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Anisotropic damage evolution laws for ductile and brittle materials have been coupled to a microme-
chanical model for the prediction of the behavior of composite materials. As a result, it is possible to
investigate the effect of anisotropic progressive damage on the macroscopic (global) response and the
local spatial field distributions of ductile and brittle matrix composites. Two types of thermoinelastic
micromechanics analyses have been employed. In the first one, a one-way thermomechanical coupling
in the constituents is considered according to which the thermal field affects the mechanical deforma-
tions. In the second one, a full thermomechanical coupling exists such that there is a mutual interaction
between the mechanical and thermal fields via the energy equations of the constituents. Results are pre-
sented that illustrate the effect of anisotropic progressive damage in the ductile and brittle matrix phases
on the composite’s behavior by comparisons with the corresponding isotropic damage law and/or by
tracking the components of the damage tensor.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In the most general formulation of the continuum damage
mechanics, the damage state should be represented by a fourth-
order tensor. Such a formulation however would be too difficult
and not necessary, Voyiadjis and Kattan (2005) and Lemaitre and
Desmorat (2005). Theories with scalar damage variables are the
easiest to handle. Anisotropic damage theories are based on sec-
ond-order damage state representations. Discussions and presen-
tations of continuum damage mechanics and the various
formulations of the damage states and their evolution laws can
be found in the books by Kachanov (1986), Lemaitre and Chaboche
(1990), Krajcinovic (1996), Lemaitre (1996), Voyiadjis and Kattan
(2005), and Lemaitre and Desmorat (2005), for example. Applica-
tions of continuum damage mechanics theories on composites
materials are given by Talreja (1985a,b, 1994), Voyiadjis and Delik-
tas (1997) Voyiadjis and Kattan (1999), Skrzypek and Ganczarski
(1999), Barbero (2008), Haj-Ali (2009), Bednarcyk et al. (2010),
Haj-Ali and Aboudi (2010) and references cited there.

Lemaitre et al. (2000) presented a continuum damage theory
with anisotropic damage evolution in ductile materials that gener-
alizes the isotropic damage theory of Lemaitre (1985a,b) which is
based on a scalar variable. In addition, Lemaitre and Desmorat
(2005) presented anisotropic damage model for a brittle material
ll rights reserved.
(concrete). The purpose of the present investigation is to couple
these theories with a micromechanics model for the prediction of
the response of ductile and brittle matrix composites with evolving
damage. As is shown in this investigation, the resulting microme-
chanics analyses enable the study of the effect of anisotropic dam-
age laws by comparisons with the corresponding isotropic damage
theories and by tracking the evolutions of the components of the
damage tensor.

The micromechanics model that is employed in the present
investigation is referred to as The High Fidelity Generalized Method
of Cells (HFGMC) which is based on the homogenization procedure
for periodic multiphase composites. This micromechanics model
has been reviewed by Aboudi (2004) and more recently has been
shown by Haj-Ali and Aboudi (2009) to provide excellent predic-
tion for (undamaged) nonlinear and inelastic matrix composites
by extensive comparisons with finite element solutions. In addi-
tion, this micromechanics model has been coupled by these
authors to a finite element software to investigate the response
of metal matrix composite structures.

This paper is organized as follows. In Section 2, the isotropic and
anisotropic damage theories in unreinforced ductile materials are
presented. This is follows by the presentation of the anisotropic
damage theory of a brittle material. In Section 3, the HFGMC
micromechanics theory is outlined. This includes the one-way
and fully coupled thermoinelastic HFGMC. In the former theory,
the conventional constitutive equations is employed according to
which the thermal effects in the constituent affect the mechanical
response of the material. In the latter theory, the fully coupled
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HFGMC is discussed according to which, a mutual interaction ex-
ists between the mechanical and temperature fields in the constit-
uents (Aboudi, 2008). This mutual interaction between the
mechanical and thermal effects is governed by the coupled energy
equation of the constituents. Due to the inelasticity effects in the
metallic matrix, a major part of the rate of plastic work is liberated
as a heat source to be included in the energy equation. The most
interesting result from the fully coupled HFGMC theory are the
spatial temperature distributions in the composite which are in-
duced by the externally applied mechanical loadings. The genera-
tion of these temperature distributions enables the identification
of critical hot spots in the composite caused by the mechanical
loading. These hot spots indicate the existence of high inelastic
strains which my lead to ultimate failure. In Section 4, extensive
comparisons between the effects of anisotropic and isotropic dam-
age laws in the ductile phase of metal matrix composites are pre-
sented. For the brittle matrix composite, the effect of anisotropic
damage can be evaluated by tracking the evolution of the compo-
nents of the damage tensor. Finally, a Conclusion section discusses
possible future investigations.

2. Constitutive equations of the monolithic materials with
progressive damage

2.1. Ductile materials with isotropic evolving damage

For thermoelastoplastic materials, the total strain tensor is
decomposed, in the framework of the infinitesimal strain theory,
into elastic, thermal and plastic components in the form:

� ¼ �e þ �t þ �p ð1Þ

The constitutive equations of these materials with isotropic
damage law can be determined from the Gibbs potential G (per
unit volume) as follows

� ¼ @G
@r
¼ @Get

@r
þ �p ð2Þ

where r is the stress tensor and Get is the thermoelastic portion of
G. The expression for the thermoelastic contribution Get is given by
(Lemaitre and Desmorat, 2005):

Get ¼
1þ m

2E
r : r
1� D

� m
2E

tr2ðrÞ
1� D

þ aðT � T0ÞtrðrÞ ð3Þ

where tr(r) is the trace of the stress tensor, I is the identity sec-
ond-order tensor, 0 6 D 6 1 is the damage variable, T � T0 is the
temperature deviation from a reference temperature T0 and E, m
and a are the Young’s modulus, Poisson’s ratio and coefficient
of thermal expansion of the isotropic material. Consequently,
the following expression for the elastic and thermal strains is
obtained

�e þ �t ¼ @Get

@r
¼ 1þ m

E
~r� m

E
trð~rÞI þ aðT � T0ÞI ð4Þ

with ~r being the effective stress which is related to the stress r in
the form: ~r ¼ r=ð1� DÞ. This equation provides the following
expression for the stress and effective stress tensors:

r ¼ ð1� DÞh : �e ð5Þ

and

~r ¼ h : �e ð6Þ

with h being the standard forth-order stiffness tensor of isotropic
materials

h ¼ kI � I þ 2lI4 ð7Þ
where k and l are the Lame’ constants and I4 is the forth-order unit
tensor. It should be noted that Eq. (6) is based on the principle of
strain equivalence according to which the strains in the damaged
and effective configurations are equal. Hence, the strain constitutive
equations of the damaged material are derived from the corre-
sponding equations of the undamaged material by replacing stress
in the latter by the equivalent stress.

By assuming isotropic hardening, the yield function / is given
by

/ ¼ ~req � ry ¼
1

1� D
req � ry ð8Þ

where Xeq of the second-order tensor X stands for

Xeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

devðXÞ : devðXÞ
r

¼
ffiffiffi
3
2

r
kdevðXÞk ð9Þ

and dev(X) is the deviator of X. In Eq. (8), ry is the function that de-
scribes the hardening of the elastoplastic material. For isotropic
hardening it is given by

ry ¼ Y0 þ KðRÞ ð10Þ

where Y0 is the yield stress in simple tension and K(R) describes the
isotropic hardening law. For linear hardening: K(R) = H0 R. The rate
of hardening is given by

_R ¼ � _c
@/
@K
¼ _c ð11Þ

where c is the consistency parameter. The evolution of the plastic
strains is given by

_�p ¼ _c
@/
@r
¼ 3 _c

2ð1� DÞ
devð~rÞ

~req
¼

ffiffiffi
3
2

r
_c

1� D
devðrÞ
kdevðrÞk ð12Þ

The equivalent plastic strain can be obtained from this equation as
follows

_�p ¼
ffiffiffi
2
3

r
k _�pk ¼

_c
1� D

ð13Þ

The energy release rate Y is given in the form (Lemaitre and
Desmorat, 2005)

Y ¼ �1
2
�e : h : �e ¼ �

~r2
eq

2E
2
3
ð1þ mÞ þ 3ð1� 2mÞ rH

req

� �2
" #

¼ �
r2

eq

2Eð1� DÞ2
2
3
ð1þ mÞ þ 3ð1� 2mÞ rH

req

� �2
" #

ð14Þ

where rH = tr(r)/3 being the hydrostatic stress.
Finally, the dissipation function w, also referred to as inelastic

potential function, from which the inelastic flow rule and the evo-
lution laws for the internal variables and damage are derived. It is
taken in the form

w ¼ /þ S
ð1� DÞðsþ 1Þ

�Y
S

� �sþ1

ð15Þ

where S and s are material constants. This function provides the iso-
tropic evolution law of damage in the form

_D ¼ � _c
@w
@Y
¼

_c
1� D

�Y
S

� �s

ð16Þ

The above system of nonlinear equations together with the condi-
tion that / = 0 that govern the behavior of monolithic thermoela-
stolplastic materials with isotropic evolving damage are solved
incrementally in conjunction with the return mapping algorithm
(de Souza Neto et al., 2008).
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2.2. Ductile materials with anisotropic evolving damage

The formulation of the constitutive equations for elastoplastic
materials with anisotropic damage law has been presented by
Lemaitre et al. (2000). Presently, the damage is described by a sec-
ond-order tensor D and the thermoelastic portion Get is given by

Get ¼
1þ m

2E
HdevðrÞHdevðrÞ þ 3ð1� 2mÞ

2E
r2

H

1� gDH
þ aðT � T0ÞtrðrÞ

ð17Þ

or in an equivalent indicial notation

Get ¼
1þ m

2E
Hijr̂jkHklr̂li þ

3ð1� 2mÞ
2E

r2
H

1� gDH
þ aðT � T0Þrkk

where r̂ij is the deviator of rij, and

H ¼ ðI� DÞ�1=2 ð18Þ

DH = tr(D)/3 and g is a material parameter.
The elastic strain is obtained from Eq. (17) as

�e ¼ 1þ m
E

~r� m
E

trð~rÞI ð19Þ

The relation between the effective stress ~r and the stress r is given
by
Fig. 1. (a) A multiphase composite with doubly-periodic microstructures defined with r
respect to local coordinates (y2,y3). It is divided into Nb and Nc subcells, in the y2 and y3 d
�yðcÞ3 whose origin is located at its center. (d) A typical repeating unit cell with a fiber ori
~r ¼ dev HdevðrÞH½ � þ rH

1� gDH
I ð20Þ

The effective stress ~r is related to the elastic strain �e as is given by
Eq. (6).

The yield function is given by

/ ¼ ~req � ry ð21Þ

The evolution law for the plastic strains is

_�p ¼ _c
@/
@r
¼ 3

2
_c

dev ½Hdevð~rÞH�
~req

ð22Þ

The rate of the equivalent plastic strain is accordingly given by

_�p ¼ _c
Hdevð~rÞH½ �eq

~req
ð23Þ

The evolution law for the damage tensor D is given according to
Lemaitre et al. (2000) by

_D ¼ �Y
S

� �s

j _�pj ð24Þ

where j _�pjmeans the absolute value of the eigenvalues of tensor _�p.
In this equation, the damage energy release rate Y is given by

Y ¼ �1
2
�e : h : �e ¼ �

~r2
eq

2E
2
3
ð1þ mÞ þ 3ð1� 2mÞ

~rH

~req

� �2
" #

ð25Þ
espect to global coordinates (x2,x3). (b) The repeating unit cell is represented with
irections, respectively. (c) A characteristic subcell (bc) with local coordinates �yðbÞ2 and
ented in the 1-direction reinforcing a ductile or brittle matrix.
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where
~rH ¼
rH

1� gDkk=3
In order to implement the present theory, the explicit relation
between the stress r and the effective stress ~r must be established.
From Eq. (20), the following expression can be readily established
in the principal coordinates in which D = diag(D1,D2,D3) so that
H ¼ diag 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D1
p

;1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2
p

;1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D3
p� �

:

~r11

~r22

~r33

~r23

~r13

~r12

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼

K11 K12 K13 0 0 0

K22 K23 0 0 0

K33 0 0 0

K44 0 0

K55 0

sym: K66

2
66666666666664

3
77777777777775

r11

r22

r33

r23

r13

r12

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð26Þ
where
Table 1
Elastic and thermal parameters of the transversely isotropic carbon fibers.

EA (GPa) ET (GPa) GA (GPa) mA mT aA (10�6/�C) aT (10�6/�C)

388.2 7.6 14.9 0.41 0.45 �0.68 9.74

EA, ET, GA, mA, mT, aA and aT denote the axial Young’s modulus, transverse Young’s
modulus, axial shear modulus, axial Poisson’s ratio, transverse Poisson’s ratio, axial
and transverse coefficients of thermal expansion, respectively.
K11 ¼
4

9ð1� D1Þ
þ 1

9ð1� D2Þ
þ 1

9ð1� D3Þ
þ 1

3ð1� gDHÞ

K12 ¼ �
2

9ð1� D1Þ
� 2

9ð1� D2Þ
þ 1

9ð1� D3Þ
þ 1

3ð1� gDHÞ

K13 ¼ �
2

9ð1� D1Þ
þ 1

9ð1� D2Þ
� 2

9ð1� D3Þ
þ 1

3ð1� gDHÞ

K22 ¼
1

9ð1� D1Þ
þ 4

9ð1� D2Þ
þ 1

9ð1� D3Þ
þ 1

3ð1� gDHÞ

K23 ¼
1

9ð1� D1Þ
� 2

9ð1� D2Þ
� 2

9ð1� D3Þ
þ 1

3ð1� gDHÞ

K33 ¼
1

9ð1� D1Þ
þ 1

9ð1� D2Þ
þ 4

9ð1� D3Þ
þ 1

3ð1� gDHÞ

K44 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� D2Þð1� D3Þ
p

K55 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� D1Þð1� D3Þ
p

K66 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� D1Þð1� D2Þ
p

Table 2
Material constants of the 2024 – T4 aluminum alloy (Aboudi, 1991).

Temperature (�C) E (GPa) m a (10�6/�C) Y0 (MPa) H0 (GPa)
It should be noted that in the absence of damage K reduces to the
unit matrix.

The above relation can be inverted in order to express r in
terms of ~r:
21 72.4 0.33 22.5 286.7 11.7
148.9 69.3 0.33 22.5 270 10
204.4 65.7 0.33 22.5 225 8
r ¼ L~r ð27Þ

260 58.4 0.33 22.5 140 3
371.1 41.5 0.33 22.5 42 0.4

E, m, a, Y0 and H0 denote the Young’s modulus, Poisson’s ratio, coefficient of thermal
expansion, initial yield stress and linear hardening coefficient, respectively.
where L = K�1. Consequently, by employing Eq. (6) the following
constitutive relation can be established
r11

r22

r33

r23

r13

r12

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
¼

L11 L12 L13 0 0 0

L22 L23 0 0 0

L33 0 0 0

L44 0 0

L55 0

sym: L66

2
66666666664

3
77777777775

�

kþ 2l k k 0 0 0

kþ 2l k 0 0 0

kþ 2l 0 0 0

l 0 0

l 0

sym: l

2
66666666664

3
77777777775

�e
11

�e
22

�e
33

2�e
23

2�e
13

2�e
12

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
ð28Þ

Relation (28) provides at any instant of loading the current stiffness
matrix C = LM (M denotes the standard second matrix in the above
relation). In the isotropic damage law, on the other hand, the
current stiffness matrix was simply given by C = (1 � D)M. In the
absence of damage Eq. (28) reduces to the Hooke’s law of isotropic
elastic materials.

The resulting system that governs the evolution of plasticity
and anisotropic damage consists of ten nonlinear equations which
are given by the six Eq. (6) in conjunction with relation (1), the
three evolution Eq. (24) and the conditions that / = 0. The ten
unknowns are ~r;Dc and the three principal damage variables. This
system is solved in conjunction with the return mapping
algorithm.

2.3. Brittle materials with anisotropic evolving damage

In brittle materials such as glass and ceramics, failure is charac-
terized by the fact that damage evolution is the only dissipative
mechanism that takes place, without irreversible strains. Although
concrete is not a brittle material (see Wu et al. (2006) for example,
where isotropic damage and inelasticity effects that develop in
concrete are modeled), constitutive equations with anisotropic
damage for concrete in which the plasticity effects are assumed
to be negligible, have been proposed Lemaitre and Desmorat
(2005). They are based on the following specific Gibbs function



Fig. 3. The behavior of the unidirectional carbon/aluminum composite which is subjected to a uniaxial stress loading–unloading in the fibers direction at room temperature
predicted by the anisotropic (A) and isotropic (I) evolution laws. (a) Global stress–strain response, (b) global transverse-axial strain response, (c) evolution of the matrix
damage variables D1, D2 and D controlled by anisotropic and isotropic laws, respectively.

Fig. 2. The behavior of the aluminum alloy matrix subjected to a uniaxial stress loading–unloading with anisotropic (A) and isotropic (I) damage laws at room temperature.
(a) Stress–strain response, (b) transverse-axial strain response, (c) evolution of the damage variables controlled by anisotropic and isotropic laws, (d) variation of the axial E1

and transverse E2 Young’s moduli in the anisotropic case and of the Young’s modulus E in the isotropic case.
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G ¼ 1þ m
2E

tr½HdevðrÞHdevðrÞ�

þ 1� 2m
6E

htrðrÞi2

1� trðDÞ þ h�trðrÞi2
" #

ð29Þ

where hxi = x U(x), with U(x) being the Heaviside unit step function
and H is given by Eq. (18). From Eq. (29), the following expression
for the strain tensor � in terms of the effective stress ~r is obtained

� ¼ @G
@r
¼ 1þ m

E
~r� m

E
trð~rÞI ð30Þ

where the effective stress tensor ~r is given in terms of the stress r
as follows

~r ¼ dev HdevðrÞH½ � þ 1
3
htrðrÞi

1� trðDÞ � h�trðrÞi
� �

I ð31Þ

The initiation of damage in the present case is determined by
the following condition

f ð�Þ ¼ �� � jðtrðDÞÞ > 0 ð32Þ

where the damage equivalent strain �⁄ is defined in terms of the
principal values �A, A = 1, 2, 3, of the strain tensor in the form
Fig. 4. Surface plots of the internal spatial transverse stress distributions r22 in the RUC, g
composite at ��11 ¼ 0:02 at room temperature. (a) r22 distribution generated by the anisot
distribution generated in the absence of damage.
�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�1i2 þ h�2i2 þ h�3i2

q
ð33Þ

and the function j(trD) is given by

jðtrDÞ ¼ a tan
trD
aa�
þ arctan

j0

a

	 
� �
ð34Þ

where a0, a are material constants and j0 is the damage threshold.
The damage evolution is controlled by

_DA ¼ a0 1þ ��

a

� �2
" #�1

_��

��2 h�Ai2; A ¼ 1;2;3 ð35Þ

Expansion of Eq. (31) yields the following relation expressed in
terms of the principal values ~r1; ~r2; ~r3 of the effective stress and
the principal values r1, r2, r3 of the stress tensors

~r1

~r2

~r3

8><
>:

9>=
>; ¼

K11 K12 K13

K22 K23

sym: K33

2
64

3
75

r1

r2

r3

8><
>:

9>=
>; ð36Þ
enerated by applying a longitudinal uniaxial stress loading of the carbon/aluminum
ropic damage law, (b) r22 distribution generated by the isotropic damage law, (c) r22
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where

K11 ¼
4

9ð1� D1Þ
þ 1

9ð1� D2Þ
þ 1

9ð1� D3Þ
þ UðrHÞ

3ð1� 3DHÞ
þ 1� UðrHÞ

3

K12 ¼�
2

9ð1�D1Þ
� 2

9ð1�D2Þ
þ 1

9ð1�D3Þ
þ UðrHÞ

3ð1�3DHÞ
þ1�UðrHÞ

3

K13 ¼�
2

9ð1�D1Þ
þ 1

9ð1�D2Þ
� 2

9ð1�D3Þ
þ UðrHÞ

3ð1�3DHÞ
þ1�UðrHÞ

3

K22 ¼
1

9ð1� D1Þ
þ 4

9ð1� D2Þ
þ 1

9ð1� D3Þ
þ UðrHÞ

3ð1� 3DHÞ
þ 1� UðrHÞ

3

K23 ¼
1

9ð1� D1Þ
� 2

9ð1� D2Þ
� 2

9ð1� D3Þ
þ UðrHÞ

3ð1� 3DHÞ
þ 1� UðrHÞ

3

K33 ¼
1

9ð1� D1Þ
þ 1

9ð1� D2Þ
þ 4

9ð1� D3Þ
þ UðrHÞ

3ð1� 3DHÞ
þ 1� UðrHÞ

3

In the absence of damage, the matrix K reduces to the identity
matrix. In conjunction with Eq. (30), the following principal
stress–strain relations can be established

r1

r2

r3

8><
>:

9>=
>; ¼

L11 L12 L13

L22 L23

sym: L33

2
64

3
75

kþ 2l k k

kþ 2l k

sym: kþ 2l

2
64

3
75

�1

�2

�3

8><
>:

9>=
>;
ð37Þ

where the matrix L is the inverse of matrix K. In the absence of
damage, this equation reduces to the standard Hooke’s law. For
given values of the current applied strains, Eq. (37) forms a system
of three nonlinear equations in the three unknown principal
stresses. The current value if the stiffness matrix of the material is
given by C = LM, where M is the second matrix in this equation. This
matrix represents the current value of the principal stress
derivatives

C ¼ dr
d�

ð38Þ

which is a function of the principal stresses. The full tensor deriva-
tive dr/d� (whose eigenvalues are given by Eq. (38)) can be
obtained by employing the function derivative procedure that is
described in de Souza Neto et al. (2008).
Fig. 5. The behavior of the unidirectional carbon/aluminum composite which is subjec
anisotropic (A) and isotropic (I) evolution laws. (a) Global stress–strain response (D = 0
damage variables D1, D2, D3 and D controlled by anisotropic and isotropic laws, respecti
3. Micromechanical analysis

The HFGMC micromechanics model has been adopted to predict
the behavior of metal matrix and concrete matrix unidirectionally
reinforced composites. It is based, in conjunction with an averaging
procedure, on the homogenization technique for composites with
periodic microstructure as shown in Fig. 1(a) in terms of the global
coordinates (x1,x2,x3) with x1 being the direction of the fibers. The
rectangular repeating unit cell (RUC), Fig. 1(b), is defined with
respect to the local coordinates (y1,y2,y3) and is divided into Nb

and Nc subcells in the y2 and y3 directions respectively. Each sub-
cell is labeled by the indices (bc) with b = 1, . . . ,Nb, c = 1, . . . ,Nc
and may contain a distinct homogeneous material. A brief outline
of the HFGMC model is given in a compact form in the following
but for details see Aboudi (2004).

The constitutive equations of the material in subcell (bc) can be
represented in a general form as

rðbcÞ ¼ CðbcÞ : ½�ðbcÞ � �pðbcÞ � �tðbcÞ�ðbcÞ ð39Þ

where C(bc) is its current forth-order stiffness tensor. Two types of
HFGMC micromechanics analysis are considered. In the first one,
referred to as one-way thermomechanically coupled, a constant
temperature that affects the mechanical field only is prescribed at
any point of the composite’s constituents. In the full thermome-
chanical coupling on the other hand, a mutual interaction exists
between the mechanical and temperature fields. The latter is gov-
erned by the coupled energy equation in the subcell which includes
in addition to the heat released by the plastic deformations, the
power dissipated by the internal decohesion process. It is given
by Lemaitre and Desmorat (2005)

ðqcvÞðbcÞ _T ðbcÞ þ r � qðbcÞ ¼ rðbcÞ : _�pðbcÞ

� TðbcÞCðbcÞ : ½ _�ðbcÞ � _�pðbcÞ� � Y ðbcÞ _DðbcÞ

ð40Þ

where qðbcÞ; cðbcÞv and q(bc) denote the mass density, the specific heat
at constant deformation and heat flux vector of the material filling
subcell (bc), respectively. In addition, C(bc) is the thermal stress sec-
ond-order tensor namely, the multiplication of the stiffness tensor
C(bc) by the coefficient of the thermal expansion tensor a, i.e.,
C(bc) = C(bc) : a(bc). The heat flux vector q(bc) is given by the Fourier’s
law

qðbcÞ ¼ �kðbcÞ � rTðbcÞ ð41Þ

where k(bc) is the second-order thermal conductivity tensor. The
effect of isotropic and anisotropic evolving damage on the
ted to a transverse uniaxial stress loading at room temperature predicted by the
corresponds to the response in the absence of damage), (b) evolution of the matrix
vely.
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composite’s response can be investigated by employing these
two micromechanics analyses. Both the one-way and fully ther-
momechanically coupled HFGMC have been discussed by Aboudi
(2008). Herein a brief outline of the two HFGMC methods are
presented.

3.1. HFGMC with one-way thermomechanical coupling

1. A quadratic displacement field is assumed in each subcell in
terms of the local coordinates �y2; �y3ð Þ, Fig. 1(c), with the expan-
sions coefficients being the unknown microvariables.

2. The strong form of the equilibrium equations, tractions and
displacements interfacial continuity conditions between the
subcells and tractions and displacements periodic conditions
between repeating unit cells are imposed in the average (inte-
gral) sense.
Fig. 6. The global stress-stress responses of the unidirectional carbon/aluminum composi
to the fibers direction at room temperature. Comparison between the response predicte
3. This results in a system of linear algebraic equations which is
solved for the 15 unknown microvariable coefficients per sub-
cell in terms of the constituents properties, microstructural
dimensions and thermal and inelastic terms. (A statical conden-
sation can reduce the number of unknowns to 6 per subcell,
Haj-Ali and Aboudi, 2009).

4. Knowledge of the these microvariables enables the establish-
ment of a localization relation that involves mechanical,
thermal and inelastic concentration tensors. This localization
relation relates the average strain in each subcell to the exter-
nally applied strains along with thermal and inelastic tensors.

5. The established mechanical, thermal and inelastic concentra-
tion tensors enable the establishment of the macroscopic
(global) constitutive law of the composite with progressive
damage in its phases at any instant of thermomechanical
loading including, in particular, its current effective moduli.
te that is subjected to off-axis uniaxial stress loading at various angles h with respect
d by the anisotropic (A) and isotropic (I) damage laws.
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3.2. HFGMC with full thermomechanical coupling

1. A quadratic displacement and temperature fields are assumed
in each subcell in terms of the local coordinates �y2; �y3ð Þ,
Fig. 1(c), with the expansions coefficients being the unknown
displacement and thermal microvariables.

2. The strong form of the equilibrium and energy equations, trac-
tions, displacements, heat fluxes and temperatures interfacial
continuity conditions between the subcells, and tractions and
displacements heat fluxes and temperatures periodic condi-
tions between repeating unit cells are imposed in the average
(integral) sense.

3. This results in a system of linear algebraic equations which is
solved for the 22 unknown microvariable coefficients per sub-
Fig. 7. The evolution of the damage variables D1, D2, D3 and D obtained from the anisot
loading of the unidirectional carbon/aluminum composite.
cell in terms of the constituents properties, microstructural
dimensions and thermal and inelastic terms.
Items 4 and 5 are identical to the above. It should be empha-
sized however the application of the far-field strain induces this
time a temperature deviation from the reference temperature
due to the full thermomechanical coupling. These induced tem-
perature deviations are significant in the presence of inelasticity
effects in the constituents.

3.3. Micromechanical prediction of the composite’s initial damage
surfaces

Initial damage surfaces of metal matrix composites are identical
to the initial yield surfaces. The method of their prediction have
ropic and isotropic laws, respectively, in the metallic matrix caused by the off-axis



Fig. 8. The unidirectional carbon/aluminum composite is subjected to a temperature cycle of cooling and re-heating. (a) The developed macroscopic axial strain in the
anisotropic and isotropic (I) cases, (b) the developed macroscopic transverse strain, (c)–(e) anisotropic damage variables D1, D2 = D3 evolution, (f) isotropic damage variable D
evolution.

Table 3
The material parameters of the concrete (Lemaitre and Desmorat, 2005).

E (GPa) m a0 a j0

42 0.2 5000 2.93 � 10�4 5 � 10�5

E and m are the Young’s modulus, Poisson’s ratio, and a0 , a and j0 are nondimen-
sional parameters.
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been extensively discussed in Aboudi (1991). Here, we consider the
prediction of the initial damage surfaces of brittle matrix
composites. To this end the micromechanics analysis provides in
the absence of thermal and inelastic effects the following relation
between the local stress r(bc) in the subcell and the externally ap-
plied stress �r
Fig. 9. The response of the unreinforced concrete under tensile and compressive uniaxia
variables with loading.
rðbcÞ ¼ BðbcÞ : �r ð42Þ

where B(bc) is the already micromechanically established forth-
order stress concentration tensor. Assume for instance that the
initial damage surface in the transverse plane �r22 � �r33 is sought.
Here all stresses �rij ¼ 0 except �r22 and �r33. Let

�r22 ¼ R cos h; �r33 ¼ R sin h ð43Þ

where R is the radial distance to the initial damage surface at polar
angle h. Substituting Eq. (43) in (32) yields that for a given h

R ¼ min
over all matrix subcells

jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�1i2 þ h�2i2 þ h�3i2

q ð44Þ
l stress loading. (a) Stress–strain response, (b) evolution of the anisotropic damage



Fig. 10. The response of the unreinforced concrete under tensile hydrostatic loading. (a) Stress–strain response, (b) evolution of the damage variables with loading.
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Once this envelope has been generated, any combination of the two
values of �r22 and �r33 that initiate the damage can be readily
determined.

Next, consider the unidirectional composite that is subjected to
an off-axis uniaxial loading. Here the fibers which are oriented in
the 1-direction, are rotated around the 3-direction by an angle h.
As a result a new system of coordinates (x,y,z) is obtained such
that z = x3. The unixial stress loading is applied in the x-direction
which is at angle h with respect to the fiber direction. Referring
to this system of coordinates, the composite is loaded by the appli-
cation of a stress rxx, with all components of the stress with respect
to this system are zero. In particular, h = 0� and 90� correspond to
longitudinal and transverse uniaxial stress loading, respectively. In
the present case of tensile/compressive off-axis loading the follow-
Fig. 11. Initial damage envelopes of the unidirectional steel/concrete (S/C) composite an
(b) Initial damage in the �r11 � �r22 plane, (c) initial damage in the �r11 � �r22 ¼ �r22 plane
ing three stress components are not zero: �r11; �r22 and �r12. The ini-
tial damage surface can be determined by replacing Eq. (43) with

�r11 ¼ �R cos2 h; �r22 ¼ �R sin2 h; �r12 ¼ 	R sin h cos h ð45Þ

For a given set of angles h, R can be determined from Eq. (44). Here
too, once this envelope has been generated, the values of applied
off-axis tensile or compressive uniaxial stress loading ±rxx that
initiate damage can be readily determined.
4. Applications

The offered theory is implemented herein to investigate the
effects of isotropic and anisotropic laws on the response of a metal
d the unreinforced concrete (C). (a) Initial damage in the transverse �r33 � �r22 plane,
.
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matrix composite. Both the one-way and full thermomechanical
coupling micromechanics are employed. Next, the behavior of a
concrete reinforced by steel fibers is investigated under various
loading conditions. In this latter case initial damage envelopes
are generated exhibiting the different behavior of the reinforced
concrete under tensile and compressive loadings. The anisotropic
damage components D1, D2, D3 and the isotropic damage variable
D shown in the following plots pertain to the maximum of the cor-
responding ones in the ductile or brittle matrix. A typical repeating
unit cell of the periodic composite is shown in Fig. 1(d) where the
elastic fiber, oriented in the 1-direction, is reinforcing either a
ductile or brittle matrix.

4.1. Results for a metal matrix composite with one-way
thermomechanical coupling

Consider a unidirectional carbon/metal matrix composite. The
elastic carbon fibers are transversely isotropic where the axis of
symmetry is oriented in the fibers 1-direction and whose proper-
ties are given in Table 1. The properties of the aluminum alloy
matrix are given in Table 2 at various temperatures. Unless other-
wise mentioned, all results in the following are given with the
damage parameters: S = 0.05 MPa, s = 1 and g = 2.6, which charac-
terize the aluminum matrix. The fibers volume fraction of this
carbon/aluminum system is vf = 0.3.

In Fig. 2, the behavior at room temperature T = 21 �C of the
unreinforced aluminum alloy matrix caused by a uniaxial stress
loading in the 1-direction followed by unloading is shown in the
following cases. (a) Anisotropic damage is evolving, (b) isotropic
damage is evolving, and (c) no damage is taking place D = 0. The
Fig. 12. The response of the steel/concrete under axial and transverse uniaxial stress
�r22 � ��22 responses, (b) evolution of the damage variables in the axial tensile and compr
compressive loadings.
figure shows the uniaxial stress–strain response r11 � �11, the
transverse strain response �22 � �11, the evolution of the aniso-
tropic damage variables D1, D2 = D3 = D1/2 and isotropic damage
D with applied strain, and the variations of the Young’s moduli
E1, E2 = E3 and E caused by anisotropic and isotropic damage with
the applied strain. This figure clearly exhibits the effect of damage
on the behavior of the aluminum alloy matrix and whether the
damage law is controlled by anisotropic or isotropic law. Although
the damage D1 is very close to D, the damage D2 in the transverse
direction is almost one half of that predicted by the isotopic law.
This result affects the transverse Young’s modulus E2 which is seen
to be quite different from the E that is developed in the isotropic
case.

Fig. 3 shows the response of the unidirectional carbon/
aluminum composite to a uniaxial stress loading–unloading
applied in the fibers direction at room temperature. It is clearly
observed that the axial response �r11 � ��11 is not affected by the
damage law type. The global transverse strain however is sensitive
to the adopted damage law. This can be explained by observing the
evolution of the anisotropic and isotropic damage variables in the
matrix. Although D1 is quite close to D, D2 = D3 is significantly dif-
ferent from the latter. Thus, the influence of the type of damage on
the transverse response of the composite as exhibited by Fig. 3(b)
can be expected.

It should be interesting to study the effect of damage on the
spatial stress distribution in the RUC induced by the axial loading.
The most interesting internal stress component which is not
dominated by fibers is the spatial transverse stress distribution
r22 = r33. In Fig. 4(a)–(c), surface plots of r22 generated at applied
global strain of ��11 ¼ 0:02 are shown for anisotropic, isotropic
tensile and compressive loadings. (a) Axial stress–strain �r11 � ��11 and transverse
essive loadings, (c) evolution of the damage variables in the transverse tensile and
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damage laws as well as D = 0, respectively. The effect of damage is
clearly noticed by observing the ranges of these induced stresses.
For the anisotropic, isotropic damage laws and intact composite
(D = 0), the values of induced transverse stresses are: �4.7 MPa 6
r22 6 6.9 MPa, �10.6 MPa 6 r22 6 14.1 MPa and �12.1 MPa 6
r22 6 16.1 MPa, respectively. These variations are significant and
clearly show the effect of damage on these internal stresses. It
should be noted that in the anisotropic progressive damage law
case, the induced transverse stresses are much lower than the
isotropic one. The stress concentrations in the former and the latter
cases can be seen to be around 4.9 MPa and 11.8 MPa, respectively,
which exhibit a significant difference between the anisotropic and
isotropic laws. As is expected, the highest values are generated in
the intact composite with a stress concentration of about 12.9 MPa.

Contrary to a loading in the axial direction, a loading in the
transverse direction (perpendicular to the fibers) leads to a rapid
failure. This is shown in Fig. 5 which exhibits the unidirectional
composite’s response to a uniaxial stress loading in the transverse
Fig. 13. The global stress-stress responses of the unidirectional steel/concrete composite
with respect to the fibers direction.
direction. Fig. 5(a) shows the effect of evolving damage by a
comparison with the resulting global response in the absence of
damage D = 0. The macroscopic composite responses resulting
from anisotropic and isotropic damage laws coincide. Fig. 5(b)
shows the corresponding evolution of the damage variables in
the metallic matrix. In the present transverse loading case, failure
of the matrix constituent results from the rapid increase of the D2,
D3 and D. The axial damage variable D1 shows a moderate increase
which slightly affects the axial global strain.

Fig. 6 exhibits the global rxx � �xx of the composite that is
subjected to off-axis uniaxial stress loading at angle h to the fibers
1-direction. Comparisons between the responses caused by aniso-
tropic and isotropic damage laws are shown at various off-axis
angles. These plots clearly exhibit the influence on the predicted
response of the composite and its failure which depends on the
chosen progressive damage laws. This effect appears to be signifi-
cant at the intermediate angles. In Fig. 7, the evolution of the
corresponding damage variables are shown. Here too and as
that is subjected to off-axis compressive uniaxial stress loading at various angles h
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expected from the plots of Fig. 6, the damage variables associated
with anisotropic and isotropic damage laws significantly differ at
the intermediate angles. Similarly, the deterioration of the effective
Young’s moduli E�1; E�2 and E�3 of the composite with damage caused
by the anisotropic and isotropic damage laws are quite similar for
axial and transverse loadings of the composite. For the intermedi-
ate off-axis angles however their reductions are different
depending on the adopted damage law. For consider for example
the off-axis loading at h = 45�. Initially, E�1 ¼ 167 MPa and
E�2 ¼ E�3 ¼ 44:7 MPa prior to damage initiation. At the final stage
of loading just before failure, the anisotropic damage law yields:
E�1 ¼ 144 MPa; E�2 ¼ 12:5 MPa and E�3 ¼ 38:8 MPa. The isotropic
law yields on the other hand: E�1 ¼ 151 MPa; E�2 ¼ 34:4 MPa and
E�3 ¼ 31:4 MPa. It is clearly observed the effect of the damage law
is considerable especially for the effective Young’s modulus in
the 2-direction.
Fig. 14. The evolution of the damage variables in the metallic matrix caused by the
Let us assume that the carbon/aluminum composite is at the
cure temperature T = 371.1 �C, see Table 2, at which it is micro-
scopically stress-free. The composite is cooled from this initial
state while it is kept macroscopically stress-free, i.e., �r ¼ 0.
In Fig. 8(a) and (b), the global axial ��11 and transverse ��22 ¼ ��33

strains are shown during a cycle of cooling and re-heating while
adopting the anisotropic and isotropic damage laws in the metallic
matrix. It is clear that yielding and plastic flow take place during
the cooling process which also cause the initiation and propagation
of damage. Thus far the damage parameter S at room temperature
has been chosen to have the value of 0.05 MPa. At elevated temper-
ature the value of S must be lower (for steel for example, Lemaitre
and Desmorat (2005) suggested that the value of S at T = 580 �C is
about 35 times lower than its corresponding value at room
temperature). To this end and for illustration, the value of
S = 0.005 MPa has been chosen which is just ten times lower.
off-axis compressive loading of the unidirectional carbon/aluminum composite.



Fig. 15. Variation of the values of the off-axis uniaxial stress loading rxx which initiate damage with the off-axis angle h of the steel/concrete (S/C) and unreinforced concrete
(C). (a) Tensile off-axis loading, (b) compressive off-axis loading.

Table 4
Elastic and thermal parameters of the isotropic Al2O3 fibers.

E (GPa) m a (10�6/K) k (W/(mK)) qcv (MJ/(m3K))

400 0.24 16.3 30 3.1

E, m, a, k and qcv denote the Young’s modulus, Poisson’s ratio, coefficient of thermal
expansion, thermal conduction and heat capacity, respectively.
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Fig. 8 shows that for the value of S = 0.05 MPa, the anisotropic and
isotropic laws predict identical response during cooling and re-
heating. For the lower value of S = 0.005 MPa however, the
responses according to two laws are different. The macroscopic
transverse strains on the other hand are insensitive to the adopted
damage type. In Fig. 8(c)–(e), the evolution of the damage variables
are shown. A comparison between the anisotropic and isotropic
damage variables shows that the damage variable in the isotropic
case evolves to a higher value than the corresponding anisotropic
one. This explains the reason for the different behavior in the
low value of parameter S exhibited by the plots of Fig. 8(a). The
macroscopic axial and transverse strains that are developed during
cooling from the cure to room temperature give rise to residual
stresses. According to the graphs of in Fig. 8(a), these residual
stresses depend on the damage parameters and whether they are
controlled by anisotropic or isotropic laws. This implies that a sub-
sequent mechanical tensile/compressive loading of the composite
at room temperature should be appreciably affected by the type
of damage evolution.
4.2. Results for a concrete matrix composite

Presently, we consider a unidirectional steel/concrete compos-
ite. The elastic steel fibers are isotropic that are characterized by
a Young’s modulus of E = 200 GPa and Poisson’s ration m = 0.32.
The constitutive equations of the concrete matrix are determined
from the Gibbs function (29) in conjunction with the damage
evolution law given by Eq. (35). The Young’s modulus and Poisson’s
ration ratio of the concrete together with the non-dimensional
parameters a, a0 and j0 are given in Table 3. The fibers volume ratio
is chosen as vf = 0.03.
Table 5
Elastic, plastic and thermal parameters of an isotropic elastoplastic aluminum matrix.

E (GPa) m a (10�6/K) Y0 (MPa)

72.4 0.33 22.5 371.5

E, m, a, ry, H0, k and q cv denote the Young’s modulus, Poisson’s ratio, coefficient of therm
capacity, respectively.
In Fig. 9(a), the behavior of the unreinforced concrete subjected
to tensile and compressive uniaxial stress loadings is shown. This
plot coincides with the stress–strain curve of Lemaitre and
Desmorat (2005). The different response to tensile and compres-
sive loading which is characteristic for the concrete is well exhib-
ited. The evolutions of the damage variables that are controlled by
the anisotropic damage law are shown in Fig. 9(b). For the tensile
loading, D1 – 0 and D2 = D3 = 0. The damage variable D1 rises
sharply from 0 to 1 with the applied tensile strain where complete
failure is obtained. For the compressive loading, on the other hand,
D1 = 0 and D2 = D3 – 0. These damage variables control the
response in this region and are seen to rise moderately with the
applied loading. It is also interesting to observe the response of
the unreinforced concrete to a hydrostatic loading. In accordance
with the constitutive equations of the concrete, damage does not
evolve under pressure (compressive loading). Therefore, Fig. 10
shows the response under positive hydrostatic loading �11 =
�22 = �33 > 0 together with the damage variables evolutions all of
which are equal. Failure of the material can be expected before a
loading of �11 = 0.02 where the damage variables increase abruptly
to 1.

The initial damage envelopes of the monolithic concrete and the
steel/concrete composite are shown in Fig. 11. In this figure, the
envelopes are shown in the �r33 � �r22; �r11 � �r22 and �r11 � �r22 ¼
�r33 planes. Both Fig. 11(a) and (b) clearly show the effect of tensile
and compressive loading on the damage initiation. Fig. 11(c) exhib-
its the effect of tensile and compressive hydrostatic loadings on
damage initiation, and its absence in the latter case. The closeness
of the initial damage envelopes of the composite and the unrein-
forced concrete is due to the fact that the volume ratio of the steel
is very low which is characteristic to steel/concrete composites.

The response of the steel/concrete unidirectional composite to
uniaxial stress tensile and compressive loadings applied in the
axial (parallel to the fibers) and transverse (perpendicular to the fi-
bers) are shown in Fig. 12(a). The locations of failure in both cases
can be clearly observed. The corresponding evolution of the aniso-
tropic damage variables to these two types of loadings are shown
in Fig. 12(b) and (c). These two figures show that failures under
axial tensile and compressive loadings are dominated by the
H0 (GPa) k (W/(mK)) qcv (MJ/(m3K))

23 116.7 2.25

al expansion, yield stress, linear hardening coefficient, thermal conduction and heat
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evolution of D1 and D3, respectively. The variable D2 increases
moderately under compression in this case while D1 = 0. Under
transverse tensile and compressive loadings on the other hand,
failures are attributed to the increase of the anisotropic damage
variables D2 and D3, respectively. Consequently, the effect of aniso-
tropic damage model appears to be significant in the present case.

Let us consider the steel/concrete unidirectional composite
when it is subjected to off-axis compressive uniaxial stress load-
ings. The resulting responses up to failure are shown in Fig. 13
for various off-axis angles h. The corresponding evolution damage
of the damage variables are shown in Fig. 14. Tracking these
variables at the various off-axis angles shows that D1 = 0 in the
low off-axis angles with D2 decreasing and then vanishing at
h P 45. For h > 45�, the damage variable D1 increases from zero
with the increase of h. It is interesting to observe that D3 appears
to be dominant in all off-axis angles The values of uniaxial stress
loading rxx at which damage initiates in the concrete matrix of
the steel/concrete composite and in the unreinforced matrix at a
given off-axis angle h are shown in Fig. 15. Both applied tensile
Fig. 16. Surface plots of the internal spatial distributions of the temperature deviations D
unidirectional Al2O3/aluminum composite at ��11 ¼ 0:0258 (just before the ultimate failu
employing the anisotropic damage law in the matrix, (b) DT distribution generated by em
intact composite.
and compressive rxx are shown in this figure, and the differences
between damage initiation in both cases are clearly displayed.

4.3. Results for a metal matrix composite with full thermomechanical
coupling

Extensive investigation of the effects of full thermomechanical
coupling in metal matrix composites have been presented by Abo-
udi (2008). It turned out that the most interesting and important
result of this micromechanical analysis was the temperature field
induced by an applied mechanical loading (which would be absent
in the case of one-way thermomechanical coupling). Under cyclic
mechanical loading this temperature field may significantly grow
and affects the subsequent composite’s behavior. For shape mem-
ory reinforced composites for example, the induced temperature
field affects the shape memory alloy itself by changing its proper-
ties (Aboudi and Freed, 2010). Presently, let us adopt the same
Al2O3/aluminum unidirectional composite which was employed
in Aboudi (2008) and for which extensive results were shown.
T(K) in the RUC, generated by applying a longitudinal uniaxial stress loading of the
re of the composite with anisotropic damage law). (a) DT distribution generated by
ploying the isotropic damage law in the matrix, (c) DT distribution generated in the
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The thermomechanical properties of the elastic Al2O3 fibers and
the aluminum matrix are given by Tables 4 and 5, respectively,
and fiber volume fraction is vf = 0.3.

Let the Al2O3/aluminum composite be subjected to a longitudi-
nal uniaxial stress loading in the fiber direction. This mechanical
loading is continued up to failure of the composite, controlled by
anisotropic damage law in its matrix, at ��11 ¼ 2:58%. The compos-
ite with isotropic damage law, on the other hand, fails at a
somewhat higher strain: ��11 ¼ 2:8%. Fig. 16(a)–(c) exhibit the
resulting induced spatial temperature deviation distributions in
the RUC caused by the full thermomechanical coupling, for the
cases of anisotropic damage law, isotropic damage law and the
case with zero damage (D = 0) in the matrix, respectively, at
��11 ¼ 2:58%. It can be observed that the temperature distribution
in the composite with anisotropic damage is quite different from
the distribution obtained in the isotropic damage case. The undam-
aged composite exhibits, on the other hand, a temperature
distribution which somewhat similar to the anisotropic case.
Although the ranges of the temperature deviations obtained from
the anisotropic and isotropic damage laws appear to be close, the
anisotropic law is seen to exhibit a lower induced temperature
distribution. This can be also observed by examining Fig. 17 in
which the development of the averages of the induced spatial
temperature deviations DT with the applied loading are shown in
the above three cases of anisotropic, isotropic damage laws in
the matrix and the intact composite (D = 0). It can be observed that
after initial yielding, the average temperature in the composite
with anisotropic damage law deviates from the isotropic and zero
damage cases, exhibiting the lower values. Hence, it can be
concluded that the induced temperature in the anisotropic case
exhibits lower values than the isotropic and undamaged cases.
Consequently, it is probably possible to employ this information
about the induced spatial temperature to estimate the amount of
damage that takes place in the metallic matrix of the composite,
especially when the composite is subjected to a cyclic loading
which generates much higher induced temperatures. Finally, it
should be mentioned that for the considered metal matrix compos-
ite system, the rate of plastic work of the inelastic matrix is a major
contribution to the heat release as compared to the heat caused by
the damage process. The latter contribution being positive, causes
an increase in the induced temperature deviation. For example, the
contributions of this term to the induced temperature deviation
spans in the composite with anisotropic and isotropic damage laws
at ��11 ¼ 2:58% are: 6 K and 9.4 K, respectively, which form temper-
ature increase of 17% and 30%.
Fig. 17. Average of the temperature deviations DTðKÞ induced in the unidirectional
Al2O3/aluminum composite by applying a longitudinal uniaxial stress up to failure.
(A) and (I) denote the cases with anisotropic and isotropic evolution laws,
respectively, and D = 0 corresponds to the intact composite.
5. Conclusions

The aim of the present investigation was to simulate and assess
the effects of anisotropic damage evolution in ductile and brittle
matrix unidirectional composites. These effects can be detected
either by comparison with the isotropic damage evolution results
or by tracking the disparity of the evolutions of the principal dam-
age variables (i.e., D1, D2 and D3). The anisotropic damage law affects
differently the various elements of the effective compliance tensor
of the composite and thus represents the overall behavior of the
composite as an orthotropic material. For example, the effective
Young’s modulus E�1 in the fibers direction is affected differently
from the effective Young’s modulus E�2 in the transverse direction.
The same applies to thermal conductivities in the various directions.
In contrast, isotropic damage law affects these moduli in the same
manner. In the metal matrix composite, a far lower values of stress
concentrations and induced spatial temperature distributions are
exhibited by the results obtained from the anisotropic damage
law. In addition, for applied off-axis loadings, the anisotropic dam-
age law predicts failure of the composite at an earlier stage than the
isotropic law. When the metal matrix composite is cooled down
from its processing elevated temperature, the anisotropic damage
affects the induced residual stresses components differently. This
fact influences the subsequent mechanical loading of the composite
at room temperature. Initial damage envelopes in metal matrix
composites coincide with the initial yield surfaces. For the specific
brittle matrix composite that has been considered, initial damage
surfaces have been generated under various types of loading. For
off-axis compressive loading, the earliest failure of the composite
was obtained at angle h = 45� to the fibers where only one compo-
nent of the damage is predominantly active. The present results
show that anisotropic damage formulation is necessary in analyzing
the behavior of damage progression in composites. This is because
the damage mechanism is controlled by the spatial distribution of
the local fields in the composite. These local effects have been
shown to be sensitive to the anisotropic damage evolution.

The present investigation has been based on the anisotropic
damage laws of Lemaitre and Desmorat (2005). Adopting other
anisotropic damage laws are possible (e.g. Voyiadjis and Park,
1996) thus enabling, by their coupling with HFGMC, the modeling
of evolving damage in metal, polymeric and ceramic matrix com-
posites. In the present investigation the effect of crack closure, as
a result of which different responses in tension and compression
are exhibited, have been neglected. The present approach can be
extended to incorporate these effects in the ductile and brittle
matrices. In addition, damage thresholds prior to which degrada-
tions do not start, and critical damage values beyond which the
material in the subcell fails and should be removed, can be
included in the offered analysis.

The present investigation considered unidirectional composites.
Extensions to laminated materials can be performed. In addition, the
present micromechanical theory with progressive damage can be
coupled to a finite element software to investigate the behavior of
composite structures with propagating damage in the phases, thus
forming a multiscale micro–macro-structural analysis.
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