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Abstract

Effect of small size on dispersion characteristics of waves in multi-walled carbon nanotubes is investigated using an elas-
tic shell model. Dynamic governing equations of the carbon nanotube are formulated on the basis of nonlocal elastic the-
ory. The relationship between wavenumber and frequency of wave propagation is obtained from the solution of the
eigenvalue equations. The numerical results show that the dispersion characteristics of wave in the multi-walled carbon
nanotube are affected by the small size. Effect of small size is not obvious for the smaller wavenumber, and it will arise
and increase gradually with the increase of the wavenumber. Effect of the small size will decrease as the inner radius of
carbon nanotubes increases. In addition, the explicit expressions of the cut-off frequencies are derived. The results show
that the cut-off frequencies cannot be influenced by the small size of carbon nanotubes.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Carbon nanotubes (CNTs) are regarded as potential nano-structural materials. Engineering applications of
CNTs have been reported, such as atomic-force microscope (AFM), field emitters (Fan et al., 1999), nano-fill-
ers for composite materials, micro-electronic devices (Yao et al., 1999; Rueckes et al., 2000), etc. Multi-walled
carbon nanotubes can be employed to develop frictionless nano-actuators, nano-motors, nano-bearings, and
nano-springs (Lau, 2003).

Due to promising applications, carbon nanotubes have attracted considerable attentions. The main
methods used to investigate carbon nanotubes are atomistic simulation, continuum models and multi-scale
simulation methods. Atomistic simulation is not good for simulation of physical phenomena occurring on
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a vast range of length scales. The continuum models have become a useful tool for studying CNTs in recent
years. So far, continuum mechanics methods have been adopted by Ru (2001), Zhang et al. (2004), Li and
Chou (2003a, 2005), Wang et al. (2003) and Qian et al. (2005) to investigate the properties of the carbon nano-
tube. Multi-scale simulation methods are also used by Shen and Atluri (2004), Kohlhoff et al. (1991) and
Gumbsch (1996) to study nano-mechanics.

The dynamics characteristics of carbon nanotubes are increasingly interesting. Li and Chou (2003b, 2004)
and Zhang et al. (2005a,b) studied the ultrahigh frequency vibrations of carbon nanotubes. Recently, Wang
(2005) and Chakraborty et al. (2006) investigated wave characteristics of CNTs. The studies of Yu et al.
(1995); Popov and Doren (2000); Reulet et al. (2000) are focused mainly on single-wall carbon nanotubes.
Yoon et al. (2003) studied the wave propagating along double-wall and multi-walled carbon nanotubes. In
their works, van der Waals force is modeled via their multiple beam theory. Recently, Mira Mitra and Gopal-
akrishnan (2006) investigated wave propagation in carbon nanotubes embedded composite using wavelet
based spectral finite element. Dong and Wang (2006) studied wave propagation in carbon nanotubes under
large deformation. The obtained results show that wave propagation in carbon nanotubes appears in a critical
frequency or a cut-off frequency for different wave modes; the effect of shear deformation decreases the value
of critical frequency; the critical frequency increases as the matrix stiffness increases; the inertia rotary has an
obvious influence on the wave velocity for some wave modes in the higher frequency region.

Nonlocal elasticity has been adopted to study the mechanic properties of carbon nanotubes. Zhang et al.
(2005a,b) studied free transverse vibrations of double-walled carbon nanotubes using nonlocal elasticity.
Wang and Hu (2005) investigated flexural wave propagation in single-walled carbon nanotubes, their study
focuses on the wave dispersion caused not only by the rotary inertia and the shear deformation in the model
of a traditional Timoshenko beam, but also by the nonlocal elasticity characterizing the microstructure of car-
bon nanotubes in a wide frequency range up to THz. Wang (2005) studied wave propagation in carbon nano-
tubes via nonlocal continuum mechanics. They investigated wave propagation in carbon nanotubes (CNTs)
with two nonlocal continuum mechanics models: elastic Euler–Bernoulli and Timoshenko beam models.

In this paper, the elastic shell model of a carbon nanotube is established on the basis of nonlocal elasticity,
the dynamic governing equations of the multi-walled carbon nanotubes are formulated. The dispersion curve
of the waves propagating in a carbon nanotube is obtained from the solution of the eigenvalue equation. The
numerical results show that dispersion properties of wave in multi-walled carbon nanotubes are influenced by
the small size. The effect of the small size on dynamic properties of carbon nanotubes will arise and increase
with the increase of the wavenumber. The effect of small size will decrease as the inner radius of the carbon
nanotube increases.

2. Formulation

2.1. Nonlocal elasticity

In Eringen nonlocal elasticity model (Eringen, 1983a,b), consider that stress at a reference point x in a body
is the function of strains of all the points in the near region. This is in accordance with atomic theory of lattice
dynamics and experimental observations on phonon dispersion. The most general form of the constitutive
equation for nonlocal elasticity involves an integral over the entire region of interest. This integral contains
a kernel function that describes the relative influences of strains at various locations on the stress at a given
location. It is noted that the classical (local) theory of elasticity can be obtained by neglecting the effects of
strains at points other than x.

For homogeneous and isotropic elastic solids, the constitutive equation is
rðxÞ ¼ C0 :

Z
V

aðjx0 � xj; sÞeðx0ÞdV ðx0Þ ð1Þ
where symbols ‘:’ is the inner product with double contraction, C0 is the elastic stiffness matrix of classical
isotropic elasticity, r(x) denotes the nonlocal stress tensor at x, and e(x 0) is the strain tensor at any point
x 0 in the body. The kernel function a(jx 0 � xj,s) is the nonlocal modulus, jx 0 � xj is the Euclidean distance,
and s = e0a/l, where e0 is a constant appropriate to each material, a is an internal characteristic size (e.g. size
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of C–C bond, lattice spacing, granular distance) and l is an external characteristic size (crack size, wave length
etc.). The volume integral in Eq. (1) is over the region V occupied by the body.

The kernel function a(jx 0 � xj,s) is given as (Eringen, 1983a,b)
aðjxj; sÞ ¼ ð2pl2s2Þ�1K0

ffiffiffiffiffiffiffiffiffi
x � x
p

=ls
� �

ð2Þ
where K0 is the modified Bessel function.
Combination of Eqs. (1) and (2) can obtain
ð1� e2
0a2r2Þr ¼ C0 : e ð3Þ
2.2. van der Waals pressure

Fig. 1 shows the cylindrical shell model of a multi-walled carbon nanotube of the innermost radius R1.
Material of carbon nanotubes is regarded as homogeneous, isotropic and linear elastic. The coordinate system
is chosen in this case: the origin is set on the middle surface of the shell, axial coordinate x, tangent coordinate
y, radial coordinate z and displacements in the corresponding coordinate directions u, v, w.

When a wave propagates along a carbon nanotube wall, the nested nanotube does not deflect coaxially.
Therefore, the adjacent tubes are coupled with van der Waals interaction. If van der Waals pressure at any
point between adjacent tubes is assumed to be a linear function of the jump in deflection at that point.
p(i+1)i denotes van der Waals pressure on tube i due to tube i + 1, which is positive inward, is given by Ru
(2001)
piðiþ1Þ ¼ ciðwiþ1 � wiÞ ð4Þ
where wi is the (inward) deflection of the ith tube, van der Waals interaction coefficient ci is given as (Ru, 2000)
ci ¼
320ð2RiÞ
0:16d2

erg=cm2 ð5Þ
where d = 0.142 nm, i = 1,2, . . . ,N � 1, Ri is the inner radii of tube i, 1 erg = 10�7 J.
Combination of Eqs. (4) and (5) yields
pðiþ1Þi ¼ �
Ri

Riþ1

piðiþ1Þ ð6Þ
Fig. 1. The shell model of carbon nanotube.
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2.3. The basic equations

With the help of Eq. (3), the constitutive equations of the carbon nanotube are
r1 � e2
0a2 o2r1

ox2
¼ E

1� m2
½ðe1 þ te2Þ� ð7aÞ

r2 �
e2

0a2

R2

or2
2

oh2
¼ E

1� m2
½ðe2 þ te1Þ� ð7bÞ

r12 � e2
0a2 o2r12

ox2
þ 1

R2

o2r12

oh2

� �
¼ E

2ð1þ mÞ e12 ð7cÞ
where E and t are Young’s modulus and Poisson’s ratio of carbon nanotubes, respectively. r1 and r2 are,
respectively, the normal stress in the x-direction and the y-direction. r12 is the shear stress on the xy plane
of the middle surface. e1, e2, e12 represent the in-plane linear strains and shearing strain, respectively. If the
small scalar parameter a vanishes, Eq. (7) will revert to Hooke’s law of classical elasticity for a planar stress
problem.

Geometric equations are
e1 ¼
ou
ox
; e2 ¼

1

R
ov
oh
þ w

R
; e12 ¼

1

R
ou
oh
þ ov

ox
ð8Þ
The equivalent static stress resultants, obtained from the integration of the stress over the thickness of shell,
are given by Hooke’s law:
N 1 ¼ r1h; N 2 ¼ r2h; N 12 ¼ r12h ð9aÞ

The equivalent static couples are
M1 ¼
Z h=2

�h=2

r1zdz; M2 ¼
Z h=2

�h=2

r2zdz; M12 ¼
Z h=2

�h=2

r12zdz ð9bÞ
Combination of Eqs. (7a)–(7c), (8), (9a), (9b) yields
N 1 ¼ jðe1 þ te2Þ þ e2
0a2 o2N 1

ox2
¼ j

ou
ox
þ t

R
ov
oh
þ t

w
R

� �
þ e2

0a2j
o3u
ox3
þ t

R
o3v

ox2 oh
þ t

R
o2w
ox2

� �
ð10aÞ

N 2 ¼ jðe2 þ te1Þ þ
e2

0a2

R2

o2N 2

oh2
¼ j

1

R
ov
oh
þ w

R
þ t

ou
ox

� �
þ e2

0a2

R2
j

1

R
o3v

oh3
þ o2w

Roh2
þ t

o3u

oh2
ox

� �
ð10bÞ

N 12 ¼
jð1� tÞ

2
e12 þ e2

0a2 o2N 12

ox2
þ o2N 12

R2oh2

� �

¼ jð1� tÞ
2

1

R
ou
oh
þ ov

ox

� �
þ jð1� tÞ

2
e2

0a2 1

R
o3u

ox2 oh
þ o3v

ox3
þ 1

R3

o3u

oh3
þ 1

R2

o3v

oxoh2

� �
ð10cÞ

M1 ¼ �D
o

2w
ox2
þ t

R2

ov
oh
þ t

R2

o
2w

oh2

� �
þ e2

0a2 o
2M1

ox2

¼ �D
o2w
ox2
þ t

R2

ov
oh
þ t

R2

o2w

oh2

� �
� De2

0a2 o4w
ox4
þ t

R2

o3v
ox2 oh

þ t

R2

o4w

ox2 oh2

� �
ð10dÞ

M2 ¼ �D
1

R2

o
2w

oh2
þ 1

R2

ov
oh
þ t

o
2w

ox2

� �
þ e2

0a2

R2

o
2M2

oh2

¼ �D
1

R2

o2w

oh2
þ 1

R2

ov
oh
þ t

o2w
ox2

� �
� D

e2
0a2

R2

1

R2

o4w

oh4
þ 1

R2

o3v

oh3
þ t

o4w

oh2 ox2

� �
ð10eÞ

M12 ¼ �Dð1� tÞ 1

R
o

2w
oxoh

þ 1

2

ov
ox

� �
þ e2

0a2 o
2M12

ox2
þ 1

R2

oM12

oh2

� �

¼ �Dð1� tÞ 1

R
o2w
oxoh

þ 1
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ox

� �
� Dð1� tÞ e
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0a2
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o4w

ox3 oh
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2
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2R2

o3v

oxoh2

� �
ð10fÞ
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where
j ¼ Eh
1� t2

ð11Þ

D ¼ Eh3

12ð1� t2Þ ð12Þ
where N1, N2 are, respectively, the equivalent static stress resultants in x, y directions. N12 is the shearing stress
resultant in the middle surface, j and D are the extensional and the bending rigidity of the shell, respectively.

When the inertial moment is neglected, the equilibrium equations of motion of the multi-walled carbon
nanotube are
oN 1

ox
þ 1

R
oN 12

oh
� qh

o2u
ot2
¼ 0 ð13aÞ

1

R
oN 2

oh
þ oN 12

ox
þ Q2

R
� qh

o2v
ot2
¼ 0 ð13bÞ

� N 2

R
þ oQ1

ox
þ 1

R
oQ2

oh
� qh

o2w
ot2
� p ¼ 0 ð13cÞ

oM12

ox
þ 1

R
oM2

oh
� Q2 ¼ 0 ð13dÞ

1

R
oM12

oh
þ oM1

ox
� Q1 ¼ 0 ð13eÞ
where p represents the external forces acting normal to the surface of the shell, in this case, p is van der Walls
force. q is the mass density of carbon nanotubes. Q1 and Q2 are the equivalent static shearing stresses,
respectively.

Substitution of Eqs. (8) and (10) into Eq. (13) gets
o2u
ox2
þ t

R
ow
ox
þ ð1� tÞ

2R2

o2u

oh2
þ ð1þ tÞ

2R
o2v

ohox
þ g2 o4u

ox4
þ t

R
o3w
ox3

� �
þ g2ð1þ tÞ

2R
o4v

ohox3

þ ð1� tÞg2

2R2

o4u

oh2
ox2
þ 1

R2

o4u

oh4
þ 1

R
o4v

oh3
ox

� �
� q

1� t2

E
o2u
ot2
¼ 0 ð14aÞ

1

R2

o
2v

oh2
þ 1
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ow
oh
þ g2
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4v

oh4
þ 1
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3w

oh3
þ t

o
4u

oh3 ox

� �
þ g2ð1� tÞ

2
vþ ð1� tÞ
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1
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2u
ohox
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� �
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R2oh3

�
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12R4
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where
g ¼ e0a

v ¼ o4u
Rohox3

þ o4v
ox4
þ 1

R3

o4u

oh3
ox
þ 1

R2

o4v

oh2
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- ¼ o5w
ohox4

þ 1

2

o4v
ox4
þ 1

R2

o5w

oh3 ox2
þ 1

2R2

o4v

oh2 ox2

n ¼ o6w
ox6
þ t

R2

o5v
ohox4

þ t

R2

o6w

ox4 oh2

f ¼ o6w

ox4 oh2
þ 1

2

o5v
ox4 oh

þ 1

R2

o6w

ox2 oh4
þ 1

2R2

o5v

ox2 oh3

# ¼ 1

R4

o6w

oh6
þ 1

R4

o5v

oh5
þ t

R2

o6w

oh4
ox2
If the small scalar parameter a vanishes, Eq. (14) will revert to the dynamics equations of classical elasticity for
a planar stress problem.

2.4. Dispersion equations

Supposing a helical harmonic wave propagates in a multi-walled carbon nanotube, the displacement field as
complex exponential form of a harmonic place wave
uðx; h; tÞ ¼ U expðjnhþ jkxx� jxtÞ ð15Þ
where u = (u,v,w)T, U = (U,V,W)T are the amplitude of displacement in the three coordination directions,
j2 = �1, x is the angular frequency of wave, n is the component of wavenumber in the direction y, kx is
the component of wavenumber in the direction x.
n ¼ Rk sin b ð16Þ
kx ¼ k cos b ð17Þ
where b is the angle of the propagation direction of the wave with respect to axial direction.
Substitution of Eq. (15) into Eq. (14) obtains the governing equation of the ith wall
½Ki � x2Mi�Ui ¼ qi ð18Þ
where Mi, Ki and qi are given in Appendix A, qi is the coupled terms due to van der Waals interaction.
Assembling of Eq. (18), the total equation of the N-wall carbon nanotube can be obtained
½Kt � x2Mt�Ut ¼ 0 ð19Þ
where Kt is 3N · 3N total stiffness matrix, Mt is 3N · 3N total mass matrix, Ut is 3N total displace amplitude
vector, qi of Eq. (18) is incorporated into Kt, they are given in Appendix B. The relationship between the wave-
numbers k and frequencies x is obtained from the condition for the nonzero solution of Ut in Eq. (19) as
follows:
jKt � x2Mtj ¼ 0 ð20Þ

According to a given wavenumber k, the corresponding frequency x can be determined from Eq. (20).

Thus, for different helical angle, dispersion curves of wave propagation in MWNTs are obtained.
For the mth mode, the Rayleigh quotient can be written as
x2
m ¼

uL
mKtuR

m

uL
mMtuR

m

ð21Þ
where uL
m and uR

m are the mth transposed left and right eigenvectors of Eq. (19).
Phase velocity represents the rate at which energy is transported, and it is given as (Achenbach, 1973)
cg ¼
x
k

ð22Þ
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2.5. Cut-off frequency

Substituting k = 0 into Eq. (20), the two cut-off frequencies of the two-walled carbon nanotube can be
obtained
xcut1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E 2 ð1�t2Þc1

Eh þ R2
1
þR2

2ð Þ
R2

1
R2

2

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 ð1�t2Þc1

Eh

h i2

þ R2
1
þR2

2ð Þ2
R4

1
R4

2

� 4
R2

1
R2

2

r

2qð1� t2Þ

vuuut
ð23aÞ
Fig. 2. The dispersion curve of the two-wall carbon nanotube. (a) b = 0�, R = 0.8 nm; (b) b = 30�, R = 0.8 nm.
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xcut2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E 2 ð1�t2Þc1

Eh þ R2
1
þR2

2ð Þ
R2

1
R2

2

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 ð1�t2Þc1

Eh

h i2

þ R2
1
þR2

2ð Þ2
R4

1
R4

2

� 4
R2

1
R2

2

r

2qð1� t2Þ

vuuut
ð23bÞ
Cut-off frequencies of the three-walled carbon nanotube can be obtained in the same way.
The dispersion curve of the carbon nanotube b = 30�, R = 10 nm. (a) The two-walled carbon nanotube, (b) the three-walled carbon
be.



1250 G.Q. Xie et al. / International Journal of Solids and Structures 44 (2007) 1242–1255
3. Numerical examples

For all the subsequent numerical examples, carbon nanotubes are taken with the in-plane stiffness
Eh = 360 J/m2 given by Yakobson et al. (1996), thickness of the carbon nanotube h = 0.34 nm, length of
C–C bond a = 0.142 nm and mass density q = 2.3 · 103 kg/m3 (Yoon et al., 2004), e0 = 0.39 (Eringen,
1983a,b), Poisson’s ratio t = 0.145, Young’s modulus E = 1 TPa.

To investigate the effect of the small size on the dispersion characteristic of the carbon nanotube, we present
two numerical examples. One is a two-wall carbon nanotube, another is a three-wall carbon nanotube.

3.1. Case I: two-walled carbon nanotube

Fig. 2(a) and (b) shows that the dispersion curves of the waves propagation in the axial and helical direc-
tions along the two-walled carbon nanotube of the inner radius, respectively. It can be seen from these figures
that there are two cut-off frequencies of waves. The two cut-off frequencies of the two-walled carbon nanotube
of the inner radius 0.8 nm are determined from Eqs. (23a) and (23b), they are 1.8486 · 1013 Hz and
2.6343 · 1013 Hz. It can be found from Eqs. (23a) and (23b) and Fig. 2(a) and (b) that the cut-off frequencies
of the carbon nanotube cannot be influenced by the small size of the carbon nanotube. It is also observed from
the two figures that the effect of the small size on the dispersion properties of the two-walled carbon nanotube
does not arise when the wavenumbers are lower. The effect of the small size will arise and increase gradually
with increase of the wavenumbers. This can be explained as follows: the nonlocal theory incorporates big
range interactions between particles in a continuum model. Such big range interactions occur between charged
atoms or molecules in a solid. Big range forces may also be considered to propagate along fibers or lamina in a
composite material (Ilcewicz et al., 1981). Effect of the small size is caused by big range interaction among
atoms. The interaction, namely, effect of the small size, will disappear when the distance between two atoms
exceeds a critical size. The lower wavenumber corresponds to the longer wavelength; effect of the small size will
disappear when the size of the double-walled carbon nanotube covered by the longer wavelength exceeds the
critical size. Eringen and Kim (1977) found that nonlocal theory reduces to classical in long wavelength limit
and to atomic lattice dynamics in the short wavelength limit. The result of this paper is also in excellent agree-
ment with their results.
Fig. 4. The phase velocity of the two-wall carbon nanotube b = 30�, R = 0.8 nm.
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Fig. 3(a) shows that the dispersion curves of the waves in a two-walled carbon nanotube of the inner radius
10 nm. It is obvious from the comparison between Figs. 2(b) and 3(a) that the effect of the small size on the
dispersion characteristics of the two-walled carbon nanotubes will decrease as the inner radius of the carbon
nanotube increases.

Fig. 4 shows that phase velocities of the two-walled carbon nanotube of the inner radius 0.8 nm. It is
observed from Fig. 4 that at the two cut-off frequencies the wavenumber becomes zero and the corresponding
phase velocity of the two-walled carbon nanotube becomes infinite. For the first and second wave modes, the
wave velocities remain at an identical constant value for any wavenumber. When the wavenumber is upper,
Fig. 5. The dispersion curve of the three-wall carbon nanotube. (a) b = 0�, R = 0.8 nm; (b) b = 30�, R = 0.8 nm.



Fig. 6. The phase velocity of the three-wall carbon nanotube b = 30�, R = 0.8 nm.
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the wave propagation for the fifth and sixth wave modes appear at a fairly constant velocity, but a sharp drop
is observed at k close to zero.

3.2. Case II: three-walled carbon nanotube

Fig. 5(a) shows that the dispersive curves of the three-walled carbon nanotube of the inner radius 0.8 nm. It
can be found from the two figures that there are three cut-off frequencies of waves in the three-walled carbon
nanotube. It is also observed from these figures that the effect of the small size on the dispersion properties of
the three-walled carbon nanotube does not arise when the wavenumbers are lower, and the effect of the small
size will emerge and increase gradually with increase of the wavenumbers.

Fig. 5(b) shows that the dispersion curves of the double-walled carbon nanotube of the inner radius 10 nm.
It can be seen from the comparison between Figs. 5(b) and 3(b) that the effect of the small size on the disper-
sion characteristics of the three-walled carbon nanotubes will decrease as the inner radius increases.

Fig. 6 shows that phase velocities of the three-walled carbon nanotube of the inner radius 0.8 nm. It is
observed from Fig. 6 that at the three cut-off frequencies the wavenumber becomes zero and the corresponding
phase velocity of the three-walled carbon nanotube becomes infinite. For the first three wave modes, the wave
velocities remain at the same constant value for any wavenumber. When the wavenumber is bigger, the wave
propagation for the fifth, sixth and seventh wave modes appear in a fairly constant velocity, but a sharp drop
is found near at k = 0.

4. Conclusions

Dynamic equations of the carbon nanotube are obtained on the basis of nonlocal elastic theory. Dispersion
characteristics and phase velocity of wave in the carbon nanotube are obtained from the solution of the eigen-
value equations. The numerical results show that the wave characteristics of a carbon nanotube are influenced
by the effect of the small scalar size. It has been found that the effect of the small scalar size on the wave prop-
erties of the carbon nanotube will increase with the increase of the wavenumber. The effect of the small size on
the properties of wave in the carbon nanotube will decrease as the innermost radius of the carbon nanotube
increases. The cut-off frequencies cannot be influenced by the small size of the carbon nanotube.
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Appendix A
Ki ¼
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Mi ¼ diag
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Appendix B
Mt ¼ I
qð1� t2Þ

E

where I is 3N · 3N identity matrix.
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where Ci ¼ ci
ð1�t2Þ

Eh ði ¼ 1; 2; 3; . . . ;N � 1Þ.
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