II and III produces larger
discrepancies with respect to the steady estimate than the low-
amplitude loading in Case 1. The time required for the crack tip to
traverse a distance equal to the CPZ size decreases as @ increases,
due to both the reduction in A with increasing crack velocity and
the higher crack-tip velocity itself. Moreover, the crack-tip accelera-
tion tends to zero at high velocities as @ approaches its steady
asymptotic limit; cf. Fig. 4(b). These two effects combine to satisfy
Freund’s second condition for validity of the steady estimate at high
crack-tip velocities. Accordingly, all three transient solutions in Fig. 6
are in good agreement with the estimate as @ — 1.

5. Conclusions

We have presented a complete dimensional analysis for the
general initial and boundary-value problem of linearized elastody-
namics using differential forms notation. We obtained families of
self-similar solutions and derived relations between the corre-
sponding scalings of the mechanical fields. In particular, we
showed that the velocity scalings between self-similar solutions
implied by the spacetime coordinate scalings and by the material
property scalings must be identical.

In addition to certain advantages previously described by Abedi
et al. (20064, 2009), we showed that working with spacetime dif-
ferential forms halves the number of distinct scalings between
self-similar solutions that are required when working with tenso-
rial representations. In particular, for any pair of self-similar solu-
tions, we showed that all of the kinematic forms share a common
scaling, as do all of the force-like forms.

We extended our dimensional analysis to address cohesive
models of dynamic fracture, for which we obtained complete sets
of intrinsic cohesive scales and nondimensional parameters.
Although the cohesive time scale T was previously introduced by

9 We normalize A by the quasi-static CPZ size, A° cf. (40), which differs from L by
only a constant factor, ¢, cf. (39).

10" Although this trend is expected, we present a rigorous analysis of the relation
between ¢’ and satisfaction of the SSY assumption in forthcoming publications.

Camacho and Ortiz (1996) in a study of dynamic spall strength,
the systematic derivation of the complete set of intrinsic cohesive
scales has not, to the authors’ knowledge, been previously re-
ported. In addition, we obtained the complete set of fundamental
nondimensional parameters that uniquely characterize any family
of self-similar cohesive fracture solutions and verified this finding
numerically. We emphasize that not all nondimensional parame-
ters are fundamental. For example, we showed both analytically
(see the penultimate paragraph of Section 3.3) and numerically
(cf. Section 4) that the nondimensional cohesive strength, *, is
not fundamental.

The set of fundamental nondimensional parameters identified
in Section 3.3.2 provides a useful framework for the design of
experimental, numerical and analytical studies of cohesive frac-
ture. For modeling purposes, and subject to the applicability of
the linearized theory, it suffices to match the set of fundamental
parameters used in an experimental or numerical study to those
of the target elastodynamic system. We can avoid redundant para-
metric studies by varying only the fundamental parameters, rather
than some larger set of model parameters. The intrinsic cohesive
scales introduced in Section 3.3.3 also facilitate analysis of CFM.
For example, we show in a forthcoming paper that the incubation
time, the peak velocity and the diameter of the quasi-singular
velocity fields observed by Abedi et al. (2009), scale with the
intrinsic parameters, 7, # and L.

Several extensions of the present work are possible. First, para-
metric studies of other members of the fundamental nondimen-
sional set advanced in Section 3.3.2 would be of interest. Our
methodology for dimensional analysis can be applied to other clas-
ses of fracture models and physical processes. For example, in an
upcoming paper we present a dimensional analysis for a fracture
model that replaces the TSR with an interfacial damage model that
incorporates a contact model for crack closure; see also Abedi
(2010). Our analysis generates exactly the same set of cohesive
scales and fundamental nondimensional parameters, except the
cohesive time scale T now appears as an explicit parameter in
the delay-type interfacial damage model. The cohesive separation
scale 6 no longer appears as an explicit parameter in the fracture
model; instead, it derives from Eq. (39b). Nonlinear elastodynam-
ics, plasticity and thermoelasticity present alternative descriptions
of the bulk response where the use of differential forms notation in
the spacetime setting and dimensional analysis might prove
beneficial.
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