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This study proposes a micromechanical modeling of inclusion-reinforced viscoelastic-viscoplastic com-
posites, based on mean-field approaches. For this, we have generalized the so-called incrementally affine
linearization method which was proposed by Doghri et al. (2010a) for elasto-viscoplastic materials. The
proposal provides an affine relation between stress and strain increments via an algorithmic tangent
operator. In order to find the incrementally affine expression, we start by the linearization of evolution
equations at the beginning of a time step around the end time of the step. Next, a numerical integration
of the linearized equations is required using a fully implicit backward Euler scheme. The obtained alge-
braic equations lead to an incrementally affine formulation which is form-similar to linear thermoelas-
ticity, therefore known homogenization models for linear thermoelastic composites can be applied.
The proposed method can deal with general viscoelastic-viscoplastic constitutive models with an arbi-
trary number of internal variables. The semi-analytical predictions are validated against finite element
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1. Introduction

Many materials including thermoplastic polymers (Polycarbon-
ate, Polyamide, high density polyethylene, etc.), exhibit a rate-
dependent behavior at all stages of deformation. The stress—strain
response depends on the strain rate both below and above the
yield stress. Upon unloading, the slope is rate-dependent and
may be non-linear, even strongly so. Unloading to zero stress leads
to a residual strain which decreases with time but does not disap-
pear completely even after a long waiting period. All those features
can be described by coupled viscoelastic-viscoplastic (VE-VP) con-
stitutive models. This paper is concerned with the prediction of the
effective properties of inclusion-reinforced VE-VP composites.
Such materials are commonly used in a variety of engineering
applications including automotive or aerospace industry.

A micro-mechanical approach is adopted, according to which
the macroscopic stress-strain relation is computed based on an
analysis at the level of individual constituents. Among methods of
this kind one may cite: direct finite element (FE) analysis on repre-
sentative cells of the microstructure, the asymptotic or mathemat-
ical theory of homogenization, the method of cells and subcells
(which is related with the transformation field analysis), and
mean-field homogenization (MFH) techniques. This work focuses
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on the latter method, which is based on assumed interaction laws
between constitutive phases. Such models provide (hopefully reli-
able) estimates of the effective stress—strain relation, as well as a
description of mechanical fields within the phases in terms of vol-
ume averages. The major advantage of MFH is its low computa-
tional cost, which makes it suitable for two-scale simulations of
composite parts and structures.

Mean-field methods were first proposed for composites having
linear elastic constituents. Most of them rely on the exact solution
of Eshelby (1957) for an ellipsoidal inclusion embedded in an
infinite matrix, like the (Mori and Tanaka, 1973), self-consistent
(Hershey, 1954; Kroner, 1958; Hill, 1965) and double inclusion
(Nemat-Nasser and Hori, 1999) schemes. Extension of these
schemes to linear thermo-elasticity may be found in Camacho et
al. (1990), Lielens (1999), Pierard et al. (2004), among others.

Extending these schemes to the nonlinear regime usually relies
on the linearization of the local constitutive equations and the
definition of uniform reference properties for each phase, valid for
a given stage of deformation. Then, the homogenization problem
becomes form-similar to an elastic or a thermo-elastic one, depend-
ing on the chosen linearization procedure. Popular linearization
strategies include secant (Berveiller and Zaoui, 1979; Tandon and
Weng, 1988), incremental (Hill, 1965), tangent (Molinari et al.,
1987) and affine (Masson et al., 2000) approaches. The secant
formulation uses the secant stiffness tensor to relate total stress
and strain tensors, and is only valid for monotonic and proportional
loading. The incremental formulation of Hill relates stress and
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strain rates via an instantaneous tangent operator, and was initially
developed for rate independent plasticity and later extended by
Hutchinson (1976) who proposed a self-consistent homogenization
for rigid viscoplastic polycrystals.

An alternative treatment of viscoplasticity was proposed by
Weng (1982), who extended the formulation of Kroner (1961). In
this approach, the plastic strain (rate) is considered as an eigen-
strain (stress-free strain) in the isolated inclusion representation
of Eshelby. Consequently, mechanical interactions among the
phases are treated in a purely elastic way, leading to overstiff pre-
dictions of the overall behavior. The idea was extended to finite
strains by Nemat-Nasser and Obata (1986), but was also shown
to yield too stiff predictions (Molinari et al., 1997). It also sustains
mean-field models derived from the transformation field analysis
(Dvorak, 1992; Chaboche et al., 2001).

Homogenization of viscoelastic composites is usually per-
formed invoking the correspondence principle (Friebel et al.,
2006; Hashin, 1965; Hashin, 1970; Laws and McLaughlin, 1978),
according to which constitutive equations in the time domain
can be recast into a linear elastic form into the Laplace domain.
After homogenization in the Laplace space, the effective properties
in the time domain are found by the inverse transform. Extension
to nonlinear viscoelasticity is achieved by linearizing the viscosity
function, yielding successively a thermo-viscoelastic comparison
composite in the time domain, and a linear thermoelastic fictitious
composite in the Laplace domain. This approach was used to model
elasto-viscoplastic composites by Masson and Zaoui (1999), and
enhanced to fully account for internal variables by Pierard and
Doghri (2006a), see also (Pierard, 2006; Pierard et al., 2007a). The
main drawback of this approach is its numerical cost, related to
the inversion of the Laplace transform.

Recently, several approaches were proposed to homogenize
elasto-viscoplastic composites without recourse to Laplace
transform. Molinari et al. (1997) and Molinari (2002) proposed an
interaction law from the approximate solution of Eshelby’s problem
for an elasto-viscoplastic inclusion embedded into a matrix with
affine behavior. From this interaction law, Mori-Tanaka and self-
consistent schemes have been derived (Mercier and Molinari
(2009)). Different and more sophisticated interaction laws were
proposed based on projection operators and translated fields, again
using the self-consistent approximations (Paquin et al., 1999; Sabar
etal.,2002; Berbenni et al., 2004; Mareau et al., 2009). Another class
of models is based on incremental variational principle, and were
successively proposed for linear viscoelasticity (Lahellec and
Suquet, 2007a), and nonlinear viscoelasticity (Lahellec and Suquet,
2007b,c). Recently, Doghri et al. (2010a) proposed a general
incrementally affine linearization method which leads to thermo-
elastic-like relations directly in the time domain. The method is
very general, and can handle any elasto-viscoplastic model.

Compared to viscoelastic or elasto-(visco) plastic behavior, it
appears that the homogenization of viscoelastic-viscoplastic
(VE-VP) composites has received little attention up to now. Aboudi
(2005) proposed a micromechanical model to predict effective
properties of VE-VP composites based on the asymptotic
homogenization technique. In this work the VE-VP behavior is
described by the model developed by Frank and Brockman
(2001) for polymer materials. Alternatively, Kim and Muliana
(2010) used the method of cells and subcells to model VE-VP
composites reinforced by elastic inclusions, extending a previous
model in nonlinear viscoelasticity (Muliana and Kim, 2007). For
the matrix phase, the nonlinear viscoelastic behavior is described
by Shapery’s integral model, and two viscoplastic models are
considered: the Perzyna model and Valanis’ endochronic theory.

In the present work, we focus our efforts on the generalization of
the incrementally affine linearization method of Doghri et al.
(2010a) to coupled VE-VP behavior. To this end, a general

linearization procedure for viscoelastic-viscoplastic constitutive
models is proposed in a time-discretized setting. The procedure
leads to an incrementally affine constitutive relation in the time
domain which is form-similar to a linear thermo-elastic relation.
Uniform, reference properties are also defined for each phase. Then,
linear mean-field homogenization models can be applied at each
time step. Numerical algorithms are also provided. In order to
assess the accuracy of the proposed mean-field model, reference
solutions are obtained from direct FE analysis of representative
cells of the microstructure.

The paper is organized as follows. The adopted constitutive
equations of the coupled VE-VP response are summarized in
Section 2. As the linearization technique sustaining our MFH
approach makes use of algorithmic tangent operators, a computa-
tional algorithm is also presented. Section 3 presents the proposed
incrementally affine linearization procedure of the constitutive
equations, which constitutes the cornerstone of the MFH scheme.
The linearization enables us to relate stress and strain increments
by thermoelastic-like relations. The MFH procedure based on the
incrementally affine linearization is then described in Section 4.
Numerical predictions of the semi-analytical homogenization
scheme are compared against FE simulations and experimental
data in Section 5 and the results are discussed. Conclusions are
drawn in Section 6.

The following acronyms are used throughout the text. VE:
viscoelastic(ity), VP: viscoplastic(ity), EVP: elasto-viscoplastic
(ity), VEP: Viscoelastic(ity)-plastic(ity), VE-VP: viscoelastic(ity)-
viscoplastic(ity), and MFH: mean field homogenization. Boldface
symbols designate second or fourth-rank tensors, as indicated by
the context. Dyadic and inner products are expressed as:

(a ® b)ijkl = Cl,'jbkl7 a:b= aijb,-,-, (A : b)y = Aijklbllm

where summation over a repeated index is supposed. The symbols 1
and I designate the second- and fourth-rank symmetric identity
tensors, respectively. Finally, the spherical and deviatoric operators
1" and I1%? are given by:

1 = %1 ®1 and I=1-1"

so that for a; = a;; we have:

=a-— 1amml = dev(a)

ldev ‘a
3

°.a= %amml,

2. Homogeneous viscoelastic-viscoplastic isotropic materials
2.1. Constitutive relations

The coupled VE-VP constitutive equations considered in this
work are described in detail Miled et al. (2011). They are summa-
rized as follows. The constitutive model is based on the assumption
that the total strain can be decomposed into VE and VP parts:

e=€"+¢€" (1)

2.1.1. Linear viscoelastic response

The Cauchy stress a(t) is related to the history of VE strains €'®
for T < t via a linear VE model expressed by Boltzmann’s heredi-
tary integral (Boltzmann, 1878):

a(t):[ E(t—'c):ag:d‘c 2)

For an isotropic material, the fourth-order relaxation tensor is writ-
ten as:

E(t) = 2G(0)I% + 3K(6)[" (3)
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where G(t) and K(t) are shear and bulk relaxation functions, respec-
tively, which can be expressed in the form of Prony series:

I J
G(t) = G + Y Grexp <— g£> and K(t) =K.+ Kjexp <—k£>
i=1 i j=1 7
(4)

Here,g; (i=1...I)and k; (j = 1...]) are the deviatoric and volumet-
ric relaxation times respectively; G; (i=1...])andK; j=1...]) are
the corresponding moduli or weights, and G.. and K, are the long-
term elastic shear and bulk moduli.

Then, by substituting Egs. (3) and (4) into Eq. (2), the deviatoric
(s(t)) and dilatational (oy(t)) parts of the stress tensor may be
expressed in function of the deviatoric (£(t)) and dilatational
(en(t)) parts of the strain tensor:

1

S(t) = 2G..&°(t) + ) _si(t)

i=1

} (5)
Ou(t) = 3K €F (t) + > o (t)
=
where viscous components are defined by:
si(f) = 2G;exp (— é) [f. exp (ﬁ,) %% dr -

a1 (t) = 3K; exp (— %) I\ exp (k—ﬁ) i dt

2.1.2. Viscoplastic response

Reference Miled et al. (2011) used the classical J, rate-
dependent model with isotropic hardening to represent the VP
effects. Accordingly, the yield criterion is given as follows:

3
G =1/55:S (7)

where o, is the von Mises equivalent stress, o, the initial yield
stress (which may depend on the strain rate) and R(p) the harden-
ing stress. The accumulated plastic strain p is an internal variable
which keeps track of the past history of the VP strain:

p(t) = ’/:p(r) dr and p= \/éepiep .

The VP strain rate follows a plastic flow rule:

f(Oeq, D, €) = Geq — (0y(€) + R(D));

er=pd pN g

where the N tensor is given by:

N = % qu which implies N:N :% (10)

and the multiplier p is defined by a viscoplastic function g,:

{‘? =0 . <0 (11)
p=8,(0e.,p,€) >0 if f>0

2.2. Computational algorithm

The numerical algorithm proposed by Miled et al. (2011) for the
coupled VE-VP behavior is based on a combination of techniques
which were previously used separately for VE and EVP models
(e.g., Simo and Hughes, 1998). Two approaches have been consid-
ered to compute the integrals of Eq. (6) over t € [t,, t,.1]. The first
one supposes that the VE strain rate is constant over the time
interval, and the second method is the mid-point integration rule.
The two methods lead to the definition of incremental relaxation

moduli G(At) and K(At) which are functions of the time increment
At (the symbol A designates an increment over the given time
interval). The remaining blocks of the computational algorithm
are written in a unified manner for both integration methods using
G(At) and K(At):

~ I
S(tni1) = 268" (6) + 2GAE™ + Y exp (- &) si(tn)
i=1
T (12)
Gu(tan) = 3K € (t) + 3K A+ exp (- %) )
=

where G and K are defined for the first method as follows:

R SE

J (13)
K=K, + ];Kj {1 —exp (f%)] vy

and for the second method:

6:(;(%) and 1?:1((%) (14)

A return mapping algorithm has been proposed based on two-steps,
VE predictor followed by VP corrector. The unknown stress at t,,1 is
expressed in a remarkably simple manner:

6(tns1) = 67 (1) — E : A€ (15)
with:

~ ! At
6" (tny1) =Ey 1 €°(tn) + E: A€ + ) _exp <— g_i> si(ty)

i=1

J At
AR e 16
+;exp< AL (16)

where E. = 2G. I + 3K.I"" and E = 2GI* + 3KI'". The total
stress tensor can be written at t, using Eq. (5):

J
o(tn) = Ex : €°(t) +ZI:Si(fn) +y o (ta)1 (17)
i=1 1

Jj=

Combining Egs. (15) and (17), we find the following expression of
the stress increment (A6 = 6(ty,.1) — 6(ty)):

Ao =E : (Ae — A€™) +a(t,) (18)

where a(t,) is the following second-order tensor:

aty) =-Y {1 —exp (7§>}s"(t”) -3 {1 —exp <7%t>} o, (ta)1

1

1

]

(19)

The stress-strain incremental relation Eq. (18) is very similar to the
EVP case except that we use a viscoelastic tangent operator E
(which is a function of At) instead of a (constant) elastic stiffness
operator and we have introduced a second-order tensor a(t,)
(which is nil in EVP). Contrary to elasto-plasticity, there is no
one-to-one correspondence between stress and strain rates in a
VE-VP model. However, when considering finite strain and stress
increments instead of infinitesimal ones, an algorithmic tangent
operator C*® may be derived from a consistent linearization of the
time-discretized constitutive equations around the solution at t,:

66 (tni1) = C8 : 5€(tyn 1) (20)

where § designates a total variation at t,,1 (thus 6x(t,) = 0, where x
designates a variable).Radial return mapping described above for
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the VE-VP model is similar to the classical EVP case. Hence, the
algorithmic tangent operator is derived by adopting a similar rea-
soning as for J, EVP. After some mathematical developments (see
Miled et al., 2011), the following remarkably simple expression is
obtained:

GqAp 0N 2G
Oeq + 36Ap oo hvg,a

_ (20) o
Ca'g:E——N®N—<ZG> Nog,

hy
(21)

where the rate-dependent denominator h, is defined by this
expression:

+3G-22 (22)

o8, . _0g,. _1og,
9o, 5P~ op ' BT Ar ve

Notations : g, =

When the initial yield stress o, is constant then g. =0, and the
algorithmic tangent operator becomes symmetric and form-identical
to its expression in EVP in Doghri (2000, e.g. chapter 13) provided
that the incremental relaxation moduli G and K replace the constant
elastic moduli G and K.

The expressions of g, and g, depend on the considered VP
function. For example, using Norton’s power law:

o (D" i f>0
g,(0eq.p) =4 7 %) I (23)
0, otherwise

where #[Pa s] and m are the viscoplastic modulus and exponent,
respectively. We can easily compute:

m f)"” g, dR n (f)l”" ~ dR
s=—(L) , 2LE=-2) h=—1 (= +3G+-
£ n(o'y g, dp m(AD) \a, dp

The overstress can also be considered using another power-law VP

function with two parameters: the viscoplastic modulus (k[1/s])
and exponent (m) which appear as follows:

s \"
gy(Ueq,p) = { K<“y+R(P)>
0,

For this case:

if f>0

otherwise

(24)

RS-
g,a - f ’ g.p - gy dp O-y +R(p) k]
f ~ dR o,
mg,(At) dp oy +R(p)
From the algorithmic tangent operator computed for the coupled
VE-VP case, we may retrieve the operator for traditional types of
constitutive equations:

1. From VE-VP to linear viscoelasticity: This case is obtained when
the initial yield stress (o,) tends to +oco. The VE predictor is
always the solution, and terms in Eq. (21) which are due to
the evolution of VP strains (i.e. N and & terms) vanish. This
gives:

Ct—E (25)

2. From VE-VP to elasto-viscoplasticity: This case is obtained when
the shear and bulk relaxation times tend to +co, and when the
initial yield stress is constant.

(26)°

Calg _ Eel _TUN®N _ (2G)2

OeqAp ON

Geq + 3GAp 6 (26)

where:

J
K=K.+> K

=1

1
EY = 2GI° + 3KI", G=G.+) G,
i=1

hy=— L 3c_8»

(A)g, g,

2.3. Regularization of the algorithmic tangent operator

Starting from Eq. (22), it can be shown that h, — oo for very
small time increments (At — 0), which is unacceptable (because
then C*# approaches E although €' = 0). In order to solve the
problem, Doghri et al. (2010a) developed a regularization method
in EVP starting from a 1D analytical tangent expression valid for
the most simple case (monotonic uniaxial tension, constant strain
rate, linear isotropic hardening and linear viscous stress).

A similar development leading to a regularized tangent operator
for coupled VE-VP behavior starting from the 1D analytical solu-
tion proposed by Miled et al. (2011) is a difficult task even for
the most simple case. Instead, in the present work we propose a di-
rect generalization of C*® from EVP to VE-VP case:

Creg(tnﬂ) = Cvep(tnﬂ)
re, Ve hVe
+ (C™8(t) — €' (tni1)) €XP <7 ﬁ) (27)
v vep

where C*(t,,1) and h,e, are expressed as follows:

~\ 2
;(20) c_¢
CVGP:E—h—N@)N, hvePZBG—i

vep 0

(28)

From Eq. (27), we can show that when At — 0, then C*®(t,,;) tends

to C*%(t,) (because exp (— h;‘jffvep) = exp (—Atg‘J(BE - %)) oL
At—0
g, and g—"ﬂ’ are independent of At, and EQG), and not to the VE
At—0

tangent operator E, as in the case of the algorithmic tangent
operator. From the same equation, the expression of the regularized
tangent operator for the EVP behavior is recovered when the shear
and bulk relaxation times tend to +cc.

For rate-dependent VE-VP, C*¢(t,, ) is the regularized tangent
operator that is used later in mean-field homogenization, instead
of the original algorithmic tangent C¢(t,.,1) of Eq. (21). Numerical
experience showed that C*¢(t, ) is quite insensitive to the value
of At and behaves correctly for vanishingly small At.

3. Incrementally affine linearization method

The main purpose of this section is to relate the increments of
stress and strain via a tangent operator. This is needed later for
the homogenization of VE-VP composites.

3.1. General presentation

Consider the same general viscoplastic model studied by Doghri
et al. (2010a). The evolution equations of the VP strain €'? and the
scalar and/or tensor internal variables V are given by these
expressions:

€ (t) = €(a(t), V(1),V(t) =V(a(t), V(1)) (29)
Notations : €, = %; Ey = g—‘é,; V, = 2; Vy = g—‘;
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The previous equations are linearized at time t close to a time t:
€P(t) = €7(1) + €4(1) : (a(t) — 6(1)) + €v(T) ® (V(t) — V(7))

(30)
V() = V(1) + V4(7) : (6(t) — 6(7) + Vy(T) o (V(t) = V(7)) (31)

The bullet symbol "e” designates a sum of inner products, e.g., if
V = (p,X), then:

év oV = Epép 4+ €x:0X

The linearized evolution equations (Eqgs. (30) and (31)) are then
discretized using a fully implicit backward Euler time integration
algorithm while choosing (t=t,,T =t,,1). The resulting time
discrete form of these equations is:

{ﬁAe"P = €P(ty) + €4(tni1) : AG + Ey(tni1) e AV

. i i (32)
LAV =V(t,) + Vo (tn.1) : A6 + Vy(tai1) o AV

We can rewrite the second equation of system (32) as follows:
&1 ~Vy(tn )} e AV =V(t,) +V4(tn1) : AG (33)
Combination of the first equation of system (32) with Eq. (33) gives:
A€ = [€7(t) + Eultan) o] " o V(ta) + (...} : A|AL (34)
where the expressions of [...] and {...} are given by:

[.]= ﬁl — Vy(tas1) (35)

{o} = Eoltnsr) +Eu(tarr) o [..] " @V o(tuir) (36)

We note that Eq. (29) — Eq. (36) are the same as those of EVP case
(see Doghri et al., 2010a). After substituting the expression of Ae'?
(Eq. (34)) in Eq. (18), the following final result is reached:

A6 = C&(t,.1) : (Ae — Ae¥)| 37)

where the algorithmic tangent operator at time ¢, 4 (Calg(tnﬂ )) and
the affine strain increment (A€¥) are expressed as follows (see A):

() = (B + A )

A€ = AeX —E':a(t,) (38)

evp

£ . L
where A€g,, is given by this expression:

A€ty = [€7(t) + Eultnn) o] o Vit) At (39)

Replacing the expressions of E-! and a(t,) in the general equation of
A€ (Eq. (38)), we find:

1 At
af af
Ae® = Aeevp + E § {1 — exp <—g—l>} Si(tn)

i

1 At
+ 3% j {1 exp ( k,»)} on;(ta)1 (40)
To recover the EVP results from the incrementally affine relation Eq.
(37), it suffices to choose g; — +co and k; — +oc. In this case, the
second-order tensor a(t,) expressed by Eq. (19) vanishes, and,
hence: Ae*’ = AeX |, which is the EVP affine strain increment given
in Doghri et al. (2010a).Contrary to the original formulation
(Masson and Zaoui, 1999; Pierard and Doghri, 2006a), the
incrementally affine formulation Eq. (37) is directly affine in the
time domain, and not in the Laplace-Carson one. In addition, it is
very general, and it is valid for any viscoplastic model described
by a set of scalar and/or tensor variables V. Finally, it is very similar

to that of EVP case except that we use a viscoelasic tangent operator
instead of an elastic stiffness and we have a second-order tensor
a(t,) # 0 instead of a null tensor.

3.2. Application to J, constitutive model

In J, viscoplasticity, the evolution equations of the VP strain €'P
and the scalarinternal variable V = p are given by these expressions:

€P(t) = €(a(t),p(t)) = g,(Teq, )N (41)
p(t) = p(6(t),p(t)) = &,(Teq, P) (42)
The partial derivatives of the previous functions give:

- 0, - 0,

po=ror — % (43)

eq Pr ap

. _ON .
€o =P +N®@Ds €p=PN (44)

Replacing the expressions of the partial derivatives (Eqs. (43) and
(44)) in the general equation of the affine strain increment for the
EVP behavior Ae€¥  (Eq. (39)), we find:

evp
gp(tai1)AL
1 _g.p(th)At

The last relation is a function of At, p(t,), N(t,), N(tns1) and g , (tni1).
The linearization method can be extended to more sophisticated
models combining both nonlinear isotropic and kinematic harden-
ings. This extension is already available for the elasto-viscoplastic
case (Doghri et al., 2010a).

Aeg\f/p = p(tn)At N(tn) + N(tn+1) (45)

4. Mean-field homogenization (MFH) of VE-VP composites
4.1. Analogy with thermoelasticity

We now address the homogenization of two-phase composites
having VE-VP phases. In the sequel, subscripts 0 and 1 designate
matrix and inclusion phases, respectively, and (), , (), and () des-
ignate volume averages over matrix, inclusions and representative
volume element (RVE) domains, respectively.

We have shown in the last section that a VE-VP response can be
expressed in the incrementally affine form (Eq. (37)). Actually, this
equation is form-similar to linear thermoelasticity, so that avail-
able homogenization models for linear thermoelastic composites
can be applied at each time step. Indeed, for a linear thermoelastic
composite, the local constitutive response can be written as:

6(x) =E%(x) : (e(x) — €™(x)), €M(x) = a(x)AT
=E%(x): €(x) + B(x), Bx)=—E(x): a(x)AT (46)

where E® (x) is the elastic stiffness, a(x) the thermal expansion, and
AT is a change in temperature. Based on Eq. (37), application of
thermoelastic models to the present VE-VP composites can be
achieved provided that for each time interval the following substi-
tutions are made:

66— Ao, EC™ e—Ae, (f) — —C: A€ (47)

where C*" designates a tangent operator. The incrementally affine
relation (37) is rigorously valid for the algorithmic tangent,
C" — C¥%, However, and as discussed in Section 2.3, for MFH we
use the regularized tangent operator of Eq. (27), i.e. C®" = C™%, Clas-
sical relations for the effective properties of linear thermo-elastic
composites are given in B. However, when VP strains evolve within
a phase,the tangent operator is not homogeneous within the phase,
preventing the direct application of the linear schemes described

Please cite this article in press as: Miled, B., et al. Micromechanical modeling of coupled viscoelastic-viscoplastic composites based on an incrementally
affine formulation. Int. J. Solids Struct. (2013), http://dx.doi.org/10.1016/j.ijsolstr.2013.02.004



http://dx.doi.org/10.1016/j.ijsolstr.2013.02.004

6 B. Miled et al./ International Journal of Solids and Structures xxx (2013) xXx-xxXx

here-above. A similar problem affects the affine strain increment
per phase (whether VP strains evolve or not). A workaround is to

define uniform, reference comparison operators C2"(t) and A& (t)
for each phase (r), computed in this work from the constitutive
equations of the phases evaluated at the phase average of the strain
in the phase. Using the substitutions of Eq. (47), the macroscopic
thermo-elastic expression (Eq. (B.3) in Appendix B) is then rewrit-
ten as follows:

(AG) = C: (A€) — voC5™ : A&l — v, € : A& — oy (CB — €™
SA-T):(CRn - CEmy (G Al - 5o AEY) (48)

The comparison tangent operators for the matrix (C2") and inclu-
sion (C'*") phases are uniform and anisotropic, by construction.

4.2. Isotropisation of the tangent operator

Predictions of the incremental or affine formulations are known
to be too stiff and this is illustrated for instance by Pierard (2006);
Pierard and Doghri, 2006b for elasto-plastic or elasto-viscoplastic
composites. Various attempts to soften the response are presented
in the literature. The key idea is to consider tensors other than
anisotropic tangent tensors (C*) in the computation of the
Eshelby, Hill and effective tangent tensors. This can be done by
extracting an isotropic part of the given anisotropic tensors. To
do this, we must find two scalars y, and k; from C*" so that the
fourth-order isotropic projection (C*°) is written as follows:

Ciso _ Zl,l[ldev + 3I<fIVOl (49)

The “tangent” shear (x,) and bulk (k;) moduli depend on the chosen
extraction method. We present hereafter a so-called special
isotropisation method. The inspiration for the method comes from
a spectral decomposition of certain expressions of C*™ proposed
by Castafieda (1996). His decomposition applies to €™ which can
be cast as follows:

i 3k1IVOI + 2k, <Idev — %N ® N) + 2ks3 (%N ® N) (50)

with Nj; = 0 and N : N = 3. The spectral isotropisation method as pre-
sented in Castafieda (1996) or Pierard and Doghri (2006b) cannot be
applied directly to the VE-VP case. However, we took inspiration
from the existing method to propose in C a special isotropisation
for the incrementally affine formulation of Eq. (37) by introducing
four hypotheses:

1. Npg =N, (= Aeg{,p /| N), where “//” means ‘is collinear with’.

2. dev (A€) /| N, (true for Ae'?, and a hypothesis for dev (Ae*¢))

3. dev (A€ |/ N (true for A€l if Ny 1 = N, and a hypothesis for
dev (E~': a(ty)))

4. The initial yield stress o, is constant (= g, = 0).

According to the first three assumptions, the loading is propor-
tional during a given time step. This was also assumed in the ori-
ginal spectral isotropisation method which was proposed for
elasto-plasticity. Nevertheless, the resulting isotropic tangent
operator will be used for all kinds of loading histories, including
non-monotonic ones.

The tangent bulk and shear moduli k; and g, are then found as
follows:

kt:kl,,ut:kg (5])

An application to algorithmic tangent operator of J, viscoplasticity
gives (see Appendix C):

k=K, ut—6<1—3c> (52)
h,

which is form-identical to EVP (Doghri et al., 2010a) except that the

incremental relaxation shear modulus G replaces the constant elas-

tic shear modulus.

As explained in Section 2.3, the regularized tangent operator
has been used in this work, instead of the original algorithmic
tangent, for all numerical simulations in order to obtain good
predictions for small time increments. In particular, reference,
regularized tangent operators C*® are used at every occurrence of
(AIE‘“ (r=0,1) in Eq. (48). The tangent shear modulus associated
with the isotropisation of the regularized tangent C*®(t,,,) of Eq.
(27) is computed as follows:

hye
P () = W (Eni) + (L8 (En) — p*P (En)) €XP (— #)
v vep
(53)

where p“®P(t,.;) is the tangent shear modulus obtained from the
special isotropisation of C*"(t,.1) (Eq. (28)):

(1) = G (1 _ 3G> (54)

hvep

Let us remark that even if p*P(t,,4) and u™&(t,) were computed
from the special isotropisation of C'*P(t,.;) and C™%(t,), respec-
tively, u™8(t,,1) computed from (53) does not necessarily corre-
spond to the special isotropisation of C*¥(t,.). Indeed, C"®(t;;)
cannot be cast in general under the form (50) needed by the special
isotropisation method. In summary, p¥*P(t,.1) is computed by spe-
cial isotropisation while u"(t, 1) is given by the recurrence for-
mula (53).

The expressions of hye, for two different VP functions are given
as follows:

3G +48, Norton’s power law — Eq. (23) —

C.LdR_ e
3G 4G 5 k)

e another power law approach — Eq. (24) —

(55)

In order to recover the EVP case, it suffices to choose g; — +co and
kj — +o0. In this case G and hvep are remplaced by G (see Eq. (26))

and hep (: 3G+ %). respectively.

4.3. Numerical implementation

In order to compute the macro stress 6,,,; and the macroscopic
tangent operator C, we propose a numerical time discretization
algorithm. For this, we consider a time interval [t,, t,.1] for which
we assume that &, (macro strain at t, ), A (macro strain increment)
and all history variables at t, are known. The algorithm is de-
scribed hereafter:

1. Initialization of the average strain increment in the inclusion
phase:

(Ag),, = AE

2. Take the regularized tangent operator C;* as reference mod-
ulus (for this work, the behavior of inclusions is linear elas-
tic, so, C® = C}') for the inclusions phase. (¢,),, and (Ag),,
are introduced as input.

3. Compute average strain
L[AE - v1(Ag)

in matrix phase: (Ag), =

w ]
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4. Call VE-VP constitutive law of matrix material with (g,),,,
and (Ag),, as an input. Compute the regularized tangent

operator Cs.

5. Extract isotropic part C{f" from reference matrix modulus
ce

6. Compute Eshelby’s tensor S (which is function of C}f" and the
shape of the inclusions) and the strain concentration tensor
B (Eq. (B.6)) with this isotropic modulus.

7. Check compatibility of average strain in inclusions phase by
computing the residual (computed from Eq. (B.3)):

R=B:[vB+ vl ' :Ag - (Ag),, +a°

Wo

where a‘ is expressed in Eq. (B.4).
8. If |R| <Tolerance, then exit the loop,
9. else: new iteration (go to step 2) with new (Ag),, :

(Ag),, — (Ag),, + R;¢ €)0,1].

For all numerical simulations, we used a value of ¢ = 1.
10. After convergence, compute macro tangent operator:

C = [voC5° + v,C : B : [wol + 4 B]

Finally, compute macro stress increment (Eq. (48)).
5. Results and discussion

In order to assess the semi-analytical MFH method, we have
carried out finite element (FE) simulations of a continuous VE-VP
matrix reinforced by ellipsoidal or spherical inclusions with linear
elastic behavior. For this, the proposed algorithms for the VE-VP
model were implemented in the ABAQUS, 2009 FE software via a
user defined material routine (UMAT). At each time step, each iter-
ation of the FE equilibrium equations, and each integration point,
the total strain increment and the history variables at the begin-
ning of the step are passed to the UMAT, which must in turn com-
pute the Cauchy stress and the algorithmic tangent matrix. For
each FE analysis, the composite’s macroscopic stress equals the
volume average of the stress over the unit cell, which is computed
as follows:

1
6= VZakv,( (56)
k=1

where a;, is the stress acting at integration point k, V, is the volume
attached to integration point k, and N is the number of integration
points within the volume V. As an example, we consider a compos-
ite material made of a polycarbonate polymer matrix reinforced
with glass particles or fibers. The elastic properties of the particles
are E; = 76 GPa and v; = 0.22, and those of the matrix are collected
in Table 1 which presents parameters of polycarbonate at 22 °C
based on experimental data collected from Frank (1997). The

Table 1
Constitutive model parameters for polycarbonate at 22 °C.

Viscoelastic parameters

Initial shear modulus Go=1074 MPa

Initial bulk modulus K¢=3222 MPa

G;(MPa) gi(s) Kj(MPa) k;i(s)
157 0.0021 472 0.007
80 0.00378 242 0.126
37 0.0248 111 0216
viscoplastic parameters

Hardening function k=150 MPa n=0.43

Viscoplastic function Kk=150s"1 m=5

Yield stress 0,=35 MPa

parameters were identified based on measured data from uniaxial
compression tests. The hardening matrix’s function considered in
the following is of power-law type:

R(p) = kp" (57)

where k [MPa] is the hardening modulus and n the hardening expo-
nent. The matrix’s overstress due to the rate-dependence also obeys
a power-law (see Eq. (24)). In this work, different unit cells were
considered: 2D axisymmetric unit cell model and a 3D one. All
MF simulations presented in this section took a few seconds of
CPU time on an ordinary PC. On the contrary, the FE simulations
took several minutes with 2D axisymmetric unit cell, and more than
24 h of CPU time with 3D unit cell.

5.1. 2D axisymmetric unit cell

The volume fraction of particles is 15%. Assuming a periodic
microstructure and uniaxial stress tests, a 2D axisymmetric unit
cell is defined and depicted in Fig. 1(a). The prescribed boundary
conditions are the following. Zero displacements are imposed in
the radial direction on the left vertical side and in the vertical
direction on the bottom horizontal side. The right vertical side is
constrained to have uniform radial displacement. Uniform vertical
displacement is imposed on the top horizontal side.

We used the GMSH (Geuzaine and Remacle, 2009) software to
mesh the geometry, and a typical mesh comprises approximately
1000 elements and 2700 nodes. A comparison of the predictions
to those obtained with finer meshes is performed in order to study
the convergence. Finally, the FE computations are conducted using
ABAQUS software using six-noded triangular elements (CAX6) for
the inclusion phase and eight-noded quadratic elements (CAX8)
for the matrix phase.

The influence of time step size is illustrated in Fig. 2. For this, we
present the predictions of tension test at the strain rate of 107> 5!
with different numbers of time steps, and we apply special isotrop-
isation method to algorithmic and regularized tangent operators.
In the latter case, it is shown that the result is independent of
the number of time steps and the best prediction compared to
the FE simulation is obtained also.

The numerical simulations of the effective response for a com-
plete loading cycle are plotted in Figs. 3-5. Curves for three differ-
ent strain rates 0.005 (Fig. 3), 0.5 (Fig. 4) and 6s~' (Fig. 5) are
included, and comparison between FE simulations and predictions
of MFH method (the proposed incrementally affine theory) is
made. The figures show that MF predictions during different load-
ing stages are comparable to FE ones, and that the MF results are
too stiff for all strain rates. We remark also that the accuracy of
the predictions decreases systematically as the strain rate
decreases.

In order to identify the origin of the discrepancy between MFH
and FE predictions, we performed simulations of composites with
VE matrix (Fig. 6) and EVP matrix (Fig. 7). The behavior of the VE
matrix is obtained taking material parameters of Table 1 with
0, — oo. The behavior of the EVP matrix is obtained taking mate-
rial parameters of Table 1 with g; — oo and k;j — oo. The loss of
accuracy at small strain rates may be attributed mostly to the vis-
coelastic part of the response (Fig. 6). On the other hand, MFH pre-
dictions for a EVP matrix remain satisfying even at small strain
rates.

Stress relaxation results are presented in Fig. 8. During the first
stage of the uniaxial tension test, the sample is loaded at a constant
strain rate of 6s', and after time t = 0.0083 s the strain is held
constant, leading to stress relaxation.

The impact of the parameter (m) of the viscoplastic function on
the stress-strain relationship of the composite is illustrated in
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Fig. 1. (a) 2D Unit cell representation of a two-phase composite with periodic microstructure under axisymmetric loading, (b) Representative volume element (RVE)
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Fig. 2. tension test at the strain rate of 10~ s~! for a volume fraction of spherical
inclusions equal to 15% with different numbers of time steps (200, 1000 and 10000),
and using special isotropisation method. The FE simulations are shown for
comparison. Data from Table 1.

Fig. 9. Three values of matrix viscoplastic exponent are considered:
m = 1,5 and 20. This figure shows that the MF response is stiffer
than the FE result and that the discrepancy worsens with increas-
ing m value. At the microscale, when m > 1, it follows from Egs.
(7), (11) and (24) that:

1/m
Oeq = (0y +R(p)) |1+ (%) > o, +R(p)
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Fig. 3. Polycarbonate matrix reinforced with elastic spherical particles. Uniaxial
cyclic loading at the strain rate of 0.005 s~! for a volume fraction of inclusions equal
to 15%. Comparison between FE simulations and predictions of the proposed
incrementally affine theory. Fitted matrix material parameters are listed in Table 1.
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Fig. 4. Polycarbonate matrix reinforced with elastic spherical particles. Uniaxial
cyclic loading at the strain rate of 0.5 s~! for a volume fraction of inclusions equal to
15%. Comparison between FE simulations and predictions of the proposed incre-
mentally affine theory. Fitted matrix material parameters are listed in Table 1.
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Fig. 7. Elasto-viscoplastic matrix reinforced with elastic spherical particles. Finite-
element (symbols) and incrementally affine homogenization (solid lines) results for
uniaxial tension at different strain rates for a volume fraction of inclusions equal to
15%.
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strain rate of 6 s~! up to time t = 0.00833 s, (2) relaxation. Fitted matrix material
parameters are listed in Table 1.
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Fig. 9. Finite-element (symbols) and incrementally affine homogenization (dashed
line) results for uniaxial tension test for a volume fraction of inclusions of 15%, for
different viscoplastic exponents (m) with two strain rates: (a) 0.005s !, (b) 1s71.
Fitted matrix material parameters are listed in Table 1.

Therefore, if 0 < ﬁ < 1, the equivalent stress ., increases if we in-
crease the value of m. In terms of MF predictions, the resulting in-
crease of 0.4 leads to a stiffer and less accurate prediction.
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Fig. 10. Finite-element (symbols) and incrementally affine homogenization
(dashed line) results for uniaxial tension test at different strain rates with two
volume fractions of spherical inclusions: (a) 15%, (b) 30%. Fitted matrix material
parameters are listed in Table 1.

The numerical simulations of the effective response in uniaxial
tension for 15% and 30% volume fraction of inclusions at different
strain rates are illustrated on Fig. 10. For decreasing strain rates, re-
sponses become softer and should tend to the rate independent
one. The rate of loading has a significant effect on the mechanical
response in both the viscoelastic and the viscoplastic regime. The
two homogenization methods produce similar predictions. How-
ever, the proposed incrementally affine method tends to overesti-
mate the stresses at composite level.

5.2. 3D representative cell

For the 3D representative cell, a parallelepipedic unit cell of size
(30 x 10 x 10) for inclusions aligned with their revolution axis is
defined and depicted in Fig. 1(b). The microstructure is filled with
30 ellipsoidal inclusions and the mesh comprises about 2,00,000
second-order tetrahedra (C3D10M in ABAQUS). The fibers’ volume
fraction is v; = 15% and their aspect ratio o. = 3. For the aligned fi-
bers microstructure, a uniaxial loading is applied either in the lon-
gitudinal or a transverse direction w.r.t. (with respect to) the
inclusion revolution axis. We note that the generation of the ran-
dom distribution follows Pierard et al. (2007b).

The predictions of the effective behavior provided by the MFH
model and the FE results for a uniaxial loading applied either in
the longitudinal or the transverse direction are presented in
Fig. 11. It is observed that the MFH method overestimates the mac-
roscopic stress whatever the direction of loading (longitudinal or
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Fig. 11. Polycarbonate matrix reinforced with elastic ellipsoidal particles. Uniaxial
tension loading at different strain rates for a volume fraction of inclusions equal to
15% and aspect ratio o = 3. Comparison between finite-element (symbols) simu-
lations and predictions of the proposed incrementally affine (solid lines with
symbol) theory. Uniaxial tension is performed either in the direction of the
inclusions axis (a) or tranversely to the inclusions axis (b). Fitted matrix material
parameters are listed in Table 1.

transversal) and the strain-rate. When the loading is applied in
the transverse direction w.r.t. the inclusion revolution axis, the dis-
crepancy between FE simulations and predictions of the proposed

GMF _ GFE

incrementally affine theory (computed as “—z7-) varies between

10% for &£ = 0.0005 s~ and 7% for ¢ = 5s~'. The predictions are a
lot less accurate when the loading is applied in the longitudinal
direction w.r.t. the inclusion axis. The per phase average stresses
are depicted for a matrix reinforced by 15% of ellipsoidal inclusions
at the strain rate of 0.05s! in the longitudinal (Fig. 12(a)) and
transverse (Fig. 12(b)) direction w.r.t. the inclusion axis. A good
agreement is observed between results predicted by our MFH
method and those obtained by FE simulations for the average
stress in the matrix phase. However, the average stress in the
inclusions is overestimated. This observation is more pronounced
for a loading in the longitudinal direction. Fig. 13 presents contour
plots of the accumulated plastic strain in the matrix for both load-
ing directions. In the longitudinal case, deformation is concen-
trated at the ends of the elongated fibers, while other matrix
regions present a relatively low and homogeneous level of plastic
strain. When loading is applied transversely to the direction of
the fibers, the plastic strain distribution is much more homoge-
neous, except for some zones very close to the particle/matrix
interfaces. In addition, the plastic strain reaches locally much high-
er values in the longitudinal case than in the transverse one.
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Fig. 12. Polycarbonate matrix with 15% of ellipsoidal elastic inclusions under
uniaxial tension test at the strain rate of 0.05 s~': Mean-field homogenization (solid
lines) and finite-element (symbols) predictions of average stresses in both phases.
Uniaxial tension is performed either in the direction of the inclusions axis (a) or
tranversely to the inclusions axis (b). Data from Table 1.

Similar observations were made for the MFH of elasto-plastic com-
posites with ellipsoidal inclusions (see Doghri et al., 2010b, 2007b).
All these observations show that the effects of stress concentra-
tions are more crucial when loading is applied in the longitudinal
direction w.r.t. the inclusion revoluion axis, and are less important

LT O

2
2
2
i
1
1

when the composite is loaded in the transverse direction. These
observations explain why for a loading in the fiber direction, the
numerical predictions of the incrementally affine method based
on first moments show a poor match against FE reference results.

5.3. Validation against experimental data

The numerical predictions were validated against experimental
data (for unreinforced matrix material, and composite) reported by
Drozdov et al. (2003). The material properties of the unreinforced
polycarbonate matrix are collected in Table 1 except that
0y, =32 MPa and k = 120 MPa. The composite is made of a polycar-
bonate matrix reinforced with 10% of short glass fibers with an as-
pect ratio of the order of 100 and subjected to uniaxial tension at
the strain rate of 0.0011s~'. The elastic properties of the fibers
are E; = 76 GPa and v = 0.22. With these data, Fig. 14 shows that
we have a very good fit for the polycarbonate matrix. However,
the prediction of the composite’s response with incrementally af-
fine formulation is too stiff.

5.4. Discussion

The first part of the MF simulations concern a VE-VP matrix rein-
forced with spherical inclusions, where the MF predictions were
compared to FE simulations on unit cells, Figs. 2-10. In general,
the MF results were found to be acceptable, and the regularized tan-
gent operator of Eq. (27) provided time increment-independent
predictions (Fig. (2)). However it was found that compared to FE
simulations, the results worsen when decreasing the strain rate
(e.g., Figs. 3-5) or increasing the VP function exponent m (e.g.,
Fig. (9)). Nevertheless, we cannot be conclusive about these obser-
vations. Firstly, such conclusions do not apply to EVP composites
(see for instance Doghri et al. (2010a) and Brassart et al. (2012)).
Secondly, the effect of the two parameters cannot be isolated of
one another since the viscous stress (which is equal to the yield
function f in the present formulation) depends on the strain rate.
For instance, for the power law function of Eq. (24), we presume
that the quality of predictions depends on the following dimension-
less parameter (see Section 5.1): (p/x)"/™. However, it is difficult
to conduct an analytical study of MF accuracy because of the com-
plexity of the effective stress expression (see (48)).

The quality of MF predictions also declines when increasing the
volume fraction of the stiffer elastic spherical inclusions (Fig. (10)).
This was also observed for other per-phase material models (e.g.,

Fig. 13. Contour plot of the acumulated plastic strain in the matrix after tensile deformation up to 5% for a volume fraction of the ellipsoidal elastic inclusions equal to 15%
and at the strain rate of 0.05 s~'. The applied elongation is either in the direction of the fibers axis (a) or in the transverse direction (b).
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Fig. 14. Polycarbonate matrix reinforced with 10% of short glass fibers (with an
aspect ratio of the order of 100) under uniaxial tension test at the strain rate of
0.0011 s~'. Experimental data from Drozdov et al. (2003). Fitted matrix material
parameters are listed in Table 1 (except that o, = 32 MPa and k = 120 MPa).

elasto-plastic or EVP) as can be seen in numerous papers listed in
the bibliography section. Some of the inaccuracy is attributed to
the Mori-Tanaka model itself which is used to homogenize the lin-
ear comparison composite (LCC). Indeed, it is known that this lin-
ear MF model becomes less accurate as the volume fraction of
inclusions (z;) increases. In addition, with increased v;, the per-
phase fields become more heterogeneous and a first-moment MF
formulation (such as the one in the present work) has more diffi-
culty to capture the heterogeneities with comparison materials
based on simple per-phase volume averages of strain or stress
microfields.

In the second part of the MF simulations, non-spherical elon-
gated inclusions of an aspect ratio o =3 were embedded in a
VE-VP matrix, and the MF predictions were verified against full-
field FE simulations on RVEs (Figs. 11-13). The agreement with ref-
erence FE results was found to be much less satisfactory than for
spherical inclusions (Fig. (11)). This can be explained by the inabil-
ity of MF to predict the average response in the inclusions correctly
(Fig. (12)), and by the heterogeneity of the plastic strain fields in
the matrix (Fig. (13)) which is much more pronounced for elon-
gated inclusions than for spherical ones. The trends here and the
conclusions are similar to what was observed for other MF formu-
lations for elasto-plastic (EP) or EVP materials reinforced with
ellipsoidal inclusions, see for instance Pierard et al. (2007b), Doghri
et al. (2010b) and Brassart et al. (2012). However, the VE-VP pre-
dictions are worse than with EP or EVP matrix materials, because
for oo = 3, we should expect better results in the longitudinal direc-
tion, and the effective response in the transverse direction should
even be “nailed down” by MF.

In the third part of the numerical study, a VE-VP matrix rein-
forced with glass fibers of an aspect ratio « = 100 was simulated
under uniaxial tension. The MF predictions compare relatively well
with experimental data (Fig. (14)). This rather good agreement is
unexpected, because the quality of first-moment MF predictions
is known to decrease with increasing «, as can be seen for instance
from the results published in Doghri et al. (2010b) for o« = 15 ver-
sus those of Pierard et al. (2007b) for o = 3. Therefore, the quality
of MF predictions for & = 100 should be poorer than for & = 3. The
good match between MF and experimental results shown in
Fig. (14) might be due to some MF approximations “canceling
out”. Indeed, experimentally, it is extremely difficult to manufac-
ture a composite with aligned and equal-length glass fibers of an
aspect ratio equal to 100, so MF is not actually modeling the real
microstructure.

Examining all the verification results (Figs. 2-13), and although
the MF predictions are generally acceptable and MF can also be
inaccurate with other per-phase material models, it is observed
that the MF predictions in VE-VP are worse than MF results in
EVP. According to our investigations (some reported here and
some not) the problem comes from the VE part of the response.
Let us be more precise here. For a homogeneous VE-VP material,
the numerical integration algorithm is accurate, as shown in Miled
et al. (2011). For an EVP composite which can be retrieved from
VE-VP by setting the per-phase VE relaxation times to infinity-
the predictions of the incrementally affine MF formulation are
acceptable and can even be quite accurate for spherical inclusions,
as shown in Doghri et al. (2010b) and Brassart et al. (2012)- e.g.
Figs. (10), (11) and (13) to (16) in the latter reference. However,
in the present study it was found that the MF predictions in VE-
VP are much less accurate than those of EVP, even for spherical
inclusions. In our opinion, the problems comes from the compari-
son material of the VE part. Firsly, comparing Figs. (6) (pure VE
matrix) and (7) (pure EVP matrix) gives a hint on the role played
by the VE part on the inaccuracy of MF. Secondly, when the incre-
ment is purely VE (VP strains not evolving), the incrementally af-
fine relation (37) becomes:

A6 = E : (A€ — Ae™) (58)

where the VE tangent operator E(At) is uniform per phase since it
only depends on the time increment At. However the affine strain
increment Ae* is given by Eq. (40) after setting AeX = 0. Therefore

evp
it is seen that Ae? is not uniform per phase since it depends on the
per-phase viscous stresses at t,. So the issue of comparison materials
arises for the incrementally affine MF homogenization of VE-VP
composites even if the increment is purely VE. This problem does
not exist in EVP, where the per-phase elastic stiffness is homoge-
neous if the VP strains do not evolve. In our opinion, the issue of
comparison material for the VE part of the response is the main rea-
son behind the bad predictions of MF in VE-VP, as compared to MF
in EVP. In addition to -or linked with- the comparison materials is-
sue is the fact that in VE-VP, there are different relaxation times
associated with both the VE and VP parts, while in EVP only VP relax-
ation times are present. Improving the MF treatment of the VE part
of VE-VP is a difficult task. An idea is presented in Section 6.

6. Conclusions

A mean-field homogenization (MFH) scheme was proposed for
inclusion-reinforced viscoelastic-viscoplastic (VE-VP) composites.
A general incrementally affine linearization method was developed
based on the local VE-VP model and the corresponding numerical
algorithms which have been proposed recently by Miled et al.
(2011). The affine formulation which has been developed by
Doghri et al. (2010a) for EVP behavior was extended to VE-VP in
this work. It provides an affine relation between stress and strain
increments via an algorithmic tangent operator. Contrary to the
original affine formulation, this method leads to thermoelastic-like
relations directly in the time domain, and not in the Laplace-
Carson (L-C) one. In order to find the incrementally affine
expression, we start by the linearization of evolution equations
of the VP strain €'? and the scalar and/or tensor internal variables
V at time ¢, around time t,,;. Next, a numerical integration of the
linearized equations is required using a fully implicit backward
Euler scheme. The obtained algebraic equations lead to an

incrementally affine formulation (Aa = C"%(ty,1) : (A€ — Ae'“‘f)>
which is form-similar to linear thermoelasticity (a(x):cel:

(e(x) — €M(x))) for each VE-VP phase. In order to average the stress
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and strain fields over the two phases, a linear comparison compos-
ite (LCC) which is made of constituents (phases) that have uniform
linearized mechanical properties varying only with time is consid-
ered. Known homogenization models for linear thermoelastic com-
posites can then be applied.

Finite element (FE) analyses (2D axisymmetric and 3D unit
cells) have been performed to verify the semi-analytical mean-field
homogenization method. The MF results were presented in Sec-
tions 5.1, 5.2, 5.3, and discussed in Section 5.2. The predictions
are generally acceptable, although they are much less satisfactory
than those obtained for EVP composites with the incrementally af-
fine linearization theory.

There are different ways to improve the proposed MF formula-
tion. Within the first-moment homogenization framework, we
could still use some key ingredients of the proposed formulation,
namely the incrementally affine linearization, the regularized tan-
gent operators and the special isotropisation technique. However,
instead of homogenizing the linear comparison composite (LCC)
with a simple analogy with linear thermoelasticity, we could in-
stead extend the interaction law of Mercier and Molinari (2009)
from EVP to coupled VE-VP. Indeed, the latter law which was
shown to lead to good predictions in EVP is based on a separation
between elastic and VP contributions. Similarly, its extended ver-
sion would separate between VE and VP contributions, and there-
fore -hopefully- solve the problems due to the VE part in the
present formulation.

Significant improvements of predictions can also be expected
from a MF formulation based on second moments of per-phase
stress or strain microfields. Indeed, second moments of the fields
are related to their variance, therefore they represent a richer sta-
tistical information than the simple volume averages (first mo-
ments) and taking them into account can lead to much better
predictions. The second moment enrichment of MF can be
achieved either via a pragmatic approach, such as the second-mo-
ment incremental formulation proposed by Doghri et al. (2010b)
for elasto-plastic composites, which could be extended to VE-VP
via the incrementally affine linearization method. Another and
more rigourous approach would be to develop a variational
formulation for VE-VP composites, in the same spirit as the varia-
tional incremental formulation proposed by Brassart et al. (2012)
for EVP.
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Appendix A. Stress-Strain incremental relation via an
algorithmic tangent operator

In Section 2.2, we showed that:
A6 =E : (Ae — A€™) +a(t,) (A1)
where a(t,) is a second-order tensor:
a(tn):—z {1—exp< )}sl tn) Z{l —exp( At)}aHj(tn)-l

i ]
| ] (A.2)

Replacing the expression of the VP strain increment (Eq. (34)) in Eq.
(A.1), we find:

Ac=E: (Ae - [evp(tn) LEy(ta)el...] oVt +{..) :Aa] At) +a(t,)

(A3)

= [1+E:{...}At} ‘A

6=E:|Ae— [evp(t,,) Fey(tar)el...] e v(rn)} At | +a(t,)(A4)

af
Aeevp

= A6 = [I+E : {...}At]_l : [E (Ae—Aegip) +a(tn)]

=€ (Ae— A€, +E7:a(tn)) = C%: (Ae - A€™) (A5)
where C*# is the algorithmic tangent operator:
alg E-1 -1
= [E + 1. .}At] (A6)

and, Ae¥ is the affine strain increment in the viscoelastic-
viscoplastic model:

A€ = A —E':a(ty) (A7)

evp

E is an isotropic fourth-rank incremental relaxation modulus:

E = 2GI% + 3KT"°. So, the inverse of this modulus is given as
follows:

E—l 1 lclev +leol (AS)
2G 3K

Combining Egs. (A.2) and (A.8), and after some algebra, the VE-VP
affine strain increment (Eq. (A.7)) becomes:

1 At
f f E
Ae? = Aegvp + E |:l — exp <— g—l> :| Si(tn)

+L {l—exp<—g>
3K 45 ki

Appendix B. Mean field homogenization in thermo-elasticity

T, (ta) 1 (A.9)

Consider a two-phase, linear thermo-elastic composite of local
elastic stiffness E® (x) and thermal expansion a(x). The composite
is subjected to a macroscopic strain € and to a uniform tempera-
ture change AT. At each point x of the composite, the local
stress-strain relations are given by:

o(x) = E¥(x) : (e(x) — €"(x)),
=E'(X): e(x) + B(x), B(x) =

We aim to determine the effective properties C and g of the thermo-
elastic composite. Let us first consider any homogenization model
defined in the isothermal case by its strain concentration tensors
(A and B):

eM(x) =

—E(x)

a(X)AT

a(x)AT 6D

(€)w, =B : (€)yy, (€, =A:(€)y,

A=B: (v;B+ul)! (B.2)

Next, a composite subjected to linear displacement boundary condi-
tions corresponding to a macroscopic total strain € = (€) and to a
uniform temperature change AT is considered. The total strain aver-
age and the effective stress-strain relation read (see e.g. Lielens,
1999, 2004):
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(€)y, =A:€+a", (6)=C:e+p (B.3)
where:
B=voBo+ v1By + v (Ei‘ - Eg') Laf
a=(A-1: (B -E) (8 ho)

where a‘ is a second-order tensor and C is the effective stiffness of
the composite as computed in the isothermal case.

C = [voE® + v1E : B] : [wol + v B] ™! B.5
0 1

(B-4)

For instance, the strain concentration tensor of the Mori-Tanaka
scheme is given by:
B=[I1+P:(E -E)" (B.6)

where P =S : (ES)™' is Hill's polarization tensor and S is Eshelby’s
tensor, which depends only on the properties of the matrix and
the inclusion shape.

Appendix C. Spectral isotropisation: isothermal VE-VP case

Consider a time interval [t,, t,.1]. In Section 3 (Incrementally af-
fine linearisation method), we showed that the stress-strain rela-
tion is given as follows:

A6 = C"%(t, 1) : (A€ — Ae™) (C.1)

In J, viscoplasticity, the algorithmic tangent operator at time t;,,;
(C(t,.1)) and the affine strain increment (Ae¥) are expressed as
follows:

~)2N®N(26)2 oA 0N 2G

Oeg +3GAp 96 hug,

Neg,

1 At

— 1—exp|—-—||0on(th)1 C2

3K 5 { p< kjﬂ by (En) €2
where Aeg{,p is given by this expression:

g,p (tn+1 )At

1-g,(th1)AL €3)

A€, = Plt)At [N(m) +N(ty,1)

We aim to compute the shear and bulk moduli by extending the

spectral isotropisation method to C*%(t,,;) and the incrementally
affine linearization. For this, we introduce the following hypotheses.

1. Noi =Ny (= A€l [/ N)
2. dev (A€) /| N, (true for Ae'?, and a hypothesis for dev (Ae*¢))
3. dev (Ae¥) /| N (true for A€ if N,.; = N,, and an hypothesis for

~ evp
dev (E~': a(ty)))
4. the initial yield stress o, is constant (=> g, = 0).

Using the previous hypotheses (especially 2 and 3), the deviatoric

parts of the strain increment and the affine strain increment can be
written as follows:

dev(Ae) =N dev(Ae)* = pN

we have:

(ldev—§N®N):N:0 because N:N:%

Using the two previous equations, the expression of the stress
increment (Eq. (C.1)) can be rewritten as follows:

A6 = C%(t,.1) <rxN + %tr(Ae)l — BN — %tr(Aeafﬂ)

= (3= ) [t + 0% - SN )

:N+E: % (tr(A€) — tr(Ae*))1 (C.4)

The objective, is to find y such that:

al 2 iso
C8 (1) + (1% = 3N@N) =C"(tw) (€5)
We have:
r _ 9rydev Vol ON _ 3 dev 2
E=2GI" +3KI, 20— 22— (" —5NaN) (C.6)

Using the last equation, and replacing Ca‘g(tm) by its expression,
Eq. (C.5) becomes:

. ~ ~\ 2
C(ta1) = (26 - (26) _ A
Oeq +3GAp

~\ 2
(ZhG)_(ZE)Zo—quZE;Ap%V NoN  (C7)

% + y) 1Y ¢ 3K

(1"

We know that the fourth-order isotropic projection is written as
follows:

C50 = 24, 1% 4 3k 1" (C8)

where p, and k; are the tangent shear and bulk moduli, respectively.
In order to respect the form of the previous equation, a condition is
required for Eq. (C.7):

1 A
BRI

- = C.g
hy G, +3GAp (€9)

(1) :0:>’y:%<2(~;)2

Comparing Egs. (C.7) and (C.8), and using the previous equation, the
two scalars k; and u, of isotropic stiffness tensor are given as
follows:

3k = 3K, zutzé{l —E} = 2k; (C.10)

hy
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