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Abstract

Dielectric elastomer composites exhibit band gaps—ranges of frequencies at which elastic

waves cannot propagate—that are tunable by electrostatically-controlled deformations. We

show how topology optimization of such composites can widen these gaps and improve their

tunability. Our case study focuses on anti-plane shear waves in fiber composites, across a

designated frequency range. Employing a genetic algorithm approach, we maximize the gap

width when the composite is actuated by prescribed electric fields, as well the relative change

in the gap width with respect to an unactuated composite. We present optimization results for

a composite whose constituents agree with commercial products. We compare these results

with the performance of a composite of the same constituents arranged in circular fibers, to

demonstrate the improvement achieved by the optimization. We expect that the performance of

dielectric elastomer composites can be further improved, by employing a larger design space

than the exemplary space in this study.

keywords: Dielectric elastomer composite, tunability, phononic crystal, topology optimiza-

tion, band gap, finite deformation, wave propagation

1 Introduction

The propagation of elastic waves in periodic structures is frequency dependent. Importantly, at

certain frequency bands, the way in which waves scatter and interfere results with the annihilation

of their propagation (Sigalas and Economou, 1992, Kushwaha et al., 1993, Hussein et al., 2014).

Based on this band gap phenomenon, different applications with the objective to filter undesired

∗Now at Structural Engineering Department, University of California, San Diego, USA.
†Corresponding author. Tel.: +1 972 778871613. E-mail address: meshmuel@tx.technion.ac.il (G. Shmuel).
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mechanical motions such as vibration isolators and noise suppressors were suggested (Wen et al.,

2005, Hussein et al., 2007, Yin et al., 2015). It follows that the resultant band diagram can be

employed not only to filter waves, but also to direct their propagation (Srivastava, 2016, Zelhofer

and Kochmann, 2017, Celli et al., 2017).

Structures of tunable band diagrams are advantageous, as their frequency range can be adapted

for different objectives. The emergence of active structures, capable of changing their properties

upon activation, opened a new avenue to achieve such tunability. Activation methods include me-

chanical (Babaee et al., 2016, Shmuel and Band, 2016), thermal (Ruzzene and Baz, 1999), magnetic

(Bayat and Gordaninejad, 2015) and electrical means (Degraeve et al., 2015).

A promising class of electrically tunable structures is based on dielectric elastomers, favorable

owing to their low cost, light weight, fast response, and capability to undergo large formations over

100% (Pelrine et al., 2000, Carpi et al., 2008), where recent experimental works show that under

certain settings, area strains of hundreds of percents are accessible (Huang et al., 2012, Li et al.,

2013, Godaba et al., 2014). Indeed, it was theoretically demonstrated that by subjecting dielectric

elastomer composites to quasi-static large deformations, the band diagram of superposed waves is

electrostatically tunable (Gei et al., 2011, Shmuel and Pernas-Salomón, 2016, Getz et al., 2017,

Bortot and Shmuel, 2017, Getz and Shmuel, 2017). Experimentally, Ziser and Shmuel (2017)

showed the tunability by voltage of flexural waves in a dielectric elastomer film, where Jia et al.

(2016) and Yu et al. (2017) realized tunable noise suppressors based on pre-stretched dielectric

elastomers membranes. Accordingly, dielectric elastomers have the potential to serve as electro-

statically tunable sound filters, vibration reducers, and waveguides. However, the main drawback

observed in all these investigations is that the required voltage to achieve significant tunability is

extremely high. Since the electromechanical response (Tian et al., 2012) and band diagram charac-

teristics (Sigmund and Søndergaard Jensen, 2003, Yi and Youn, 2016) can be improved by changing

the composite initial microstructure, a possible resolution is to seek optimized unit cells; this is the

objective of this work.

Our approach is based on topology optimization—a numerical method that systematically searches

for the material distribution optimizing designated objective functions (Bendsøe and Kikuchi, 1988).

Topology optimization has been employed for various applications (Bends Bendsøe and Sigmund,

2003), and specifically for optimal band gaps (Sigmund and Søndergaard Jensen, 2003, Halkjær

and Jensen, 2006, Gazonas et al., 2006, Hussein et al., 2007, Bilal and Hussein, 2011, Liu et al.,

2014, 2016, Li et al., 2016, Xie et al., 2017, Lu et al., 2017). For a comprehensive review we

refer the reader to the excellent survey by Yi and Youn (2016). Generally speaking, the idea is to

discretize the unit cell, such that the material properties of each element are the design parame-

ters. The optimization process consists of an iterative derivation of the band diagram associated

with design parameters that are assigned by optimization techniques. Notwithstanding the vast lit-
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erature on topology optimization of different band gaps, only recently Hedayatrasa et al. (2016)

employed such approach for nonlinear elastic deformation dependent gaps; topology optimization

of dielectric elastomers has yet to be explored.

Our case study concerns anti-plane waves propagating in the periodicity plane of a fiber com-

posite made of incompressible dielectric elastomer phases, deformed by a bias electric field along

the fibers (Shmuel, 2013). As discussed earlier, the resultant band diagram is tunable, owing to an

interplay between the bias electric field, quasi-static deformation and superposed wave propaga-

tion. The key parameters for band gap maximization are the material property contrast as well as

the fiber filling fraction and shape. In our study, we focus on these latter parameters and we em-

ploy the genetic algorithm approach (Holland, 1992) to find unit cells that optimize at prescribed

electric fields the width of the gap, or its relative change with respect to the unactuated state.

Indeed, as the sequel shows, these objectives are improved by the choice of topology optimization-

based unit cells. While our method is applied to anti-plane waves in specific types of composite

and pre-deformation, it is extendible to more general settings. Specifically, it applies for in-plane

waves of general propagation direction, as long their amplitude is small; it applies for compressible

composites, as long as the constitutive behavior of the phases is linear, as indeed follows from the

linearization about the deformed configuration; it applies for three-dimensional composites, as long

as the microstructure is periodic, and for pre-deformations than maintain a periodic microstructure.

The presentation of our study starts with a summary of nonlinear and linearized electroelastic-

ity theory in Sec. 2. This theory was employed by Shmuel (2013) to determine the quasi-static

deformation of a soft composite of arbitrary fibers in response to an axial electric field, and develop

the equations governing superposed anti-plane waves; these are revisited in Sec. 3, to provide a

self-contained report. Sec. 4 is dedicated to the topology optimization of the dielectric elastomer

composite for the objectives described in the introduction. We develop a method based on a fast

plane wave expansion (FPWE) approach to determine the band diagram, and the genetic algorithm

optimization which utilizes this method. Optimization results are presented and compared with

the performance of the naive choice of a unit cell with circular fiber in Sec. 5. Conclusions and

summary are given in Sec. 6.

2 Nonlinear and linearized electroelasticity

The modern description of nonlinear electroelasticity is given in Dorfmann and Ogden (2005),

McMeeking and Landis (2005), Suo et al. (2008) and Dorfmann and Ogden (2010). In this Section

we provide only the equations employed in the sequel; the reader is referred to the above references

for the complete formulation.

Consider a composite made up of two incompressible homogeneous dielectric phases m and
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f , and surrounded by vacuum. In its reference configuration, the body occupies the volume region

Ω
(m)
0 ∪ Ω

(f)
0 = Ω0 ⊂ R3, whose boundary is ∂Ω0. Here and in the sequel, superscript (p) indicates

quantities at phase p. When subjected to electromechanical loadings, the body is deformed and

occupies the volume Ω(m)∪Ω(f) = Ω with boundary ∂Ω. The quasi-static deformation of the body

is described by the vector field χ, which maps material particles from the reference configuration

X ∈ Ω0 to their current configuration x ∈ Ω. The deformation gradient F = ∇Xχ is computed

with respect to the reference coordinates X. The determinant J = det F is the volume ratio of

an infinitesimal element in the deformed configuration, dv, and its counterpart in the reference

configuration, dV . Accordingly, incompressibility implies that J = 1.

The electrical fields in the dielectric satisfy

∇ · d = 0, ∇× e = 0; (1)

here, e is the electric field and d is the electric displacement field, and ∇ · (•) and ∇× (•) are the

divergence and curl operators with respect to x.

When mechanical body forces are neglected, the symmetric total stress σ satisfies

∇ · σ = 0. (2)

The corresponding jump conditions between the two phases m and f are

JσKn = 0, JdK · n = 0, JeK× n = 0, (3)

where n is the unit normal vector of a deformed area element, and J•K = (•)(m) − (•)(f).
A formulation that uses X as the independent variable is based on the connections

P = JσF−T, E = FTe, D = JF−1d, (4)

The theory of Dorfmann and Ogden (2005) relates P and E to F and D via an augmented energy

density function Ψ(F,D), as follows

P =
∂Ψ

∂F
− p0F−T, E =

∂Ψ

∂D
. (5)

Here, p0 is a Lagrange multiplier which accounts for the constraint of incompressibility.

Small-amplitude waves propagating in the deformed body are described in terms of the in-

crements χ̇(X, t) and Ḋ(X, t). The incremental equations are compactly written in terms of the

connections

Σ =
1

J
ṖFT, ě = F−TĖ, ď =

1

J
FḊ, (6)
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namely,

∇ · ď = 0, ∇× ě = 0, ∇ ·Σ = ρẋ,tt, (7)

where ẋ(x, t) := χ̇(X, t). The field variables are related via the equations

Σ = C h + ph− ṗI + Bď, (8)

ě = BTh + A ď. (9)

Here, the increment in p is ṗ, the constitutive tensors A , B and C are

Aij = JF−1αi

∂2Ψ

∂Dα∂Dβ

F−1βj , Bijk = Fjα
∂2Ψ

∂Fiα∂Dβ

F−1βk , Cijkl =
1

J
Fjα

∂2Ψ

∂Fiα∂Fkβ
Flβ, (10)

and the displacement gradient h = ∇ẋ is subjected to the incompressibility constraint trh = 0.

3 Nonlinear voltage-induced deformations and anti-plane waves

in fiber composites

Band diagrams of dielectric elastomer composites are tunable by voltage-controlled nonlinear de-

formations. Owing to the bias electric field and resultant strains, the physical and geometrical prop-

erties of the phases change; in turn, the propagation of superposed elastic waves changes too. Since

the voltage-deformation relation of the phases is highly nonlinear, different magnitudes of voltage

result in significantly different deformations and instantaneous moduli, and in turn, significantly

different band structures. This approach to achieve tunability has been demonstrated in a series

of works (Shmuel and deBotton, 2012, Shmuel, 2013, Getz et al., 2017, Getz and Shmuel, 2017).

For completeness, we summarize next the case studied in Shmuel (2013) of anti-plane waves in a

fiber composite, which was deformed by an axial electric field. Later on, we will apply topology

optimization schemes to find unit cell geometries that optimize prescribed gap characteristics, upon

the composite actuation.

Consider an infinite dielectric elastomer composite, which is periodic in the (x1, x3) plane. The

composite periodic cell is made up of a fiber of arbitrary cross section (phase f ), in a different

matrix (phase m). Repetitions of the unit cell are arranged in a square lattice with periodicity A

(Fig. 1a). The composite is subjected to an average electric field e2i2∗, where ij is a unit vector in

∗This is achieved by applying voltage to electrodes coating the composite at the far surfaces.
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Figure 1: Dielectric elastomer fiber composite in the (a) reference configuration, and (b) deformed configu-
ration, when subjected to an axial electric field.

the xj direction (Fig. 1b).

The resultant deformation depends on the constitutive behavior of the phases constituting the

composite, which we assume described by the augmented Gentian functions

Ψ(p)(F,D) = −µ
(p)J

(p)
m

2
ln

[
1− tr(FTF)− 3

J
(p)
m

]
+

1

2ε(p)
D · FTFD; (11)

here, µ(p) is the shear modulus, ε(p) is the dielectric constant, and J (p)
m models the strain stiffening

exhibited by elastomers.

When the phases are perfectly bonded and the only load is the prescribed electric field, Shmuel

(2013) found that the deformation and the electric field are homogeneous in the form

F(m) = F(f) = diag
[
λ, λ−2, λ

]
, e(m) = e(f) = ei2. (12)

whose relation is

µ̌
(
λ2 − λ−4

)
= ε̄e2, (13)

where µ̌(p) = µ(p)

1−(2λ2+λ−4−3)/J(p)
m

, ¯(•) = v(m) (•) + v(f) (•) and v(p) is the volume fraction of phase

p. To arrive at this result, Shmuel (2013) postulated a deformation from the outset, and verified it

can satisfy the balance laws and boundary conditions. The resultant equations delivered relation

(13).

We are concerned with anti-plane waves propagating in the (x1, x3) plane of the deformed
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composite. The equations for the corresponding electric and elastic displacement fields are

Σ21,1 (x, t) + Σ23,3 (x, t) = ρ (x) ẋ2,tt, (14)

ď1,1 (x, t) + ď3,3 (x, t) = 0. (15)

Making use of the linearized constitutive relations, Eqs. (14) and (15) obtain the form

∇T · (µ̃ (x)∇Tẋ2 (x, t)− d2 (x)∇Tϕ (x, t)) = ρ (x) ẋ2,tt, (16)

∇T · (−d2 (x)∇Tẋ2 (x, t)− ε (x)∇Tϕ (x, t)) = 0. (17)

Here, ϕ (x1, x3, t) is a scalar potential from which ě is calculated such that ě = −∇ϕ, µ̃ (x) =

µ̌ (x)λ2 − ε (x) e22, and ∇T (•) = (•) ,1i1 + (•) ,3i3 is the in-plane gradient operator. Eqs. (14-17),

which govern the band diagram, do not admit an analytic solution. A method to obtain numerical

solutions is described next. We clarify that while in the analysis to follow, it is sufficient to analyze

single and finite unit-cell (in virtue of Bloch’s theorem), the composite we are analyzing is infinite.

As such, Eqs. (16-17) are not subjected to external boundary conditions, and our objective is

to understand what kind of how elastic waves may propagate (or not), before addressing specific

conditions other than the equations of motion and Maxwell equations.

4 Fast plane wave expansion method and genetic algorithm

Our goal is to determine the fiber distribution in the unit cell that optimizes desired band gap

characteristics. To this end, in this section we first introduce the FPWE method for calculating

the band diagram (Liu et al., 2014, Xie et al., 2017). Subsequently, we present an optimization

procedure based on the genetic algorithm (Holland, 1992). We note that for the applicability of the

FPWE method, the medium should be periodic, and the amplitude of the waves should be small.

Additionally, the constitutive behavior of the phases should be linear, as indeed follows from the

linearization about the deformed configuration.

4.1 Fast plane wave expansion method

The method starts with partitioning the unit cell into NP × NP pixels (Fig. 2a). Each pixel corre-

sponds either to the matrix phasem or the fiber phase f . Thus, the design of the composite structure

is determined by the choice of the material in each pixel.
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Figure 2: (a) A NP×NP pixelized unit cell in the periodicity plane (x1, x3). On the basis of each fiber pixel
Pj ∈

{
P (f)

}
spatial coordinate xj , its characteristics are calculated from those of a central square fiber P0

with the same dimensions. (b) Discretization of the unit cell into a bit-matrix of zeros and ones indicating
matrix- and fiber-filled pixels, according to exemplary material distribution δ (x).

The material distribution in the unit cell is described using a characteristic function of the pixel

center position xj , defined as

δ
(
xj
)

=





1 xj ⊂ Ω(f),

0 xj 6⊂ Ω(f),
(18)

where j = 1, .., N2
P. Accordingly, the unit cell is represented by a bit-string of zeros and ones

indicating matrix- and fiber-filled pixels, Mδ =
[
δ (x1) , ..., δ

(
xN

2
P

)]
(see Fig. 2b).

We recall that the material parameters are periodic functions of x1 and x3. The FPWE method

exploits this to represent material properties in Fourier series such that

ζ (x) =
∑

G

ζ (G) exp (iG · x) , ζ = µ̂, ρ. (19)

Here, {G} is the infinite set of reciprocal lattice vectors. Since the Bravais lattice of the composite

in the deformed state is based on a square unit cell of period a = λA, the reciprocal lattice is{
G = 2π

a
n1i1 + 2π

a
n3i3, n1, n3 ∈ N

}
. The set of Fourier coefficients {ζ (G)} associated with the

reciprocal lattice vectors {G} is defined by

ζ(G) =
1

a2

¨

scell

ζ(x) exp (−iG · x) ds, (20)

where scell is the area of the unit cell in Ω.

Taking advantage of the fact that ζ (x) is piecewise constant at x ∈ Ω(m) and x ∈ Ω(f), we can
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write the Fourier coefficients of a square fiber P0, with the same side length of the pixels a/NP,

placed at the center of the unit cell as

ζ0 (G) =




vPζ

(f) + (1− vP) ζ(m) G = 0,
(
ζ(f) − ζ(m)

)
F (G) G 6= 0,

(21)

where

F (G) =
1

a2

¨

sP

exp (−iG · x) ds = vPsinc

(
G1a

2NP

)
sinc

(
G2a

2NP

)
; (22)

here vP = 1/N2
P and sP are the volume fraction and area of the square fiber P0 in Ω, respectively.

The Fourier coefficients of any fiber pixel Pj ∈
{
P (f)

}
in the unit cell are calculated from those

of the central square fiber P0, according to the pixel location with respect to the center of the unit

cell xj and the characteristic function δ (xj). The Fourier coefficients of the whole unit cell are

accordingly

ζ (G) =




nPfvPζ + (1− nPfvP) ζ(m) G = 0,
(
ζ(f) − ζ(m)

)
F (G) g (G) G 6= 0.

(23)

Here, nPf is the total number of fiber pixels in the unit cell and g (G) is given by

g (G) =

N2
P∑

j=1

exp
(
iG · xj

)
δ
(
xj
)
. (24)

As established by the Bloch theorem (Kittel, 2005), the incremental fields ẋ2 and ϕ are expressible

in the form

ξ (x, t) =
∑

G

ξ(G) exp [i (G + k) · x− iωt] , ξ = ẋ2, ϕ, (25)

where the Bloch wave vector is k = k1i1 + k3i3, k1, k3 ∈ R, and ω is the angular frequency.

Utilizing Eqs. (21) and (25), we write Eqs. (16) and (17) as follows

{∑
G,G′ [(µ̃ (G) ẋ2 (G′)− d2 (G)ϕ (G′)) (G′ + k) · (G + G′ + k)− ω2ρ (G) ẋ2 (G′)]

exp [i (G + G′) · x− iωt]
}

exp (ik · x) = 0,
(26)

{∑
G,G′ [(−d2 (G) ẋ2 (G′)− ε (G)ϕ (G′)) (G′ + k) · (G + G′ + k)]

exp [i (G + G′) · x− iωt]
}

exp (ik · x) = 0.
(27)

9



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Eqs. (26) and (27) hold for any x, and it follows the sums in the curly brackets vanish. We

multiply these sums by exp (−iG′′ · x), and integrate the result over the unit-cell; since the only

non-vanishing terms are those satisfying the condition G′′ = G + G′, the resultant equations are

∑

G′

(µ̃ (G−G′) ẋ2 (G′)− d2 (G−G′)ϕ (G′)) (G′ + k) · (G + k) = ω2
∑

G′

ρ (G−G′) ẋ2 (G′) ,

(28)
∑

G′

(−d2 (G−G′) ẋ2 (G′)− ε (G−G′)ϕ (G′)) (G′ + k) · (G + k) = 0. (29)

Eqs. (28) and (29) admit the matrix form

[
Q(1,1) Q(1,2)

Q(2,1) Q(2,2)

]{
ẋ2 (G′)

ϕ (G′)

}
= ω2

[
R(1,1) 0

0 0

]{
ẋ2 (G′)

ϕ (G′)

}
, (30)

where ẋ2 andϕ (G′) are column vectors of the components ẋ2 (G′) andϕ (G′) , and the components

of the matrices Q(1,1), Q(1,2), Q(2,1), Q(2,2) and R(1,1) are

Q
(1,1)
G,G′ =µ̃ (G−G′) (G′ + k) · (G + k) , (31)

Q
(1,2)
G,G′ =− d2 (G−G′) (G′ + k) · (G + k) , (32)

Q
(1,2)
G,G′ =Q

(2,1)
G,G′ , (33)

Q
(1,1)
G,G′ =− ε (G−G′) (G′ + k) · (G + k) , (34)

R
(1,1)
G,G′ =ρ (G−G′) . (35)

Substituting the relation ϕ (G′) = −
(
Q(2,2)

)−1
Q(2,1)ẋ2 (G′), we finally obtain

Mẋ2 = ω2Rẋ2, (36)

where M = Q(1,1) − Q(1,2)
(
Q(2,2)

)−1
Q(2,1).

The band diagram is computed by solving a finite version of Eq. (36) for ω as a function of k

for a chosen finite subset of {G}.
Under certain conditions, to calculate the gaps it is sufficient to consider only wave vectors at

edges of the Brillouin zone (Craster et al., 2012). If the unit cell is symmetric with respect to x1 and

x3 directions, these edges are between the points Γ = (0, 0), X = (π/a, 0) and M = (π/a, π/a),

illustrated by the green segments in the right panel of Fig. 3a. If the unit cell is not symmetric

additional edges between the points Γ, M and K = (0, π/a) are needed (Yi and Youn, 2016, Meng
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Figure 3: Exemplary unit cells (left panels) and corresponding scanned segments in the Brillouin zones to
determine the gaps extrema (indicated in green in the right panels) for (a) the symmetric and (b) asymmetric
cases. The domain, on which material distribution is optimized, is indicated by a red contour.

et al., 2017), illustrated by the green segments in the right panel in Fig. 3b.

In our computations to follow, a number of 441 plane waves, corresponding to −10 < n1, n3 <

10 was found sufficient for the convergence of the band diagram. For further details on the method

convergence, see the Appendix.

4.2 Genetic algorithm and optimization procedure

Our optimization is based on a genetic algorithm approach (Holland, 1992). The algorithm starts

with a pool of unit cell candidates. Each candidate is represented by a vector of its design variables.

For each candidate, our scheme calculates the finite deformation in response to a prescribed electric

field, and the resultant band diagram using FPWE. We emphasize that the finite deformation and, in

turn, the instantaneous moduli, depend on the fiber filling fraction of each candidate. Therefore, the

material properties that are used in the FPWE differ between candidates of different filling fraction.

According to a certain objective or fitness function, the genetic algorithm rates the band diagram of

each candidate. Then, in order to create a new generation of candidates with higher fitness values,

the algorithm applies the following operator. Selection elects, on the basis of the fitness value, a
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Figure 4: A schematic representation of the optimization procedure.
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Figure 5: (a) Pixel grid-based and (b) closed B-spline projection-based representations of the unit cell.

portion of the existing pool of candidates to create a new generation via crossover—an exchange of

a section of the variable vectors of two candidates. Mutation corresponds to a random modification

of the variable vector of a candidate. The procedure is iterated until the average change in the best

fitness value over a certain number of generations is less than or equal to a selected tolerance. A

schematic representation of the optimization procedure is depicted in Fig. 4.

To represent the unit cell, we employ two different approaches. The first approach is based on a

representation of the unit cell by means of the pixel grid only, as depicted in Fig. 5a. Thereby, the

fiber inclusion is represented by the filled pixels. The design variables of the unit cell are given by

the components of the material distribution bit-string Mδ and their number is hence N2
P. Clearly,

as Np increases, the searching space for the optimal solution increases exponentially, since the

number of possible unit cells is 2
Np
4

(
Np
2

+1
)
. If symmetry of the unit cell with respect to x1 and x3

direction is assumed (Fig. 3a), the number of design variables is reduced toN2
P/4. In this approach,

each pixel is assigned with fiber or matrix properties independently of its neighbors, such that the

creation of multiple fiber inclusions is straightforward.

Alternatively, the fiber can be represented via a closed B-spline as shown in Fig. 5b (Vondřejc

et al., 2017). The B-spline is identified by the coordinates of its control points, whose number

depends on the B-spline order. The closed B-spline then is mapped onto a pixel grid identifying

fiber and matrix pixels. Fiber properties will be assigned to pixels whose center lies within the space

identified by the closed B-spline. The design variables in this case are given by the coordinates of

the B-spline control points. The number of variables in the optimization problem is significantly
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lower than the pixel gird representation. In the present formulation, this approach, being based

on a single B-spline, allows for the representation of only one inclusion in the unit cell. This

drawback can be overcome by considering multiple B-splines representing separate inclusions, that

are optimized simultaneously. In the implementation to follow, we restrict attention to the single

B-spline formulation, and thus, we obtain only a single inclusion in this representation.

In our case study, we focus on the sonic band gap across the audible frequency range 0 − 10

kHz. The optimization is carried out with respect to (i) the gap width in the actuated configuration,

or (ii) the relative change in the gap width owing to the electric actuation. The fitness function we

seek to maximize for the first objective is

fBG (Y) =





10kHz−maxk (ωn (Y,k)) if mink (ωn+1 (Y,k)) ≥ 10kHz,

mink (ωn+1 (Y,k))−maxk (ωn (Y,k)) if mink (ωn+1 (Y,k)) < 10kHz.
(37)

Here, mink (ωn (Y,k)) and maxk (ωn (Y,k)) denote the minimum and maximum of the nth eigen-

frequency ωn over k for a given design of the unit cell, Y, respectively.

The fitness function to maximize for the second objective is

fT (Y) =
fBG (Y)− f 0

BG (Y)

f 0
BG (Y)

. (38)

Here, f 0
BG (Y) is the gap width associated with the undeformed composite. Accordingly, its func-

tional form is similar to fBG (Y), with the difference that the scanned Brillouin zone is bounded

by |ki| ≤ π/A and not π/a.

5 Topology optimization results

We present next the optimization results for the objective functions in Eqs. (37) and (38), through

the two different methods of unit cell representation. In the first case, the unit cell is discretized

into a 20 × 20 pixel grid, while in the latter case we employ a 30 × 30 pixel grid, as the number

of design variables is independent of the number of pixels. The optimization procedure has been

implemented in Matlab, using its built-in genetic algorithm.

For the materials constants, we use the composite in modeled Getz et al. (2017), namely, fibers

made of polyurethane PT6100S by Deerfield embedded in a matrix made of silicone CF19-2186

by Nusil. The corresponding properties of these products are summarized in Tab. 1.
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Material ρ [kg/m3] µ [kPa] εr Jm Dielectric strength [MV/m]

Silicone CF19-2186 1100 333 2.8 46.3 235
Polyurethane PT6100S 1200 5667 7 6.67 160

Table 1: The density ρ, shear modulus µ, relative permittivity εr, locking parameter Jm and dielectric
strength of silicone CF19-2186 by Nusil and polyurethane PT6100S by Deerfield.

We set the lattice parameter in the undeformed configuration to 6.3mm and consider two values

of the prescribed electric field, namely e = 150MV/m and e = 300MV/m.

To appreciate the results obtained by the optimization process of the unit cell, we provide first

as a comparison the results for the standard unit cell of a central circular fiber, when optimized

over all fiber volume fractions (Shmuel, 2013). At e = 150MV/m, the width of the widest gap is

1.05kHz, obtained using a volume fraction of 0.68. The greatest relative change obtained via the

electric actuation is 5.56%. At e = 300MV/m, the width of the widest gap is 1.13kHz, obtained

using a volume fraction of 0.69. The greatest relative change obtained via the electric actuation is

32.36%.

We begin by assuming a symmetric unit cell and employing the pixel grid representation. Using

this representation, the number of design variables is 100, and the number of possible unit cells is

3.6 × 1016. The genetic algorithm evaluated 12500 unit cells until convergence. Unit cells that

optimize the gap width and its relative change are depicted in the left panels of Figs. 6 and 7,

respectively. The first and second rows in each Fig. correspond to e = 150MV/m and 300MV/m,

respectively. Right panels show the corresponding band diagrams. Specifically, the eigenfrequen-

cies in the reference and in the actuated configuration are shown by continuous red and dashed blue

curves, respectively, as functions of k along the edges of the Brillouin zone. Left- and right-hatched

areas indicate band gaps in the actuated and reference states, respectively.

The fiber volume fraction in Fig. 6a is 0.64, achieving a maximal gap width of 4.05kHz at

e = 150MV/m. The fiber volume fraction in Fig. 6b is also 0.64, achieving a maximal gap width

of 4.31kHz at e = 300MV/m.

The fiber volume fraction in Fig. 7a is 0.55, achieving a relative change of 5.81% at e =

150MV/m. The fiber volume fraction in Fig. 7b is 0.59, achieving a relative change of 43.09% at

e = 300MV/m. Note

Next, we relax the symmetry constraint on the unit cell and employ a closed spline with four

control points to model a single fiber inclusion, such that corresponding number of design variables

is 8. The reduction in the number of design variables led to a significant reduction in computation

times, and the genetic algorithm evaluated 7500 unit cell until convergence. We recall that by using

a single spline, our design space comprises only unit cells with a single inclusion and interface.
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Figure 6: Symmetric unit cells optimizing the gap width (left panels) at (a) e = 150MV/m and (b)
e = 300MV/m, obtained using the pixel grid representation. Corresponding band diagrams are depicted
in the right panels. Specifically, the eigenfrequencies in the reference and in the actuated configuration are
shown by continuous red and dashed blue curves, respectively, as functions of k along the edges of the Bril-
louin zone. Left- and right-hatched areas indicate the band gaps in the actuated and in the reference states,
respectively.
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Figure 7: Symmetric unit cells optimizing the relative change in the gap width (left panels) at (a) e =
150MV/m and (b) e = 300MV/m, obtained using the pixel grid representation. Corresponding band dia-
grams are depicted in the right panels. Specifically, the eigenfrequencies in the reference and in the actuated
configuration are shown by continuous red and dashed blue curves, respectively, as functions of k along the
edges of the Brillouin zone. Left- and right-hatched areas indicate the band gaps in the actuated and in the
reference states, respectively.
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Maximal width Greatest relative change
Circular Pixel grid B-spline Circular Pixel grid B-spline

e = 150 MV/m 1.05 kHz 4.05 kHz 1.43 kHz 5.56% 5.81% 5.76%
e = 300 MV/m 1.13 kHz 4.31 kHz 1.67 kHz 32.36% 43.09% 32.46%

Table 2: Objective functions of a unit cell with circular fiber of optimal volume fraction, and genetic
algorithm-based unit cells represented using pixel grid and B-spline.

We further recall that the gaps emerge from the interference of incident and secondary waves that

are scattered across interfaces. Accordingly, we a priori expect that optimized unit cells with a

single inclusion and interface will be inferior to optimized unit cells with multiple inclusions and

interfaces.

Proceeding to the results, we illustrate the optimized unit cells using the single spline repre-

sentation with respect to the gap width and its relative change in the left panels of Figs. 6 and 8

and 9, respectively. Again, the first and second rows in each Fig. correspond to e = 150MV/m

and 300MV/m, respectively. Right panels show the corresponding band diagrams, with the same

notation of the previous Figs.

The fiber volume fraction in Fig. 8a is 0.65, achieving a maximal gap width of 1.43kHz at

e = 150MV/m. The fiber volume fraction in Fig. 8b is 0.69, achieving a maximal gap width of

1.67kHz at e = 300MV/m.

The fiber volume fraction in Fig. 9a is 0.6, achieving a relative change of 5.76% at e =

150MV/m. The fiber volume fraction in Fig. 9b is 0.65, achieving a relative change of 32.46%

at e = 300MV/m. The results of the optimization process are summarized in Tab. 2.

6 Conclusions

In Sec. 4, we introduced a scheme to optimize dielectric elastomer fiber composites for wide

band gaps, which are tunable via electrostatically-controlled nonlinear deformations. This topol-

ogy optimization was applied to a case study of anti-plane shear waves in specific pre-deformed

composites across the audible frequency range, however it is extensible to more general settings,

i.e., in-plane waves of general propagation direction, three-dimensional compressible composites,

and pre-deformations that maintain the composite periodicity. The optimization objective is to

maximize the gap width associated with the actuated state, or the relative change in the gap width

between actuated and unactuated states, at prescribed electric fields.

Two approaches for the representation of the unit cell have been employed. The first one is
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Figure 8: Unit cells optimizing the gap width (left panels) at (a) e = 150MV/m and (b) e = 300MV/m,
obtained using the four points B-spline representation. Corresponding band diagrams are depicted in the right
panels. Specifically, the eigenfrequencies in the reference and in the actuated configuration are shown by
continuous red and dashed blue curves, respectively, as functions of k along the edges of the Brillouin zone.
Left- and right-hatched areas indicate the band gaps in the actuated and in the reference states, respectively.
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Figure 9: Unit cells optimizing the relative change in the gap width (left panels) at (a) e = 150MV/m and (b)
e = 300MV/m, obtained using the four points B-spline representation. Corresponding band diagrams are
depicted in the right panels. Specifically, the eigenfrequencies in the reference and in the actuated configura-
tion are shown by continuous red and dashed blue curves, respectively, as functions of k along the edges of
the Brillouin zone. Left- and right-hatched areas indicate the band gaps in the actuated and in the reference
states, respectively.
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based on the pixel grid only, where the design variables are given by the components of the material

distribution bit-string. The second one is based on the projection of a closed B-spline onto the pixel

grid, where the number of design variables is reduced to the number of the coordinates of the

B-spline control points.

Optimization results summarized in Tab. 2 were obtained using two different representations

for the design variables, namely, pixel grid and B-spline. Assuming symmetric unit cells to reduce

the number of design variables, pixel grid-based optimization demonstrated a significant increase

in the gap width with respect to a unit cell with an optimal circular fiber. An improvement in the

relative change of the gap width was also demonstrated, albeit very moderate. These improvements

can be made more significant by relaxing the symmetry restriction and increasing the number of

pixels, at the cost of longer computation times. Optimization results based on the four point B-

spline representation, which uses a significantly smaller number of design variables (8 versus 100),

also demonstrated improvement with respect to a unit cell with an optimal circular fiber, however

not substantial enough. This performance can be improved by increasing the design space via (i)

additional splines; (ii) additional control points for each spline, and (iii) a higher number of pixels.
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Appendix

The standard plane wave expansion (PWE) method is a popular technique to calculate different

band diagrams, namely, in quantum mechanics, optics, and particularly for elastic composites (e.g.,

Kushwaha et al., 1993, Sigalas and Economou, 1996, Vasseur et al., 2002, Barnwell et al., 2017),

owing to its simplicity and the fact that it is exact, as the Fourier functions constitute a complete

basis for solution. Several experimental works agree with its predictions (e.g., Vasseur et al., 2002,

Pichard et al., 2012), and investigations on its convergence rate conclude that it depends on the

specific formulation and contrast between the phase properties (e.g., Cao et al., 2004, Tanaka et al.,

2000). To the best of our knowledge, except the work of Xie et al. (2017), a corresponding analysis

of the FPWE method is not available; accordingly, we carried out the following investigation.
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Figure 10: A circular fiber and its pixelized approximation (left panel) analyzed by the PWE and the FPWE
methods are, respectively, in the right panel. Eigenfrequencies obtained by employing the PWE and FPWE
methods are shown by solid blue and dashed red curves, respectively, as functions of k along the edges of
the Brillouin zone. Shaded areas indicate the band gaps.

Figure 11: Upper and lower frequencies of the maximum band gap are as functions of n1 and n3. Panels a)
and b) correspond to the circular fiber in Fig. 10, and a representative optimized cell, respectively. In panel
a) solid and dashed lines denoting the PWE and FPWE methods, respectively.

Firstly, we tested the FPWE using two benchmark problems, namely, circular and square fibers

at the center of the unit cell, in order to check if the solutions agree with the solutions obtained

via the PWE method. The case of the square fiber is reported also by Xie et al. (2017), therein a

comparison of the FPWE method with the finite element method is provided. Our investigation of

the circular fiber case is given in Fig. 10, providing a comparison of the band structures obtained

via PWE and FPWE methods, where the latter was carried out using a pixelation of 40 × 40 grid.

Therein, eigenfrequencies obtained by employing the PWE and FPWE methods are shown by solid

blue and dashed red curves, respectively, demonstrating good agreement. Specifically, the error

in the gap size is approximately 1%. Secondly, we examined the dependency on the number of

plane waves by evaluating the gap range as function of the indices n1, n3, which determine the
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number plane waves (indices 6, 8, 10, 12, 14, 16, and 18 correspond to 169, 289, 441, 625, 841, 1089

and 1369 plane waves, respectively). Our investigation for the circular fiber and representative

optimized unit cell is given in Fig. 11. Therein, results obtained using the PWE and FPWE methods

for the circular fiber are given by solid and dashed lines, respectively. We find that 441 plane waves

is a good compromise between computational time and accuracy, as with this number, the difference

in the gap width is 5% in comparison with 1369 plane waves. Accordingly, this is the number we

used throughout our computations.
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